UNIVERSIDADE FEDERAL DE JUIZ DE FORA
INSTITUTO DE CIENCIAS EXATAS
BACHARELADO EM SISTEMAS DE INFORMAGAO

Celso Gabriel Dutra Almeida Malosto

Ferramenta de apoio automatizado a fase de balanceamento de regras em jogos
de turnos

Juiz de Fora
2026

Celso Gabriel Dutra Almeida Malosto

Ferramenta de apoio automatizado a fase de balanceamento de regras em jogos
de turnos

Trabalho de conclusdo de curso apresentado
ao Bacharelado em Sistemas de Informacéo da
Universidade Federal de Juiz de Fora como re-
quisito parcial a obtencéo do titulo de Bacharel
em Sistemas de Informacé&o.

Orientador: Prof. Dr. Igor de Oliveira Knop
Coorientadora: Prof.2 Dr.2 Luciana Concei¢do Dias Campos

Juiz de Fora
2026

Malosto, Celso Gabriel Dutra Almeida.

Ferramenta de apoio automatizado a fase de balanceamento de
regras em jogos de turnos / Celso Gabriel Dutra Almeida Malosto. — Juiz
de Fora, 2026.

66 f. : il.

Orientador: Igor de Oliveira Knop

Coorientadora: Luciana Conceicdo Dias Campos

Trabalho de Conclusdo de Curso (bacharelado) — Universidade Fe-
deral de Juiz de Fora, Instituto de Ciéncias Exatas. Bacharelado em
Sistemas de Informagéo, 2026.

1. Game design. 2. Play-test automatico. 3. AlphaZero. 4. Redes
neurais artificiais. I. Knop, lgor de Oliveira, orient. Il. Campos, Luciana
Conceicao Dias, coorient. lll. Instituto de Ciéncias Exatas. IV. Titulo.

Celso Gabriel Dutra Almeida Malosto

Ferramenta de apoio automatizado a fase de balanceamento de regras em jogos
de turnos

Trabalho de conclusdo de curso apresentado
ao Bacharelado em Sistemas de Informacéo da
Universidade Federal de Juiz de Fora como re-
quisito parcial a obtencéo do titulo de Bacharel
em Sistemas de Informacéao.

Aprovado em 23 de janeiro de 2026

Banca examinadora

Prof. Dr. Igor de Oliveira Knop — Orientador
Universidade Federal de Juiz de Fora

Prof.2 Dr.2 Luciana Conceicao Dias Campos — Coorientadora
Universidade Federal de Juiz de Fora

Prof. Dr. Heder Soares Bernardino
Universidade Federal de Juiz de Fora

Prof. Dr. Marcelo Caniato Renhe
Universidade Federal de Juiz de Fora

AGRADECIMENTOS

Inescapavelmente, gostaria de fazer um aceno final as paredes e jardins com quem
convivi noturnamente durante todos esses anos de formacao na Universidade Federal de Juiz de
Fora. Foi neles que contei com o0 apoio e o carinho de professores, técnicos e colegas.

Em especial, agradeco ao Prof Dr. Igor Knop e a Prof.? Dr.? Luciana Campos por cari-
nhosamente terem atuado como orientadores desta pesquisa. Eles permitiram-me a flexibilidade
da qual eu precisei para explorar, mas reforcando o ponderamento sobre o escopo.

Agradeco também ao querido coordenador do meu curso de Bacharelado em Sistemas
de Informacao, Prof. Dr. Luciano Jerez, que me ajudou a percorrer o caminho e compreender o
meu objetivo nessa area de conhecimento.

Agradeco novamente ao Prof. Dr. Igor Knop, e aos Prof. Dr. Sténio de Sa e Prof. Dr.
Marcelo Caniato por terem atuado brilhantemente como tutores do Grupo de Educacdo Tutorial
em Sistemas de Informacao (GetSi), do qual eu fiz parte e que forneceu recursos para o desen-
volvimento desta pesquisa por meio de uma bolsa de graduacao financiada pela UFJF.

Agradeco a todos os amigos cujas trajetorias se cruzaram com a minha nesse tempo.
Em especial, desejo um abraco ao meu colega Lucas Paiva, com quem agradavelmente estudei
diversas disciplinas e elaborei extensos trabalhos.

Agradeco com muito carinho ao meu companheiro, Samuel Nascimento, que esteve ao
meu lado em todos os momentos de que precisei, apoiando-me emocionalmente e com sugestoes
praticas. Foi com a felicidade que me mostrou que pude me motivar a realizar esta pesquisa.

Com especialissima gratiddo, agradeco a minha familia e aos meus pais, Leandra Dutra
e Celso Malosto, por acreditarem em mim e por me apoiarem de todas as formas durante tantas
mudancas necessdrias para meu amadurecimento como pessoa e como pesquisador.

Perguntar-me-a o leitor porque ndo o construi
mais cedo, a0 mesmo tempo que 0S meus
dirigiveis. E que o inventor, como a natureza
de Linneu, nao faz saltos; progride de manso,
evolui. Comecei por fazer-me bom piloto de
baldo livre e s6 depois ataquei o problema de
sua dirigibilidade. Fiz-me bom aeronauta no
manejo dos meus dirigiveis; durante muitos
anos, estudei a fundo o motor a petréleo e
s0 quando verifiquei que o seu estado de per-
feicdo era bastante para fazer voar, ataquei o
problema do mais pesado que o ar (Dumont,

1918, p. 49).

RESUMO

Introducao: O mercado de jogos autorais apresenta um crescimento continuo, com
milhares de jogos publicados anualmente nas maiores feiras do mundo. Esse crescimento
cria uma demanda por melhorias nas ferramentas de apoio a fase de criacao. Nessa fase, um
protétipo passa por play-test repetidamente a fim de identificar desbalanceamentos e estratégias
dominantes, 0 que exige muito tempo e recursos humanos. Objetivos: Esta pesquisa busca
desenvolver meios de aliviar a necessidade da equipe de play-test, ao explorar por exaustao
os sistemas do jogo usando agentes inteligentes. Dessa forma, espera-se que os humanos se
concentrem nos aspectos da experiéncia de jogo e ndao em testes de estresse. Métodos: Esta
€ uma pesquisa exploratoria na qual é avaliado o uso de agentes inteligentes treinados por
métodos de self-play inspirados pelo projeto AlphaZero, que é baseado nos métodos de busca
em arvore de Monte Carlo (MCTS) e de redes neurais residuais (ResNets). Foi criado um
sistema computacional de representacdo de jogos de turnos, de geracao e treinamento de agentes
inteligentes e de simulacdo e avaliacao de partidas, que foi testado com o jogo Ligue-4. Dados
colhidos durante e apds o processo de treinamento sdo utilizados para levantar observacoes
do comportamento emergente das regras do jogo. Resultados: Com as partidas sintéticas, a
equipe de desenvolvimento passa a ter um conjunto de partidas para avaliar, coletadas com
custos reduzidos. Essa abordagem permitiu construir um sistema que gera métricas acerca do
jogo e visualiza-las, o que indicou a viabilidade de usar o método de play-test automatizado
como apoio ao projetista, ainda que mais experimentos sejam requeridos utilizando diferentes
parametros.

Palavras-chave: game design; play-test automatico; AlphaZero; redes neurais artificiais.

ABSTRACT

Introduction: The market for designer’s games shows continuous growth, with thou-
sands of games published annually at the world’s largest fairs. This growth creates a demand for
improvements in tools supporting the creation phase. In this phase, a prototype undergoes play-
test repeatedly to identify imbalances and dominant strategies, which requires significant time
and human resources. Objectives: This research seeks to develop ways to alleviate the need
for a play-test team by exhaustively exploring the game systems using intelligent agents. Thus,
humans are expected to focus on aspects of the game experience rather than on stress testing.
Methods: This is an exploratory research evaluating the use of intelligent agents trained by self-
play methods inspired by the AlphaZero project, which is based on Monte Carlo tree search
(MCTS) and residual neural networks (ResNets) methods. A computer system was created for
representing turn-based games, generating and training intelligent agents, and simulating and
evaluating matches, which was tested with the game ConnectFour. Data collected during and
after the training process are used to raise observations about the emergent behavior of the
game rules. Results: With synthetic matches, the development team now has a set of matches
to evaluate, collected with reduced costs. This approach allowed creating a system to generate
metrics about the game and visualize them, which has indicated the viability of using the
automated play-test method as support for the designer, although further experiments using
different parameters are required.

Keywords: game design; automated play-test; AlphaZero; artificial neural networks.

Figura 1
Figura 2

Figura 3
Figura 4

Equacéo 1

Figura 5

Figura 6

Figura 7

Figura 8

Figura 9

Figura 10

Figura 11

Figura 12

Equacéao 2

Figura 13
Figura 14
Figura 15
Figura 16

Figura 17

LISTA DE ILUSTRAGCOES

Tabuleiro do Jogo da Velha e sua representacdo numérica. 16
Tabuleiro do Snowball e os pontos atribuidos a cada jogador apos efe-

tuar cada Jogada. 17
Tabuleiro do Ligue-4 e sua representacdo numeérica. 18
Ciclo da busca em arvore de Monte Carlo: suas quatro etapas sao a se-
lecdo, a expansao, a simulacéo e a retro-propagacdo. 20

Célculo de fitness da diretriz de limite superior de confianca aplicado a
arvores (UCT) usada pela busca em arvore de Monte Carlo (MCTS)
ClASSICA. ...t 20
Uso da busca em arvore de Monte Carlo (MCTS) para calcular as pro-
babilidades de jogar cada um dos movimentos validos a partir de um es-

tado iNICIAl. ... e 21
Arquitetura dos métodos uma rede neural convolucional (CNN). 22
Métodos de processamento de entrada em uma rede neural convolucio-
Nal (CNIN). L 22
Estrutura de um bloco residual usado em uma rede neural residual

(RESNBL). ot e e e e 23

Arquitetura de uma rede neural residual (ResNet) composta por uma ca-
mada de adaptacdo da entrada, uma backbone e camadas de saida
policy head e value head. i, 24
Predicdo de um modelo de rede neural residual (ResNet) para as quali-
dades estimadas de cada movimento do jogo e para a expectativa de
gqualidade da partida a partir de um estado do tabuleiro no turno do joga-
OT X, et 25
Ciclo de treinamento de um modelo do AlphaZero, constituido das fases
de geracdo da memoaria de partidas e de alinhamento do modelo de
rede neural residual (ResNet). ...t 25
Ciclo da busca em arvore de Monte Carlo guiada por agentes inteligen-
tes, conforme adaptacéo do AlphaZero: suas quatro etapas séo a sele-
¢ao, a predicdo, a expansao e a retro-propagacan. 26
Célculo de fitness da diretriz de limite superior de confianca aplicado a
arvores (UCT) usada pela busca em arvore de Monte Carlo (MCTS)

adaptada pelo AlphaZero. i e 27
Estado do Jogo da Velha representado como canais binarios. 28
Estado do Ligue-4 representado como canais binarios. 28
Fluxo de trabalho dos métodos necessérios e seus artefatos. 32
Dependéncias entre os modulos do sistema e com pacotes exter-

10 34

Tipos de dados comuns definidos pelo pacote core. 35

Figura 18
Figura 19
Figura 20
Algoritmo 1
Figura 21

Figura 22
Equacgéao 3

Figura 23

Figura 24

Algoritmo 2
Figura 25

Figura 26

Figura 27

Figura 28
Figura 29

Figura 30

Quadro 1

Tipos de dados comuns definidos pelo pacote game. 36

Classes definidas pelo pacote game.ccovviiiiiiieiiinn.nn. 36
Classes concretas alteradas na implementacao do Ligue-4 e tipo utilita-
roneladefinido. ... 39
Cddigo-fonte simplificado da funcéo
getIndexO0fPlayerWhoIsOCCUPYingShape. . .vvuvinn i iiieieiannnnn 41
Tipos de dados comuns definidos pelo pacote search. 42
Classe TreeNode definida no pacote search.c.ccviiiieannn... 42

Célculo da qualidade de um movimento a partir da arvore de busca
construida pelo método de busca em arvore de Monte Carlo

(M T S ottt e e e e e 44
Classe search definida no pacote search.ccviiiiieinn.... 44
Tipos de dados relacionados a criagdo de uma memoria de partidas de-
finidos pelo pacote search. ... 46
Cddigo-fonte simplificado da funcéo buildMemoryofMatch. 46
Interface do programa Sistema de Teste de Jogabilidade Automatizado
AP T S). ottt e e e 48
Qualidades de movimentos e probabilidades de vitéria a efetua-los esti-
madas pela MCTS CIASSiCa.coviiii i 49
Arvore de busca montada ao avaliar a qualidade de um estado por meio
da MCTS ClASSICA. ...ttt e e e 49

Ambiente de jogatina entre jogadores e entre agentes inteligentes. . . 50
Estrutura de uma ResNet criada para o jogo Ligue-4 com dois blocos re-

SIAUAIS. .ttt 50
Dados representativos de memoérias de partidas sintéticas geradas pelo
meétodo de self-play. 51

Métricas acerca da durac@o em turnos de partidas simuladas do jogo Li-
GUE-A . o 55

LISTA DE TABELAS

Tabela 1 Melhores modelos de ResNet ordenados por acuracia da policy head. . . 54
Tabela 2 Melhores modelos de ResNet ordenados por acuracia da value head. . . 54
Tabela 3 Analise de vitdrias dos jogadores segundo faixas de duracdo de partidas
simuladas do Jogo Ligue-4. i e 55
Tabela 4 Analise de movimentos mais jogados por cada agente inteligente em parti-
das partidas simuladas do jogo Ligue-4. ...t 56

APTS

Adam
API
CNN

JSON
MCTS
RelLU
ResNet
UCT

LISTA DE ABREVIATURAS E SIGLAS
Sistema de Teste de Jogabilidade Automatizado.
COMPUTACAO

estimativa de momento adaptativo.

interface de programacéao de aplicacoes.

rede neural convolucional.

inteligéncia artificial.

notacdo de objetos do JavaScript.

busca em arvore de Monte Carlo.

unidade linear retificada.

rede neural residual.

limite superior de confianca aplicado a arvores.

SUMARIO

O |V T 0] U oY 2 13
2 FUNDAMENTAGAO TEORICAiiiiiiii ittt eeeeeeeeeaeeeeeeeeeeeeens 16
2.1 COMPONENTES FUNDAMENTAISDE UMJOGOcovviaaannnn. .. 16
2.2 JOGOS DE TURNOS DE DESTAQUE ...ttt 16
221 JogodaVelhac.coviiiiiiiiiiiiiiiia i ia i ssasssasaanransannnanns 16
2.2.2 LiQUE-4 ..ottt it i i e i 18
722 T 18
2.3 BUSCAEM ARVORE DE MONTE CARLOooiiiiiii i 19
2.4 REDES NEURAIS RESIDUAIS ...ttt 21
2.5 PROJETO ALPHAZERO ... 23
2.6 TRABALHOS RELACIONADOS ...\ .\ttt 28
3 MATERIAL EMETODOS ... uuiiiiieiiieeeeeateeeeeetaeasaaseeeeeeeeeeeeeeeees 30
3.1 MATERIAL ... 30
3.1.1 Ambiente de eXeCUGAODuuririurirnnrnrnnrnrnnrasnnsnssssnrarnnsnnnns 30
3.1.2 Ambiente de desenvolvimentocviiiiiiiiiiiiiaiiiaiiia s 30
3.1.3 Depend€ncCias €XterNASueueuererarnrnrnrnrnnsnsnsararssssnsnnsnsnsns 31
3.2 METODOS ..ottt ettt et 32
4 DESENVOLVIMENTO ...\uuueteeeeeeeeteaaaaananeeeeeesesseeaaannnnnnes 34
4.1 UTILITARIOS ...ttt 34
4.2 DESCRICAO DE JOGOS ...ttt 35
4.3 IMPLEMENTACAO DOS JOGOSttt 39
4.4 ELABORACAO DOS ALGORITMOSDEBUSCA ..., 42
4.5 CONSTRUCAO DA REDE NEURALRESIDUALovviiiiiiiin, 45
4.6 GERACAO DE MEMORIAS DE TREINAMENTO ...t 45
4.7 INTERFACECOMOUSUARIO ..., 48

5 RESULTADOS ...ttt ia i i saassnssansanssansanssnnsnnssnsrnnsnnns 53

5.1 GERACAO DE AGENTES INTELIGENTES ...\ttt

5.2 SIMULAGCAO DE PARTIDAS . ..\ttt

6 CONSIDERAGOES FINAIS

REFERENCIAS..............

13

1 INTRODUCAO

Jogos sdo conceituados como atividades com prop6sito bem definido, o qual comumente
é vencer um desafio. Um jogador apenas pode ser considerado vitorioso caso ele atinja o objetivo
segundo condicdes pré-estabelecidas, definidas como as regras do jogo. Tais regras permitem
diferentes estratégias, as quais podem ser consideradas melhores ou piores para obter a vitoria,
de acordo com o contexto da partida (Suits, 1967).

Dentre as categorias existentes, destacam-se 0s jogos de turnos (turn-based games), em
que o tempo de partida evolui em unidades discretas. Essas sao chamadas de turnos, nos quais
os jogadores realizam um nuimero finito de movimentos que resultam em mudangas no estado
do jogo. Comumente, os turnos se alternam de forma pré-estabelecida, ao que se denomina
rodada. Nessa classe de jogos, as rodadas se sucedem até que a partida chegue a um estado final
o qual é avaliado com alguma métrica para decidir o sucesso ou fracasso dos jogadores dentro
do desafio proposto. Uma caracteristica marcante deles é a possibilidade representar a tomada
de decisdo dos jogadores durante uma partida por meio de arvores de decisdo. Essas estruturas
permitem formalizar em um grafo os movimentos possiveis, definidos pelas regras, e os estados
resultantes delas (Salen; Zimmerman, 2003, p. 410).

O mercado dos jogos de tabuleiro (board game) modernos teve um marco com 0
lancamento de Colonizadores de Catan (Teuber, 1995), quando jogos contemporaneos se
tornaram populares mundialmente a partir da Alemanha e criaram um novo movimento cultural.
Atualmente existem sites focados em catalogar esses jogos, sendo o maior 0 BoardGameGeek',
que registra mais de 140 mil itens entre jogos, suas reimplementacdes e suas subsequentes
expansoes.

Uma grande parcela desses jogos se destaca pelo seu perfil tatico ou estratégico durante
as partidas, com uma série de reacoes em cadeia oriundas dos movimentos escolhidos pelas
decisoes dos jogadores, ocasionando diversas dinamicas sociais e complexidade emergente.
Estes jogos sdo também conhecidos como designer’s games, ou jogos autorais, por trazerem o
nome do autor na capa. Eles sdo fruto de uma organizacao de criadores que proporciona uma
série de beneficios para um mercado baseado em novidades (Woods, 2012). Anualmente, acima
de 1000 novos jogos sdo apresentados nas maiores convencdes do meio, além de reimpressodes,
reedi¢Oes expansoes de contetido e jogabilidade (BoardGameGeek, LLC, 2025).

O processo de criagdao de um jogo € um processo exaustivamente iterativo. O criador
implementa a sua ideia em um protétipo para facilitar as continuas modificacdes necessarias.
Assim que o autor julga que esse prototipo esta pronto dentro da experiéncia de jogo desejada,
ele deve ser testado na que se denomina a fase de play-test (teste de jogabilidade). Esta é a etapa
na qual se realizam partidas para explorar o comportamento dos sistemas e encontrar possiveis
desequilibrios (Fullerton, 2019; Marcelo; Pescuite, 2009).

Deve-se ressaltar que desenvolvimento de um jogo autoral é um processo complexo e
custoso, sobretudo durante a fase de play-test. Nao é incomum o autor realizar os testes sozinho,
simulando varios jogadores. Contudo, ao considerar dindmicas e mecanismos mais complexos, é
necessario convidar outras pessoas para auxilid-lo. Adicionalmente, sdo feitos testes de estresse

' Acesso em: https://boardgamegeek.com/wiki/page/Welcome_to_BoardGameGeek.

https://boardgamegeek.com/wiki/page/Welcome_to_BoardGameGeek

14

para diversos sistemas do jogo. Entre eles, podemos citar a realizacdo da mesma agdo durante
quase toda a partida, caso aparente ser muito vantajosa, o que ajuda a verificar se ela consegue
sobrepujar todas as demais (Marcelo; Pescuite, 2009). Esta € a etapa do play-test que é conhecida
como balanceamento.

A busca pelo balanceamento em jogos apresenta um desafio grande para a industria,
pois o préprio termo ndo é consenso (Becker; Gorlich, 2020). Tal processo é altamente depen-
dente de contexto, com desdobramentos para equilibrio matematico, progressao de dificuldade,
progressdo de conteudo, variedade de estratégias e imparcialidade entre jogadores. Cada um
desses grupos apresenta suas proprias caracteristicas, constituindo subsistemas altamente inter-
-relacionados de um sistema complexo maior, que é o jogo (Romero; Schreiber, 2021).

Essa etapa, na qual partidas do jogo sdao performadas repetidamente, tem alto custo de
recursos humanos e tempo. E dificil manter um grupo de teste ativo e focado, dado que se trata de
um processo cansativo quando o nimero de partidas comeca a ficar alto. Além disso, o objetivo
do teste repetitivo nem sempre é claro para os jogadores, de forma que o projetista tenta nao
contaminar a partida divulgando quais mecanismos estdao sob teste (Trzewiczek, 2017).

Ademais, efeitos sobre os proprios testadores podem influenciar os resultados dos
testes com suas expectativas, humores, excessos ou falta de concentragdo. Esses sdao pontos
importantes a se observar em um teste de experiéncia de jogo (Marcelo; Pescuite, 2009), mas
ndo sao relevantes quando os objetivos sdao equilibrios durante testes de estresse, nos quais os
movimentos executados devem ser puramente efetivos e alheios ao divertimento e emocées dos
jogadores ou dinamicas do grupo.

O estudo de jogos de mesa por meios computacionais segue a propria histéria da
Computacdo, em que pioneiros buscaram construir maquinas, modelos e algoritmos para jogar
xadrez em um nivel avancado (Silver et al., 2018). Tradicionalmente, jogos de tabuleiro sdao
descritos por estados discretos e tidos como jogos combinatoriais. A area foi conduzida pelo
estudo da busca eficiente em arvores de decisao via variagoes do algoritmo minimax e poda em
arvore alfa-beta nas dltimas duas décadas (Plaat et al., 1995).

Os estudos continuaram com as heuristicas especializadas até que os resultados da busca
em arvore de Monte Carlo (MCTS) na implementacdo de algoritmos de decisao se mostraram
positivos (Holmgard et al., 2019; Kocsis; Szepesvari, 2006). Seu uso ndo requeria qualquer
outro conhecimento prévio além das regras do jogo e apresentava um bom desempenho sem
necessitar que se implementasse uma heuristica especializada.

Com base nela, o projeto AlphaZero, do laboratorio de pesquisa Google DeepMind, se
destacou por substituir a necessidade de adaptar conhecimento de dominio de um jogo especifico
pelo uso de uma rede neural residual (ResNet), atuando como um algoritmo de aprendizado
profundo independente de heuristicas especializadas (Silver et al., 2016). Essa estratégia
permitiu realizar buscas eficientes na arvore de decisdo através de um modelo treinado por
aprendizado profundo. Esse método teve varias aplicacdes em jogos diferentes, como o Shogi
e Go, que apresentavam complexidade superior ao xadrez. Assim, ao considerar o aprendizado
ndo informado resultante das repetidas partidas simuladas, percebe-se que essas tecnologias sao
promissoras para aprimorar jogos de mesa em desenvolvimento, observando desde a avaliacao
do estado do jogo, bem como a massa de dados gerada ao final do treinamento.

15

Dado este contexto, o presente trabalho continua uma pesquisa exploratéria para inves-
tigar relacoes de balanceamento em jogos durante sua criacdao (Araki; Knop, 2020; Malosto;
Campos; Knop, 2025; Malosto; Knop; Campos, 2023). Seu objetivo geral é oferecer perspec-
tivas e ferramentas inovadoras ao cenario de criacao de jogos de turnos, estabelecendo como
foco a fase de play-test.

Os autores estabelecem como hipétese que é viavel construir sistemas computacionais
para a execucao de partidas sintéticas que oferecam dados relevantes aos projetistas de jogos, de
forma a reduzir o emprego de recursos humanos nessa fase. Assim, espera-se que a participacao
de pessoas seja empregada para investigar aspectos lidicos, sociais e a experiéncia do jogador,
ao passo em que os testes repetitivos sejam realizados majoritariamente por agentes inteligentes.

A nivel dos objetivos especificos, é proposto construir um ambiente de play-test
simulado para auxiliar as pessoas autoras de jogos a realizar as primeiras iteracoes do processo
de teste. Esse sistema deve permitir representar um jogo de turnos arbitrario e descrever suas
regras na forma de classes especificas elaboradas em codigo-fonte da linguagem JavaScript.
Ele deve entdo oferecer ao usudrio um ambiente de simulagdo de partidas sintéticas que exporte
histéricos das jogadas. Nessa perspectiva, é necessario estudar a modelagem de estruturas de
dados capazes de organizar informacoes sobre diferentes conceitos, como: jogo, partida, rodada,
turno, jogador, movimento e estado.

Outro requisito do sistema é oferecer formas de avaliacdo dos movimentos viaveis a
partir de um estado fornecido pelo usudrio. Isso deve ser implementado tanto pelo método
classico do algoritmo de MCTS, como também pelo uso de agentes inteligentes guiados por
ResNets. O treinamento desses € feito no processo de aprendizado por reforco, o que requer que
o sistema gerencie a criacdo de massas de dados por meio do processo de self-play ao simular
partidas sintéticas pelo método AlphaZero e, em seguida, utilize-os no alinhamento de pesos e
vieses.

O presente trabalho esta organizado em seis capitulos. Este Capitulo 1, de Introducao,
apresenta o tema geral e a situacao de mercado, delimita o problema de pesquisa e descreve a
contribuicdo esperada. O Capitulo 2, de Fundamentacao teérica, aborda conceitos fundamentais
para a pesquisa segundo a literatura, apresentando estudos que abordam o tema proposto ou
correlatos, a fim de situar o presente trabalho no contexto da pesquisa. Por sua vez, o Capitulo 3,
de Material e métodos, descreve a metodologia de pesquisa e desenvolvimento da solucao
proposta. Segue o Capitulo 4, de Desenvolvimento, que apresenta o processo de construcao do
sistema de representacdo de jogos e de simulacdo de partidas sintéticas. Entdao, o Capitulo 5
descreve a execucdo de um experimento realizado com o sistema para gerar agentes inteligentes
e testar seu uso no processo de coleta de dados de partidas, além de discutir resultados obtidos
e os artefatos gerados no processo. Por fim, o Capitulo 6, de Consideracdes finais, apresenta
comentdrios acerca da pesquisa, suas limitacOes e as perspectivas para trabalhos futuros.

16

2 FUNDAMENTACAO TEORICA

A fim de atingir os objetivos propostos, o presente trabalho investiga duas técnicas
para a construcdo de jogadores digitais autonomos para jogos de mesa, sendo elas a MCTS
e as ResNets, de acordo com os usos que o AlphaZero faz delas. Este capitulo faz a revisao
desses métodos, bem como elenca os trabalhos relacionados a uso de agentes inteligentes como
ferramentas de play-test.

2.1 COMPONENTES FUNDAMENTAIS DE UM JOGO

A descricdo de um jogo num ambiente de simulacdo exige identificar seus componentes
fundamentais. Com esse objetivo, a comunidade de projetistas e desenvolvedores de software
criou o projeto colaborativo BoardGame.io (Boardgame.io developers, 2022), que disponibiliza
um ambiente de representacdo e simulacdo de jogos de turnos. Ele define uma partida como
uma sequéncia de fases, que estdo associadas as regras que definem as agoes que os jogadores
podem efetuar. Uma fase pode ser constituida por rodadas, em que os jogadores se alternam
segundo uma ordem definida pelas regras. A permissao dada a um jogador de realizar uma ou
mais acoes é chamada de turno, o qual pode ser divido em estagios, similarmente as fases.

O projeto mantém dados mutaveis acerca de um momento da partida por meio de estados
e contextos. A manipulacdo dos estados deve ser descrita pelo projetista do jogo, ao passo em
que o contexto de cada turno € gerenciado pela plataforma e salva dados como a quantidade de
jogadores e o marcador do jogador atual. Essa atualizacdo dos dados de um estado ao efetuar
uma acdo é formalmente definida como um movimento, que é implementado como uma funcao
imutavel. Isso significa que todas as informagdes manipuladas por um movimento devem estar
no estado que ele recebe como argumento.

2.2 JOGOS DE TURNOS DE DESTAQUE

Alguns jogos de turnos classicos sdo utilizados como exemplo ou como método nesta
pesquisa e nos trabalhos a ela relacionados. Esta secao contextualiza os seguintes jogos: Jogo da
Velha, Ligue-4 e Go, que sao jogos de tabuleiro entre dois jogadores com informacao completa.

2.2.1 Jogo da Velha

O classico Jogo da Velha (em inglés, Tic-tac-toe)” é jogado em um tabuleiro de 3 linhas e
3 colunas, em que os jogadores se alternam marcando pecas nas casas disponiveis. Um jogador
é considerado vitorioso quando trés pecas adjacentes por ele colocadas formam uma linha
na horizontal ou na vertical ou ainda uma diagonal principal ou secundaria no tabuleiro. Um
tabuleiro parcialmente preenchido desse jogo esta demonstrado na Figura 1a, ao passo em que
a Figura 1b mostra o mesmo tabuleiro com uma representacdo de cada jogador na forma de
ntimeros inteiros. Nesse caso, o primeiro jogador é salvo como o valor 0 enquanto o segundo é
registrado como o numero 1.

A fim de adaptar o Jogo da Velha para marcar pontuacao dos jogadores, os autores deste
trabalho elaboraram um jogo variante chamado Snowball. Ele é jogado em um tabuleiro de 9

?Acesso em https://boardgamegeek.com/boardgame/11901/tic-tac-toe.

https://boardgamegeek.com/boardgame/11901/tic-tac-toe

17

Figura 1 — Tabuleiro do Jogo da Velha e sua representagdo

numeérica.
(b) Tabuleiro do Jogo
(a) Tabuleiro do Jogo da da Velha representado
Velha. numericamente.

X X Q0
O 1
O 1

Fonte: elaborado pelo autor (2026).
Nota: Neste estado, o jogador atual é o de simbolo “X”.

linhas e 9 colunas, de forma que um jogador marca 1 ponto quando a casa em que ele posiciona

sua peca forma um formato especificado com as suas casas previamente marcadas.

Os formatos que conferem pontos sao uma linha ou diagonal de 5 pecas adjacentes, ou
ainda um quadrado de dimensao 2 ou 3. Por isso, beneficia-se o jogador que focar seu controle
sobre uma regido do tabuleiro, porque cada nova casa marcada tende a levar a mais de um
formato ao mesmo tempo, o que aumenta a pontuagao como uma bola de neve — o que motivou
na escolha do nome da variante.

Essa mecanica é demonstrada na Figura 2, em que o jogador “X” fez 15 pontos e o
jogador “O” fez 14. A partida chega ao fim quando um dos jogadores marca 15 pontos ou
quando 45 dentre as 81 pecas do tabuleiro sdo preenchidas. Entdo, o jogador com mais pontos
é reconhecido como vencedor.

Figura 2 — Tabuleiro do Snowball e os pontos atribuidos a cada jogador
apos efetuar cada jogada.
(b) Pontuagdo dos jogadores
num estado do Snowball.

0(0|0|0(0|0|0

(a) Tabuleiro do Snowball.

X | X|X]|X
X[X | X[XX
X [X[X[X
O(0|0|0
O(0|0|0O
O(0|0|0
O(0|0|O
Qoo e

1 1 111)1
1 2 1122
1 2 112(2

X | X[X[XX
-1
-t N[N | =2

Fonte: elaborado pelo autor (2026).
Nota: Os jogadores escolheram sequencialmente suas casas da esquerda para
a direita e de cima para baixo.

18

2.2.2 Ligue-4

O Ligue-4 (em inglés, ConnectFour)® é jogado em um tabuleiro vertical de 6 linhas
e 7 colunas, o que resulta em 42 casas disponiveis para marcacdo. Suas pecas sdao discos de
mesmo tamanho divididas igualmente entre cada um dos jogadores, que recebe todas as pecas
de uma das duas cores disponiveis. Demonstrando as casas marcadas, a Figura 3a representa
um tabuleiro parcialmente preenchido, cujo turno atual é do jogador “O”. Sua representacao
numeérica considerando a ordem de turnos dos jogadores é exibida na Figura 3b.
Figura 3 — Tabuleiro do Ligue-4 e sua representacdao nu-

mérica.
(b) Tabuleiro do Li-
(a) Tabuleiro do Li- gue-4 representado nu-
gue-4. mericamente.
o) 1
X|{0|0|0 QO(1(1(1
0|0|0|X (X 111]11(0(0
X0 X|X]|X Q0(1(0(/0|0
O X|X|X|OX 110|10/0(1(0

Fonte: elaborado pelo autor (2026).
Nota: Neste estado, o jogador atual é o de simbolo “O”.

Dentro de um turno, o jogador atual deve escolher uma coluna que ja nao tenha sido
completamente preenchida para colocar sua peca. Sendo o tabuleiro vertical, ela caira até a linha
mais baixa ainda ndo preenchida naquela coluna. Apés colocada, uma peca ndo pode mais ser
removida naquela partida.

Entdo, a rodada passa a vez para o segundo jogador, que deve escolher seu movimento
da mesma forma que o primeiro. Um jogador vence caso ele posicione 4 de suas pegas de forma
adjacente na mesma linha, coluna ou diagonal. Configura um empate o caso em que todas as
casas tenham sido preenchidas e nenhum jogador tenha marcado um dos formatos especificados.
Essas regras fazem com que haja mais de 4.5 trilhdes de combinagdes possiveis de pecas no
tabuleiro, mesmo que o jogo permita no maximo 7 movimentos em qualquer turno (Cahn, 2024).

2.2.3 Go

O Go* é um jogo de estratégia baseados em turnos originado na China. Ele é jogado
por duas pessoas, sendo composto por um tabuleiro de 19 linhas verticais e horizontais. Assim,
consideram-se casas as interseccoes das linhas horizontais e verticais, que totalizam 361. O jogo
dispoe de 180 pecas brancas e 180 pecas pretas, sendo cada cor associada a um dos jogadores.
Uma partida se inicia com o tabuleiro vazio e, em cada rodada, os jogadores se alternam
colocando uma de suas pecas em qualquer intersec¢do ndo ocupada. Entdo, elas ndo podem mais
ser movidas até o fim da partida.

3 Acesso em https://boardgamegeek.com/boardgame/2719/connect-four.
4Acesso em https://boardgamegeek.com/boardgame/188/go.

https://boardgamegeek.com/boardgame/2719/connect-four
https://boardgamegeek.com/boardgame/188/go

19

O objetivo do jogo é cercar totalmente as pecas adversarias pois, quando um grupo
dessas é totalmente cercado, elas sdo removidas do tabuleiro. O outro jogador tenta evitar a
captura ao posicionar pecas em intersecoes nao dominadas pelo oponente. Vence o jogador que,
ao se esgotarem todos 0os movimentos, ainda tiver a maior quantidade de pecas dispostas no
tabuleiro (Britannica, 2023).

2.3 BUSCA EM ARVORE DE MONTE CARLO

O método de busca em arvore de Monte Carlo (MCTS) é um algoritmo de decisdo
em que cada n6 de uma arvore representa dado estado de um jogo (Coulom, 2006; Kocsis;
Szepesvari, 2006). Além disso, cada n6 guarda um contador de visitas e um marcador referente
a qualidade daquele no para a partida. Os nos se relacionam por arestas entre no pai e no filho.
Uma dada aresta representa um movimento tomado por um jogador, que conduz uma transi¢ao
entre os estados representados.

O no raiz da arvore de busca é considerado o seu primeiro nivel. Esse no representa o
primeiro turno, em que esta disposto o estado inicial do jogo. O agente inteligente que opera
como o jogador inicial escolhe aleatoriamente um dentre todos os movimentos disponiveis,
segundo as regras do jogo. Essa jogada leva a criacdo de um novo estado, que é colocado
no segundo nivel da arvore. Para o caso de um jogo entre dois jogadores, o segundo jogador
escolhera um dentre os movimentos possiveis. Isso criara um novo estado, que passa o turno
novamente para o primeiro jogador. Esse estado é posicionado no terceiro nivel da arvore.

Os niveis irdo alternadamente representar as jogadas de cada um dos jogadores. Essa
estrutura possibilita ao algoritmo jogar como cada um dos jogadores, de forma a explorar o
proximo movimento realizado pelo oponente. Dessa forma, o método busca prever a melhor
acdo futura segundo o histérico disponivel a cada iteracdo (Swiechowski et al., 2022).

O processo de busca em arvore de Monte Carlo tem o objetivo de encontrar as melhores
sequéncias de jogadas, que conduzam a uma vitéria do jogador. Ele é formado por quatro
etapas: selecdo, expansao, simulacdo, e retro-propagacao, as quais sao representas na Figura 4
(Swiechowski et al., 2022, p. 2504).

Figura 4 — Ciclo da busca em arvore de Monte Carlo: suas quatro
etapas sdo a selecdo, a expansao, a simulagao e a retro-propagacao.
Selecao Expansao

‘ ‘ }] Simulagao

Retro-propagacao (5

< 5

Fonte: Adaptado de Swiechowski et al. (2022, p. 2504).

20

A etapa de selecdo procura, a partir do no raiz, o ramo com o melhor n6 folha a explorar,
orientada por uma diretriz de busca. A mais frequentemente utilizada nas implementagoes de
referéncia é chamada de limite superior de confianca aplicado a arvores (UCT) — ou Upper
Confidence bounds applied to Trees, em inglés — (Kocsis; Szepesvari, 2006).

Essa politica atribui a cada né da arvore um contador de visitas e um marcador da
qualidade parcial da partida, incrementado conforme o ramo da arvore do qual ele faz parte leva
a mais vitorias, ou decrementado caso contrario. Com base nesses dados, a Equacao 1 apresenta
como o valor de fitness (avaliacdo) de um movimento é calculado. Seu objetivo é alinhar a
exploracao (exploration) e o aproveitamento (exploitation) do espaco de busca.

Equacao 1 — Calculo de fitness da diretriz de limite superior de confianga aplicado a arvores
(UCT) usada pela busca em arvore de Monte Carlo (MCTS) classica.

Na qual:

e m* é o n6 que representa o movimento 6timo selecionado pela diretriz;

o M(s) é o conjunto de nds que representam os movimentos validos a partir do estado
s, segundo as regras do jogo;

e Q(s,m) é a qualidade da partida calculada por meio de simulagdes ao jogar o
movimento m no estado s;

o V(s) é quantidade de vezes em que o né que guarda o estado s foi visitado nas
iteracOes anteriores;

o V(s,m) é a quantidade de vezes em que o né que representa o movimento m foi
visitado nas interacoes anteriores;

o C é o coeficiente que regula a relacao entre exploracao e aproveitamento.
Fonte: Adaptado de Swiechowski et al. (2022, p. 2505).

Havendo sido selecionado um n6 folha e ndo sendo este um n6 que represente o fim do
jogo, entdo se executa a fase de expansao. Nela, escolhe-se aleatoriamente um movimento dentre
aqueles disponiveis para o estado atual segundo as regras do jogo. Entdo o estado resultante é
criado, o qual é armazenado em um novo no, definido como filho daquele que fora selecionado.

A partir do n6 criado, realiza-se a fase de simulacdo. Nela, sucedem-se turnos entre
os jogadores, em que 0s movimentos sao aleatoriamente selecionados. A simulagdo se encerra
quando é atingido um estado que represente o fim da partida. Uma funcao de fitness (avaliacao)
quantifica a qualidade da partida com o objetivo de aferir a influéncia do movimento escolhido
na pontuacdo dos jogadores.

Por fim, na fase de retro-propagacao, os nés do ramo selecionado sdo atualizados com
os dados gerados. O contador de visitas é aumentado em 1, ao passo em que o marcador de
qualidade é incrementado pelo valor de fitness calculado.

Para executar o ciclo de busca, deve-se definir o nimero de iteracdes desejado. Cada
iteracdo levara a expansdo de um tnico novo no. Ao final de todos os ciclos, os filhos diretos
do né raiz terdo os marcadores de visitas e de qualidade atualizados segundo o andamento das
partidas. A partir desses dados, uma funcdo deve calcular a probabilidade de jogar cada um dos

21

Figura 5 — Uso da busca em arvore de Monte

Carlo (MCTYS) para calcular as probabilidades

de jogar cada um dos movimentos validos a
partir de um estado inicial.

S

Fonte: Adaptado de Swiechowski et al. (2022, p.
2505).

Nota: Neste exemplo, o calculo das probabilidades
dos trés movimentos validos a partir do estado ini-
cial utilizou apenas a quantidade de visitas a cada
um dos ramos iniciados pelo respectivo movimento.

movimentos. Um exemplo de funcdo que utiliza somente o contador de visitas a cada ramo para
calcular as probabilidades é demonstrado na Figura 5. Dispondo do vetor de probabilidades, o
método da selecdo aleatoria por roleta escolhe um dos movimentos.

A descricao do método de MCTS permite concluir que ele apresenta boas solucdes para
problemas nos quais o espaco de busca nao pode ser percorrido completamente em tempo habil.
Isso se da porque a politica de selecao (UCT) descrita na Equacdo 1 privilegia os ramos com
maior relevancia e deixa de gastar recursos explorando aqueles que ndo tendem a gerar bons
resultados. O método também diminui a necessidade de uma heuristica prévia sobre o dominio
para operar, embora existam trabalhos que buscam defini-la para melhorar o desempenho.

2.4 REDES NEURAIS RESIDUAIS

As redes neurais convolucionais (CNNs) sdo uma classe de redes neurais profundas
especialmente projetadas para processar dados estruturados em grade. Seus usos se destacam
na areas de visdo computacional, sobretudo para o reconhecimento de imagens. Aprimorando
as redes neurais tradicionais totalmente conectadas, as CNNs utilizam opera¢des de convolugao
que permitem capturar padrdes espaciais e hierarquicos nos dados de entrada sem definicao
prévia dos elementos de interesse (Li et al., 2022).

A arquitetura tipica de uma CNN consiste em camadas convolucionais, camadas de
pooling (agrupamento) e camadas totalmente conectadas, conforme demonstrado na Figura 6.
As camadas convolucionais aplicam filtros que detectam caracteristicas locais, como bordas
e texturas, enquanto as camadas de pooling reduzem a dimensionalidade espacial (downsam-
pling), preservando as informacdes mais relevantes (Li et al., 2022), como representado na

22

Figura 7. Dessa forma, essa classe de redes neurais balanceia a precisdao dos detalhes com a
rapidez de convergéncia pelo processo de downsampling.

Figura 6 — Arquitetura dos métodos uma rede neural
convolucional (CNN).

O o

onv layers FC layers

Fonte: Li et al. (2022, p. 7000).
Figura 7 — Métodos de processamento de entrada em uma rede neural convolucional (CNN).

Stride =2
0/0jJo0jo0|0j0O 0|00
0/0(0(0|1]|0]0 0/0j0J0|0}1({0|0]|O0
110(0|1/0[{0]1 0/1J0j0[1}j0|0|[1/0]| %
‘ 0|1 1]0 Max
010(1(0|1]{0]0 . 0/0{0)J1(0|1]0([0]0O .
Padding Conv kernel 1/3 3|1 Pooling
0(1(1({0{0|{1|0|———|0|0[1}2[0|0]|1/0]|0 i 99 ’ 99 >
110(1(0(0[1]0 0/1{0(1(0|0|1([0]O
0(1 3|2
0|0(1(0(0|1]0O0 0{0|O|1|1(0|1|0]0O
010(0(1|1]0]1 0/0[{0(0|1|1]|0|1/|0
Input 0/0[{0[0|0O|O[0O|0O]O

Fonte: Li et al. (2022, p. 7000).

Seguindo os trabalhos na area, He et al. (2015) introduziram as redes neurais residuais
(ResNets) como uma evolucdo importante das CNNs. Seu principal objetivo era resolver o
problema de degradacdo em redes muito profundas. Quando redes neurais convencionais se
tornam excessivamente profundas, sua acuricia tende a saturar e depois degradar, ndo devido
ao overfitting (sobre-ajuste), mas a dificuldade de otimizacao (He et al., 2015).

A inovacao fundamental das ResNets é a introducdo de conexdes residuais (shortcut
connections), que permitem que o gradiente flua diretamente através da rede durante o treina-
mento (He et al., 2015; Liang, 2020).

Tais conexoes sao incorporadas em uma estrutura padrao chamada bloco residual, como
se pode observar na Figura 8. Em vez de aprender uma transformacéao direta H (x), cada bloco
aprende uma funcdo residual F'(z) = H(z) — x, onde x é a entrada do bloco. A saida final do
bloco é entdo F'(x) + z, combinando a transformacao aprendida com a entrada original (He
et al., 2015). Essa estrutura permite que a rede aprenda transformacgoes incrementais enquanto
preserva informacdes da entrada (Liang, 2020).

23

Figura 8 — Estrutura de um bloco residual
usado em uma rede neural residual (Res-

Net).
X
A 4
weight layer
Fx) [relo <
weight layer identity

Fonte: He et al. (2015).
O formato de uma ResNet consiste de sucessivos blocos residuais, cada um composto
por camadas convolucionais e normalizaces, nas quais a funcdo de ativacdo utilizada é a
unidade linear retificada (ReLU). Essa fungdo é ndo-linear, de forma que retorna exatamente o
valor de entrada caso seja positivo, ou retorna 0, caso seja negativo, como detalhado nos traba-
lhos de Nair; Hinton (2010). Essa arquitetura possibilita a construgdo de redes extremamente
profundas mantendo alta precisao e facilitando o treinamento (He et al., 2015).

2.5 PROJETO ALPHAZERO

O laboratério DeepMind, que é um brago de pesquisa em inteligéncia artificial (IA)
da Google, visava a criar um jogador autonomo para o Go a nivel competitivo. Para atingir
esse objetivo, seus pesquisadores desenvolveram o método de construcao de modelos de redes
neurais chamado de AlphaGo. Essa versao gerava dados para treinar o modelo ao coloca-lo para
jogar contra jogadores humanos.

Foi entdo desenvolvida sua evolucdao, chamada de AlphaGo Zero, que acumula dados
de treinamento jogando contra si mesma, no que se define como self-play (autoaprendizado por
simulacdo de partidas). Um novo modelo construido € iniciado com pesos (weight) e vieses
(bias) aleatorios, o que leva a movimentos arbitrarios. Ainda assim, a massa de dados gerada
permite identificar quais estados levaram a melhores avaliacGes pela funcao de fitness (Silver
et al., 2016).

Dessa forma, por meio de treinamentos e geracao de dados sucessivos, o0 modelo tende
a alcancar desempenho excepcional. Esse processo de lapidacdao dos pesos e vieses por meio de
self-play é compreendido como um método de aprendizado por reforco (Silver et al., 2017).

O método foi entdao generalizado para permitir a criacdo de modelos capazes de aprender
qualquer jogo de tabuleiro dadas apenas as suas regras, ao que se denominou AlphaZero. Os
principais destaques foram os jogos Go, Shogi e Xadrez (Silver et al., 2018).

Um dos objetivos do método AlphaZero é reduzir o custo computacional de agentes
inteligentes que atuam como jogadores. Essa preocupacao se torna mais evidente ao considerar
a complexidade das arvores de busca para jogos que apresentam muitos movimentos. Com esse
foco, os pesquisadores propuseram substituir as buscas por modelos de inteligéncia artificial
baseados em redes neurais. Em vez de simular uma partida para calcular a qualidade de cada

24

movimento, o agente inteligente pode solicitar uma predicdo a um modelo de ResNet previa-
mente treinado para aquele jogo.

A arquitetura da ResNet aplicada no AlphaZero é representada na Figura 9. Ela se
inicia pela recepc¢ao do estado do jogo cujos movimentos viaveis se deseja analisar. Esse estado
passa por uma camada de adaptagao, que transforma a entrada em um formato adequado para
realizar as sucessivas convolugdes. Em seguida, inicia-se a construcao da cadeia profunda de
blocos residuais, ao que se denomina backbone. Por fim, a rede neural duplica o tensor em
processamento para gerar duas saidas.

Figura 9 — Arquitetura de uma rede neural residual (ResNet) composta por
uma camada de adaptacdo da entrada, uma backbone e camadas de saida
policy head e value head.

Entrada Backbone .
Policy head
—
(%7 1|-4|7
O D D
Value head
Adaptac;éio Bloco residual 5

Fonte: elaborado pelo autor (2026).

A primeira saida é construida pela camada de policy head, que retorna um vetor de
numeros reais. Esses valores representam a qualidade atribuida a cada um dos movimentos
validos a partir do estado fornecido. Na verdade, devido a restricdo de formato da saida da rede,
o modelo atribuira uma classificacdo para todos os movimentos possiveis de acordo com as
regras do jogo, sendo estes validos ou ndo a partir do estado atual. Dessa forma, é necessario
que o designer do jogo simulado descreva previamente a lista de todos os movimentos e 0s
guarde em um vetor. O algoritmo do agente inteligente indexara as posi¢oes deste aquelas do
vetor retornado pela rede.

A segunda saida da ResNet é construida pela camada de value head. Seu retorno é um
valor escalar que representa a estimativa da qualidade do resultado da partida a partir do estado
fornecido. Esse valor serd maior para quando houver uma expectativa de vitéria e menor para
quando a expectativa for de derrota.

Esses retornos sdao exemplificados pela Figura 10, que utiliza valores ficticios. O
exemplo considera um estado vantajoso no Jogo da Velha para o jogador “X” que sera o proximo
a jogar. O primeiro retorno se refere as qualidades atribuidas pela policy head>. As casas ja
preenchidas por pecas tém qualidade 0 atribuida, uma vez que nelas ndo sao permitidos mais
movimentos. A casa no canto superior direito, que pode ser marcada pelo terceiro movimento,
apresenta uma qualidade de 0.9, uma vez que sua marcacao levaria a vitéria imediata do jogador
“X”. As demais casas apresentam qualidades pouco significativas. Além disso, a figura também

5Para fins de melhor visualizacdo consideramos que os valores de qualidade foram transformados em
probabilidades. O retorno da rede neural na verdade é composto por valores reais ndao normalizados.
No algoritmo, eles devem passar por uma funcdo de softmax para poderem ser sorteados pelo método
da roleta.

25

mostra a forma de retorno da estimativa de qualidade da partida, dada pela value head. Uma
vez que o estado analisado estd a um movimento de levar a vitoria, a probabilidade de vitéria
se mostra alta.

Figura 10 — Predicdo de um modelo de rede neural residual

(ResNet) para as qualidades estimadas de cada movimento do jogo

e para a expectativa de qualidade da partida a partir de um estado
do tabuleiro no turno do jogador “X”.

X [X 90
O | x 04 o1/ |.87
O 04 o1

Fonte: elaborado pelo autor (2026).

Nota: As predicoes de qualidade sdo representadas como probabilidades
para facilitar a visualizacdo, mas seus valores sdo nimeros reais sem
normalizacao.

O processo de treinamento de um modelo é feito em duas fases. A primeira se denomina
fase de geracdo de memoria de treinamento, que utiliza a técnica de self-play. Ela constréi
um histérico de partidas que guarda, para cada partida, a pontuacgdo final dos jogadores e a
sequéncia de turnos e seus estados. No caso de jogos sem calculo de pontuacao, como o Jogo da
Velha ou Xadrez, o resultado final sera de 1 ponto para o vencedor e 0 pontos para o perdedor
(Swiechowski et al., 2022, p. 2533).

Segue-se entdo a fase de alinhamento do modelo, que utiliza aprendizado de maquina
(machine learning) para ajustar os pesos e vieses. Para isso, o conjunto de dados gerado é
convertido em conjuntos de entradas e de saidas esperadas, que sdo fornecidos para um algo-
ritmo de treinamento. Espera-se que o modelo resultante possa gerar uma memoria de partidas
mais significativa que o anterior. Assim, entende-se o treinamento como um ciclo, conforme
demonstrado na Figura 11.

E interessante que, durante a fase de geracio de memoria de treinamento, o agente inte-
ligente tenha alguma orientacdo sobre quais movimentos levam a melhores jogadas. Para esse
objetivo, o método de MCTS se mostrou ttil. Para otimizar sua aplicacao, o método AlphaZero

Figura 11 — Ciclo de treinamento de um modelo do
AlphaZero, constituido das fases de geracdo da memoria
de partidas e de alinhamento do modelo de rede neural

residual (ResNet).
geracdoda |i__
modelo |::; memoria R B
',I"::‘ memaoria
. ---- | alinhamento

do modelo

Fonte: elaborado pelo autor (2026).

—

26

removeu a etapa de simulacdo do ciclo de busca. Em vez dela, a etapa de predicdo solicita a
ResNet uma estimativa da qualidade dos movimentos e da qualidade da partida, como mostrado
na Figura 12.

Figura 12 — Ciclo da busca em arvore de Monte Carlo guiada

por agentes inteligentes, conforme adaptacdo do AlphaZero: suas

quatro etapas sdo a selecdo, a predicdo, a expansao e a retro-propa-
gacao.

Selecgao Predicdo

(e ?%@%E

Retro-propagacéo Expansao

< FENS

2 5 3
Fonte: elaborado pelo autor (2026).

Outra alteragdo se da na fase de expansdao. No método adaptado, em vez de expandir um
Unico movimento por iteracdo e avaliar seu resultado, a MCTS guiada por agente inteligente
expande todos os movimentos viaveis a partir do estado atual. Para cada n6 gerado, ela incre-
menta o contador de visitas e define um novo marcador de qualidade do movimento, o qual é
preenchido com a estimativa de qualidade dada pela rede para o movimento que gera aquele no.

Sem que haja uma simulacao da partida, ndo seria possivel realizar a retro-propagacao,
uma vez que ela depende da andlise da pontuacao final dos jogadores. Para adaptar essa questao,
a retro-propagacao é realizada a partir do n6 selecionado e ndo mais a partir do filho expandido.
O valor de qualidade da partida utilizado como referéncia é aquele fornecido pela rede.

Uma excecao a esse ciclo se da quando o estado selecionado pela iteracdao atual
representa o fim do jogo. Nesse caso, ndo se realiza predicao nem expansdo. Em vez disso, a
pontuacao dos jogadores é utilizada para calcular a qualidade da partida segundo a perspectiva
do jogador do turno atual. Entdo, a retro-propagacao é feita a partir desse n6 terminal com base
na qualidade calculada.

A definicdo do novo marcador de qualidade em cada né é relevante para realizar o
calculo de uma diretriz de fitness adaptada, como demonstrada na Equacdo 2. A UCT passa a
considerar como componente de aproveitamento apenas a qualidade da partida simulada pelas
iteracoes. J4 como componente de exploragao, a politica alinha dois fatores: como numerador,
a predicdo do modelo para o sucesso do movimento representado; e como denominador, a
quantidade de visitas realizadas ao no resultante da aplicacdo do movimento, que é somada ao
nlimero 1 para garantir que o resultado nao seja indefinido.

27

Equacao 2 — Calculo de fitness da diretriz de limite superior de confianga aplicado a arvores
(UCT) usada pela busca em arvore de Monte Carlo (MCTS) adaptada pelo AlphaZero.

m* = max(m € M(s)) = Q(s,m) + X(s,m) (2.1)
X(s,m) = C x % (2.2)

Na qual:

e m* é o nd que representa o movimento 6timo selecionado pela diretriz;

o M(s) é o conjunto de nds que representam os movimentos validos a partir do estado
s, segundo as regras do jogo;

e Q(s,m) é a qualidade da partida calculada por meio de simulagdes ao jogar o
movimento m no estado s;

e X(s,m) é o componente de exploracao (exploration) calculado ao jogar o movimento
m no estado s;

o V(s) é quantidade de vezes em que o né que guarda o estado s foi visitado nas
iteragoes anteriores;

o V(s,m) é a quantidade de vezes em que o n6 que representa o movimento m foi
visitado nas interacdes anteriores;

e P(s,m) é a qualidade previamente atribuida pelo modelo de ResNet para jogar o
movimento m no estado s;

e C é o coeficiente que regula a relagdo entre exploragdo e aproveitamento.

Fonte: Adaptado de Silver et al. (2016, p. 486); Swiechowski et al. (2022, p. 2505).

E relevante considerar como a MCTS utilizada pelo AlphaZero representa um estado do
jogo. Cada casa do tabuleiro guarda a informagdo sobre a peca marcada em si e o jogador que
a posicionou. O tabuleiro é salvo atribuindo um ntimero a cada um dos jogadores, que pode ser
indexado pela lista de jogadores definida previamente pelo designer do jogo. Essa representacao
foi brevemente discutida na Subsecdo 2.2.1, em que a Figura 1 mostra como o tabuleiro do
Jogo da Velha na Figura 1a é codificado em um estado na Figura 1b. Nessa forma, o primeiro
jogador, de simbolo “X”, é representado pelo numero 0, ao passo que o segundo jogador, de
simbolo “O”, é representado pelo niimero 1. As posi¢des sem pecas sdo definidas com o valor
null. Outra informacdo armazenada no estado é um marcador de qual jogador deve jogar no
turno atual, o que € feito pelo uso dos mesmos indices da ordem dos jogadores.

A entrada da ResNet utilizada pelo agente inteligente requer que o estado seja codificado
como uma pilha de canais que contém apenas valores binarios (0 ou 1). Essa técnica busca
aproximar a representacao do tabuleiro daquela usada por imagens RGB, comumente fornecidas
como entrada a ResNets de reconhecimento de imagens.

No exemplo do Jogo da Velha, o tabuleiro representado na Figura 1b se torna um
conjunto de trés canais, como disposto na Figura 13. O primeiro, associado a cor vermelha,
tem uma posicao ativada quando o primeiro jogador (representado pelo simbolo “X™) posiciona
nela uma pecga, como mostrado na Figura 13a. Similarmente, o segundo canal, associado a cor
verde, representa as casas marcadas pelo segundo jogador (representado pelo simbolo “O”),

28

como mostrado na Figura 13b. Por fim, as casas vazias sdo representadas no terceiro canal,
associado a cor azul, como mostrado na Figura 13c.

Caso necessdrio, outras informacdes podem ser representadas por meio da adicdo de
novos canais a pilha. Os jogos de tabuleiro para dois jogadores citados requerem a representacao
de qual jogador deve executar um movimento no turno atual. Isso é definido em um quarto canal,
cujas posicdes sao marcadas com o nimero atribuido ao jogador, como mostrado na Figura 13d.
Assim, um estado do Jogo da Velha define todo esse canal como 0 para o jogador de simbolo
“X”, e como 1 para o jogador de simbolo “O”.

Figura 13 — Estado do Jogo da Velha representado como canais binarios.

(a) Canal do jogador (b) Canal do jogador (c) Canal de casas va-
“X”. “O”. zias. (d) Jogador atual.

1|1 11 10/0|0
1 1 11 10/0|0
1 1 11 10/0|0

Fonte: elaborado pelo autor (2026).

Similarmente, a codificacdo do jogo Ligue-4 pode ser realizada em quatro canais. Essa
forma é exemplificada na Figura 14, em que os canais mostram o resultado da codificacdo do
estado mostrado na Figura 3, discutido na Subsecdo 2.2.2. os dois primeiros codificam as casas
marcadas por cada um dos jogadores, o terceiro representa as casas vazias e o quarto indica que
o0 jogador do turno atual é o de simbolo “O”.

Figura 14 — Estado do Ligue-4 representado como canais binarios.
(a) Canal do jogador (b) Canal do jogador (c) Canal de casas va-

“X”. “O”. zias. (d) Jogador atual.
T 11111 (1|1{1{1{1|(1]1
1 1)1 T (111]1{1]11
1 1111 111 LR ERER RN
1|1 1|1 1)1 T{1(1(1|1]1]1
1 1111 1 1)1 111 [1|1]1]1
11111 1 1 1 1 1111|111

Fonte: elaborado pelo autor (2026).
2.6 TRABALHOS RELACIONADOS

Os autores deste trabalho buscaram pesquisas relacionadas a area de estudo em dois
campos de interesse. No primeiro foco, elencam-se estudos acerca do uso de agentes inteligentes
na criacdo e avaliagdo de jogos. Essa perspectiva visa a verificar o andamento da proposta de
realizar a fase de play-test de forma automatizada, considerando seus métodos e parametros
de interesse. Em seguida, os autores buscaram elencar estudos acerca da visualizacdo de dados
analiticos sobre partidas de uma forma efetiva para o usudrio dos sistemas.

29

Zook; Fruchter; Riedl (2019) reforcam as vantagens da substituicdo de jogadores
humanos em partes bem especificas do processo de play-test. O principal destaque é no ajuste
de parametros e de dificuldade quando os sistemas do jogo ja estdo definidos mas se busca uma
melhor experiéncia para o publico alvo do jogo.

Ademais, os autores desenvolvem um estudo combinando técnicas de regressdo e
classificacdo para realizar uma aprendizagem ativa (Cohn; Atlas; Ladner, 1994) de um jogo
shoot’em up. A mecanica desse jogo é bem definida, mas os parametros — como velocidades
de jogador, inimigos e tiros — sdo ajustados através de testes exaustivos. Nesse trabalho, eles
foram substituidos pelo play-test automatizado.

Nos trabalhos de Gudmundsson et al. (2018); Zook; Fruchter; Riedl (2019), a MCTS é
utilizada junto a redes neurais convolucionais (CNNs). Elas sdo treinadas através de um massivo
conjunto de dados de jogadores reais para prever a dificuldade de missdes em jogos digitais
match-3 — respectivamente Candy Crush e Jewels Star Story. Neste tipo de jogo, o jogador
deve mover figuras em uma grade, buscando colocar trés ou mais figuras iguais adjacentes, que
sdo retiradas do tabuleiro e podem gerar outras remogoes em cadeia. Os trabalhos conseguem
reproduzir comportamentos de jogadores humanos e avaliar a dificuldade do nivel proposto pelo
game designer para uma melhor experiéncia de jogo.

Sob a ética de comunicacdo dos dados gerados ao designer, Wallner; Halabi; Mirza-
-Babaei (2019) desenvolveram um sistema para tracar, em jogos digitais de plataforma, a
trajetoria de dados de partidas colhidas diretamente sobre os mapas do jogo. Ele integra dados
de fontes diferentes em uma unica visualizacdo capaz de representar o feedback dado pelos
jogadores, suas medidas fisiologicas colhidas e a rastreabilidade dos movimentos em jogo.

Esses dados fisioldgicos relacionados ao estimulo do jogador sdo visualizados de forma
intuitiva pela sua representacdo em mapas de cor. O espaco do jogo é dividido em regioes, de
forma que a movimentacgao por linhas que conectam essas regioes tém sua opacidade e espessura
relacionadas a frequéncia. Ademais, os eventos discretos sao agrupados em icones cujo tamanho
é relacionado a sua frequéncia, relatando observacées de comportamentos durante a partida. A
abordagem diminui a poluicdo visual, compila um grande conjunto de informacdes e prové um
grande valor para avaliar um cenario em desenvolvimento.

Similarmente, Stahlke; Nova; Mirza-Babaei (2020) investigam técnicas de representa-
¢do de dados em jogos em trés dimensdes, apresentando os caminhos sobre superficies para
auxiliar no processo de projeto dos niveis. Registra-se também o uso de agentes para o projeto
ou validacdo da economia interna dos jogos, mostrado nos resultados iniciais de Ranandeh;
Mirza-Babaei (2023).

Apesar de os trabalhos de testes serem em sua maioria referentes a jogos digitais, que
sao normalmente modelados sistemas em tempo continuo, acreditamos que as mesmas técnicas
podem ser aplicadas a jogos fisicos e modelados por sistemas discretos.

30

3 MATERIAL E METODOS

O presente trabalho se classifica como uma pesquisa de natureza aplicada acerca do uso
de agentes inteligentes para realizar a fase de play-test em jogos de tabuleiro. Ela busca, através
de uma abordagem qualitativa, aplicar os métodos utilizados no projeto AlphaZero para criar um
sistema de representacdo de jogos e simulacao de partidas sintéticas para gerar dados de apoio
ao balanceamento. A pesquisa também é exploratéria, pois permitird aumentar familiaridade
acerca da modelagem de jogos e seus mecanismos com os métodos de aprendizagem profunda
para uso como ferramentas de projeto.

3.1 MATERIAL

Dando continuidade aos trabalho desenvolvidos em Araki; Knop (2020); Malosto;
Campos; Knop (2025); Malosto; Knop; Campos (2023), foi desenvolvida neste trabalho a apli-
cacao de linha de comando chamada APTS, capaz de representar jogos discretos e gerar agentes
inteligentes que simulem partidas conforme o método de self-play. As simulagdes coletam dados
sobre as partidas para prover ao projetista do jogo informag0es estatisticas usadas para orientar
testes de estresse e de balanceamento, que focam em aspectos técnicos em vez de tratar da
experiéncia do jogador.

3.1.1 Ambiente de execucao

Os autores tém a expectativa de que o APTS possa ser acessado por meio de programas
navegadores da internet, dispondo de uma interface de usuario satisfatoria para usuarios nao fa-
miliarizados com programacao. Entretanto, concluiu-se que seria vantajoso desenvolver scripts
de teste de software para verificar sua qualidade durante as versoes iniciais de desenvolvimento.
Por isso, estabeleceu-se como requisito que o sistema funcionasse como uma biblioteca, de
forma que possa ser utilizado tanto por um programa de linha de comando, como também por
uma pagina da web.

Com essa perspectiva, escolhemos escrever o cddigo-fonte do sistema na linguagem de
programacao JavaScript. Essa é utilizada comumente para o desenvolvimento de paginas da
web, tendo suporte oferecido pelos principais navegadores. Essa linguagem também pode ser
utilizada em um ambiente de execucao de linha de comando, sendo o mais comum o Node.js.
Ele utiliza o motor de JavaScript V8, o que aprimora o desempenho dos programas ao compilar
o codigo-fonte na forma de Just-In-Time (JIT). Apesar de rodar em apenas uma thread, o ciclo
de processamento trata eventos assincronas por meio de opera¢des primitivas (Node.js, 2025).

3.1.2 Ambiente de desenvolvimento

O ambiente de desenvolvimento do projeto foi configurado utilizando o gerenciador de
pacotes PNPMS. Ele instala e mantém atualizadas as ferramentas citadas e suas dependéncias
por meio do registro de pacotes NPM?.

6 Acesso em: https://pnpm.io/motivation.
7Acesso em: https://www.npmjs.com/.

https://pnpm.io/motivation
https://www.npmjs.com/

31

A fim de evitar enganos de programacao, utilizamos um superset do JavaScript chamado
TypeScript, que permite atribuir tipos estaticos e mais complexos a variaveis e fungoes. Isso
assegura a compatibilidade entre elas ainda em tempo de compilagdo (TypeScript Team, 2026).

Outra ferramenta de inspecao de codigo-fonte utilizada é o ESLint (ESLint contributors,
2025) e sua extensdo typescript-eslint8. Esse programa é um linter, que encontra e corrige pro-
blemas no cédigo-fonte segundo os padrdes e regras configurados. Associamos essa ferramenta
ao formatador automatico de codigo-fonte Prettier® com o fim de padronizar a disposicao de
importacdes e de atributos de classes, funcoes, objetos, e demais estruturas.

A fim de arquitetar o APTS como uma biblioteca modular, utilizamos o sistema de
construcdo Turborepo'. Ele divide um repositério em pacotes, cada um com suas dependéncias.
Um pacote pode ter dependéncia em outro dentro do mesmo repositorio, 0 que permite construir
um sistema complexo, mas composto por partes simples. De acordo com as relagdes inter-
-modulos, o Turborepo gerencia a compilagdo e a execugdo do linter de forma independente e
faz cache dos resultados quando possivel.

Finalmente, utilizamos a biblioteca de testes de unidade Vitest''. Ela permite definir
casos de teste e executa-los para entradas variadas, o que se provou ttil sobretudo para garantir
que as regras dos jogos modelados de fato levem as alteracdes esperadas nos estados.

3.1.3 Dependéncias externas

A construcao do sistema requereu o uso de bibliotecas e demais pacotes externos
instalados por meio do registro NPM. A biblioteca de maior destaque é a implementacdo em
JavaScript' do projeto TensorFlow (Abadi et al., 2016). Ele foi desenvolvido pelo time de
pesquisa da empresa Google e se propoe a facilitar a construcao e o treinamento de modelos
de aprendizado de maquina. Os autores deste trabalho selecionaram-no para construir dinami-
camente ResNets em JavaScript, ao passo em que o processamento efetivo do treinamento é
descrito internamento pela linguagem C++.

Com o objetivo de tornar a execucdo do programa construido o mais deterministica
possivel, os autores utilizaram a biblioteca seedrandom. Isso foi necessario porque a fungao
disponibilizada pela linguagem JavaScript para gerar nimeros pseudo-aleatérios ndo permite
ao desenvolvedor definir uma seed.

Outro pacote utilizado foi o ts-graphviz'?, que disponibiliza uma interface de programa-
cdo de aplicacdes (API) para o uso do programa Graphviz'*, em conjunto com uma aplicacdo em
JavaScript. Esse projeto descreve uma linguagem de representacao de grafos e redes e oferece
algoritmos que geram imagens a partir das descri¢oes. Os autores o utilizaram para exibir ao
usuario as arvores de busca construidas ao executar o método de MCTS.

8 Acesso em: https://typescript-eslint.io/.
9Acesso em: https://prettier.io/.

"% Acesso em: https://turborepo.com/docs.

" Acesso em: https://vitest.dev/guide/.

2 Acesso em: https://www.tensorflow.org/js.
3 Acesso em: https://ts-graphviz.github.io/.
' Acesso em: https://graphviz.org/.

https://typescript-eslint.io/
https://prettier.io/
https://turborepo.com/docs
https://vitest.dev/guide/
https://www.tensorflow.org/js
https://ts-graphviz.github.io/
https://graphviz.org/

32

Finalmente, para elaborar a aplicacao de linha de comando, os autores dispuseram da
biblioteca Commander.js'°, que facilita a definicdo de comandos e argumentos. Ela gerencia
o tratamento de dados recebidos do terminal e exibe mensagens de auxilio ao usuario sobre
como preenché-los. Ja para permitir ao usuario selecionar dentre opgdes de interface ja dentro
da execucdo de um comando, os autores escolheram a biblioteca Inquirer.js'.

3.2 METODOS

Os métodos dessa pesquisa descrevem 0s passos que o pesquisador deve efetuar para
executar o experimento. As atividades desempenhadas e os artefatos por elas gerados gerados
sdo representados na Figura 15.

O primeiro requisito para executar a plataforma APTS é descrever por meio de classes
concretas e suas consequentes instancias todos os componentes fundamentais de um jogo. Entao,
o pesquisador podera simular partidas por meio do algoritmo de MCTS classico.

Figura 15 — Fluxo de trabalho dos métodos necessérios e seus artefatos.

descrever . . .
instanciar | ----- ‘

classes N .
objetos :

concretas
——— 4 4. | gerar modelo testar MCTS
modelo “i7 | de ResNet <::| classica

treinar modelo # ::> gerar partidas
por self-play sintéticas
memdria

percepgdes extrair
ideias métricas das <:I e
melhorias partidas '

Fonte: elaborado pelo autor (2026).

A fim de construir os agentes inteligentes conforme o método do projeto AlphaZero, o
usudrio deve gerar, para aquele jogo, um modelo de ResNet que tenha pesos e vieses aleatorios.
Esse processo exporta a rede em arquivos que definem sua estrutura e seus pesos e vieses. Entdo,
esse modelo precisa passar por um processo de treinamento em ciclos, contando com coleta de
partidas sintéticas e alinhamento das conexdes da rede neural.

A primeira etapa do ciclo de treinamento é executar um algoritmo de self-play que usa
a técnica de MCTS adaptada pelo AlphaZero para direcionar a simulagcdo de véarias partidas.
Nesse processo, é gerado um artefato que guarda dados relevantes da atuacdao dos jogadores
durante as partidas. Entre eles estdo a sequéncias de turnos, em que cada um guarda o estado do
jogo, a expectativa dada pela ResNet da qualidade de cada movimento possivel e 0 movimento
que o agente inteligente de fato tomou. Além disso, para cada partida, é salva pontuacdo final

1> Acesso em: https://github.com/tj/commander.js.
'8 Acesso em: https://github.com/SBoudrias/Inquirer.js/.

https://github.com/tj/commander.js
https://github.com/SBoudrias/Inquirer.js/

33

dos jogadores, o que permite avaliar se a tomada de uma decisdo em certo estado levou a uma
vitéria ou nao.

O passo seguinte do ciclo de treinamento é fornecer o conjunto de dados sintéticos
construido para um algoritmo que utiliza a técnica de aprendizado de maquina para reforcar
as conexoes da rede neural. Esse processo tem o objetivo de capacitar a rede neural a prever
movimentos mais adequados para um estado fornecido. Ao final do alinhamento de pesos e
vieses, 0 algoritmo exporta como artefato o novo modelo de ResNet. Entdo, essa rede treinada
pode voltar ao primeiro passo do ciclo para gerar mais um conjunto de memorias, agora mais
especializadas.

Apés dispor de modelos de ResNet suficientemente treinados, o APTS deve permitir que
seu usuario os utilize para orientar agentes inteligentes na simulacdao de partidas. Elas devem
salvar os mesmos artefatos de registro de histérico, que podem ser usados para extrair dados
relevantes sobre a atuacdo de cada jogador.

Espera-se que esse processo seja capaz de levantar informag6es comuns a fase de play-
test, mas reduzindo a necessidade de testadores humanos. Dessa forma, foi determinado como
foco do experimento realizado nesta pesquisa: verificar se o processo de treinamento de modelos
de inteligéncia artificial é capaz de gerar agentes inteligentes viaveis para realizar a etapa de
play-test na prototipagem de jogos.

Para executar o experimento, os autores deste trabalho representaram no sistema o jogo
Ligue-4, que é organizado em turnos e apresenta informacdo completa. Em seguida, geraram
uma ResNet compativel com o jogo, e a sujeitaram a 21 ciclos de treinamento. Dentre os
modelos criados, os autores selecionaram o que apresentava as melhores métricas de acuracia
segundo determinado pelo algoritmo de alinhamento de pesos e o utilizaram para orientar ambos
os jogadores.

Entdo, esses agentes inteligentes foram usados na simulacdo de 100 partidas, cujo histé-
rico foi salvo da mesma forma como os artefatos utilizados no ciclo de treinamento. Por meio
de um algoritmo, os autores extrairam informagoes de interesse dos histéricos e as compilaram
em um artefato final. Esse descreve métricas acerca: (1) da duracdo das partidas, medida em
quantidade de turnos; (2) da distribuicdo de movimentos mais escolhidos por cada jogador; e
(3) da contagem de vitorias e derrotas de cada jogador relacionada a duragdo da partida.

A avaliacdo da solugdo proposta foi realizada de forma qualitativa por meio da analise e
discussdo sobre a capacidade de os artefatos gerados expressarem conclusdes relevantes acerca
do jogo testado. Além disso, também foi avaliada a capacidade do sistema de representar o
Ligue-4 e de gerar agentes inteligentes que o simulem.

34

4 DESENVOLVIMENTO

Este capitulo descreve o desenvolvimento do sistema APTS, realizado como um projeto
de cédigo-livre em um repositério publico'” (Malosto; Knop, 2026). Essa aplicacio permite a
uma pessoa projetista de um jogo de tabuleiro descrever as regras de um prototipo de jogo.
Entdo, o programa oferece métodos para gerar e treinar modelos de inteligéncia artificial que
atuam como agentes inteligentes para simular partidas.

As simulagdes geram conjuntos de dados acerca de quais movimentos tomados levam
a melhores resultados. Espera-se que, por meio deles, o projetista possa gerar informacoes
estatisticas acerca das regras implementadas. Isso tem o objetivo de diminuir o esfor¢o humano
nas etapas de play-test, sobretudo aquelas que envolvem testes de estresse e balanceamento, em
que a experiéncia do jogador ndo é a variavel principal.

O projeto da aplicagdo desenvolvida a divide em cinco moédulos, quais sejam: core,
game, search, games e interface. A Figura 16 representa as relacdes de dependéncia entre tais
modulos e com 0s pacotes externos ts-graphviz e tensorflow. Esta secdao discute a responsa-
bilidade e a implementacdo de cada um dos modulos internos.

4.1 UTILITARIOS

O modulo core tem a responsabilidade de definir constantes, tipos e fun¢des utilitarias
para todos os demais modulos. Destacam-se algumas func¢des de conversdo de tipos de dados,
sobretudo para tratar argumentos fornecidos pela linha de comando em suas representacoes
numeéricas. Também estdo disponiveis utilitarios para a formatacao de dados de tipos compostos
e de descritores dos testes de unidade. Além disso, o médulo gerencia a codificacdo de dados
para o formato de notacdo de objetos do JavaScript (JSON)" e a equivalente conversdo para
objetos em memoria, 0 que é necessario para salvar e interpretar o histérico de partidas para o
treinamento de modelos.

Figura 16 — Dependéncias entre os modulos do
sistema e com pacotes externos.

ol "
i

core |'\

external

‘;!— game W
¥ S
search H games

LA ' i
Fonte: elaborado pelo autor (2026).

Nota: Um modulo aponta para o pacote do qual ele
depende.

interface tensorflow

'7 Acesso em: https://github.com/ufjf-gamelab/apts.
'8 Acesso em: https://www.json.org/json-en.html.

https://github.com/ufjf-gamelab/apts
https://www.json.org/json-en.html

35

Figura 17 — Tipos de dados comuns definidos pelo pacote
core.

primitive
W—[}{@) 5tr1'ng| ‘@number}{]—{@mmger‘

Fonte: elaborado pelo autor (2026).
Nota: O pacote primitive se refere aos tipos de dados concretos
disponibilizados pela linguagem JavaScript.

A fim de facilitar a compreensao de conceitos comuns ao dominio da aplicacdo, defini-
mos por meio do TypeScript alguns tipos derivados, utilizados por todo o projeto. Os principais
estdo dispostos na Figura 17. Ela explicita os tipos concretos string e number da linguagem
JavaScript, que guardam, respectivamente, texto e nimeros reais. O tipo Char foi um apelido
(em inglés, alias) dado para campos de texto de apenas um caractere, como a marcacao de uma
peca em uma casa do tabuleiro. Ja o tipo Integer é um apelido para um valor numérico que
deve ser preenchido apenas por um numero inteiro, como por exemplo na indexacao de dados
em vetores.

4.2 DESCRICAO DE JOGOS

Seguindo a descricao modular do sistema, o médulo game é responsavel por estabelecer
os componentes necessarios para descrever um jogo de turnos digitalmente. Primeiramente,
definimos tipos uteis para esse pacote e para seus dependentes, como apresentado na Figura 18.
Uma vez que utilizamos vetores extensamente pelo projeto, decidimos criar apelidos para
nomear os indices de movimentos (moves), de casas (slots) e de jogadores (players).

Figura 18 — Tipos de dados comuns definidos pelo pacote
game.
primitive .
@ EncodedState

W@ "“mber. < N-dimensional
—

matrix of numbers

‘ ®PointsOfEachPlayer ‘

@ Integer }<]—{ @ IndexOfMove |

‘ Map<IndexOfPlayer, Points> ‘

|® IndexOfPlayer |® IndexOfSlot

Fonte: elaborado pelo autor (2026).
Nota: O pacote primitive se refere aos tipos de dados concretos
disponibilizados pela linguagem JavaScript.

36

Outro dado comumente referenciado é a marcacao de pontos dos jogadores, que ¢ feita
com nuimeros inteiros pelo apelido Points. Guardamos a pontuagdo completa de todos os joga-
dores por meio da estrutura de indexacao por chave-valor Map, do JavaScript. No tipo abstrato
PointsOfEachPlayer, as chaves sao definidas pelo indice de cada jogador, conforme registrado
pelo projetista do jogo, ao passo em que os pontos sao salvos no campo de valor. Finalmente, o
tipo EncodedState representa o formato de codificacdo de um estado em canais, como descrito
na Secao 2.5. Ele aceita qualquer matriz multidimensional de valores reais, embora tenhamos
respeitado a convencao de utilizar apenas os valores 0 e 1 para definirmos tais codificacdes.

Apoés definir os tipos, passa-se a construcdo dos componentes fundamentais para
descrever um jogo. Eles foram implementados por meio de classes abstratas, uma vez que a
linguagem JavaScript ndo dispde de estruturas como interfaces ou protocolos. Os principais
atributos e métodos de cada classe, além das relagdes entre elas, podem ser vistos na Figura 19.

A classe mais simples € a que representa uma casa do tabuleiro, chamada de Slot. Esse
conceito é um dos mais variaveis em jogos de turnos. Por exemplo, no Jogo da Velha, cada casa
pode apenas ser marcada com o simbolo de um jogador. Ja no Xadrez, ha varios conjuntos de
pecas, que apresentam comportamentos diferentes. Ainda ha jogos, como o Gobblet Gobblers',
em que cada casa pode receber camadas empilhadas de pecas. Ou ainda, essa classe poderia
representar uma carta especifica dentro de uma mao®. Essa variabilidade nio nos permite

Figura 19 — Classes definidas pelo pacote game.

@ Score

o pointsOfEachPlayer: PointsOfEachPlayer ‘ @ Player ‘ ‘ @ LTS ‘

O name: string
o symbol: Char

O title: string
o description: string

getPointsOfPlayer {
o indexOfPlayer: IndexOfPlayer
1) : Points

A

@ Game

O name: string
o moves: Move[]

@ State . o players: Player[]
o slots: Slet[]

0 game: Game
o indexOfPlayer: IndexOfPlayer

o getPlayer({ indexOfPlayer: IndexOfPlayer }) : Player | nutl
O score: Score @ Slot . .
o slots: Slot[] ¥ aslract

o getGQuantityOfRows() : Integer

o getMove({ indexOfMove: IndexOfMove }) : Move | null

o getSlot{ { indexOfSlot: IndexOfSlot }) : Slot | null o getQuantityOfColumns() : Integer
abstract o getQuantityOfChannels() : Integer
o getEncodedState() : EncodedState @ constructInitialState() : State

o getlndexesOfValidMoves({ state: State }) : Set<IndexOfffove>
o getlndexOfNextPlayer| { state: State }) : IndexOfPlayer

@ play({ indexOfMove: IndexOfMove; state: State }) : State

o isFinal({ state: State }) : boolean

Fonte: elaborado pelo autor (2026).
Nota: As propriedades com visibilidade privada tém métodos publicos de encapsulamento para a
obtencdo de seus valores que ndo foram representados.

Descricdo disponivel em: https://boardgamegeek.com/boardgame/13230/gobblet-gobblers.
?Apesar de termos determinado como limite do escopo desta pesquisa a investigacdo de jogos de
tabuleiro, tentamos manter a implementacdo genérica para representar jogos de cartas futuramente.

https://boardgamegeek.com/boardgame/13230/gobblet-gobblers

37

atribuir nenhum dado comum. Dessa forma, cabe inteiramente ao projetista definir o conteido
possivel por meio de uma classe concreta que a implemente.

Em seguida, implementamos a classe abstrata Player, que representa os dados fixos de
um jogador durante todo o periodo de duracdo da partida. Os dados comuns identificados foram
acerca da distingdo entre os jogadores na interface de execugdo por linha de comando. Nesse
sentido, quando o projetista for criar um objeto da classe Player, ele deve atribuir um nome
por meio do atributo name e um simbolo por meio do atributo symbol — como “primeiro” (1) e
“segundo” (2), pecas “brancas” (B) e “pretas” (P), ou (X) e (O), por exemplo.

Para registrar as possibilidades de transi¢ao entre estados, criamos a classe abstrata Move
que representa um movimento. Por padrdo, ela apenas guarda dados de identificacdo para a
interface com o usudrio, quais sejam o titulo com atributo title e sua descricdo com atributo
description. Paratodas as classes abstratas, o projetista pode definir novos atributos caso sejam
necessarios para efetuar as regras do jogo.

A fim de permitir que os agentes inteligentes gerados possam avaliar as qualidade dos
movimentos, € necessario que o projetista descreva previamente ao inicio da partida todos
aqueles que sdo possiveis em qualquer momento. Por exemplo, Silver et al. (2017) representam
0 Xadrez por meio de 4672 movimentos, por meio de uma matriz de 8 casas na horizontal, 8
casas na vertical e 73 mudangas de estado que uma peca pode efetuar. Apesar de essa lista de
opgoes ser extensa, ela é necessaria porque a estrutura da rede neural usada pelo agente atribui
um valor de qualidade para todos os movimentos do jogo, mesmo aqueles que ndo sdao validos
em um estado especifico.

As classes descritas previamente tém a funcdo de armazenar dados imutaveis no con-
texto de uma partida. Para representar um estado — o qual sintetiza a disposicdo variavel dos
elementos em um turno —, desenvolvemos a classe abstrata State. Ela deve manter, por meio
do atributo game, uma referéncia para a classe que representa um jogo a fim de ter acesso as
suas regras e a outros dados invariaveis.

Outra caracteristica de um estado é manter a disposicdo de pecas nas casas do tabuleiro,
o que é feito por meio do vetor slots. Ele guarda objetos da classe Slot e deve ser indexado
da mesma forma em todos os estados para que o programa consiga acessar 0s componentes
de forma direta. O método concreto getSlot oferece uma facilidade ao desenvolvedor por
implementar uma busca de uma casa naquele vetor dado o seu indice. Por isso, a decisao de
como organizar os objetos naquele vetor deve ser pensada no mesmo momento em que 0 proje-
tista implementa o método abstrato getEncodedState, o qual sintetiza todas as informacoes
relevantes num conjunto de canais a ser fornecido para a rede neural. Outro atributo armazenado
em cada objeto da classe State é o index0fPlayer, que guarda a informacdo sobre qual dos
jogadores pode realizar um movimento no turno atual, usualmente chamada de “vez do jogador”.

A pontuacdo dos jogadores também depende de como os turnos decorreram durante a
partida, o que é salvo no atributo score. Para fins de organizacdo do cédigo-fonte e de abertura
para expansao, criamos uma classe abstrata chamada Score para representar a pontuacao de
todos os jogadores em um determinado estado. O unico atributo dessa classe é o mapa
pointsOfEachPlayer, que atribui um valor em pontos para cada jogador de acordo com o indice
a esse atribuido pelo projetista. E relevante ressaltar que alguns jogos de tabuleiro, como o

38

Xadrez, ndo utilizam sistema de pontuagdo, atribuindo apenas o resultado de vitéria para um
dos jogadores. Nesses casos, recomendamos a implementacdo de forma que a quantidade de
pontos permaneca como 0 durante toda a partida e que, no estado que representa fim de jogo,
esse marcador seja alterado para 1 na entrada referente ao vencedor.

Finalmente, a classe abstrata Game representa as regras do jogo e guarda os conjuntos de
dados imutaveis durante uma partida. Para representa-lo em interfaces com o usuaério, o atributo
name requer que o projetista o nomeie. Entdo, no atributo slots, o projetista deve fornecer a
lista de casas organizada previamente. O mesmo deve ser feito em relacdao ao argumento moves
para a lista de movimentos e em relagao ao atributo players para a lista de jogadores. A classe
oferece métodos auxiliares que buscam por um movimento ou por um jogador em seu respectivo
vetor dado o seu indice.

Em relacdo aos métodos abstratos da classe Game, destacamos 0s getQuantityOfRows,
getQuantityOofColumns e getQuantityOfChannels que respectivamente definem a a quanti-
dade de linhas, de colunas e de canais da matriz que representa um estado codificado. Esses
dados devem ser definidos previamente e ser imutaveis para um jogo, porque eles sdo usados
na construcao da arquitetura da ResNet que orienta o agente inteligente.

Outro método que deve ser deterministico é o constructInitialState, em que O
projetista descreve a forma como o estado inicial da partida é construido. Por exemplo, no Jogo
da Velha, ele se iniciaria com um tabuleiro vazio. Ja no Xadrez, as casas de um lado do tabuleiro
e do outro devem estar preenchidas pelas devidas pecas de cada um dos jogadores.

O comportamento dos quatro ultimos métodos citados seria melhor representado por
métodos abstratos estaticos, uma vez que seus resultados ndo dependem de nenhum dos atributos
guardados da classe. Entretanto, a linguagem JavaScript ndao permite a definicao desse tipo de
método, motivo pelo qual foram implementados como métodos abstratos e dindmicos.

Agora tratando dos métodos da classe State que utilizam dados de seus objetos,
destacamos a responsabilidade do método getIndexesOfvalidMoves. Sua funcdo é determinar,
a partir de um certo estado fornecido, quais sdao os movimentos que o jogador daquele turno
podera executar. Para fins de otimizacdo de memdria, seu retorno deve ser um conjunto sem
repeticdo de indices referentes aos movimentos validos de acordo com a ordem dada pelo vetor
salvo na classe Game. Esse comportamento € obtido pela estrutura de dados Set, implementada
na linguagem JavaScript. Esse conjunto de jogadas validas é utilizado, entre outros, para filtrar
o vetor de qualidades atribuidas pelo modelo de ResNet e apresentar apenas os adequados ao
agente inteligente.

Com uma légica de implementacdo similar, o0 método getIndex0fNextPlayer deve
determinar de qual jogador seré a vez no préximo turno. E comum que os jogadores se alternem
sequencialmente a cada turno durante uma rodada, mas é possivel para o projetista definir as
regras do jogo de forma que um jogador deixe de jogar por um turno ou que tenha nele mais
de um movimento. O retorno desse método deve ser o indice do jogador escolhido conforme o
vetor salvo na classe Game.

Com o auxilio do dltimo método, o projetista pode descrever as regras para atualizar
um dado estado. Uma vez que seguimos a convencao de que os componentes de descricao do
jogo devem ser imutaveis, o método play, responsavel por essa atualizacdo, retorna um novo

39

objeto da classe State. Seus argumentos sao o estado do turno atual e o indice do movimento
a ser realizado. O projetista deve codificar a l6gica para descrever a lista de casas atualizada,
incrementar ou decrementar as pontuacdes e definir préximo jogador.

Apo6s cada turno, é necessario determinar se o estado gerado leva ao fim da partida.
O projetista deve descrever essa consulta por meio do método isFinal, que recebe o estado
referenciado e retorna um valor do tipo boolean, definido como true para quando a partida
deve se encerrar ou como false para quando ela deve continuar. Para isso, ele dispde de todos
os dados discutidos, como a disposicao das pecas, a pontuacao dos jogadores e quaisquer outros
atributos que ele tenha acrescentado as classes concretas criadas por ele.

4.3 IMPLEMENTACAO DOS JOGOS

A fim de executar o experimento desta pesquisa, descrevemos e implementamos 0s
componentes necessarios de trés jogos no modulo games, quais sejam: o Jogo da Velha uma
variante dele nomeada de Snowball e o Ligue-4. Para cada um, definimos objetos concretos
de forma a permitir ao usuario do sistema joga-los. Uma parte representativa dos objetos foi
selecionada para realizar testes de unidade, a fim de garantir que as regras dos jogos estavam
bem definidas antes de prosseguir com a execucao dos métodos de busca.

Conforme descrito na Subsecdo 2.2.1, percebe-se que ndo ha marcacdo de pontuagdo
durante a partida do Jogo da Velha, nem ha em seu espaco de busca complexidade suficiente
para avaliar o uso de agentes inteligentes. Por isso, elaboramos e implementamos sua variante
Snowball, que permitiu comprovar a viabilidade do ambiente de representacdao de jogos para
aqueles dependentes de manuten¢do do dado de pontuagao em cada estado.

Nesta secdo, descrevemos o processo de implementacao do jogo Ligue-4, discutido na
Subsecdo 2.2.2, destacando seus componentes de descricdo. Ele foi escolhido para realizar o
experimento porque é um jogo de informacdo completa entre dois jogadores que apresenta um
tamanho de tabuleiro razoavel e uma quantidade pequena de movimentos possiveis. Em relacao
a implementacdo das classes abstratas, poucas adaptacdes foram necessarias. Todas as classes
concretas seguiram a convengao de iniciar seus nomes com o termo ConnectFour seguido do
nome da classe que ela implementa.

Conforme visto na Figura 20, as classes Slot e Move foram acrescidas de novos atributos.
Além disso, observamos a necessidade de criar uma nova estrutura de dados abstrata para repre-
sentar os formatos considerados para levar a vitoria, o que foi feito pelo tipo ConnectFourShape.
Ele permite definir linhas de um tamanho arbitrario — embora tenhamos escolhido 4 pecas
conforme a descricao padrao do jogo — e a direcdo de marcagdo — se horizontal, vertical ou
em uma diagonal principal ou secundaria.

A primeira classe concreta implementada foi a ConnectFourPlayer, referente aos dados
imutaveis de cada jogador. O Ligue-4 ndo guarda nenhuma informacao relevante sobre um
jogador exceto aquelas necessarias para a sua distin¢do na interface com o usuario. Assim, nao
foi necessaria nenhuma alteracdo na classe. Ao criar seus objetos, escolhemos arbitrariamente o
nome “Alice” e o simbolo “X” para o jogador de indice 0 e 0 nome “Bruno” e simbolo “O” para

40

Figura 20 — Classes concretas alteradas na implementacao do
Ligue-4 e tipo utilitario nela definido.

@ ConnectFourShape

direction: "haorizontal”

“principalDiagonal” | “secondaryDiagonal” | “vertical”,
size: Integer;

| © ConnectFourSlot ‘

| 0 indexOfOccupyingPlayer: IndexOfPlayer | null ‘

@ ConnectFourMove

O indexOfColumnInWhichPlacePiece: Integer

o getIndexOfSlotInWhichPlacePiece({ state: State }): IndexOfSlot | null

Fonte: elaborado pelo autor (2026).

Nota: As propriedades com visibilidade privada tém métodos ptiblicos
de encapsulamento para a obtencdo de seus valores que ndo foram repre-
sentados.

o jogador de indice 1. Tais valores ndo representam nomes reais de pessoas, mas servem apenas
como facilitadores de distingdo entre esses objetos para os desenvolvedores do prototipo.

Em seguida, implementamos a classe concreta ConnectFourSlot, que representa o con-
tetido guardado em uma casa do tabuleiro. O Ligue-4 utiliza pecas simples, cuja tinica diferenca
é a cor, que é associada a cada um dos jogadores. Por isso, a tinica informagao relevante para
cada casa € se ela esta vazia ou, caso nao esteja, qual jogador a preencheu. Entao, acrescentamos
o atributo index0fOccupyingPlayer, que pode ser assinalado com o indice 0 caso o jogador
“X” tenha marcado uma peca, com o indice 1 caso o jogador “O” o tenha feito, ou com o valor
null se a casa estiver vazia. Quanto aos objetos utilizados pelo experimento, criamos todas as
49 casas, definindo o atributo de jogador ocupante como null e nomeando-as com a convengao
“rXcY”, em que os termos “X” representam o indice da linha que ela ocupa e o termo “Y”
representa o da coluna. Para os testes de unidade, também criamos novos objetos preenchidos
em diferentes combinagoes.

Diferentemente do Jogo da Velha, em que cada movimento tem relacdo direta com
uma unica casa do tabuleiro, o Ligue-4 precisa calcular a posicdo onde marcar uma peca
a depender de dois fatores: o indice da coluna escolhida pelo jogador e a disposicdao de
pecas ja marcadas nela. Percebe-se entdo que esse indice deve ser armazenado no atributo
index0fColumnInwhichPlacePiece da classe concreta ConnectFourMove. Implementamos
também o método auxiliar getIndex0fSlotInwhichPlacePiece, responsavel por acessar, de
baixo para cima, cada casa da coluna para encontrar a primeira que esteja vazia no estado
fornecido. Depois, criamos um objeto para cada uma das colunas, cujo indice guardamos no
atributo discutido e cujos titulos e descri¢des foram dados em relagdo ao seu niimero ordinal.

A verificacdo acerca da marcacao dos formatos de linha foi implementada por funcoes
no arquivo nomeado ConnectFourShape. A logica desses utilitarios € sintetizada no Algoritmo 1,

41

que determina se um formato iniciado em dada casa esta sendo ocupado por algum jogador e,
caso esteja, qual é o seu indice.
Algoritmo 1 — Coédigo-fonte simplificado da fungao
getIndexO0fPlayerwWwhoIsOccupyingShape.

function getIndex0fPlayerWhoIsOccupyingShape(
indexOfFirstSlot: Index0fSlot, shape: Shape

): IndexOfPlayer | null {
const slots = getSlotsThatFormShape(indexOfFirstSlot, shape);
let indexOfPlayerOccupyingPreviousSlot = null

for (const slot of slots) {
const indexOfPlayer = slot.getIndexOfOccupyingPlayer();
if (indexOfPlayerOccupyingPreviousSlot == null) {
indexOfPlayerOccupyingPreviousSlot = indexOfPlayer;
} else if (indexOfPlayer !== indexOfPlayerOccupyingPreviousSlot) {
return null;

3

indexOfPlayerOccupyingPreviousSlot = indexOfPlayer;

}

return indexOfPlayerOccupyingPreviousSlot;
}
Fonte: elaborado pelo autor (2026).

Essa fungdo é utilizada na classe concreta ConnectFourScore, que representa e oferece
métodos para calcular a pontuacdao dos jogadores. Quando seus objetos sdo inicializados,
todos os jogadores tém atribuido o valor de 0 pontos. Por meio de seu método auxiliar
getUpdatedScore, o programa verifica, para cada uma das casas, se houve marcacao de qualquer
uma das linhas de 4 pecas adjacentes. Caso positivo, a func¢do retorna um objeto Score em que
o jogador vencedor é marcado com 1 ponto.

Entdo, a classe concreta ConnectFourGame utiliza todos os dados discutidos para repre-
sentar as regras do jogo. Ao criar seu objeto, o projetista deve fornecer as listas de jogadores,
movimentos e casas previamente instanciadas. Um primeiro método de destaque dessa classe
€ 0 getIndexesOfvalidMoves, cuja implementacdao recebe um estado e retorna os indices das
colunas do tabuleiro em que alguma de suas casas ainda esteja vazia. Apos selecionar um movi-
mento, o jogador deve executar o método play, que retorna o estado atualizado com a marcacao
da peca na posicdo escolhida, além da eventual pontuacdo nova caso tenha sido uma jogada
vitoriosa. Em seguida, o algoritmo utiliza o método isFinal para determinar se a partida chegou
ao fim com o novo estado, o que ocorre quando todas as casas estdo preenchidas ou quando um
dos jogadores marcou um ponto. Caso a partida continue, o método getIndex0fNextPlayer €
responsavel por passar a vez para o oponente.

Outra responsabilidade da implementacdo da classe Game é estabelecer a quantidade
de linhas, de colunas e de canais do estado codificado. Decidimos utilizar a mesma dimensao
do tabuleiro (6 linhas e 7 colunas) para a codificacao e empilhar sobre ela 4 canais de dados,
inicializados com o valor 0. Como descrito na Secao 2.5, o canal de indice 0 tera cada um de seus
valores definido como 1 se a casa correspondente por estiver marcada pelo jogador “X”. Ja as
casas do canal de indice 1 serdo ativadas pelas pecas do jogador “O”, ao passo em que as casas
vazias ativam o canal de indice 2. Finalmente, o canal de indice 3 tem a responsabilidade de

42

Figura 21 — Tipos de dados comuns definidos pelo pacote
search.

primitive

‘ @ GQualityOfMatch }—[:;{ ® num ber}f:]—{ ® GualityOf Move ‘

| ® Exploratio nCoefﬁcierrt‘ | ® SofteningCoefficient

Fonte: elaborado pelo autor (2026).
Nota: O pacote primitive se refere aos tipos de dados concretos
disponibilizados pela linguagem JavaScript.

informar a rede neural de qual jogador é a vez no turno atual, sendo completamente preenchido
com 0 caso seja do jogador “X” ou com 1 caso seja do jogador “O”.

4.4 ELABORACAO DOS ALGORITMOS DE BUSCA

Havendo devidamente representado o jogo Ligue-4, passamos a implementacdo do
modulo search, responsavel pelos algoritmos de busca em arvore de Monte Carlo e de predicao
por meio de ResNets. A l6gica de construcdo de suas principais classes foi inspirada pela
implementacao de referéncia de Forster (2023).

Primeiramente define-se tipos titeis para a melhor descrigdo de conceitos comuns, como
mostrado na Figura 21. Todos eles sao apelidos do tipo primitivo number, que representa
nimeros reais. Seus significados sdo descritos nesta secdo, conforme a discussdo acerca de
Seus usos.

O primeiro elemento necessario para implementar a MCTS é a classe abstrata TreeNode,
cujo diagrama é apresentado na Figura 22. Ela tem a funcdo de implementar um n6 da arvore
de busca, o qual representa um estado da partida simulada e que é guardado em seu atributo
state. Também sdo importantes os dados sobre o historico que levou até esse estado. Por isso,
armazenamos no atributo index0fPlayedMove o indice do movimento jogado no turno anterior
e no atributo index0fPlayerwhoPlayedMove 0 indice do jogador que o efetuou. O caso em que
esses dois marcadores estardo vazios € no inicio da partida, que corresponde ao no raiz da arvore.

Para representar a transicao entre os nés e permitir realizar a fase de retro-propagacao
da busca, salvamos em cada no a referéncia para seu n6 pai por meio do atributo parentNode,
que estara vazio apenas para a raiz da arvore. Uma vez que um estado pode levar a multiplas
configuracGes da partida por meio de cada um de seus movimentos validos, decidimos repre-
sentar, no atributo childrenNodes, as transi¢cdes do né para seus filhos por meio de um mapa
indexado, em que cada entrada marca o movimento escolhido e o n6 que ele gerou.

Como discutido na Se¢do 2.3 sobre a diretriz de fitness da MCTS, a cada ciclo de busca, a
etapa de retro-propagacao incrementa o contador de visitas e atualiza a expectativa de qualidade
da partida para todos os nés do ramo selecionado. Esses dois marcadores sao armazenados nos
atributos quantityofvisits e qualityOfMatch, respectivamente.

43

Figura 22 — Classe TreeNode definida no pacote search.

|
@ TreeNode
state: State

o indexOfPlayedMove: IndexOfMove |null
o indexOfPlayerWhoPlayedMove: IndexOfPlayer |null
o parentNode: TreeNode | null

childrenModes: Map<IndexOfiMove, TreeMode | nulls
o qualityOfvisits: Integer
o qualityOfMatch: QualityOfMatch

@ getQualityOfMatchFromScore({ score: Score }) : QualityOfMatch

update @ualityOfMatchAndQuantityOf VisitsOnBranchl({
qualityOfMatch: QualityOfMatch }) @ void

selectBestChildNode({
explorationCoefficient: ExplorationCoefficient }) : TreeNode | null

calculateFitnessOfChildMode({
childNode: TreeNode, explorationCoefficient: ExplorationCoefficient }) : number

o getQualityOfMove(): QualityOfMove

abstract
o calculateExploitationComponentOfFitness({ childNode: TreeNode }) - number

calculateExplorationComponentOfFitness({
childNode: TreeNode, explorationCoefficient ExplorationCoefficient }) : number

A

Fonte: elaborado pelo autor (2026).
Nota: As propriedades com visibilidade privada e protegida tém métodos ptiblicos
de encapsulamento para a obtencdo de seus valores que ndo foram representados.

Quanto aos métodos da classe TreeNode, destacamos o getQualityOfMatchFromScore,
que converte a pontuagao final dos jogadores em um nimero do tipo QualityOfMatch, represen-
tante da qualidade da partida para o jogador atual. Uma vez que esse comportamento € necessario
em outras partes do projeto, a maior parte do seu processamento €, na verdade, realizado por
um método auxiliar chamado calculateQualityOfMatch, que recebe as pontuagdes e o indice
do jogadores atual. Esse dado de qualidade é retro-propagado recursivamente até o nd raiz
por meio do método updateQualityOfMatchAndQuantityOfVvisitsOnBranch, incrementando-
-0 nos turnos do jogador vencedor e decrementando-o para os demais.

J& a etapa de selecdo é gerenciada pelo método selectBestChildNode, que calcula o
valor de fitness para cada no ja expandido e escolhe o melhor. Para isso, é chamado o método
calculateFitness0fChild, que soma os componentes de aproveitamento e de exploracao da
equacdo de UCT, equilibrando-os por meio do coeficiente de exploracao fornecida. Uma vez
que a MCTS classica e a adaptada pelo AlphaZero calculam o valor de fitness de forma diferente,
utilizamos os métodos abstratos para defini-los.

Finalmente, o método qualityOfMove é responsavel por classificar os movimentos
validos a partir do estado inicial da arvore. A forma de avaliacdo utilizada pela implementacao

44

de referéncia (Forster, 2023) prioriza os movimentos que levaram a ramos com o0 maior nimero
de visitas. Essa logica se justifica porque se entende que um estado muito visitado foi aquele
mais selecionado pela diretriz de busca. Entretanto, percebemos que, quando realizamos a busca
a partir de um estado proximo de levar a uma vitoria, essa heuristica se prova falha. Isso ocorre
porque o estado vitorioso ndo gera mais filhos e, dessa forma, ndo pode mais ser visitado pela
busca. Assim, o algoritmo é obrigado a visitar seus vizinhos, o que os torna melhor classificados.
Para resolver esse problema, decidimos alterar o calculo da qualidade de um movimento para a
Equacao 3, que alinha a qualidade estimada da partida e a quantidade de visitas ao dado ramo.
Equacao 3 — Calculo da qualidade de um movimento a partir da arvore de busca construida
pelo método de busca em arvore de Monte Carlo (MCTS).
Aln) = Q(n) + V() (3

Na qual:

o A(n) é a qualidade do movimento representado pelo né n;

e Q(n) é a qualidade da partida calculada por meio de simulagdes a partir do né n;
o V(n) é quantidade de vezes em que o n6 n foi visitado nas iteragdes anteriores.
Fonte: elaborado pelo autor (2026).

A busca em arvore de Monte Carlo é gerenciada pela classe abstrata Search, cujo
diagrama é mostrado na Figura 23. Ela armazena dados relevantes para executar o algoritmo,
como o coeficiente de exploracdo e a quantidade de ciclos a serem realizados, o que é guardado
no atributo quantityOfExpansions, além de um objeto da classe auxiliar Random que realiza
operacgoes pseudo-aleatorias a partir da mesma seed informada ao programa.

O método abstrato expandTree da classe Search executa o ciclo de busca, utilizando
o método selectNextNode para realizar a etapa de selecdo e o método simulateMatch para
implementar a etapa de simulacao da MCTS classica ou de predicao da MCTS adaptada pelo
AlphaZero. Esse primeiro algoritmo foi implementado nas classes concretas CommonSearch e
commonTreeNode. Essa define a etapa de expansao por um método chamado expand, que recebe
0 movimento a expandir e gera um tnico novo no.

Ja em relacdo a MCTS adaptada, a classe concreta AgentGuidedSearch implementa
a busca e define um novo atributo chamado predictionModel, que guarda o modelo de
ResNet responsavel por orientar a etapa de predicdo. Em seguida, durante a etapa de
expansdo, os valores estimados por sua policy head geram todos os movimentos validos

Figura 23 — Classe Search definida no pacote
search.

@ Search

explorationCoefficient: ExplorationCoefficient
quantityOfExpansions: Integer
random: Random

abstract
o expandTree({ state: State }) : TreeNode
o selectNextNode({ rootNode: TreeNode }) : TreeNode
@ simulateMatch({ state: State }) : Score

Fonte: elaborado pelo autor (2026).

45

para o estado atual. Essa fase é implementada pelo método expand da classe concreta
AgentGuidedTreeNode, que recebe aquele vetor e guarda a qualidade estimada no novo atributo
qualityOfMoveAttributedByModelde cadané filho. Por fim, a predicao da qualidade da partida
é utilizada para orientar a fase de retro-propagacao.

4.5 CONSTRUCAO DA REDE NEURAL RESIDUAL

Considerando a variacdo de complexidade entre diferentes jogos e seguindo a recomen-
dacdo da implementacdo de referéncia (Forster, 2023), possibilitamos ao projetista de um
prototipo definir parametros da arquitetura da rede neural residual utilizada pelos agentes inteli-
gentes. Para isso, criamos a classe ResidualNeuralNetwork, que recebe os seguintes dados: (1)
seed, usado para inicializar os pesos e vieses da rede neural; (2) quantityofResidualBlocks,
para definir a quantidade de blocos residuais a serem criados na backbone da rede; e (3)
quantityOfHiddenChannels, referente a quantidade de canais usada nas camadas internas de
processamento da rede.

A classe construtora de modelos de rede neural e as operacdes sobre tensores foram
disponibilizadas pelo pacote do projeto TensorFlow.js. Ele disponibiliza algumas formas de
construir a arquitetura da rede, dentre as quais selecionamos a de LayersModel. Tomamos
o cuidado de encapsular o uso do TensorFlow dentro dessa classe, a fim de permitir sua
substituicdo se necessario sem requerer a refatoracao de outros componentes do projeto. Entdo,
definimos funcdes auxiliares para a construcao das camadas de adaptagdo da entrada, de blocos
residuais e de saida para a policy head e para a value head.

Acerca do treinamento, o método train dessa mesma classe recebe os conjuntos de
estados codificados e de saidas esperadas para a policy head e para a value head. O alinha-
mento dos pesos e vieses é realizado pelo método fit do objeto de LayersModel, utilizando
o otimizador estimativa de momento adaptativo (Adam). Para a policy head, selecionamos a
funcdo de perda de entropia cruzada categérica (em inglés, categorical cross-entropy), ao passo
em que escolhemos a funcdo de erro quadratico médio (em inglés, mean squared error) para
calcular a perda da value head. Quanto a execugdo do programa, permitimos que o usuario
escolha os seguintes parametros: (1) quantityOfEpochs, para definir a quantidade de épocas de
treinamento; e (2) size0fBatch, para ajustar o tamanho do conjunto de entradas e saidas usado
a cada passo de alinhamento.

4.6 GERACAO DE MEMORIAS DE TREINAMENTO

Com o fim de encapsular o uso da ResNet e de relaciona-la com um jogo implementado,
criamos uma nova classe no modulo search chamada PredictionModel. Seu método mais
relevante é denominado predict, que recebe um estado e retorna dois elementos: (1) o vetor
das qualidades atribuidas a cada movimento listado para aquele jogo; e (2) a qualidade estimada
para a partida a partir do turno atual.

Definimos também a funcdo auxiliar calculateProbability0fPlayingEachMove, que
recebe o vetor de qualidades mencionado, o conjunto dos indices dos movimentos validos
naquele estado e um valor do tipo SofteningCoefficient, o qual é definido pelo usudrio do

46

Figura 24 — Tipos de dados relacionados a criacao de uma memoria de
partidas definidos pelo pacote search.

@ MemoryOfTum

encodedState: EncodedState

® TrainingMemory

indexOfPlayer: IndexOfPlayer encodedStates: EncodedState[]
indexOfPlayerWhoPlayedMove: IndexOfPlayer | null policies: number[][]
qualitiesOfMoves: QualityOfMove[] values: number[]

indexOfPickedMove: IndexOfMove;
M

@ MemoryOfMatch

finalPointsOfEachPlayer: PointsOfEachPlayer
memoryOfTurns: MemoryOfTurn[]

Fonte: elaborado pelo autor (2026).
programa. Essa funcdo aplica uma transformacdo de softmax, utilizando o coeficiente citado
para ajustar a propor¢do em que os movimentos mais bem avaliados devem se destacar entre
as probabilidades calculadas. Essas sdo retornadas na estrutura de um mapa que contém apenas
entradas para os movimentos validos.

Criamos entdo, na classe auxiliar Random, o método pickMoveConsideringItsQuality,
que usa essas probabilidades para ordenar a lista de movimentos validos e sorteia um niimero
aleatorio para selecionar um deles. Dessa forma, aqueles com maiores probabilidades associadas
tém mais chance de serem selecionados na roleta.

Para implementar o ciclo de treinamento do modelo, que envolve gerar uma memoria
de partidas simuladas e alinhar os pesos e vieses da rede neural aos resultados dos turnos,
descrevemos os tipos de dados mostrados na Figura 24.

O uso dos tipos MemoryOfTurn e MemoryOfMatch estdo associados ao algoritmo de
self-play, implementado pela fun¢do buildMemoryofMatch, cujo cédigo-fonte simplificado é
mostrado no Algoritmo 2. Ele recebe um objeto do tipo AgentGuidedSearch, que realiza a busca
em arvore de Monte Carlo adaptada pelo projeto AlphaZero.

A inicializacdo do processo de geracdo de memoria define a varidvel que armazenara
0 histdrico de turnos, implementada como um vetor de objetos do tipo MemoryOfMatch. Além
disso, sdo criados os marcadores auxiliares do estado atual e do jogador que realizou o ultimo
movimento na partida.

Entdo, inicia-se um laco de repeticdo, em que o algoritmo utiliza a MCTS para obter as
qualidades atribuidas a cada um dos movimentos. Uma vez que a ResNet precisa receber o vetor
completo de todos os movimentos possiveis no jogo, as posicoes referentes aos movimentos
invalidos sdo preenchidas com o niimero especial que representa infinito negativo no JavaScript.

O algoritmo da prosseguimento ao turno, ao utilizar o método pseudo-aleatorio da roleta
para selecionar um movimento. Em seguida, os dois marcadores, o vetor de qualidades, o estado
codificado e o indice do movimento escolhido sao armazenados no histérico.

Esse movimento selecionado é executado sobre o estado atual, gerando um novo estado,
o qual é aferido para determinar se ele levou ao fim da partida. Caso positivo, a funcao
buildMemoryOfMatch retorna um objeto do tipo QualityofMatch, que é composto pelo historico

47

Algoritmo 2 — Cddigo-fonte simplificado da fun¢do buildMemoryofMatch.

function buildMemoryOfMatch(

):

}

search: AgentGuidedSearch

MemoryOfTurn[] {

const game = search.getGame();
const memoryOfTurns: MemoryOfTurn[] = [];

let currentState = game.constructInitialState();
let indexOfPlayerWhoPlayedMove: IndexOfPlayer | null = null;

while (true) {
const qualitiesOfMoves = searchQualityOfMoves(search, currentState);

const indexesOfValidMoves = game.getIndexesOfValidMoves(currentState);
const index0fPickedMove = random.pickMoveConsideringItsQuality(«
indexesOfvalidMoves, qualitiesOfMoves);

memoryOfTurns.push({
encodedState: currentState.getEncodedState(),
indexOfPlayer: currentState.getIndexOfPlayer(),
index0fPlayerwhoPlayedMove,
gualitiesOfMoves,
indexOfPickedMove

DE

const nextState = game.play(indexOfPickedMove, currentState);
if (nextState.isFinal()) {
const finalPointsOfEachPlayer = nextState.getScore() «
.getPointsOfEachPlayer();

return {
finalPointsOfEachPlayer,
memoryOfTurns,

}

}

indexO0fPlayerwWhoPlayedMove = currentState.getIndexOfPlayer();
currentState = nextState;

Fonte: elaborado pelo autor (2026).
de turnos e pela pontuacao de todos os jogadores no fim da partida. Caso contrario, os marca-

dores auxiliares sdo atualizados e mais um passo de simulagao € realizado.

Considerando que o treinamento de um agente inteligente requer um histérico grande de

partidas, criamos uma nova func¢do chamada buildMemoryofMatches. Ela recebe do usuario o

parametro quantityOfIterations, acerca da quantidade de partidas a serem simuladas. Entdo,

comeca um lago de repeticdo que salva num vetor do tipo MemoryOfMatch todos os resultados

das execucOes do método buildMemoryOfMatch ja discutido.

Por fim, o método convertMemoryOfMatchesToTrainingMemory transforma o resultado

da fase de geracao de memorias em trés vetores de tipo inico. O primeiro deles, encodedStates,
guarda os estados codificados salvos em cada turno simulado. Por sua vez, o segundo, policies,

armazena os vetores de qualidade de movimentos também salvos durante a simulacdo. Final-

mente, o terceiro, values, é obtido pelo uso do método auxiliar calculateQualityOfMatch,

48

Figura 25 — Interface do programa Sistema de Teste de Jogabilidade Automatizado

(APTS).
Options:
-V, —--version output the version number
-h, --help display help for command
Commands :
search-quality [options] Search quality of a Monte-Carlo Tree node.
play-match-using-search [options] Play match using Monte-Carlo Tree Search.
play-match-using-agent [options] Play match using agent trained using ResNet.
predict-quality [options] Predict quality of a Monte-Carlo Tree node using a prediction model.
play-match-pvp [options] Play match against another player.
construct-model [options] Construct a Residual Neural Network model.
build-training-memory [options] Build memory of inputs and outputs for training model via self-play.
train [options] Train model using already exported training memory.
help [command] display help for command

Fonte: elaborado pelo autor (2026).
que usa a pontuagao e o marcador de jogador atual em cada turno para calcular a qualidade da
partida. Esses trés vetores sao retornados num objeto do tipo TrainingMemory.

4.7 INTERFACE COM O USUARIO

As funcionalidades criadas e discutidas requeriam uma interface padronizada para
que aplicacOes as acessassem sem interagir com os detalhes de implementacdo. Para isso,
organizamos no pacote interface um conjunto de acdes disponiveis ao usudrio. Elas foram
implementadas como comandos de terminal em um pacote do projeto chamado node, que
utilizou para isso a biblioteca Commander.js. A Figura 25 exibe a interface da tela de ajuda do
programa APTS, mostrando os comandos disponiveis, que sdo discutidos nesta secao.

Inicialmente, oferecemos no comando search-quality uma forma de visualizacdo da
arvore de busca gerada pelo método de MCTS. Para isso, o usuario fornece os seguintes dados:
(1) a estratégia de busca — se a classica ou a adaptada pelo AlphaZero —; (1a) o modelo
de predicado, caso o usudrio escolha a versdao adaptada; (2) o coeficiente de exploragdo para
calculo da diretriz UCT; (3) a quantidade de ciclos iterados pela MCTS; (4) o coeficiente de
suavizacdo para calcular as probabilidades atribuidas a cada movimento; (5) uma seed para
calcular os valores pseudo-aleatorios; e (6) o estado sobre o qual se quer descobrir os melhores
movimentos viaveis. O programa executara a busca, calculara as qualidades e probabilidades
dos movimentos e os imprimira, conforme exemplo dado da Figura 26. Além disso, sera gerado
um arquivo do formato SVG que exibe arvore de busca montada, o qual é gerado pelo programa
Graphviz e cujos recortes sao mostrados na Figura 27.

49

Figura 26 — Qualidades de movimentos e probabilidades de vitéria
a efetua-los estimadas pela MCTS classica.

(@) Qualida-

des dos movi- (b) Probabilida-
mentos. des de vitoria.
(o] -7.50 (0]1.07e-250
1| 5.61 1(6.31e-228
2|-11.60 2|7.84e-258
3(136.40 3 1
4| 2.75 4|6.67e-233
5| 5.57 5|5.26e-228
(6] 41.01 (6]1.93e-166

Fonte: elaborado pelo autor (2026).

Caso o usudrio queira obter apenas a avaliagdo de um modelo de predi¢cao sobre um
determinado estado, ele pode informa-los ao comando predict-quality, que também requer
o coeficiente de suavizacdo. Ela solicitara a predi¢cao ao modelo e imprimira as qualidades dos
movimentos retornadas e probabilidades calculadas.

O programa também oferece ambientes de execucdo de partidas entre dois jogadores
humanos, que interajam pelo mesmo terminal por meio do comando play-match-pvp, como
mostrado na Figura 28a. Ele requer que se informe o estado do jogo sobre o qual se deseja iniciar
a partida. Entdo, inicia um laco de repeticdo até que a partida chegue a um estado de fim de

Figura 27 — Arvore de busca montada ao avaliar a qualidade de um estado por meio da MCTS
classica.

(a) Recorte a partir da raiz. (b) Recorte a partir de um estado avangado.

id: -1, player: X, " o

visits: 512, quality: @, vizies: 26, quelity: 5,
isFinal: false

isFinal: false V-

™ ~
RN -
~
~
N ~
. N
N ~
_~iove: (2) Third column move: (3} Fourth colum N, move: (4] Fifth column -
~ fitness: 1.2635138715623688 Fitness: 1.643430267050195 \ fitness: 1.5270277431247377 S fitnes
quality: @ fuality: 10.090756983044574 quality: -1

v Y

move: (3) Fourth column
fitness: ©.5003144962848994
guality: 136.39882170088964

-

e e
~ e
/ ~ ~
(@) First column / move: (1) Second column move: (2) Third column N, move: (3) Feurth column Ny mo\
P ss: 1.018837641241236 /' fitness: 1.918837641241236 fFitness: 1.818837641241236 \, Fitness: 1.018837641241236 T fitness
Y quality: -1 quality: -1 quality: -1 quality: -1
id: 3, player: O,
visits: 166, quality: 38,
isFinal: false /
[=1-01-1-1-1-1-1 s v ‘
| | | | | | -1 -1 d: 357, player: X, d: 358, player: X 4 359, player: K,
 E— wisits: 1, quality: -1, its: 1, quality: -1 ts: 1, quality: -1,
| -1 -1-1-1-1-1-1 I inal: false isFinal: false isFinal: fal:
P=l=h-0-1-1-1- -l -1-1-1-1 P=l=l-1-1-1-1
[= 1 -1-1-1-1-1-1 [N I I I [e | [I
N T T T [N N I I I N N N I P=l=0og-1-1-1
‘ ‘ ‘ | ‘ | | | P=l=T-1%1-1-1- P-d-1-1 X111 P-l-1%-1-1-1
=l -1 -1X1-1-1-1 P=l=l-1001-1-1- Pad-d=100-1-1-1 P=l=0ol-1-1-1
P-10p-1x1-1-1- P-0-101X]-1-1-1 P- - 0X-1-1-1

Fonte: elaborado pelo autor (2026).

50

jogo. A cada iteragdo, o algoritmo obtém por meio das regras quais sdo os movimentos validos a
partir do estado atual. Em seguida, mostra essa lista ao usuario por meio da biblioteca Inquirer.js
e requer que ele escolha um movimento. O programa o efetua, marca o estado gerado como o
atual e verifica se ele representa o fim da partida.

Lacos similares sao implementados para as agoes em que o usudrio decide jogar contra
o computador ou quando ele inicia um jogo entre dois agentes inteligentes, como exibido na
Figura 28b. Nesses casos, em vez de solicitar a selecdo de movimentos para o jogador, o algo-
ritmo utiliza a MCTS para obter as probabilidades dos movimentos por meio do comando play-
match-using-search, ou apenas solicita essas predi¢oes para modelos de ResNet fornecidos,
por meio do comando play-match-using-agent. Entdo, o movimento efetuado é escolhido
pseudo-aleatoriamente pelo método da roleta.

Acerca da geracao de agentes inteligentes, o programa oferece trés comandos relevantes.
O primeiro é o constuct-model, que gera um modelo de ResNet segundo os parametros
informados e o exporta em dois arquivos de descricdo do TensorFlow. O primeiro é um arquivo
de formato JSON que descreve toda a estrutura da rede neural — a qual pode ser observada
na Figura 29 —, e o segundo é um arquivo binario que salva os pesos e vieses aleatoriamente
gerados. Ao usar esse comando, o usuario deve fornecer os dados acerca: (1) do jogo a ser
simulado; (2) da quantidade de blocos residuais; (3) da largura em canais da backbone da rede;
e (4) da seed usada para inicializar as conexdes.

Esse primeiro modelo gerado ndo estara apto a orientar um agente inteligente. Antes
disso, é necessario sujeita-lo ao processo de treinamento. O primeiro passo para isso é gerar a

Figura 28 — Ambiente de jogatina entre jogadores e entre agentes inteligentes.

(a) Modo jogador vs. jo- (b) Modo agente inteligente vs. agente in-
gador. teligente.

Turn of: (0) Bruno Turn of: (0) Bruno
I =1=-1=-1=-1=-1=-1-1 [=1=-1=-1-1-1-1-1
[=1=100=-1-1]-1-] L=l=t100l-1-1-1-1I
[=1-1X]0]0]0]-] [-1-1xlojopol-|
l=1-1010[0]X]|X| :::::2:3:3:;:§:
[=1 - 1X[0]X|X]X] _

=10 X[X]X]o0o]X]
=10 X [X|X]0]X]|

Played move: Fifth column. Place piece on the Fifth column.
~ Select a move (2) Second column

Turn of: (X) Alice

Turn of: (X) Alice | =1 =1
- - [=1-1
-
|
|
|

x X 0 0 © |
o xX x O |

> > x|

l=1=1-1-]
l-1-10]-|
- 1-1x]0|
l-1-10]0|
[-10|X]o0| 0
[- 101X]x|

X X O xX o |
x O © o |
x = O o |
o X X O |

Played move: Fifth column. Place piece on the Fifth column.

~

Select a move Turn of: (0) Bruno

~

Sixth column
Seventh column

(1) First column =1 =1-1-1X1-1-1
(2) Second column =] -10]-101]-1]-]
(3) Third column | -] =-]1x]0]o]o]-|
(4) Fourth column [=1=-10]0]O0]|X]|X]
(5) Fifth column [=1=1xJolXxX|x]X]
([=10 X[X]X]0]X]
(

5
6
7

Played move: Second column. Place piece on the Second column.

Place piece on the First column.
t4 navigate « a select

Fonte: elaborado pelo autor (2026).

51

Figura 29 — Estrutura de uma ResNet criada para o jogo Ligue-4 com dois blocos residuais.

BatchNormalization

Se2le gamma {128}

beta {128)
moving_mean {128}
moving variance (128)
beta_constraint =
epsilon = 0.00001
gamma_constraint =
momentum = 0.1

kernel {3x3x128x128)
dilation_rate = 1,1
filters = 128

kernel_size =3, 3
padding = same

strides =1, 1

Activation

activation = relu

initialBlock ~ f

Px6xTxd

BatchNormalization BatchNormalization

Conv2D Conv2D

gamma {128}
beta (128}
moving_mean (128}
moving_variance (128}
beta_constraint =
epsilon = 0.00001
gamma_constraint =
momentum = 0.1

gamma (128}
beta (128}
moving_mean (128}
moving_variance (128}
beta_constraint =
epsilon = 0.00001
gamma_constraint =
momentum = 0.1

kernel (3x3x128x128}
dilation_rate = 1,1
filters = 128
kernel_size=3,3
padding = same

strides =1, 1

kernel (3x3x128x128}
dilation_rate = 1, 1
filters = 128
kernel_size=3,3
padding = same

strides =1, 1

Activation

activation = relu

Activation

activation = relu

BatchNormalization

e gamma {128)

beta (128}
moving_mean {128}
moving variance {128)
beta_constraint =
epsilon = 0.00001
gamma_constraint =
momentum = 0.1

kernel {3x3x128x128)
dilation_rate =1, 1
filters = 128

kernel_size = 3,3
padding = same

strides =1, 1

valueHead f

valueHead

policyHead

Activation

activation = relu

policyHead f

Fonte: elaborado pelo autor (2026).

memoria de partidas sintéticas. Com esse objetivo, o0 comando build-training-memory gera
um vetor do tipo MemoryOofMatch por meio da funcdo buildMemoryofMatches discutida na
Secdo 4.6 e o salva em um arquivo de tipo JSON, como exibido na Figura 30. Em seguida, o
programa converte a memoria num objeto do tipo TrainingMemory e também o salva em outro
arquivo de tipo JSON.

Finalmente, o comando train pode ser chamado para alinhar um modelo ao histérico
gerado. Para isso, o algoritmo utiliza 0 método train discutido na Sec¢do 4.5. Um parametro
novo que esse comando requer é chamado valueToReplaceInfinity, que tem o objetivo de
substituir o marcador de movimento impossivel nos vetores de qualidade salvos na memoria de
partidas. Isso é necessario para que o TensorFlow consiga realizar operagdes sobre os valores
de entrada dentro de seu limite de representacdo de bits. Dessa forma, o valor fornecido para o
comando de treinamento atua como uma penalidade para os movimentos invalidos.

52

Figura 30 — Dados representativos de memoarias de partidas sintéticas geradas pelo método de

(ﬁ nalPointsOfEachPlayer

LmemoryOfTurns

Fonte: elaborado pelo autor (2026).
Nota: Os estados codificados foram representados como tabuleiros para facilitar a visualizacdo. Nos
arquivos, eles sdo salvos no formato de canais binarios.

B

self-play.

rindexOfPI.ayerw hoPlayedMove

encodedState

. ((6.4834089957885742 |

- 8.488511085510254

indexOfPlayer o] -4.8373341560 36377
qualitiesOfMoves L S > -4,232304096221924
| indexOfPickedMove 4) 10.982525825500488
e . -5.066575050354004
¢ |indexOfPlayerWhoPlayedMove |1 _4159967929840088
I encodedState == - - g
nE Z (-13.71538257598877
24.54322052001953
indexOfPlayer 1 -14,626544952392578
' | qualitiesOfMoves ®-f---- > -11.431462287982832
LindexOfPickedMove 4) 29173463821411133
Ny . 110.169739723205566
indexOfPlayerWhoPlayedMove | © A21427583694458
encodedState == - -
nE N (-6.727445125679834
8.951059341430664
indexOfPlayer o] -5.3427186081226807
qualitiesOfMoves .t > -4,43392494705200195
Lindez((}i‘fPi|:k|edl'.l'lo\|re 4 1.651540756225586

-5.088181387023926
|-4.3597030863964544 |

53

5 RESULTADOS

A execucdo do experimento de geracao de agentes inteligentes requer que se realizem
as atividades descritas na Secdo 3.2. Seu primeiro passo é codificar classes de representacao
do jogo simulado, qual seja o Ligue-4, e instanciar os objetos relativos aos seus componentes
fundamentais, como descrito na Secdo 4.3. Entdo, deve-se criar um modelo de rede neural
especifico para essa implementacao, realizar seu treinamento e executar a coleta de dados de
partidas sintéticas. Este capitulo descreve como tais atividades foram efetuadas e discute os
resultados delas obtidos.

5.1 GERACAO DE AGENTES INTELIGENTES

A fim de gerar os agentes inteligentes usados no experimento, deve-se criar uma estru-
tura de ResNet por meio da execucdo do comando constuct-model, discutido na Secdo 4.7.
Inspirados pela sugestdo dada pela implementacdo de referéncia (Forster, 2023), decidimos
construir um modelo para o jogo Ligue-4 de 8 blocos residuais e com largura de 128 canais
internos. O algoritmo desse comando constroi a rede neural e a exporta como uma pasta que
guarda dois arquivos: o de estrutura das camadas; e o de definicdo dos pesos e vieses.

Em seguida, elaboramos, com o apoio da ferramenta de IA para geracdo de texto Claude
Sonnet 4.5°!, um conjunto de scripts para facilitar a execucdo dos comandos previamente
implementados no APTS e para extrair métricas a partir dos artefatos que ele gera. O primeiro
script, chamado de train_model, é descrito em linguagem fish* e realiza o ciclo de treinamento
descrito na Segdo 2.5.

Esse script chama o comando build-training-memory com argumentos especificados
pelo usudrio. Ele deve definir o agente inteligente usado para orientar a simulacdo de partidas,
0 que requer sua geracao por meio do comando anterior. Seu algoritmo entdo comeca a simular
uma série de partidas jogadas segundo o método de MCTS adaptada pelo AlphaZero. Ao final,
ele guarda, em uma pasta aninhada dentro da pasta do modelo de ResNet, as memodrias de
partidas e de treinamento geradas.

Para esse comando, definimos a MCTS para realizar 512 ciclos de busca, a um
coeficiente de exploracdo de 1.4, com o fim de explorar suficientemente o espaco de busca,
sem comprometer drasticamente o tempo de execucdo do experimento. Além disso, o agente
inteligente utilizou o método de softmax a um coeficiente de suavizacdo de 1 para selecionar
um movimento avaliado. Também definimos o parametro de seed como 1.

O segundo passo do ciclo gerenciado pelo script train_model é executar o comando
train para gerar um novo modelo de rede neural com pesos e vieses melhor alinhados a
memoria de treinamento. Seu algoritmo utiliza as ferramentas disponibilizadas bela biblioteca
TensorFlow.js para dividir a meméria em conjuntos de tamanho fixo e randomizar a ordem
desses, a fim de aumentar a variabilidade. Encontramos uma limitacdo na biblioteca, que nao
permitiu definir valor de seed para esse sorteio. Por fim, é exportada uma nova pasta que contém

*! Acesso em: https://www.anthropic.com/claude/sonnet.
*2 Acesso em: https://fishshell.com/docs/current/language.html.

https://www.anthropic.com/claude/sonnet
https://fishshell.com/docs/current/language.html

54

os arquivos da ResNet treinada. Sua localizacdo é aninhada a pasta da memdria de treinamento,
o que forma uma estrutura de arvore de arquivos, em que cada ciclo gera mais um bloco.

Para esse comando, definimos o tamanho da janela de fornecimento dos dados sintéticos
como 128 turnos, e determinamos que cada alinhamento deve ser realizado em 16 épocas.
Dentro de cada época, 15% dos dados foram utilizados para validagdo do alinhamento. Por meio
de alguns testes preliminares, identificamos que o valor de penalidade para movimentos inva-
lidos ndo mostrou diferenca significativa nas métricas de acuracia do processo de alinhamento,
0 que nos motivou a defini-lo como 0. Executamos o ciclo de treinamento continuamente, o que
resultou na geracao de 21 modelos de ResNet consecutivamente treinados até a data de fim do
experimento.

O comando train salva junto a cada um o registro de métricas de treinamento aferido
pelo TensorFlow. Com base nisso, criamos um script chamado analyze_training_logs, que
acessa a pasta do primeiro modelo e busca seus descendentes, que naquela sao aninhados. Esse
algoritmo 1é as métricas de acuracia da policy head e da value head associadas a tltima época
de treinamento de cada modelo e as salva em memoria. Entdo, ele organiza os modelos em duas
listas, ordenadas de forma decrescente para cada uma das métricas. Cada lista é exportada para
um arquivo do formato CSV.

Por meio deste artefato, identificamos os melhores modelos de ResNet de acordo com
a policy head, como disposto na Tabela 1, e de acordo com a value head, listados na Tabela 2.
Percebemos que o melhor resultado convergiu relativamente cedo, no 4° ciclo de treinamento,
para uma acuracia de 0.667935 na predicao de movimentos e de 0.557322 na estimativa da
qualidade da partida. Apés isso, houve leve piora nas métricas, que variaram proximas de
0.571429 para ambas as saidas por varios ciclos, comumente voltando a esse exato valor.

Tabela 1 — Melhores modelos de ResNet Tabela 2 — Melhores modelos de ResNet

ordenados por acuracia da policy head. ordenados por acuracia da value head.
Ciclo Policy head Value head Ciclo Policy head Value head
4° 0.667935 0.557322 7° 0.571429 0.571429
7° 0.571429 0.571429 8° 0.571429 0.571429
8° 0.571429 0.571429 13° 0.571429 0.571429
13° 0.571429 0.571429 15° 0.571429 0.571429
15° 0.571429 0.571429 16° 0.571429 0.571429
Fonte: elaborado pelo autor (2026). Fonte: elaborado pelo autor (2026).

Esses resultados parecem indicar que o agente inteligente € capaz de interpretar o
cendrio de um turno, ainda que ndo atinja uma compreensao tao expressiva como esperado.
A proximidade das métricas com a faixa de 57% levanta preocupacdes sobre a capacidade do
agente inteligente de reconhecer qual dos jogadores ele deve representar em cada turno. Outra
percepgao obtida é sobre a duragdo do processo. Para o jogo Ligue-4, que tém baixa comple-
xidade, é razoavel considerar que poucos ciclos de treinamento sdo necessarios, uma vez que
apds o 7° ciclo ndo foram observadas melhoras na acuracia.

55

5.2 SIMULACAO DE PARTIDAS

Apos selecionarmos o melhor agente inteligente, avaliamos sua atuacdo em partidas
simuladas do jogo Ligue-4. Para isso, executamos o comando play-match-using-agent do
APTS, definindo o mesmo modelo de ResNet para orientar ambos os jogadores e configurando
o coeficiente de suavizacao do método de softmax como 1.

A fim de diminuir a chance de obter um resultado pouco representativo, definimos um
script para executar esse comando 100 vezes, variando o valor de seed de 1 a 100. Cada execucao
gera uma pasta que contém o arquivo de histérico da partida, da mesma forma como aquele
gerado para construir a memoria de treinamento.

Em seguida, criamos um script responsavel por, para cada partida, ler seu histérico de
turnos e coletar em um arquivo auxiliar os seguintes dados: (1) o indice do jogador vencedor,
ou null caso haja empate; (2) a quantidade de turnos decorridos até o fim da partida; (3) a
quantidade de vezes em que o primeiro jogador efetuou cada um dos 7 movimentos; e (4) essa
mesma analise para as jogadas do segundo jogador.

Ao fim, esse script ainda compila os dados analiticos em um arquivo de estatisticas
com um conjunto de informagoes. A primeira é o calculo da média, da mediana e do desvio
padrdao da duracdo das partidas, como exibido no Quadro 1. Percebemos que a partida mais
célere apresentou duracdo de 15 turnos, ao passo em que a mais longa decorreu por 40 turnos.
Comparando todas as simulagdes, o jogo Ligue-4 tende a ser concluido numa média de 24.32
turnos, apresentando mediana de 23.00 e desvio padrdo de 5.94. Considerando o tamanho do
tabuleiro de 42 casas e a baixa complexidade do jogo, essas métricas parecem razoaveis.

Quadro 1 — Meétricas acerca da duracdo em turnos de partidas simuladas do
jogo Ligue-4.

Minimo Maximo Média Mediana Desv. pad.
15 40 24.32 23.00 5.94

Fonte: elaborado pelo autor (2026).
Outro dado coletado por aquele script é a quantidade de empates e de vitorias de cada

jogador ao fim de cada partida. O algoritmo relaciona esse dado com a duracdo das partidas em
turnos, classificada em quatro faixas, como apresentado na Tabela 3.

Essa analise demonstra uma vantagem para o jogador “X” caso ele consiga encerrar
0 jogo em até 20 turnos, ocasides em que ele teve 80% de chance de vitéria. Caso a partida
dure mais, as chances para o jogador “O” se equilibram, ainda que se demonstre uma vantagem
notavel para o jogador “X”. Anélises como essa podem ser especialmente titeis para projetistas
de jogos, que devem buscar um equilibrio entre os jogadores além do nimero total de turnos.

Tabela 3 — Analise de vitorias dos jogadores segundo
faixas de duracdo de partidas simuladas do jogo Ligue-4.

Jogador “X” Jogador “O”
% N %
T<=20 25 20 80% 5 20%
20<T<=30 59 35 59% 24 41%

Duracao Turnos

56

. Jogador “X” Jogador “O”
Duracao Turnos

% N %
30<T 16 9 56% 7 44%
Total 100 64 64% 36 36%

Fonte: elaborado pelo autor (2026).

Por fim, a ferramenta também registra a frequéncia de jogada de cada movimento por
cada um dos jogadores, como apresentado na Tabela 4. No jogo Ligue-4, esperavamos que 0s
agentes inteligentes privilegiassem a 4 coluna do tabuleiro, pois ela é a que permite formar
mais linhas de pecas adjacentes. Entretanto, percebemos que essa hip6tese ndo se concretizou
para o experimento simulado. Isso pode indicar vicios no processo de treinamento das ResNets,
que nao teriam explorado o suficiente estados em que tal coluna levou a vitorias.

Tabela 4 — Analise de movimentos mais jogados por
cada agente inteligente em partidas partidas simuladas do
jogo Ligue-4.

Coluna
Jogador
1a 23 3a 4a 5a Ga 7a
‘Jf;(g,f‘dor 77 292 67 138 208 112 254
{%‘f’f‘dor 41 300 24 205 300 230 84
Total 118 592 91 343 508 342 338

Fonte: elaborado pelo autor (2026).

Quanto aos demais jogos implementados, o Jogo da Velha e o Snowball, ndao executamos
o experimento de geracao de agentes inteligentes e obtencao de estatisticas por meio de partidas
sintéticas. Ainda assim, o Jogo da Velha foi util para iniciarmos a modelagem da arquitetura
do sistema e criarmos os testes de unidade. Em seguida, o Snowball teve a relevancia de por a
prova a capacidade de representacao de jogos mais complexos e de uso de pontuagao durante as
partidas. Dessa forma, 0 APTS na atual versao permite ao usudrio jogar esses jogos contra outras
pessoas ou contra o algoritmo de MCTS classica, que também afere a qualidade de movimentos
viaveis a partir de um estado fornecido.

57

6 CONSIDERAGOES FINAIS

Este trabalho se tratou de uma pesquisa de natureza aplicada e exploratoria que visou o
uso dos métodos usados no projeto AlphaZero como ferramenta de auxilio no projeto de jogos.
Seu objetivo especifico é criar um ambiente de representacao de protétipos de jogos de turnos
com o fim de auxiliar pessoas criadoras de jogos a realizarem a fase de play-test. Esse sistema
representa jogos de turnos arbitrarios e permite a simulacdo de partidas. Além disso, o programa
avalia os movimentos viaveis a partir de um estado por meio do método classico de MCTS e
por meio de agentes inteligentes orientados por ResNets.

Ahipdtese tomada é que os agentes inteligentes sdo capazes de realizar a fase de play-test
de jogo de forma automatizada por meio da geragao do histérico de partidas sintéticas, e destacar
estatisticas que delas emergem. Dessa forma, os projetistas de jogos de turnos podem reduzir
o uso de recursos humanos quando o interesse € realizar testes de estresse e balanceamento.
Entdo, esse estudo pode oferecer perspectivas e ferramentas inovadoras ao cendrio de criacao
de jogos autorais.

Para isso, foi desenvolvido o sistema Sistema de Teste de Jogabilidade Automatizado
(APTS) que, de forma geral, foi capaz de viabilizar a representacao de jogos de turnos de
informacao completa e organizados em tabuleiros. Como resultado, foi possivel modelar o Jogo
da Velha, uma variacdo autoral dele em um tabuleiro maior chamada de Snowball, e ainda o jogo
Ligue-4, o que comprovou a viabilidade de representar diferentes estilos de jogo na plataforma.

Esse ultimo jogo foi selecionado para criarmos um agente inteligente orientado pela
MCTS classica, que é executada pelo programa e gera como artefatos a estimativa de qualidade
de jogar cada um dos movimentos disponiveis e uma imagem da arvore de busca construida.
Essa tecnologia foi aprimorada ao substituir a busca em arvore pela predicao de modelos de
ResNets, usada para gerar o artefato de estimativa de qualidades do movimentos.

Como objetivo de viabilizar essa técnica, implementamos no APTS métodos responsa-
veis por ajustar os modelos de rede neural para que suas predi¢des sejam mais acuradas. Nesse
sentido, o sistema permite criar uma instancia de ResNet inicial e fornecé-la novamente ao
programa para que seja usada como método de orientacao de um agente inteligente focado em
geracdo de memoria de treinamento. Ele usa a MCTS com adaptacdes que incorporam a ResNet,
conforme o projeto AlphaZero, para escolher os melhores movimentos em uma série de partidas
simuladas.

Algoritmos auxiliares usaram comandos disponibilizados pelo APTS para continua-
mente alinhar os modelos aos dados por eles proprios gerados num processo de aprendizado por
reforco, comumente chamado de self-play. Esse processo permite ao usuario do sistema ajustar
0s parametros para criar agentes inteligentes com diferentes estratégias de jogo.

Entdo, ele é capaz de usar comandos do APTS alinhados a um script auxiliar para que
tais agentes treinados se enfrentem em uma série de partidas, cujos dados podem ser extraidos
em meétricas Uteis acerca da quantidade de vitérias de cada jogador, da duragdo do jogo e da
predilecdo por certos movimentos.

Essas métricas demonstram a capacidade de uso do sistema construido para auxiliar
no processo de play-test, reduzindo a necessidade de testadores humanos nessa fase, ainda

58

que tenha sido atestada a necessidade de novos estudos e encontradas possiveis melhorias a
fazer. Dessa forma, acreditamos ter contribuido diretamente as pessoas projetistas de jogos de
tabuleiro autorais, por fornecer uma ferramenta diretamente aplicavel ao seu trabalho.

Numa perspectiva maior, esperamos que este trabalho tenha contribuido de forma
positiva para o cendrio de criacdo de jogos de turnos autorais, que se encontra em crescimento e
requer o estudo de métodos inovadores. Isso se justifica por termos fornecido uma avaliacdo de
hipétese promissora acerca dos métodos abordados, e termos aplicado conceitos de represen-
tacdo de jogos de forma genérica o suficiente para compreender uma variabilidade grande de
estilos de jogos.

Contudo, encontramos possiveis problemas no processo de alinhamento das redes
neurais aos dados de memoria gerados, de forma que ndo esta certo se os agentes inteligentes
foram capazes de compreender plenamente como qual dos jogadores eles deveriam atuar em
cada turno. Uma proposta de solugdo razoavel é gerar um agente inteligente que atue apenas
como um jogador. Entretanto, isso incorreria em maior gasto de recursos e dificultaria o uso do
sistema para jogos com uma quantidade grande de jogadores. Essa perspectiva faz necessario
investigar formas mais adequadas de representar dados de um estado no formato de canais de
numeros binarios, o qual é requerido como entrada da ResNet.

Também é relevante ressaltar a necessidade de mais experimentos variando os parame-
tros utilizados em vdrias fases do processo. Durante a fase de criacdo de memorias, poderiamos
testar valores diversos para a quantidade de ciclos realizados pela MCTS ou o coeficiente de
exploracdo por ela utilizado. Ainda, seria interessante testar diferentes quantidades de simula-
¢Oes de partidas ao gerar as memorias, ou variar o coeficiente de suavizagdo usado pelo método
de selecdo de movimento por roleta. Ja4 durante a fase de alinhamento de pesos e vieses, é
possivel utilizar um tamanho diferente para o conjunto de turnos alinhado a cada passo ou, ainda
mais relevante, a quantidade de épocas de treino e de ciclos de treinamento, que deixaram de
variar significativamente depois de poucas iteracées.

Outra questao que ndo ficou evidente é a determinacao do parametro de penalizagdo de
movimentos invalidos, cujo valor foi dado como 0. Ao mesmo tempo em que seu uso poderia
levar a uma convergéncia mais rapida para os movimentos uteis, um valor muito alto levaria a
uma diferenca expressiva entre os valores de qualidade calculados para os movimentos bons e
o coeficiente, o que resultaria numa afericdo alta para a fungdo de perda.

Resta ainda uma reflexdo acerca da construgcdo da rede neural utilizada para o jogo
simulado, o Ligue-4. Considerando o pequeno espaco de busca de seus movimentos, é possivel
que uma ResNet com menos blocos residuais e com menor largura de backbone compreenda
melhor estratégias desse jogo. Nesse sentido, é interessante considerar também se uma estrutura
de rede neural mais simples que a ResNet levaria a melhores resultados para espacos de busca
pequenos.

Finalmente, destacamos que nao foi possivel definir um valor de seed para o método de
alinhamento da rede neural disponibilizado pela biblioteca TensorFlow.js. O processo aleatério
do qual ele depende é o sorteio do conjunto de entradas e saidas a alinhar em cada momento.
Isso tornou essa etapa de execucao nao-deterministica, o que prejudica a reprodutibilidade dos
resultados. Quanto aos demais usos de valores pseudo-aleatorios, certificamo-nos de gera-los

59

por meio da seed fornecida pelo usudrio. Assim, também pode-se realizar mais experimentos
variando seu valor.

Outro ponto a explorar é a avaliacdo da qualidade de um movimento realizada apos o
fim da construcdo da arvore de busca. E comum selecionar aquele que levou a mais visitas
em seu ramo da arvore, mas isso prejudica movimentos que imediatamente levam a um estado
vitorioso, o qual ndo pode mais ser visitado. Para resolver esse problema, criamos uma funcao
de avaliacdo que alinha a qualidade estimada da partida com a quantidade de visitas em cada
ramo. Contudo, sua especificacdo foi arbitraria e requer maiores experimentos ou uma mais
intensa busca na literatura para substitui-la.

Acerca da representacdo de jogos, este trabalho apresentou como limitagdo o suporte
apenas a jogos de turnos, o que se justifica pela traducao direta para cédigo-fonte de compo-
nentes fundamentais que os definem. Os autores seguiram a convencao de que, a cada turno,
pode existir apenas um estagio, no qual a tinica acdo disponivel é que o jogador do turno efetue
um movimento. Em jogos mais complexos, cada turno pode se dividir em estagios com objetivos
diferentes, como primeiramente comprar uma carta do baralho e depois escolher um movimento.
Além disso, é possivel que outros jogadores atuem dentro do turno que a principio nao esta
alocado a eles. Essas especificidades podem ser representadas em trabalhos futuros.

Nesse sentido, a necessidade de conhecimento da linguagem JavaScript para implemen-
tar as classes concretas e em seguida suas instancias oferece uma restricdo para parte dos
usudrios. Idealmente, os projetistas ndo deveriam precisar ter esse conhecimento especifico,
mas utilizariam uma plataforma com interface grafica com suporte a navegadores web. Entdo,
a descricao dos protétipos deveria ser completamente desconectada da base de codigo-fonte
do sistema. Para isso, poderiamos adaptar o APTS para reconhecer linguagens especificas de
dominio, como a Game Description Language (GDL)* ou a Zillions by rules files (ZRF)**.

Ainda acerca da experiéncia do usuario, elenca-se como trabalho futuro implementar
formas de extracao e representacdo dos dados de play-test relevantes ao projetista de forma
intuitiva e integrada no sistema. Para testar esse aprofundamento, pode-se utilizar a variante
criada para o Jogo da Velha, o Snowball, que apresenta um espaco significativo de busca, de 81
movimentos possiveis. Suas regras levam a expectativa de que um jogador atue para prejudicar
o dominio de darea do oponente no tabuleiro. Assim, pode-se realizar um experimento para
verificar se essa impressao se materializa.

Nesse contexto, o sistema atualmente foi testado apenas para jogos de tabuleiro, ainda
que os autores tenham tomado o cuidado de estabelecer os componentes de forma abstrata o
suficiente para implementar jogos de cartas. Contudo, existe uma complicagdo para esse tipo
de jogo em relagdo a sua codificagdo em canais, uma vez que a entrada da ResNet requer uma
matriz de trés dimensoes, 0 que comumente representa as linhas e colunas do tabuleiro e, em
seguida, os canais de dados. Para jogos de cartas, ndo ha uma relacdo direta entre esses conceitos,
0 que também abre uma linha de investigacao futura.

Ademais, é uma caracteristica comum de jogos de cartas que os jogadores nao mostrem
aos demais as cartas que seguram em cada turno. Isso os configura seus estados como de infor-

3 Acesso em: http://logic.stanford.edu/ggp/notes/gdl.html.
24 Acesso em: https://www.zillionsofgames.com/language.

http://logic.stanford.edu/ggp/notes/gdl.html
https://www.zillionsofgames.com/language

60

macdo incompleta, o que exige mais estudos acerca da representacao desses na forma codificada
para a entrada na ResNet.

Outrossim, existe uma preocupacao quanto a necessidade de descrever todos os movi-
mentos possiveis de um jogo no momento em que se realiza a sua representacdo. O jogo
Ligue-4, usado no experimento deste trabalho, permitia executar apenas 7 movimentos, o que
ndo constitui um problema. Ja o jogo de Xadrez como implementado pelo projeto AlphaZero
apresenta 4672 movimentos, os quais deveriam ter, cada um, um nome e descri¢ao. Apesar de a
maior parte desse nimero ser devido a combina¢des das mesmas pecas em diferentes situacoes
— cujas instancias poderiam ser definidas por meio de scripts —, ainda é pouco ergonémico
para um usuario pensar em todas essas possibilidades antes sequer de testar o protétipo. Por
isso, é relevante pesquisar sobre a possibilidade de treinar a rede neural para atribuir qualidades
apenas aos movimentos validos dinamicamente gerados a cada turno.

GLOSSARIO
COMPUTACAO

agente inteligente. Sistema capaz de interpretar um estado, tomar decisfes auto-
nomas e agir para atingir objetivos definidos, aprendendo a adaptar seu comporta-
mento (Holmgard et al., 2019).

apelido. Em inglés, alias. Nome alternativo dado a um tipo de dado, funcdo ou outro
elemento de programacéo para referencia-lo de forma mais conveniente.

AlphaZero. Algoritmo de autoaprendizado por refor¢o que combina MCTS e ResNets
profundas para dominar jogos de tabuleiro, desenvolvido pelo laboratério Google
DeepMind (Silver et al., 2018).

aprendizado de maquina. Em inglés, machine learning. Area da IA que desenvolve
algoritmos capazes de aprender padrdes a partir de dados sem programacao expli-
cita, melhorando seu desempenho através da experiéncia (GeeksforGeeks, 2025a).

aproveitamento. Em inglés, exploitation. Componente do critério UCT na MCTS que
favorece n6s com maior valor médio estimado, aproveitando recompensas ja obser-
vadas para guiar a selecao (Kocsis; Szepesvari, 2006).

entropia cruzada categorica. Em inglés, categorical cross-entropy. Fungdo de perda
utilizada em problemas de classificacdo multi-classe que mede a divergéncia entre
a distribuicéo de probabilidade prevista pelo modelo e a distribui¢cdo real das classes
(Li et al., 2022).

erro quadratico médio. Em inglés, mean squared error. Funcao de perda que calcula
a média dos quadrados das diferencas entre valores previstos e valores reais,
utilizada em problemas de regresséo (Li et al., 2022).

exploracao. Em inglés exploration. Componente do critério UCT na MCTS que prioriza
nds pouco visitados, ampliando a busca e evitando convergir cedo demais (Kocsis;
Szepesvari, 2006).

fitness. Em portugués, avaliacdo. Métrica que quantifica a qualidade de um estado
ou solucdo em relacdo aos objetivos, atribuindo um valor numérico que orienta a
tomada de decisao ou o processo de aprendizado.

linter. Em portugués, analisador estatico de cédigo. Ferramenta que analisa cédigo-
-fonte para identificar e corrigir problemas de sintaxe, estilo e potenciais defeitos
sem executar o programa.

overfitting. Em portugués, sobre-ajuste. Fenbmeno em que um modelo de aprendi-
zado de maquina se ajusta excessivamente aos dados de treinamento, capturando
ruido e padrbes especificos em vez de generalizar para novos dados, resultando
em baixo desempenho para dados néo vistos (GeeksforGeeks, 2025b).

perda. Eminglés, loss. Métrica que quantifica a discrepancia entre as predi¢cdes de um
modelo de aprendizado de maquina e os valores reais esperados (Li et al., 2022).

peso. Em inglés, weight. Parametro ajustavel que pondera a conexao entre neurdnios
em uma rede neural, determinando a forca da influéncia de uma entrada sobre a
saida de uma unidade (Li et al., 2022).

pooling. Em portugués, agrupamento. Operacdo em CNNs que reduz a dimensio-
nalidade espacial dos dados, preservando as informagfes mais relevantes ao
selecionar valores representativos de regides locais (Li et al., 2022).

rede neural. Eminglés, neural network. Modelo computacional composto por camadas
de unidades interligadas que aprendem padrdes em dados por meio de ajustes de
pesos (Li et al., 2022).

seed. Em portugués, semente. Valor inicial fornecido a um gerador de numeros
pseudo-aleatdrios para garantir reprodutibilidade dos resultados.

self-play. Em portugués, autoaprendizado por simulacdo de partidas. Técnica em que
um agente inteligente treina jogando contra versdes de si mesmo para aprender
estratégias por reforco sem dados externos (Silver et al., 2017).

softmax. Funcao de ativacdo que converte um vetor de valores reais em uma distri-
buicdo de probabilidade, na qual cada elemento é transformado num valor entre 0 e
1, e a soma de todos os elementos resulta em 1 (Li et al., 2022).

thread. Em portugués, linha de execucdo. Unidade bésica de processamento que
executa instrucoes de forma independente dentro de um processo. Um programa
gue opera com mais de uma thread permite que multiplas tarefas sejam executadas
concorrentemente.

vetor. Em inglés, array. Estrutura de dados que armazena uma colecédo ordenada de
elementos acessiveis por indices numeéricos sequenciais.

viés. Em inglés, bias. Parametro aditivo em um neurdnio de rede neural que ajusta
o limiar de ativacao, permitindo que o modelo se adapte melhor aos dados (Li et
al., 2022).

JOGOS

casa. Em inglés, slot. Unidade discreta que compde o tabuleiro e pode conter pecas
OU recursos.

estado. Em inglés, state. Representacdo completa da situacdo do jogo em um
instante, incluindo o conteldo das casas, 0S recursos, a pontuacao dos jogadores
e demais condicdes vigentes.

jogador. Em inglés, player. Participante que toma decisfes e executa movimentos
conforme as regras do jogo.

jogo. Em inglés, game. Sistema de regras que define objetivos, jogadores, movimen-
tos e condi¢Bes de vitéria ou encerramento (Suits, 1967).

jogo de tabuleiro. Em inglés, board game. Jogo que utiliza um tabuleiro composto por
casas para posicionar pegas ou marcadores, onde os movimentos seguem regras
espaciais definidas pelo layout do tabuleiro.

jogo de turnos. Em inglés, turn-based game. Jogo em que os jogadores atuam de
forma alternada em turnos sequenciais, fazendo o estado avancar passo a passo.
Neste tipo de jogo, ndo séo permitidos movimentos simultaneos.

movimento. Em inglés, move. Acado tomada a partir de um estado que altera as
condic¢des atuais, levando a um novo estado.

partida. Em inglés, match. Sessdo completa do jogo, iniciando nas condi¢cdes iniciais
e terminando quando uma condicdo de fim € atingida.

play-test. Em portugués, teste de jogabilidade. Avaliacdo pratica de um jogo com
participantes para observar a experiéncia e coletar feedback de melhoria.

pontuacdo. Em inglés, score. Valor que indica o desempenho de um jogador segundo
as regras do jogo.

rodada. Em inglés, round. Ciclo completo de turnos no qual todos os jogadores tém a
oportunidade de agir uma vez.

turno. Em inglés, turn. Periodo em que um unico jogador realiza seus movimentos
antes de passar a vez.

REFERENCIAS

ABADI, Martin et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
9 nov. 2016. Disponivel em: https://arxiv.org/abs/1603.04467. Acesso em: 13 jan. 2026.

ARAKI, Davi Sadao; KNOP, Igor O. Testes de software e simulagdes como ferramentas para
game design. In: Brazilian Symposium on Computer Games and Digital Entertainment
2020 Proceedings. Recife, Pernambuco: SBC, 2020.

BECKER, Alexander; GORLICH, Daniel. What Is Game Balancing? - An Examination of
Concepts. ParadigmPlus, v. 1, n. 1, p. 22—41, abr. 2020. DOI: 10.55969/paradigmplus.vinla2.
Disponivel em: https://doi.org/10.55969/paradigmplus.vinla2. Acesso em: 16 set. 2023.

BOARDGAME.IO DEVELOPERS. Concepts. [S.1.]: boardgame.io, 11 out. 2022. Disponivel
em: https://boardgame.io/documentation/#/. Acesso em: 12 jan. 2026.

BOARDGAMEGEEK, LLC. SPIEL'25 Preview. Essen, Germany: BoardGameGeek, LLC,
2025. Disponivel em: https://boardgamegeek.com/geekpreview/78/spiel-essen-25-preview.
Acesso em: 9 jan. 2026.

BRITANNICA, The Editors of Encyclopaedia. Go. [S.1.]: [S.n.], 23 maio 2023. (Nota técnica).
Disponivel em: https://www.britannica.com/topic/go-game. Acesso em: 3 set. 2023.

CAHN, Lauren. How to Win Connect 4 Every Time, According to the Computer Scientist
Who Solved It. [S.1.]: Reader's Digest, 8 out. 2024. Disponivel em: https://boardgamegeek.
com/geekpreview/78/spiel-essen-25-preview. Acesso em: 11 jan. 2026.

COHN, David; ATLAS, Les; LADNER, Richard. Improving generalization with active lear-
ning. Machine learning, v. 15, p. 201-221, 1994. DOI: 10.1007/BF00993277. Disponivel em:
https://doi.org/10.1007/BF00993277. Acesso em: 31 jan. 2025.

COULOM, Rémi. Efficient selectivity and backup operators in Monte-Carlo tree search. In:
International conference on computers and games. [S.I.]: [S.n.], 2006. Disponivel em:
https://doi.org/10.1007/978-3-540-75538-8_7. Acesso em: 31 jan. 2025.

DUMONT, Alberto Santos. O que eu vi, 0 que nés veremos. 1. ed. Sdo Paulo: Wiki-
source, 1918. Disponivel em: https://pt.wikisource.org/wiki/O_que_eu_vi,_o_que_n%C3%B3
s_veremos. Acesso em: 2 ago. 2025.

ESLINT CONTRIBUTORS. Core Concepts. Disponivel em: https://eslint.org/docs/latest/use/
core-concepts/. Acesso em: 9 jan. 2026.

FULLERTON, Tracy. Game Design Workshop: A Playcentric Approach to Creating Inno-
vative Games. 4. ed. Boca Raton: CRC Press, 2019

FORSTER, Robert. AlphaZero from Scratch. [S.I.]: [S.n.], 2023. Disponivel em: https://
github.com/foersterrobert/AlphaZeroFromScratch. Acesso em: 6 jan. 2026.

GEEKSFORGEEKS. Machine Learning Algorithms. [S.I.]: GeeksforGeeks, 18 nov.
2025a. Disponivel em: https://www.geeksforgeeks.org/machine-learning/machine-learning-
-algorithms/. Acesso em: 12 jan. 2026.

GEEKSFORGEEKS. Underfitting and Overfitting in ML. [S.l.]: GeeksforGeeks, 10
dez. 2025b. Disponivel em: https://www.geeksforgeeks.org/machine-learning/underfitting-and-
-overfitting-in-machine-learning/. Acesso em: 12 jan. 2026.

GUDMUNDSSON, Stefan Freyr et al. Human-like playtest with deep learning. In: 2018 IEEE
Conference on Computational Intelligence and Games (CIG). [S.l.]: [S.n.], 2018. Dispo-
nivel em: https://doi.org/10.1109/CIG.2018.8490442. Acesso em: 31 jan. 2025.

https://arxiv.org/abs/1603.04467
https://doi.org/10.55969/paradigmplus.v1n1a2
https://doi.org/10.55969/paradigmplus.v1n1a2
https://boardgame.io/documentation/#/
https://boardgamegeek.com/geekpreview/78/spiel-essen-25-preview
https://www.britannica.com/topic/go-game
https://boardgamegeek.com/geekpreview/78/spiel-essen-25-preview
https://boardgamegeek.com/geekpreview/78/spiel-essen-25-preview
https://doi.org/10.1007/BF00993277
https://doi.org/10.1007/BF00993277
https://doi.org/10.1007/978-3-540-75538-8_7
https://pt.wikisource.org/wiki/O_que_eu_vi,_o_que_n%C3%B3s_veremos
https://pt.wikisource.org/wiki/O_que_eu_vi,_o_que_n%C3%B3s_veremos
https://eslint.org/docs/latest/use/core-concepts/
https://eslint.org/docs/latest/use/core-concepts/
https://github.com/foersterrobert/AlphaZeroFromScratch
https://github.com/foersterrobert/AlphaZeroFromScratch
https://www.geeksforgeeks.org/machine-learning/machine-learning-algorithms/
https://www.geeksforgeeks.org/machine-learning/machine-learning-algorithms/
https://www.geeksforgeeks.org/machine-learning/machine-learning-algorithms/
https://www.geeksforgeeks.org/machine-learning/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/machine-learning/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/machine-learning/underfitting-and-overfitting-in-machine-learning/
https://doi.org/10.1109/CIG.2018.8490442

HE, Kaiming et al. Deep Residual Learning for Image Recognition. 2015. DOI: 10.1109/
CVPR.2016.90. Disponivel em: https://doi.org/10.1109/CVPR.2016.90. Acesso em: 31 jan.
2025.

HOLMGARD, Christoffer et al. Automated playtest With Procedural Personas Through MCTS
With Evolved Heuristics. IEEE Transactions on Games, v. 11, n. 4, p. 352-362, 2019. DOI:
10.1109/TG.2018.2808198. Disponivel em: https://doi.org/10.1109/TG.2018.2808198. Acesso
em: 31 jan. 2025.

KOCSIS, Levente; SZEPESVARI, Csaba. Bandit Based Monte-Carlo Planning. In: Machine
Learning: ECML 2006. FURNKRANZ, Johannes; SCHEFFER, Tobias; SPILIOPOULOU,
Myra (orgs.). Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. Disponivel em: https://doi.
org/10.1007/11871842_29. Acesso em: 7 jan. 2026.

LI, Zewen et al. A Survey of Convolutional Neural Networks: Analysis, Applications, and
Prospects. IEEE Transactions on Neural Networks and Learning Systems, v. 33, n. 12,
p. 6999-7019, 2022. DOI: 10.1109/TNNLS.2021.3084827. Disponivel em: https://doi.org/10.
1109/TNNLS.2021.3084827. Acesso em: 31 jan. 2025.

LIANG, Jiazhi. Image classification based on RESNET. Journal of Physics: Conference
Series, v. 1634, p. 12110, 2020. DOI: 10.1088/1742-6596/1634/1/012110. Disponivel em:
https://doi.org/10.1088/1742-6596/1634/1/012110. Acesso em: 6 fev. 2025.

MALOSTO, Celso Gabriel Dutra Almeida; CAMPOS, Luciana Concei¢ao Dias; KNOP, Igor
de Oliveira. Moving towards automated game play-testing. In: Anais Estendidos do XXIV
Simpésio Brasileiro de Jogos e Entretenimento Digital. Salvador, Bahia: SBC, 2025. Dispo-
nivel em: https://sol.sbc.org.br/index.php/sbgames_estendido/article/view/37117. Acesso em: 6
jan. 2026.

MALOSTO, Celso Gabriel Dutra Almeida; KNOP, Igor Oliveira; CAMPOS, Luciana Concei-
cdo Dias. AlphaZero como ferramenta de playtest. Revista ComInG - Communications and
Innovations Gazette, v. 7, n. 1, p. 39-50, 2023. DOI: 10.5902/2448190485269. Disponivel
em: https://doi.org/10.5902/2448190485269. Acesso em: 31 jan. 2025.

MALOSTO, Celso Gabriel; KNOP, Igor. Repositorio do projeto APTS. [S.1.]: GitHub, 2026.
Disponivel em: https://github.com/ufjf-gamelab/apts. Acesso em: 9 jan. 2026.

MARCELO, Antonio; PESCUITE, Julio. Design de jogos: Fundamentos. 1. ed. Rio de janeiro:
Brasport, 26 mar. 2009. p. 188

NAIR, Vinod; HINTON, Geoffrey E. Rectified linear units improve restricted boltzmann ma-
chines. In: Proceedings of the 27th International Conference on International Conference
on Machine Learning. ICML'10. Haifa, Israel: Omnipress, 2010. Disponivel em: https://dl.
acm.org/doi/10.5555/3104322.3104425. Acesso em: 31 jan. 2025.

NODE.JS. Introduction to Node.js. [S.l.]: OpenJS Foundation, 23 jul. 2025. Disponivel em:
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs. Acesso em: 9 jan. 2026.

PLAAT, Aske et al. AMinimax Algorithm Better Than Alpha-beta?: No and Yes. Edmonton,
Alberta, Canada: The University of Alberta, 6 jul. 1995. Disponivel em: https://arxiv.org/abs/
1702.03401. Acesso em: 15 jan. 2026.

RANANDEH, Vahid; MIRZA-BABAEI, Pejman. Beyond Equilibrium: Utilizing AT Agents in
Video Game Economy Balancing. In: Companion Proceedings of the Annual Symposium on
Computer-Human Interaction in Play. [S.I.]: [S.n.], 2023. Disponivel em: https://doi.org/10.
1145/3573382.3616092. Acesso em: 31 jan. 2025.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TG.2018.2808198
https://doi.org/10.1109/TG.2018.2808198
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1088/1742-6596/1634/1/012110
https://doi.org/10.1088/1742-6596/1634/1/012110
https://sol.sbc.org.br/index.php/sbgames_estendido/article/view/37117
https://doi.org/10.5902/2448190485269
https://doi.org/10.5902/2448190485269
https://github.com/ufjf-gamelab/apts
https://dl.acm.org/doi/10.5555/3104322.3104425
https://dl.acm.org/doi/10.5555/3104322.3104425
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://arxiv.org/abs/1702.03401
https://arxiv.org/abs/1702.03401
https://doi.org/10.1145/3573382.3616092
https://doi.org/10.1145/3573382.3616092

ROMERO, Brenda; SCHREIBER, Ian. Game Balance. 1st edition ed. Boca Raton: CRC Press,
2021

SALEN, Katie; ZIMMERMAN, Eric. Rules of Play: Game Design Fundamentals. Cam-
bridge: MIT Press, 2003. p. 688. Disponivel em: https://mitpress.mit.edu/9780262240451/
rules-of-play/. Acesso em: 31 jan. 2025.

SILVER, David et al. Mastering the Game of Go with Deep Neural Networks and Tree Search.
Nature, v. 529, n. 7587, p. 484-489, jan. 2016. DOI: 10.1038/nature16961. Disponivel em:
https://doi.org/10.1038/nature16961. Acesso em: 16 set. 2023.

SILVER, David et al. Mastering Chess and Shogi by Self-Play with a General Reinforcement
Learning Algorithm. 2017. DOI: 10.48550/arXiv.1712.01815. Disponivel em: https://doi.org/
10.48550/arXiv.1712.01815. Acesso em: 16 set. 2023.

SILVER, David et al. A General Reinforcement Learning Algorithm That Masters Chess, Shogi,
and Go through Self-Play. Science, v. 362, n. 6419, p. 1140-1144, 2018. DOI: 10.1126/
science.aar6404. Disponivel em: https://doi.org/10.1126/science.aar6404. Acesso em: 16 set.
2023.

STAHLKE, Samantha; NOVA, Atiya; MIRZA-BABAEI, Pejman. Artificial players in the
design process: Developing an automated testing tool for game level and world design. In: Pro-
ceedings of the Annual Symposium on Computer-Human Interaction in Play. [S.I.]: [S.n.],
2020. Disponivel em: https://doi.org/10.1145/3410404.3414249. Acesso em: 31 jan. 2025.

SUITS, Bernard. What is a Game?. Philosophy of Science, v. 34, n. 2, p. 148-156, 1967. DOI:
10.1086/288138. Disponivel em: https://doi.org/10.1086/288138. Acesso em: 31 jan. 2025.

TEUBER, Klaus. Colonizadores de Catan. Disponivel em: https://boardgamegeek.com/
boardgame/13/catan. Acesso em: 31 jan. 2025.

TRZEWICZEK, Ignacy. I play-tested it 100 times. [S.l.]: Portal Games, 22 jun. 2017. Dispo-
nivel em: https://trzewik.medium.com/i-play-tested-it-100-times-fcb142¢c38c80. Acesso em: 7
set. 2023.

TYPESCRIPT TEAM. TypeScript for JavaScript Programmers. [S.1.]: TypeScript, 7 jan.
2026. Disponivel em: https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.
html. Acesso em: 9 jan. 2026.

WALLNER, Giinter; HALABI, Nour; MIRZA-BABAEI, Pejman. Aggregated visualization of
playtest data. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. [S.1.]: [S.n.], 2019. Disponivel em: https://doi.org/10.1145/3290605.3300593. Acesso
em: 31 jan. 2025.

WOODS, Stewart. Eurogames: The Design, Culture and Play of Modern European Board
Games. Jefferson: McFarland, Incorporated, Publishers, 2012. p. 262

Z0OOK, Alexander; FRUCHTER, Eric; RIEDL, Mark O. Automatic playtest for Game Parame-
ter Tuning via Active Learning. 2019. DOI: 10.48550/arXiv.1908.01417. Disponivel em: https://
doi.org/10.48550/arXiv.1908.01417. Acesso em: 31 jan. 2025.

SWIECHOWSKI, Maciej et al. Monte Carlo Tree Search: a review of recent modifications
and applications. Artificial Intelligence Review, v. 56, n. 3, p. 2497-2562, jul. 2022. DOLI:
10.1007/s10462-022-10228-y. Disponivel em: https://doi.org/10.1007%2Fs10462-022-10228-
-y. Acesso em: 16 set. 2023.

https://mitpress.mit.edu/9780262240451/rules-of-play/
https://mitpress.mit.edu/9780262240451/rules-of-play/
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.48550/arXiv.1712.01815
https://doi.org/10.48550/arXiv.1712.01815
https://doi.org/10.48550/arXiv.1712.01815
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1145/3410404.3414249
https://doi.org/10.1086/288138
https://doi.org/10.1086/288138
https://boardgamegeek.com/boardgame/13/catan
https://boardgamegeek.com/boardgame/13/catan
https://trzewik.medium.com/i-play-tested-it-100-times-fcb142c38c80
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://doi.org/10.1145/3290605.3300593
https://doi.org/10.48550/arXiv.1908.01417
https://doi.org/10.48550/arXiv.1908.01417
https://doi.org/10.48550/arXiv.1908.01417
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007%2Fs10462-022-10228-y
https://doi.org/10.1007%2Fs10462-022-10228-y
https://doi.org/10.1007%2Fs10462-022-10228-y

	1 Introdução
	2 Fundamentação teórica
	2.1 Componentes fundamentais de um jogo
	2.2 de destaque
	2.2.1 Jogo da Velha
	2.2.2 Ligue-4
	2.2.3 Go

	2.3 Busca em árvore de Monte Carlo
	2.4 Redes neurais residuais
	2.5 Projeto
	2.6 Trabalhos relacionados

	3 Material e métodos
	3.1 Material
	3.1.1 Ambiente de execução
	3.1.2 Ambiente de desenvolvimento
	3.1.3 Dependências externas

	3.2 Métodos

	4 Desenvolvimento
	4.1 Utilitários
	4.2 Descrição de
	4.3 Implementação dos jogos
	4.4 Elaboração dos algoritmos de busca
	4.5 Construção da
	4.6 Geração de memórias de treinamento
	4.7 Interface com o usuário

	5 Resultados
	5.1 Geração de
	5.2 Simulação de

	6 Considerações finais
	Referências

