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RESUMO

Introdução: O mercado de jogos autorais apresenta um crescimento contínuo, com 

milhares de jogos publicados anualmente nas maiores feiras do mundo. Esse crescimento 

cria uma demanda por melhorias nas ferramentas de apoio à fase de criação. Nessa fase, um 

protótipo passa por play-test repetidamente a fim de identificar desbalanceamentos e estratégias 

dominantes, o que exige muito tempo e recursos humanos. Objetivos: Esta pesquisa busca 

desenvolver meios de aliviar a necessidade da equipe de play-test, ao explorar por exaustão 

os sistemas do jogo usando agentes inteligentes. Dessa forma, espera-se que os humanos se 

concentrem nos aspectos da experiência de jogo e não em testes de estresse. Métodos: Esta 

é uma pesquisa exploratória na qual é avaliado o uso de agentes inteligentes treinados por 

métodos de self-play inspirados pelo projeto AlphaZero, que é baseado nos métodos de busca 

em árvore de Monte Carlo (MCTS) e de redes neurais residuais (ResNets). Foi criado um 

sistema computacional de representação de jogos de turnos, de geração e treinamento de agentes 

inteligentes e de simulação e avaliação de partidas, que foi testado com o jogo Ligue-4. Dados 

colhidos durante e após o processo de treinamento são utilizados para levantar observações 

do comportamento emergente das regras do jogo. Resultados: Com as partidas sintéticas, a 

equipe de desenvolvimento passa a ter um conjunto de partidas para avaliar, coletadas com 

custos reduzidos. Essa abordagem permitiu construir um sistema que gera métricas acerca do 

jogo e visualizá-las, o que indicou a viabilidade de usar o método de play-test automatizado 

como apoio ao projetista, ainda que mais experimentos sejam requeridos utilizando diferentes 

parâmetros.

Palavras-chave: game design; play-test automático; AlphaZero; redes neurais artificiais.



ABSTRACT

Introduction: The market for designer’s games shows continuous growth, with thou­

sands of games published annually at the world’s largest fairs. This growth creates a demand for 

improvements in tools supporting the creation phase. In this phase, a prototype undergoes play-

test repeatedly to identify imbalances and dominant strategies, which requires significant time 

and human resources. Objectives: This research seeks to develop ways to alleviate the need 

for a play-test team by exhaustively exploring the game systems using intelligent agents. Thus, 

humans are expected to focus on aspects of the game experience rather than on stress testing. 

Methods: This is an exploratory research evaluating the use of intelligent agents trained by self-

play methods inspired by the AlphaZero project, which is based on Monte Carlo tree search 

(MCTS) and residual neural networks (ResNets) methods. A computer system was created for 

representing turn-based games, generating and training intelligent agents, and simulating and 

evaluating matches, which was tested with the game ConnectFour. Data collected during and 

after the training process are used to raise observations about the emergent behavior of the 

game rules. Results: With synthetic matches, the development team now has a set of matches 

to evaluate, collected with reduced costs. This approach allowed creating a system to generate 

metrics about the game and visualize them, which has indicated the viability of using the 

automated play-test method as support for the designer, although further experiments using 

different parameters are required.

Keywords: game design; automated play-test; AlphaZero; artificial neural networks.
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13

1 INTRODUÇÃO

Jogos são conceituados como atividades com propósito bem definido, o qual comumente 

é vencer um desafio. Um jogador apenas pode ser considerado vitorioso caso ele atinja o objetivo 

segundo condições pré-estabelecidas, definidas como as regras do jogo. Tais regras permitem 

diferentes estratégias, as quais podem ser consideradas melhores ou piores para obter a vitória, 

de acordo com o contexto da partida (Suits, 1967).

Dentre as categorias existentes, destacam-se os jogos de turnos (turn-based games), em 

que o tempo de partida evolui em unidades discretas. Essas são chamadas de turnos, nos quais 

os jogadores realizam um número finito de movimentos que resultam em mudanças no estado 

do jogo. Comumente, os turnos se alternam de forma pré-estabelecida, ao que se denomina 

rodada. Nessa classe de jogos, as rodadas se sucedem até que a partida chegue a um estado final 

o qual é avaliado com alguma métrica para decidir o sucesso ou fracasso dos jogadores dentro 

do desafio proposto. Uma característica marcante deles é a possibilidade representar a tomada 

de decisão dos jogadores durante uma partida por meio de árvores de decisão. Essas estruturas 

permitem formalizar em um grafo os movimentos possíveis, definidos pelas regras, e os estados 

resultantes delas (Salen; Zimmerman, 2003,  p. 410).

O mercado dos jogos de tabuleiro (board game) modernos teve um marco com o 

lançamento de Colonizadores de Catan (Teuber, 1995), quando jogos contemporâneos se 

tornaram populares mundialmente a partir da Alemanha e criaram um novo movimento cultural. 

Atualmente existem sites focados em catalogar esses jogos, sendo o maior o BoardGameGeek1, 

que registra mais de 140 mil itens entre jogos, suas reimplementações e suas subsequentes 

expansões.

Uma grande parcela desses jogos se destaca pelo seu perfil tático ou estratégico durante 

as partidas, com uma série de reações em cadeia oriundas dos movimentos escolhidos pelas 

decisões dos jogadores, ocasionando diversas dinâmicas sociais e complexidade emergente. 

Estes jogos são também conhecidos como designer’s games, ou jogos autorais, por trazerem o 

nome do autor na capa. Eles são fruto de uma organização de criadores que proporciona uma 

série de benefícios para um mercado baseado em novidades (Woods, 2012). Anualmente, acima 

de 1000 novos jogos são apresentados nas maiores convenções do meio, além de reimpressões, 

reedições expansões de conteúdo e jogabilidade (BoardGameGeek, LLC, 2025).

O processo de criação de um jogo é um processo exaustivamente iterativo. O criador 

implementa a sua ideia em um protótipo para facilitar as contínuas modificações necessárias. 

Assim que o autor julga que esse protótipo está pronto dentro da experiência de jogo desejada, 

ele deve ser testado na que se denomina a fase de play-test (teste de jogabilidade). Esta é a etapa 

na qual se realizam partidas para explorar o comportamento dos sistemas e encontrar possíveis 

desequilíbrios (Fullerton, 2019; Marcelo; Pescuite, 2009).

Deve-se ressaltar que desenvolvimento de um jogo autoral é um processo complexo e 

custoso, sobretudo durante a fase de play-test. Não é incomum o autor realizar os testes sozinho, 

simulando vários jogadores. Contudo, ao considerar dinâmicas e mecanismos mais complexos, é 

necessário convidar outras pessoas para auxiliá-lo. Adicionalmente, são feitos testes de estresse 

1Acesso em: https://boardgamegeek.com/wiki/page/Welcome_to_BoardGameGeek.

https://boardgamegeek.com/wiki/page/Welcome_to_BoardGameGeek
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para diversos sistemas do jogo. Entre eles, podemos citar a realização da mesma ação durante 

quase toda a partida, caso aparente ser muito vantajosa, o que ajuda a verificar se ela consegue 

sobrepujar todas as demais (Marcelo; Pescuite, 2009). Esta é a etapa do play-test que é conhecida 

como balanceamento.

A busca pelo balanceamento em jogos apresenta um desafio grande para a indústria, 

pois o próprio termo não é consenso (Becker; Görlich, 2020). Tal processo é altamente depen­

dente de contexto, com desdobramentos para equilíbrio matemático, progressão de dificuldade, 

progressão de conteúdo, variedade de estratégias e imparcialidade entre jogadores. Cada um 

desses grupos apresenta suas próprias características, constituindo subsistemas altamente inter-

-relacionados de um sistema complexo maior, que é o jogo (Romero; Schreiber, 2021).

Essa etapa, na qual partidas do jogo são performadas repetidamente, tem alto custo de 

recursos humanos e tempo. É difícil manter um grupo de teste ativo e focado, dado que se trata de 

um processo cansativo quando o número de partidas começa a ficar alto. Além disso, o objetivo 

do teste repetitivo nem sempre é claro para os jogadores, de forma que o projetista tenta não 

contaminar a partida divulgando quais mecanismos estão sob teste (Trzewiczek, 2017).

Ademais, efeitos sobre os próprios testadores podem influenciar os resultados dos 

testes com suas expectativas, humores, excessos ou falta de concentração. Esses são pontos 

importantes a se observar em um teste de experiência de jogo (Marcelo; Pescuite, 2009), mas 

não são relevantes quando os objetivos são equilíbrios durante testes de estresse, nos quais os 

movimentos executados devem ser puramente efetivos e alheios ao divertimento e emoções dos 

jogadores ou dinâmicas do grupo.

O estudo de jogos de mesa por meios computacionais segue a própria história da 

Computação, em que pioneiros buscaram construir máquinas, modelos e algoritmos para jogar 

xadrez em um nível avançado (Silver et al., 2018). Tradicionalmente, jogos de tabuleiro são 

descritos por estados discretos e tidos como jogos combinatoriais. A área foi conduzida pelo 

estudo da busca eficiente em árvores de decisão via variações do algoritmo minimax e poda em 

árvore alfa-beta nas últimas duas décadas (Plaat et al., 1995).

Os estudos continuaram com as heurísticas especializadas até que os resultados da busca 

em árvore de Monte Carlo (MCTS) na implementação de algoritmos de decisão se mostraram 

positivos (Holmgård et al., 2019; Kocsis; Szepesvári, 2006). Seu uso não requeria qualquer 

outro conhecimento prévio além das regras do jogo e apresentava um bom desempenho sem 

necessitar que se implementasse uma heurística especializada.

Com base nela, o projeto AlphaZero, do laboratório de pesquisa Google DeepMind, se 

destacou por substituir a necessidade de adaptar conhecimento de domínio de um jogo específico 

pelo uso de uma rede neural residual (ResNet), atuando como um algoritmo de aprendizado 

profundo independente de heurísticas especializadas (Silver et al., 2016). Essa estratégia 

permitiu realizar buscas eficientes na árvore de decisão através de um modelo treinado por 

aprendizado profundo. Esse método teve várias aplicações em jogos diferentes, como o Shogi 

e Go, que apresentavam complexidade superior ao xadrez. Assim, ao considerar o aprendizado 

não informado resultante das repetidas partidas simuladas, percebe-se que essas tecnologias são 

promissoras para aprimorar jogos de mesa em desenvolvimento, observando desde a avaliação 

do estado do jogo, bem como a massa de dados gerada ao final do treinamento.
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Dado este contexto, o presente trabalho continua uma pesquisa exploratória para inves­

tigar relações de balanceamento em jogos durante sua criação (Araki; Knop, 2020; Malosto; 

Campos; Knop, 2025; Malosto; Knop; Campos, 2023). Seu objetivo geral é oferecer perspec­

tivas e ferramentas inovadoras ao cenário de criação de jogos de turnos, estabelecendo como 

foco a fase de play-test.

Os autores estabelecem como hipótese que é viável construir sistemas computacionais 

para a execução de partidas sintéticas que ofereçam dados relevantes aos projetistas de jogos, de 

forma a reduzir o emprego de recursos humanos nessa fase. Assim, espera-se que a participação 

de pessoas seja empregada para investigar aspectos lúdicos, sociais e a experiência do jogador, 

ao passo em que os testes repetitivos sejam realizados majoritariamente por agentes inteligentes.

A nível dos objetivos específicos, é proposto construir um ambiente de play-test 

simulado para auxiliar as pessoas autoras de jogos a realizar as primeiras iterações do processo 

de teste. Esse sistema deve permitir representar um jogo de turnos arbitrário e descrever suas 

regras na forma de classes específicas elaboradas em código-fonte da linguagem JavaScript. 

Ele deve então oferecer ao usuário um ambiente de simulação de partidas sintéticas que exporte 

históricos das jogadas. Nessa perspectiva, é necessário estudar a modelagem de estruturas de 

dados capazes de organizar informações sobre diferentes conceitos, como: jogo, partida, rodada, 

turno, jogador, movimento e estado.

Outro requisito do sistema é oferecer formas de avaliação dos movimentos viáveis a 

partir de um estado fornecido pelo usuário. Isso deve ser implementado tanto pelo método 

clássico do algoritmo de MCTS, como também pelo uso de agentes inteligentes guiados por 

ResNets. O treinamento desses é feito no processo de aprendizado por reforço, o que requer que 

o sistema gerencie a criação de massas de dados por meio do processo de self-play ao simular 

partidas sintéticas pelo método AlphaZero e, em seguida, utilize-os no alinhamento de pesos e 

vieses.

O presente trabalho está organizado em seis capítulos. Este Capítulo 1, de Introdução, 

apresenta o tema geral e a situação de mercado, delimita o problema de pesquisa e descreve a 

contribuição esperada. O Capítulo 2, de Fundamentação teórica, aborda conceitos fundamentais 

para a pesquisa segundo a literatura, apresentando estudos que abordam o tema proposto ou 

correlatos, a fim de situar o presente trabalho no contexto da pesquisa. Por sua vez, o Capítulo 3, 

de Material e métodos, descreve a metodologia de pesquisa e desenvolvimento da solução 

proposta. Segue o Capítulo 4, de Desenvolvimento, que apresenta o processo de construção do 

sistema de representação de jogos e de simulação de partidas sintéticas. Então, o Capítulo 5 

descreve a execução de um experimento realizado com o sistema para gerar agentes inteligentes 

e testar seu uso no processo de coleta de dados de partidas, além de discutir resultados obtidos 

e os artefatos gerados no processo. Por fim, o Capítulo 6, de Considerações finais, apresenta 

comentários acerca da pesquisa, suas limitações e as perspectivas para trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

A fim de atingir os objetivos propostos, o presente trabalho investiga duas técnicas 

para a construção de jogadores digitais autônomos para jogos de mesa, sendo elas a MCTS 

e as ResNets, de acordo com os usos que o AlphaZero faz delas. Este capítulo faz a revisão 

desses métodos, bem como elenca os trabalhos relacionados a uso de agentes inteligentes como 

ferramentas de play-test.

2.1 COMPONENTES FUNDAMENTAIS DE UM JOGO

A descrição de um jogo num ambiente de simulação exige identificar seus componentes 

fundamentais. Com esse objetivo, a comunidade de projetistas e desenvolvedores de software 

criou o projeto colaborativo BoardGame.io (Boardgame.io developers, 2022), que disponibiliza 

um ambiente de representação e simulação de jogos de turnos. Ele define uma partida como 

uma sequência de fases, que estão associadas às regras que definem as ações que os jogadores 

podem efetuar. Uma fase pode ser constituída por rodadas, em que os jogadores se alternam 

segundo uma ordem definida pelas regras. A permissão dada a um jogador de realizar uma ou 

mais ações é chamada de turno, o qual pode ser divido em estágios, similarmente às fases.

O projeto mantém dados mutáveis acerca de um momento da partida por meio de estados 

e contextos. A manipulação dos estados deve ser descrita pelo projetista do jogo, ao passo em 

que o contexto de cada turno é gerenciado pela plataforma e salva dados como a quantidade de 

jogadores e o marcador do jogador atual. Essa atualização dos dados de um estado ao efetuar 

uma ação é formalmente definida como um movimento, que é implementado como uma função 

imutável. Isso significa que todas as informações manipuladas por um movimento devem estar 

no estado que ele recebe como argumento.

2.2 JOGOS DE TURNOS DE DESTAQUE

Alguns jogos de turnos clássicos são utilizados como exemplo ou como método nesta 

pesquisa e nos trabalhos a ela relacionados. Esta seção contextualiza os seguintes jogos: Jogo da 

Velha, Ligue-4 e Go, que são jogos de tabuleiro entre dois jogadores com informação completa.

2.2.1 Jogo da Velha

O clássico Jogo da Velha (em inglês, Tic-tac-toe)2 é jogado em um tabuleiro de 3 linhas e 

3 colunas, em que os jogadores se alternam marcando peças nas casas disponíveis. Um jogador 

é considerado vitorioso quando três peças adjacentes por ele colocadas formam uma linha 

na horizontal ou na vertical ou ainda uma diagonal principal ou secundária no tabuleiro. Um 

tabuleiro parcialmente preenchido desse jogo está demonstrado na Figura 1a, ao passo em que 

a Figura 1b mostra o mesmo tabuleiro com uma representação de cada jogador na forma de 

números inteiros. Nesse caso, o primeiro jogador é salvo como o valor 0 enquanto o segundo é 

registrado como o número 1.

A fim de adaptar o Jogo da Velha para marcar pontuação dos jogadores, os autores deste 

trabalho elaboraram um jogo variante chamado Snowball. Ele é jogado em um tabuleiro de 9 
2Acesso em https://boardgamegeek.com/boardgame/11901/tic-tac-toe.

https://boardgamegeek.com/boardgame/11901/tic-tac-toe
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Figura 1 — Tabuleiro do Jogo da Velha e sua representação 
numérica.

(a) Tabuleiro do Jogo da 
Velha.

(b) Tabuleiro do Jogo 
da Velha representado 

numericamente.

Fonte: elaborado pelo autor (2026).
Nota: Neste estado, o jogador atual é o de símbolo “X”.

linhas e 9 colunas, de forma que um jogador marca 1 ponto quando a casa em que ele posiciona 

sua peça forma um formato especificado com as suas casas previamente marcadas.

Os formatos que conferem pontos são uma linha ou diagonal de 5 peças adjacentes, ou 

ainda um quadrado de dimensão 2 ou 3. Por isso, beneficia-se o jogador que focar seu controle 

sobre uma região do tabuleiro, porque cada nova casa marcada tende a levar a mais de um 

formato ao mesmo tempo, o que aumenta a pontuação como uma bola de neve — o que motivou 

na escolha do nome da variante.

Essa mecânica é demonstrada na Figura 2, em que o jogador “X” fez 15 pontos e o 

jogador “O” fez 14. A partida chega ao fim quando um dos jogadores marca 15 pontos ou 

quando 45 dentre as 81 peças do tabuleiro são preenchidas. Então, o jogador com mais pontos 

é reconhecido como vencedor.

Figura 2 — Tabuleiro do Snowball e os pontos atribuídos a cada jogador 
após efetuar cada jogada.

(a) Tabuleiro do Snowball.
(b) Pontuação dos jogadores 

num estado do Snowball.

Fonte: elaborado pelo autor (2026).
Nota: Os jogadores escolheram sequencialmente suas casas da esquerda para 
a direita e de cima para baixo.
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2.2.2 Ligue-4

O Ligue-4 (em inglês, ConnectFour)3 é jogado em um tabuleiro vertical de 6 linhas 

e 7 colunas, o que resulta em 42 casas disponíveis para marcação. Suas peças são discos de 

mesmo tamanho divididas igualmente entre cada um dos jogadores, que recebe todas as peças 

de uma das duas cores disponíveis. Demonstrando as casas marcadas, a Figura 3a representa 

um tabuleiro parcialmente preenchido, cujo turno atual é do jogador “O”. Sua representação 

numérica considerando a ordem de turnos dos jogadores é exibida na Figura 3b.

Figura 3 — Tabuleiro do Ligue-4 e sua representação nu­
mérica.

(a) Tabuleiro do Li­
gue-4.

(b) Tabuleiro do Li­
gue-4 representado nu­

mericamente.

Fonte: elaborado pelo autor (2026).
Nota: Neste estado, o jogador atual é o de símbolo “O”.

Dentro de um turno, o jogador atual deve escolher uma coluna que já não tenha sido 

completamente preenchida para colocar sua peça. Sendo o tabuleiro vertical, ela cairá até a linha 

mais baixa ainda não preenchida naquela coluna. Após colocada, uma peça não pode mais ser 

removida naquela partida.

Então, a rodada passa a vez para o segundo jogador, que deve escolher seu movimento 

da mesma forma que o primeiro. Um jogador vence caso ele posicione 4 de suas peças de forma 

adjacente na mesma linha, coluna ou diagonal. Configura um empate o caso em que todas as 

casas tenham sido preenchidas e nenhum jogador tenha marcado um dos formatos especificados. 

Essas regras fazem com que haja mais de 4.5 trilhões de combinações possíveis de peças no 

tabuleiro, mesmo que o jogo permita no máximo 7 movimentos em qualquer turno (Cahn, 2024).

2.2.3 Go

O Go4 é um jogo de estratégia baseados em turnos originado na China. Ele é jogado 

por duas pessoas, sendo composto por um tabuleiro de 19 linhas verticais e horizontais. Assim, 

consideram-se casas as intersecções das linhas horizontais e verticais, que totalizam 361. O jogo 

dispõe de 180 peças brancas e 180 peças pretas, sendo cada cor associada a um dos jogadores. 

Uma partida se inicia com o tabuleiro vazio e, em cada rodada, os jogadores se alternam 

colocando uma de suas peças em qualquer intersecção não ocupada. Então, elas não podem mais 

ser movidas até o fim da partida.

3Acesso em https://boardgamegeek.com/boardgame/2719/connect-four.
4Acesso em https://boardgamegeek.com/boardgame/188/go.

https://boardgamegeek.com/boardgame/2719/connect-four
https://boardgamegeek.com/boardgame/188/go
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O objetivo do jogo é cercar totalmente as peças adversárias pois, quando um grupo 

dessas é totalmente cercado, elas são removidas do tabuleiro. O outro jogador tenta evitar a 

captura ao posicionar peças em interseções não dominadas pelo oponente. Vence o jogador que, 

ao se esgotarem todos os movimentos, ainda tiver a maior quantidade de peças dispostas no 

tabuleiro (Britannica, 2023).

2.3 BUSCA EM ÁRVORE DE MONTE CARLO

O método de busca em árvore de Monte Carlo (MCTS) é um algoritmo de decisão 

em que cada nó de uma árvore representa dado estado de um jogo (Coulom, 2006; Kocsis; 

Szepesvári, 2006). Além disso, cada nó guarda um contador de visitas e um marcador referente 

à qualidade daquele nó para a partida. Os nós se relacionam por arestas entre nó pai e nó filho. 

Uma dada aresta representa um movimento tomado por um jogador, que conduz uma transição 

entre os estados representados.

O nó raiz da árvore de busca é considerado o seu primeiro nível. Esse nó representa o 

primeiro turno, em que está disposto o estado inicial do jogo. O agente inteligente que opera 

como o jogador inicial escolhe aleatoriamente um dentre todos os movimentos disponíveis, 

segundo as regras do jogo. Essa jogada leva à criação de um novo estado, que é colocado 

no segundo nível da árvore. Para o caso de um jogo entre dois jogadores, o segundo jogador 

escolherá um dentre os movimentos possíveis. Isso criará um novo estado, que passa o turno 

novamente para o primeiro jogador. Esse estado é posicionado no terceiro nível da árvore.

Os níveis irão alternadamente representar as jogadas de cada um dos jogadores. Essa 

estrutura possibilita ao algoritmo jogar como cada um dos jogadores, de forma a explorar o 

próximo movimento realizado pelo oponente. Dessa forma, o método busca prever a melhor 

ação futura segundo o histórico disponível a cada iteração (Świechowski et al., 2022).

O processo de busca em árvore de Monte Carlo tem o objetivo de encontrar as melhores 

sequências de jogadas, que conduzam a uma vitória do jogador. Ele é formado por quatro 

etapas: seleção, expansão, simulação, e retro-propagação, as quais são representas na Figura 4 

(Świechowski et al., 2022,  p. 2504).

Figura 4 — Ciclo da busca em árvore de Monte Carlo: suas quatro 
etapas são a seleção, a expansão, a simulação e a retro-propagação.

Fonte: Adaptado de Świechowski et al. (2022,  p. 2504).
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A etapa de seleção procura, a partir do nó raiz, o ramo com o melhor nó folha a explorar, 

orientada por uma diretriz de busca. A mais frequentemente utilizada nas implementações de 

referência é chamada de limite superior de confiança aplicado a árvores (UCT) — ou Upper 

Confidence bounds applied to Trees, em inglês — (Kocsis; Szepesvári, 2006).

Essa política atribui a cada nó da árvore um contador de visitas e um marcador da 

qualidade parcial da partida, incrementado conforme o ramo da árvore do qual ele faz parte leva 

a mais vitórias, ou decrementado caso contrário. Com base nesses dados, a Equação 1 apresenta 

como o valor de fitness (avaliação) de um movimento é calculado. Seu objetivo é alinhar a 

exploração (exploration) e o aproveitamento (exploitation) do espaço de busca.

Equação 1 — Cálculo de fitness da diretriz de limite superior de confiança aplicado a árvores 
(UCT) usada pela busca em árvore de Monte Carlo (MCTS) clássica.

𝑚∗ = max
𝑚∈𝑀(𝑠)

(
𝑄(𝑠,𝑚) + 𝐶 ∗√ln(𝑉 (𝑠))

𝑉 (𝑠,𝑚)
)
 (1)

Na qual:

• 𝑚∗ é o nó que representa o movimento ótimo selecionado pela diretriz;

• 𝑀(𝑠) é o conjunto de nós que representam os movimentos válidos a partir do estado 

𝑠, segundo as regras do jogo;

• 𝑄(𝑠,𝑚) é a qualidade da partida calculada por meio de simulações ao jogar o 

movimento 𝑚 no estado 𝑠;
• 𝑉 (𝑠) é quantidade de vezes em que o nó que guarda o estado 𝑠 foi visitado nas 

iterações anteriores;

• 𝑉 (𝑠,𝑚) é a quantidade de vezes em que o nó que representa o movimento 𝑚 foi 

visitado nas interações anteriores;

• 𝐶 é o coeficiente que regula a relação entre exploração e aproveitamento.

Fonte: Adaptado de Świechowski et al. (2022,  p. 2505).

Havendo sido selecionado um nó folha e não sendo este um nó que represente o fim do 

jogo, então se executa a fase de expansão. Nela, escolhe-se aleatoriamente um movimento dentre 

aqueles disponíveis para o estado atual segundo as regras do jogo. Então o estado resultante é 

criado, o qual é armazenado em um novo nó, definido como filho daquele que fora selecionado.

A partir do nó criado, realiza-se a fase de simulação. Nela, sucedem-se turnos entre 

os jogadores, em que os movimentos são aleatoriamente selecionados. A simulação se encerra 

quando é atingido um estado que represente o fim da partida. Uma função de fitness (avaliação) 

quantifica a qualidade da partida com o objetivo de aferir a influência do movimento escolhido 

na pontuação dos jogadores.

Por fim, na fase de retro-propagação, os nós do ramo selecionado são atualizados com 

os dados gerados. O contador de visitas é aumentado em 1, ao passo em que o marcador de 

qualidade é incrementado pelo valor de fitness calculado.

Para executar o ciclo de busca, deve-se definir o número de iterações desejado. Cada 

iteração levará à expansão de um único novo nó. Ao final de todos os ciclos, os filhos diretos 

do nó raiz terão os marcadores de visitas e de qualidade atualizados segundo o andamento das 

partidas. A partir desses dados, uma função deve calcular a probabilidade de jogar cada um dos 
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Figura 5 — Uso da busca em árvore de Monte 
Carlo (MCTS) para calcular as probabilidades 
de jogar cada um dos movimentos válidos a 

partir de um estado inicial.

Fonte: Adaptado de Świechowski et al. (2022,  p. 
2505).
Nota: Neste exemplo, o cálculo das probabilidades 
dos três movimentos válidos a partir do estado ini­
cial utilizou apenas a quantidade de visitas a cada 
um dos ramos iniciados pelo respectivo movimento.

movimentos. Um exemplo de função que utiliza somente o contador de visitas a cada ramo para 

calcular as probabilidades é demonstrado na Figura 5. Dispondo do vetor de probabilidades, o 

método da seleção aleatória por roleta escolhe um dos movimentos.

A descrição do método de MCTS permite concluir que ele apresenta boas soluções para 

problemas nos quais o espaço de busca não pode ser percorrido completamente em tempo hábil. 

Isso se dá porque a política de seleção (UCT) descrita na Equação 1 privilegia os ramos com 

maior relevância e deixa de gastar recursos explorando aqueles que não tendem a gerar bons 

resultados. O método também diminui a necessidade de uma heurística prévia sobre o domínio 

para operar, embora existam trabalhos que buscam defini-la para melhorar o desempenho.

2.4 REDES NEURAIS RESIDUAIS

As redes neurais convolucionais (CNNs) são uma classe de redes neurais profundas 

especialmente projetadas para processar dados estruturados em grade. Seus usos se destacam 

na áreas de visão computacional, sobretudo para o reconhecimento de imagens. Aprimorando 

as redes neurais tradicionais totalmente conectadas, as CNNs utilizam operações de convolução 

que permitem capturar padrões espaciais e hierárquicos nos dados de entrada sem definição 

prévia dos elementos de interesse (Li et al., 2022).

A arquitetura típica de uma CNN consiste em camadas convolucionais, camadas de 

pooling (agrupamento) e camadas totalmente conectadas, conforme demonstrado na Figura 6. 

As camadas convolucionais aplicam filtros que detectam características locais, como bordas 

e texturas, enquanto as camadas de pooling reduzem a dimensionalidade espacial (downsam

pling), preservando as informações mais relevantes (Li et al., 2022), como representado na 
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Figura 7. Dessa forma, essa classe de redes neurais balanceia a precisão dos detalhes com a 

rapidez de convergência pelo processo de downsampling.

Figura 6 — Arquitetura dos métodos uma rede neural 
convolucional (CNN).

Fonte: Li et al. (2022,  p. 7000).

Figura 7 — Métodos de processamento de entrada em uma rede neural convolucional (CNN).

Fonte: Li et al. (2022,  p. 7000).

Seguindo os trabalhos na área, He et al. (2015) introduziram as redes neurais residuais 

(ResNets) como uma evolução importante das CNNs. Seu principal objetivo era resolver o 

problema de degradação em redes muito profundas. Quando redes neurais convencionais se 

tornam excessivamente profundas, sua acurácia tende a saturar e depois degradar, não devido 

ao overfitting (sobre-ajuste), mas à dificuldade de otimização (He et al., 2015).

A inovação fundamental das ResNets é a introdução de conexões residuais (shortcut 

connections), que permitem que o gradiente flua diretamente através da rede durante o treina­

mento (He et al., 2015; Liang, 2020).

Tais conexões são incorporadas em uma estrutura padrão chamada bloco residual, como 

se pode observar na Figura 8. Em vez de aprender uma transformação direta 𝐻(𝑥), cada bloco 

aprende uma função residual 𝐹(𝑥) = 𝐻(𝑥) − 𝑥, onde 𝑥 é a entrada do bloco. A saída final do 

bloco é então 𝐹(𝑥) + 𝑥, combinando a transformação aprendida com a entrada original (He 

et al., 2015). Essa estrutura permite que a rede aprenda transformações incrementais enquanto 

preserva informações da entrada (Liang, 2020).
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Figura 8 — Estrutura de um bloco residual 
usado em uma rede neural residual (Res­

Net).

Fonte: He et al. (2015).

O formato de uma ResNet consiste de sucessivos blocos residuais, cada um composto 

por camadas convolucionais e normalizações, nas quais a função de ativação utilizada é a 

unidade linear retificada (ReLU). Essa função é não-linear, de forma que retorna exatamente o 

valor de entrada caso seja positivo, ou retorna 0, caso seja negativo, como detalhado nos traba­

lhos de Nair; Hinton (2010). Essa arquitetura possibilita a construção de redes extremamente 

profundas mantendo alta precisão e facilitando o treinamento (He et al., 2015).

2.5 PROJETO ALPHAZERO

O laboratório DeepMind, que é um braço de pesquisa em inteligência artificial (IA) 

da Google, visava a criar um jogador autônomo para o Go a nível competitivo. Para atingir 

esse objetivo, seus pesquisadores desenvolveram o método de construção de modelos de redes 

neurais chamado de AlphaGo. Essa versão gerava dados para treinar o modelo ao colocá-lo para 

jogar contra jogadores humanos.

Foi então desenvolvida sua evolução, chamada de AlphaGo Zero, que acumula dados 

de treinamento jogando contra si mesma, no que se define como self-play (autoaprendizado por 

simulação de partidas). Um novo modelo construído é iniciado com pesos (weight) e vieses 

(bias) aleatórios, o que leva a movimentos arbitrários. Ainda assim, a massa de dados gerada 

permite identificar quais estados levaram a melhores avaliações pela função de fitness (Silver 

et al., 2016).

Dessa forma, por meio de treinamentos e geração de dados sucessivos, o modelo tende 

a alcançar desempenho excepcional. Esse processo de lapidação dos pesos e vieses por meio de 

self-play é compreendido como um método de aprendizado por reforço (Silver et al., 2017).

O método foi então generalizado para permitir a criação de modelos capazes de aprender 

qualquer jogo de tabuleiro dadas apenas as suas regras, ao que se denominou AlphaZero. Os 

principais destaques foram os jogos Go, Shogi e Xadrez (Silver et al., 2018).

Um dos objetivos do método AlphaZero é reduzir o custo computacional de agentes 

inteligentes que atuam como jogadores. Essa preocupação se torna mais evidente ao considerar 

a complexidade das árvores de busca para jogos que apresentam muitos movimentos. Com esse 

foco, os pesquisadores propuseram substituir as buscas por modelos de inteligência artificial 

baseados em redes neurais. Em vez de simular uma partida para calcular a qualidade de cada 
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movimento, o agente inteligente pode solicitar uma predição a um modelo de ResNet previa­

mente treinado para aquele jogo.

A arquitetura da ResNet aplicada no AlphaZero é representada na Figura  9. Ela se 

inicia pela recepção do estado do jogo cujos movimentos viáveis se deseja analisar. Esse estado 

passa por uma camada de adaptação, que transforma a entrada em um formato adequado para 

realizar as sucessivas convoluções. Em seguida, inicia-se a construção da cadeia profunda de 

blocos residuais, ao que se denomina backbone. Por fim, a rede neural duplica o tensor em 

processamento para gerar duas saídas.

Figura 9 — Arquitetura de uma rede neural residual (ResNet) composta por 
uma camada de adaptação da entrada, uma backbone e camadas de saída 

policy head e value head.

Fonte: elaborado pelo autor (2026).

A primeira saída é construída pela camada de policy head, que retorna um vetor de 

números reais. Esses valores representam a qualidade atribuída a cada um dos movimentos 

válidos a partir do estado fornecido. Na verdade, devido à restrição de formato da saída da rede, 

o modelo atribuirá uma classificação para todos os movimentos possíveis de acordo com as 

regras do jogo, sendo estes válidos ou não a partir do estado atual. Dessa forma, é necessário 

que o designer do jogo simulado descreva previamente a lista de todos os movimentos e os 

guarde em um vetor. O algoritmo do agente inteligente indexará as posições deste àquelas do 

vetor retornado pela rede.

A segunda saída da ResNet é construída pela camada de value head. Seu retorno é um 

valor escalar que representa a estimativa da qualidade do resultado da partida a partir do estado 

fornecido. Esse valor será maior para quando houver uma expectativa de vitória e menor para 

quando a expectativa for de derrota.

Esses retornos são exemplificados pela Figura  10, que utiliza valores fictícios. O 

exemplo considera um estado vantajoso no Jogo da Velha para o jogador “X” que será o próximo 

a jogar. O primeiro retorno se refere às qualidades atribuídas pela policy head5. As casas já 

preenchidas por peças têm qualidade 0 atribuída, uma vez que nelas não são permitidos mais 

movimentos. A casa no canto superior direito, que pode ser marcada pelo terceiro movimento, 

apresenta uma qualidade de 0.9, uma vez que sua marcação levaria à vitória imediata do jogador 

“X”. As demais casas apresentam qualidades pouco significativas. Além disso, a figura também 

5Para fins de melhor visualização consideramos que os valores de qualidade foram transformados em 
probabilidades. O retorno da rede neural na verdade é composto por valores reais não normalizados. 
No algoritmo, eles devem passar por uma função de softmax para poderem ser sorteados pelo método 
da roleta.
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mostra a forma de retorno da estimativa de qualidade da partida, dada pela value head. Uma 

vez que o estado analisado está a um movimento de levar à vitória, a probabilidade de vitória 

se mostra alta.

Figura  10 — Predição de um modelo de rede neural residual 
(ResNet) para as qualidades estimadas de cada movimento do jogo 
e para a expectativa de qualidade da partida a partir de um estado 

do tabuleiro no turno do jogador “X”.

Fonte: elaborado pelo autor (2026).
Nota: As predições de qualidade são representadas como probabilidades 
para facilitar a visualização, mas seus valores são números reais sem 
normalização.

O processo de treinamento de um modelo é feito em duas fases. A primeira se denomina 

fase de geração de memória de treinamento, que utiliza a técnica de self-play. Ela constrói 

um histórico de partidas que guarda, para cada partida, a pontuação final dos jogadores e a 

sequência de turnos e seus estados. No caso de jogos sem cálculo de pontuação, como o Jogo da 

Velha ou Xadrez, o resultado final será de 1 ponto para o vencedor e 0 pontos para o perdedor 

(Świechowski et al., 2022,  p. 2533).

Segue-se então a fase de alinhamento do modelo, que utiliza aprendizado de máquina 

(machine learning) para ajustar os pesos e vieses. Para isso, o conjunto de dados gerado é 

convertido em conjuntos de entradas e de saídas esperadas, que são fornecidos para um algo­

ritmo de treinamento. Espera-se que o modelo resultante possa gerar uma memória de partidas 

mais significativa que o anterior. Assim, entende-se o treinamento como um ciclo, conforme 

demonstrado na Figura 11.

É interessante que, durante a fase de geração de memória de treinamento, o agente inte­

ligente tenha alguma orientação sobre quais movimentos levam a melhores jogadas. Para esse 

objetivo, o método de MCTS se mostrou útil. Para otimizar sua aplicação, o método AlphaZero 

Figura  11 — Ciclo de treinamento de um modelo do 
AlphaZero, constituído das fases de geração da memória 
de partidas e de alinhamento do modelo de rede neural 

residual (ResNet).

Fonte: elaborado pelo autor (2026).
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removeu a etapa de simulação do ciclo de busca. Em vez dela, a etapa de predição solicita à 

ResNet uma estimativa da qualidade dos movimentos e da qualidade da partida, como mostrado 

na Figura 12.

Figura  12 — Ciclo da busca em árvore de Monte Carlo guiada 
por agentes inteligentes, conforme adaptação do AlphaZero: suas 
quatro etapas são a seleção, a predição, a expansão e a retro-propa­

gação.

Fonte: elaborado pelo autor (2026).

Outra alteração se dá na fase de expansão. No método adaptado, em vez de expandir um 

único movimento por iteração e avaliar seu resultado, a MCTS guiada por agente inteligente 

expande todos os movimentos viáveis a partir do estado atual. Para cada nó gerado, ela incre­

menta o contador de visitas e define um novo marcador de qualidade do movimento, o qual é 

preenchido com a estimativa de qualidade dada pela rede para o movimento que gera aquele nó.

Sem que haja uma simulação da partida, não seria possível realizar a retro-propagação, 

uma vez que ela depende da análise da pontuação final dos jogadores. Para adaptar essa questão, 

a retro-propagação é realizada a partir do nó selecionado e não mais a partir do filho expandido. 

O valor de qualidade da partida utilizado como referência é aquele fornecido pela rede.

Uma exceção a esse ciclo se dá quando o estado selecionado pela iteração atual 

representa o fim do jogo. Nesse caso, não se realiza predição nem expansão. Em vez disso, a 

pontuação dos jogadores é utilizada para calcular a qualidade da partida segundo a perspectiva 

do jogador do turno atual. Então, a retro-propagação é feita a partir desse nó terminal com base 

na qualidade calculada.

A definição do novo marcador de qualidade em cada nó é relevante para realizar o 

cálculo de uma diretriz de fitness adaptada, como demonstrada na Equação 2. A UCT passa a 

considerar como componente de aproveitamento apenas a qualidade da partida simulada pelas 

iterações. Já como componente de exploração, a política alinha dois fatores: como numerador, 

a predição do modelo para o sucesso do movimento representado; e como denominador, a 

quantidade de visitas realizadas ao nó resultante da aplicação do movimento, que é somada ao 

número 1 para garantir que o resultado não seja indefinido.
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Equação 2 — Cálculo de fitness da diretriz de limite superior de confiança aplicado a árvores 
(UCT) usada pela busca em árvore de Monte Carlo (MCTS) adaptada pelo AlphaZero.

𝑚∗ = max(𝑚 ∈ 𝑀(𝑠)) = 𝑄(𝑠,𝑚) + 𝑋(𝑠,𝑚) (2.1)

𝑋(𝑠,𝑚) = 𝐶 × 𝑃(𝑠,𝑚)
𝑉 (𝑠,𝑚) + 1

(2.2)

Na qual:

• 𝑚∗ é o nó que representa o movimento ótimo selecionado pela diretriz;

• 𝑀(𝑠) é o conjunto de nós que representam os movimentos válidos a partir do estado 

𝑠, segundo as regras do jogo;

• 𝑄(𝑠,𝑚) é a qualidade da partida calculada por meio de simulações ao jogar o 

movimento 𝑚 no estado 𝑠;
• 𝑋(𝑠,𝑚) é o componente de exploração (exploration) calculado ao jogar o movimento 

𝑚 no estado 𝑠;
• 𝑉 (𝑠) é quantidade de vezes em que o nó que guarda o estado 𝑠 foi visitado nas 

iterações anteriores;

• 𝑉 (𝑠,𝑚) é a quantidade de vezes em que o nó que representa o movimento 𝑚 foi 

visitado nas interações anteriores;

• 𝑃(𝑠,𝑚) é a qualidade previamente atribuída pelo modelo de ResNet para jogar o 

movimento 𝑚 no estado 𝑠;
• 𝐶 é o coeficiente que regula a relação entre exploração e aproveitamento.

Fonte: Adaptado de Silver et al. (2016,  p. 486); Świechowski et al. (2022,  p. 2505).

É relevante considerar como a MCTS utilizada pelo AlphaZero representa um estado do 

jogo. Cada casa do tabuleiro guarda a informação sobre a peça marcada em si e o jogador que 

a posicionou. O tabuleiro é salvo atribuindo um número a cada um dos jogadores, que pode ser 

indexado pela lista de jogadores definida previamente pelo designer do jogo. Essa representação 

foi brevemente discutida na Subseção 2.2.1, em que a Figura 1 mostra como o tabuleiro do 

Jogo da Velha na Figura 1a é codificado em um estado na Figura 1b. Nessa forma, o primeiro 

jogador, de símbolo “X”, é representado pelo número 0, ao passo que o segundo jogador, de 

símbolo “O”, é representado pelo número 1. As posições sem peças são definidas com o valor 

null. Outra informação armazenada no estado é um marcador de qual jogador deve jogar no 

turno atual, o que é feito pelo uso dos mesmos índices da ordem dos jogadores.

A entrada da ResNet utilizada pelo agente inteligente requer que o estado seja codificado 

como uma pilha de canais que contêm apenas valores binários (0 ou 1). Essa técnica busca 

aproximar a representação do tabuleiro daquela usada por imagens RGB, comumente fornecidas 

como entrada a ResNets de reconhecimento de imagens.

No exemplo do Jogo da Velha, o tabuleiro representado na Figura  1b se torna um 

conjunto de três canais, como disposto na Figura 13. O primeiro, associado à cor vermelha, 

tem uma posição ativada quando o primeiro jogador (representado pelo símbolo “X”) posiciona 

nela uma peça, como mostrado na Figura 13a. Similarmente, o segundo canal, associado à cor 

verde, representa as casas marcadas pelo segundo jogador (representado pelo símbolo “O”), 
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como mostrado na Figura 13b. Por fim, as casas vazias são representadas no terceiro canal, 

associado à cor azul, como mostrado na Figura 13c.

Caso necessário, outras informações podem ser representadas por meio da adição de 

novos canais à pilha. Os jogos de tabuleiro para dois jogadores citados requerem a representação 

de qual jogador deve executar um movimento no turno atual. Isso é definido em um quarto canal, 

cujas posições são marcadas com o número atribuído ao jogador, como mostrado na Figura 13d. 

Assim, um estado do Jogo da Velha define todo esse canal como 0 para o jogador de símbolo 

“X”, e como 1 para o jogador de símbolo “O”.

Figura 13 — Estado do Jogo da Velha representado como canais binários.
(a) Canal do jogador 

“X”.
(b) Canal do jogador 

“O”.
(c) Canal de casas va­

zias. (d) Jogador atual.

Fonte: elaborado pelo autor (2026).

Similarmente, a codificação do jogo Ligue-4 pode ser realizada em quatro canais. Essa 

forma é exemplificada na Figura 14, em que os canais mostram o resultado da codificação do 

estado mostrado na Figura 3, discutido na Subseção 2.2.2. os dois primeiros codificam as casas 

marcadas por cada um dos jogadores, o terceiro representa as casas vazias e o quarto indica que 

o jogador do turno atual é o de símbolo “O”.

Figura 14 — Estado do Ligue-4 representado como canais binários.
(a) Canal do jogador 

“X”.
(b) Canal do jogador 

“O”.
(c) Canal de casas va­

zias. (d) Jogador atual.

Fonte: elaborado pelo autor (2026).

2.6 TRABALHOS RELACIONADOS

Os autores deste trabalho buscaram pesquisas relacionadas à área de estudo em dois 

campos de interesse. No primeiro foco, elencam-se estudos acerca do uso de agentes inteligentes 

na criação e avaliação de jogos. Essa perspectiva visa a verificar o andamento da proposta de 

realizar a fase de play-test de forma automatizada, considerando seus métodos e parâmetros 

de interesse. Em seguida, os autores buscaram elencar estudos acerca da visualização de dados 

analíticos sobre partidas de uma forma efetiva para o usuário dos sistemas.
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Zook; Fruchter; Riedl (2019) reforçam as vantagens da substituição de jogadores 

humanos em partes bem específicas do processo de play-test. O principal destaque é no ajuste 

de parâmetros e de dificuldade quando os sistemas do jogo já estão definidos mas se busca uma 

melhor experiência para o público alvo do jogo.

Ademais, os autores desenvolvem um estudo combinando técnicas de regressão e 

classificação para realizar uma aprendizagem ativa (Cohn; Atlas; Ladner, 1994) de um jogo 

shoot’em up. A mecânica desse jogo é bem definida, mas os parâmetros — como velocidades 

de jogador, inimigos e tiros — são ajustados através de testes exaustivos. Nesse trabalho, eles 

foram substituídos pelo play-test automatizado.

Nos trabalhos de Gudmundsson et al. (2018); Zook; Fruchter; Riedl (2019), a MCTS é 

utilizada junto a redes neurais convolucionais (CNNs). Elas são treinadas através de um massivo 

conjunto de dados de jogadores reais para prever a dificuldade de missões em jogos digitais 

match-3 — respectivamente Candy Crush e Jewels Star Story. Neste tipo de jogo, o jogador 

deve mover figuras em uma grade, buscando colocar três ou mais figuras iguais adjacentes, que 

são retiradas do tabuleiro e podem gerar outras remoções em cadeia. Os trabalhos conseguem 

reproduzir comportamentos de jogadores humanos e avaliar a dificuldade do nível proposto pelo 

game designer para uma melhor experiência de jogo.

Sob a ótica de comunicação dos dados gerados ao designer, Wallner; Halabi; Mirza-

-Babaei (2019) desenvolveram um sistema para traçar, em jogos digitais de plataforma, a 

trajetória de dados de partidas colhidas diretamente sobre os mapas do jogo. Ele integra dados 

de fontes diferentes em uma única visualização capaz de representar o feedback dado pelos 

jogadores, suas medidas fisiológicas colhidas e a rastreabilidade dos movimentos em jogo.

Esses dados fisiológicos relacionados ao estímulo do jogador são visualizados de forma 

intuitiva pela sua representação em mapas de cor. O espaço do jogo é dividido em regiões, de 

forma que a movimentação por linhas que conectam essas regiões têm sua opacidade e espessura 

relacionadas à frequência. Ademais, os eventos discretos são agrupados em ícones cujo tamanho 

é relacionado à sua frequência, relatando observações de comportamentos durante a partida. A 

abordagem diminui a poluição visual, compila um grande conjunto de informações e provê um 

grande valor para avaliar um cenário em desenvolvimento.

Similarmente, Stahlke; Nova; Mirza-Babaei (2020) investigam técnicas de representa­

ção de dados em jogos em três dimensões, apresentando os caminhos sobre superfícies para 

auxiliar no processo de projeto dos níveis. Registra-se também o uso de agentes para o projeto 

ou validação da economia interna dos jogos, mostrado nos resultados iniciais de Ranandeh; 

Mirza-Babaei (2023).

Apesar de os trabalhos de testes serem em sua maioria referentes a jogos digitais, que 

são normalmente modelados sistemas em tempo contínuo, acreditamos que as mesmas técnicas 

podem ser aplicadas a jogos físicos e modelados por sistemas discretos.



30

3 MATERIAL E MÉTODOS

O presente trabalho se classifica como uma pesquisa de natureza aplicada acerca do uso 

de agentes inteligentes para realizar a fase de play-test em jogos de tabuleiro. Ela busca, através 

de uma abordagem qualitativa, aplicar os métodos utilizados no projeto AlphaZero para criar um 

sistema de representação de jogos e simulação de partidas sintéticas para gerar dados de apoio 

ao balanceamento. A pesquisa também é exploratória, pois permitirá aumentar familiaridade 

acerca da modelagem de jogos e seus mecanismos com os métodos de aprendizagem profunda 

para uso como ferramentas de projeto.

3.1 MATERIAL

Dando continuidade aos trabalho desenvolvidos em Araki; Knop (2020); Malosto; 

Campos; Knop (2025); Malosto; Knop; Campos (2023), foi desenvolvida neste trabalho a apli­

cação de linha de comando chamada APTS, capaz de representar jogos discretos e gerar agentes 

inteligentes que simulem partidas conforme o método de self-play. As simulações coletam dados 

sobre as partidas para prover ao projetista do jogo informações estatísticas usadas para orientar 

testes de estresse e de balanceamento, que focam em aspectos técnicos em vez de tratar da 

experiência do jogador.

3.1.1 Ambiente de execução

Os autores têm a expectativa de que o APTS possa ser acessado por meio de programas 

navegadores da internet, dispondo de uma interface de usuário satisfatória para usuários não fa­

miliarizados com programação. Entretanto, concluiu-se que seria vantajoso desenvolver scripts 

de teste de software para verificar sua qualidade durante as versões iniciais de desenvolvimento. 

Por isso, estabeleceu-se como requisito que o sistema funcionasse como uma biblioteca, de 

forma que possa ser utilizado tanto por um programa de linha de comando, como também por 

uma página da web.

Com essa perspectiva, escolhemos escrever o código-fonte do sistema na linguagem de 

programação JavaScript. Essa é utilizada comumente para o desenvolvimento de páginas da 

web, tendo suporte oferecido pelos principais navegadores. Essa linguagem também pode ser 

utilizada em um ambiente de execução de linha de comando, sendo o mais comum o Node.js. 

Ele utiliza o motor de JavaScript V8, o que aprimora o desempenho dos programas ao compilar 

o código-fonte na forma de Just-In-Time (JIT). Apesar de rodar em apenas uma thread, o ciclo 

de processamento trata eventos assíncronas por meio de operações primitivas (Node.js, 2025).

3.1.2 Ambiente de desenvolvimento

O ambiente de desenvolvimento do projeto foi configurado utilizando o gerenciador de 

pacotes PNPM6. Ele instala e mantém atualizadas as ferramentas citadas e suas dependências 

por meio do registro de pacotes NPM7.

6Acesso em: https://pnpm.io/motivation.
7Acesso em: https://www.npmjs.com/.

https://pnpm.io/motivation
https://www.npmjs.com/
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A fim de evitar enganos de programação, utilizamos um superset do JavaScript chamado 

TypeScript, que permite atribuir tipos estáticos e mais complexos a variáveis e funções. Isso 

assegura a compatibilidade entre elas ainda em tempo de compilação (TypeScript Team, 2026).

Outra ferramenta de inspeção de código-fonte utilizada é o ESLint (ESLint contributors, 

2025) e sua extensão typescript-eslint8. Esse programa é um linter, que encontra e corrige pro­

blemas no código-fonte segundo os padrões e regras configurados. Associamos essa ferramenta 

ao formatador automático de código-fonte Prettier9 com o fim de padronizar a disposição de 

importações e de atributos de classes, funções, objetos, e demais estruturas.

A fim de arquitetar o APTS como uma biblioteca modular, utilizamos o sistema de 

construção Turborepo10. Ele divide um repositório em pacotes, cada um com suas dependências. 

Um pacote pode ter dependência em outro dentro do mesmo repositório, o que permite construir 

um sistema complexo, mas composto por partes simples. De acordo com as relações inter-

-módulos, o Turborepo gerencia a compilação e a execução do linter de forma independente e 

faz cache dos resultados quando possível.

Finalmente, utilizamos a biblioteca de testes de unidade Vitest11. Ela permite definir 

casos de teste e executá-los para entradas variadas, o que se provou útil sobretudo para garantir 

que as regras dos jogos modelados de fato levem às alterações esperadas nos estados.

3.1.3 Dependências externas

A construção do sistema requereu o uso de bibliotecas e demais pacotes externos 

instalados por meio do registro NPM. A biblioteca de maior destaque é a implementação em 

JavaScript12 do projeto TensorFlow (Abadi et al., 2016). Ele foi desenvolvido pelo time de 

pesquisa da empresa Google e se propõe a facilitar a construção e o treinamento de modelos 

de aprendizado de máquina. Os autores deste trabalho selecionaram-no para construir dinami­

camente ResNets em JavaScript, ao passo em que o processamento efetivo do treinamento é 

descrito internamento pela linguagem C++.

Com o objetivo de tornar a execução do programa construído o mais determinística 

possível, os autores utilizaram a biblioteca seedrandom. Isso foi necessário porque a função 

disponibilizada pela linguagem JavaScript para gerar números pseudo-aleatórios não permite 

ao desenvolvedor definir uma seed.

Outro pacote utilizado foi o ts-graphviz13, que disponibiliza uma interface de programa­

ção de aplicações (API) para o uso do programa Graphviz14, em conjunto com uma aplicação em 

JavaScript. Esse projeto descreve uma linguagem de representação de grafos e redes e oferece 

algoritmos que geram imagens a partir das descrições. Os autores o utilizaram para exibir ao 

usuário as árvores de busca construídas ao executar o método de MCTS.

8Acesso em: https://typescript-eslint.io/.
9Acesso em: https://prettier.io/.
10Acesso em: https://turborepo.com/docs.
11Acesso em: https://vitest.dev/guide/.
12Acesso em: https://www.tensorflow.org/js.
13Acesso em: https://ts-graphviz.github.io/.
14Acesso em: https://graphviz.org/.

https://typescript-eslint.io/
https://prettier.io/
https://turborepo.com/docs
https://vitest.dev/guide/
https://www.tensorflow.org/js
https://ts-graphviz.github.io/
https://graphviz.org/
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Finalmente, para elaborar a aplicação de linha de comando, os autores dispuseram da 

biblioteca Commander.js15, que facilita a definição de comandos e argumentos. Ela gerencia 

o tratamento de dados recebidos do terminal e exibe mensagens de auxílio ao usuário sobre 

como preenchê-los. Já para permitir ao usuário selecionar dentre opções de interface já dentro 

da execução de um comando, os autores escolheram a biblioteca Inquirer.js16.

3.2 MÉTODOS

Os métodos dessa pesquisa descrevem os passos que o pesquisador deve efetuar para 

executar o experimento. As atividades desempenhadas e os artefatos por elas gerados gerados 

são representados na Figura 15.

O primeiro requisito para executar a plataforma APTS é descrever por meio de classes 

concretas e suas consequentes instâncias todos os componentes fundamentais de um jogo. Então, 

o pesquisador poderá simular partidas por meio do algoritmo de MCTS clássico.

Figura 15 — Fluxo de trabalho dos métodos necessários e seus artefatos.

Fonte: elaborado pelo autor (2026).

A fim de construir os agentes inteligentes conforme o método do projeto AlphaZero, o 

usuário deve gerar, para aquele jogo, um modelo de ResNet que tenha pesos e vieses aleatórios. 

Esse processo exporta a rede em arquivos que definem sua estrutura e seus pesos e vieses. Então, 

esse modelo precisa passar por um processo de treinamento em ciclos, contando com coleta de 

partidas sintéticas e alinhamento das conexões da rede neural.

A primeira etapa do ciclo de treinamento é executar um algoritmo de self-play que usa 

a técnica de MCTS adaptada pelo AlphaZero para direcionar a simulação de várias partidas. 

Nesse processo, é gerado um artefato que guarda dados relevantes da atuação dos jogadores 

durante as partidas. Entre eles estão a sequências de turnos, em que cada um guarda o estado do 

jogo, a expectativa dada pela ResNet da qualidade de cada movimento possível e o movimento 

que o agente inteligente de fato tomou. Além disso, para cada partida, é salva pontuação final 

15Acesso em: https://github.com/tj/commander.js.
16Acesso em: https://github.com/SBoudrias/Inquirer.js/.

https://github.com/tj/commander.js
https://github.com/SBoudrias/Inquirer.js/
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dos jogadores, o que permite avaliar se a tomada de uma decisão em certo estado levou a uma 

vitória ou não.

O passo seguinte do ciclo de treinamento é fornecer o conjunto de dados sintéticos 

construído para um algoritmo que utiliza a técnica de aprendizado de máquina para reforçar 

as conexões da rede neural. Esse processo tem o objetivo de capacitar a rede neural a prever 

movimentos mais adequados para um estado fornecido. Ao final do alinhamento de pesos e 

vieses, o algoritmo exporta como artefato o novo modelo de ResNet. Então, essa rede treinada 

pode voltar ao primeiro passo do ciclo para gerar mais um conjunto de memórias, agora mais 

especializadas.

Após dispor de modelos de ResNet suficientemente treinados, o APTS deve permitir que 

seu usuário os utilize para orientar agentes inteligentes na simulação de partidas. Elas devem 

salvar os mesmos artefatos de registro de histórico, que podem ser usados para extrair dados 

relevantes sobre a atuação de cada jogador.

Espera-se que esse processo seja capaz de levantar informações comuns à fase de play-

test, mas reduzindo a necessidade de testadores humanos. Dessa forma, foi determinado como 

foco do experimento realizado nesta pesquisa: verificar se o processo de treinamento de modelos 

de inteligência artificial é capaz de gerar agentes inteligentes viáveis para realizar a etapa de 

play-test na prototipagem de jogos.

Para executar o experimento, os autores deste trabalho representaram no sistema o jogo 

Ligue-4, que é organizado em turnos e apresenta informação completa. Em seguida, geraram 

uma ResNet compatível com o jogo, e a sujeitaram a 21 ciclos de treinamento. Dentre os 

modelos criados, os autores selecionaram o que apresentava as melhores métricas de acurácia 

segundo determinado pelo algoritmo de alinhamento de pesos e o utilizaram para orientar ambos 

os jogadores.

Então, esses agentes inteligentes foram usados na simulação de 100 partidas, cujo histó­

rico foi salvo da mesma forma como os artefatos utilizados no ciclo de treinamento. Por meio 

de um algoritmo, os autores extraíram informações de interesse dos históricos e as compilaram 

em um artefato final. Esse descreve métricas acerca: (1) da duração das partidas, medida em 

quantidade de turnos; (2) da distribuição de movimentos mais escolhidos por cada jogador; e 

(3) da contagem de vitórias e derrotas de cada jogador relacionada à duração da partida.

A avaliação da solução proposta foi realizada de forma qualitativa por meio da análise e 

discussão sobre a capacidade de os artefatos gerados expressarem conclusões relevantes acerca 

do jogo testado. Além disso, também foi avaliada a capacidade do sistema de representar o 

Ligue-4 e de gerar agentes inteligentes que o simulem.
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4 DESENVOLVIMENTO

Este capítulo descreve o desenvolvimento do sistema APTS, realizado como um projeto 

de código-livre em um repositório público17 (Malosto; Knop, 2026). Essa aplicação permite a 

uma pessoa projetista de um jogo de tabuleiro descrever as regras de um protótipo de jogo. 

Então, o programa oferece métodos para gerar e treinar modelos de inteligência artificial que 

atuam como agentes inteligentes para simular partidas.

As simulações geram conjuntos de dados acerca de quais movimentos tomados levam 

a melhores resultados. Espera-se que, por meio deles, o projetista possa gerar informações 

estatísticas acerca das regras implementadas. Isso tem o objetivo de diminuir o esforço humano 

nas etapas de play-test, sobretudo aquelas que envolvem testes de estresse e balanceamento, em 

que a experiência do jogador não é a variável principal.

O projeto da aplicação desenvolvida a divide em cinco módulos, quais sejam: core, 

game, search, games e interface. A Figura 16 representa as relações de dependência entre tais 

módulos e com os pacotes externos ts-graphviz e tensorflow. Esta seção discute a responsa­

bilidade e a implementação de cada um dos módulos internos.

4.1 UTILITÁRIOS

O módulo core tem a responsabilidade de definir constantes, tipos e funções utilitárias 

para todos os demais módulos. Destacam-se algumas funções de conversão de tipos de dados, 

sobretudo para tratar argumentos fornecidos pela linha de comando em suas representações 

numéricas. Também estão disponíveis utilitários para a formatação de dados de tipos compostos 

e de descritores dos testes de unidade. Além disso, o módulo gerencia a codificação de dados 

para o formato de notação de objetos do JavaScript (JSON)18 e a equivalente conversão para 

objetos em memória, o que é necessário para salvar e interpretar o histórico de partidas para o 

treinamento de modelos.

Figura 16 — Dependências entre os módulos do 
sistema e com pacotes externos.

Fonte: elaborado pelo autor (2026).
Nota: Um módulo aponta para o pacote do qual ele 
depende.

17Acesso em: https://github.com/ufjf-gamelab/apts.
18Acesso em: https://www.json.org/json-en.html.

https://github.com/ufjf-gamelab/apts
https://www.json.org/json-en.html
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Figura 17 — Tipos de dados comuns definidos pelo pacote 
core.

Fonte: elaborado pelo autor (2026).
Nota: O pacote primitive se refere aos tipos de dados concretos 
disponibilizados pela linguagem JavaScript.

A fim de facilitar a compreensão de conceitos comuns ao domínio da aplicação, defini­

mos por meio do TypeScript alguns tipos derivados, utilizados por todo o projeto. Os principais 

estão dispostos na Figura 17. Ela explicita os tipos concretos string e number da linguagem 

JavaScript, que guardam, respectivamente, texto e números reais. O tipo Char foi um apelido 

(em inglês, alias) dado para campos de texto de apenas um caractere, como a marcação de uma 

peça em uma casa do tabuleiro. Já o tipo Integer é um apelido para um valor numérico que 

deve ser preenchido apenas por um número inteiro, como por exemplo na indexação de dados 

em vetores.

4.2 DESCRIÇÃO DE JOGOS

Seguindo a descrição modular do sistema, o módulo game é responsável por estabelecer 

os componentes necessários para descrever um jogo de turnos digitalmente. Primeiramente, 

definimos tipos úteis para esse pacote e para seus dependentes, como apresentado na Figura 18. 

Uma vez que utilizamos vetores extensamente pelo projeto, decidimos criar apelidos para 

nomear os índices de movimentos (moves), de casas (slots) e de jogadores (players).

Figura 18 — Tipos de dados comuns definidos pelo pacote 
game.

Fonte: elaborado pelo autor (2026).
Nota: O pacote primitive se refere aos tipos de dados concretos 
disponibilizados pela linguagem JavaScript.
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Outro dado comumente referenciado é a marcação de pontos dos jogadores, que é feita 

com números inteiros pelo apelido Points. Guardamos a pontuação completa de todos os joga­

dores por meio da estrutura de indexação por chave-valor Map, do JavaScript. No tipo abstrato 

PointsOfEachPlayer, as chaves são definidas pelo índice de cada jogador, conforme registrado 

pelo projetista do jogo, ao passo em que os pontos são salvos no campo de valor. Finalmente, o 

tipo EncodedState representa o formato de codificação de um estado em canais, como descrito 

na Seção 2.5. Ele aceita qualquer matriz multidimensional de valores reais, embora tenhamos 

respeitado a convenção de utilizar apenas os valores 0 e 1 para definirmos tais codificações.

Após definir os tipos, passa-se à construção dos componentes fundamentais para 

descrever um jogo. Eles foram implementados por meio de classes abstratas, uma vez que a 

linguagem JavaScript não dispõe de estruturas como interfaces ou protocolos. Os principais 

atributos e métodos de cada classe, além das relações entre elas, podem ser vistos na Figura 19.

A classe mais simples é a que representa uma casa do tabuleiro, chamada de Slot. Esse 

conceito é um dos mais variáveis em jogos de turnos. Por exemplo, no Jogo da Velha, cada casa 

pode apenas ser marcada com o símbolo de um jogador. Já no Xadrez, há vários conjuntos de 

peças, que apresentam comportamentos diferentes. Ainda há jogos, como o Gobblet Gobblers19, 

em que cada casa pode receber camadas empilhadas de peças. Ou ainda, essa classe poderia 

representar uma carta específica dentro de uma mão20. Essa variabilidade não nos permite 

Figura 19 — Classes definidas pelo pacote game.

Fonte: elaborado pelo autor (2026).
Nota: As propriedades com visibilidade privada têm métodos públicos de encapsulamento para a 
obtenção de seus valores que não foram representados.
19Descrição disponível em: https://boardgamegeek.com/boardgame/13230/gobblet-gobblers.
20Apesar de termos determinado como limite do escopo desta pesquisa a investigação de jogos de 

tabuleiro, tentamos manter a implementação genérica para representar jogos de cartas futuramente.

https://boardgamegeek.com/boardgame/13230/gobblet-gobblers
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atribuir nenhum dado comum. Dessa forma, cabe inteiramente ao projetista definir o conteúdo 

possível por meio de uma classe concreta que a implemente.

Em seguida, implementamos a classe abstrata Player, que representa os dados fixos de 

um jogador durante todo o período de duração da partida. Os dados comuns identificados foram 

acerca da distinção entre os jogadores na interface de execução por linha de comando. Nesse 

sentido, quando o projetista for criar um objeto da classe Player, ele deve atribuir um nome 

por meio do atributo name e um símbolo por meio do atributo symbol — como “primeiro” (1) e 

“segundo” (2), peças “brancas” (B) e “pretas” (P), ou (X) e (O), por exemplo.

Para registrar as possibilidades de transição entre estados, criamos a classe abstrata Move 

que representa um movimento. Por padrão, ela apenas guarda dados de identificação para a 

interface com o usuário, quais sejam o título com atributo title e sua descrição com atributo 

description. Para todas as classes abstratas, o projetista pode definir novos atributos caso sejam 

necessários para efetuar as regras do jogo.

A fim de permitir que os agentes inteligentes gerados possam avaliar as qualidade dos 

movimentos, é necessário que o projetista descreva previamente ao início da partida todos 

aqueles que são possíveis em qualquer momento. Por exemplo, Silver et al. (2017) representam 

o Xadrez por meio de 4672 movimentos, por meio de uma matriz de 8 casas na horizontal, 8 

casas na vertical e 73 mudanças de estado que uma peça pode efetuar. Apesar de essa lista de 

opções ser extensa, ela é necessária porque a estrutura da rede neural usada pelo agente atribui 

um valor de qualidade para todos os movimentos do jogo, mesmo aqueles que não são válidos 

em um estado específico.

As classes descritas previamente têm a função de armazenar dados imutáveis no con­

texto de uma partida. Para representar um estado — o qual sintetiza a disposição variável dos 

elementos em um turno —, desenvolvemos a classe abstrata State. Ela deve manter, por meio 

do atributo game, uma referência para a classe que representa um jogo a fim de ter acesso às 

suas regras e a outros dados invariáveis.

Outra característica de um estado é manter a disposição de peças nas casas do tabuleiro, 

o que é feito por meio do vetor slots. Ele guarda objetos da classe Slot e deve ser indexado 

da mesma forma em todos os estados para que o programa consiga acessar os componentes 

de forma direta. O método concreto getSlot oferece uma facilidade ao desenvolvedor por 

implementar uma busca de uma casa naquele vetor dado o seu índice. Por isso, a decisão de 

como organizar os objetos naquele vetor deve ser pensada no mesmo momento em que o proje­

tista implementa o método abstrato getEncodedState, o qual sintetiza todas as informações 

relevantes num conjunto de canais a ser fornecido para a rede neural. Outro atributo armazenado 

em cada objeto da classe State é o indexOfPlayer, que guarda a informação sobre qual dos 

jogadores pode realizar um movimento no turno atual, usualmente chamada de “vez do jogador”.

A pontuação dos jogadores também depende de como os turnos decorreram durante a 

partida, o que é salvo no atributo score. Para fins de organização do código-fonte e de abertura 

para expansão, criamos uma classe abstrata chamada Score para representar a pontuação de 

todos os jogadores em um determinado estado. O único atributo dessa classe é o mapa 

pointsOfEachPlayer, que atribui um valor em pontos para cada jogador de acordo com o índice 

a esse atribuído pelo projetista. É relevante ressaltar que alguns jogos de tabuleiro, como o 



38

Xadrez, não utilizam sistema de pontuação, atribuindo apenas o resultado de vitória para um 

dos jogadores. Nesses casos, recomendamos a implementação de forma que a quantidade de 

pontos permaneça como 0 durante toda a partida e que, no estado que representa fim de jogo, 

esse marcador seja alterado para 1 na entrada referente ao vencedor.

Finalmente, a classe abstrata Game representa as regras do jogo e guarda os conjuntos de 

dados imutáveis durante uma partida. Para representá-lo em interfaces com o usuário, o atributo 

name requer que o projetista o nomeie. Então, no atributo slots, o projetista deve fornecer a 

lista de casas organizada previamente. O mesmo deve ser feito em relação ao argumento moves 

para a lista de movimentos e em relação ao atributo players para a lista de jogadores. A classe 

oferece métodos auxiliares que buscam por um movimento ou por um jogador em seu respectivo 

vetor dado o seu índice.

Em relação aos métodos abstratos da classe Game, destacamos os getQuantityOfRows, 

getQuantityOfColumns e getQuantityOfChannels que respectivamente definem a a quanti­

dade de linhas, de colunas e de canais da matriz que representa um estado codificado. Esses 

dados devem ser definidos previamente e ser imutáveis para um jogo, porque eles são usados 

na construção da arquitetura da ResNet que orienta o agente inteligente.

Outro método que deve ser determinístico é o constructInitialState, em que o 

projetista descreve a forma como o estado inicial da partida é construído. Por exemplo, no Jogo 

da Velha, ele se iniciaria com um tabuleiro vazio. Já no Xadrez, as casas de um lado do tabuleiro 

e do outro devem estar preenchidas pelas devidas peças de cada um dos jogadores.

O comportamento dos quatro últimos métodos citados seria melhor representado por 

métodos abstratos estáticos, uma vez que seus resultados não dependem de nenhum dos atributos 

guardados da classe. Entretanto, a linguagem JavaScript não permite a definição desse tipo de 

método, motivo pelo qual foram implementados como métodos abstratos e dinâmicos.

Agora tratando dos métodos da classe State que utilizam dados de seus objetos, 

destacamos a responsabilidade do método getIndexesOfValidMoves. Sua função é determinar, 

a partir de um certo estado fornecido, quais são os movimentos que o jogador daquele turno 

poderá executar. Para fins de otimização de memória, seu retorno deve ser um conjunto sem 

repetição de índices referentes aos movimentos válidos de acordo com a ordem dada pelo vetor 

salvo na classe Game. Esse comportamento é obtido pela estrutura de dados Set, implementada 

na linguagem JavaScript. Esse conjunto de jogadas válidas é utilizado, entre outros, para filtrar 

o vetor de qualidades atribuídas pelo modelo de ResNet e apresentar apenas os adequados ao 

agente inteligente.

Com uma lógica de implementação similar, o método getIndexOfNextPlayer deve 

determinar de qual jogador será a vez no próximo turno. É comum que os jogadores se alternem 

sequencialmente a cada turno durante uma rodada, mas é possível para o projetista definir as 

regras do jogo de forma que um jogador deixe de jogar por um turno ou que tenha nele mais 

de um movimento. O retorno desse método deve ser o índice do jogador escolhido conforme o 

vetor salvo na classe Game.

Com o auxílio do último método, o projetista pode descrever as regras para atualizar 

um dado estado. Uma vez que seguimos a convenção de que os componentes de descrição do 

jogo devem ser imutáveis, o método play, responsável por essa atualização, retorna um novo 



39

objeto da classe State. Seus argumentos são o estado do turno atual e o índice do movimento 

a ser realizado. O projetista deve codificar a lógica para descrever a lista de casas atualizada, 

incrementar ou decrementar as pontuações e definir próximo jogador.

Após cada turno, é necessário determinar se o estado gerado leva ao fim da partida. 

O projetista deve descrever essa consulta por meio do método isFinal, que recebe o estado 

referenciado e retorna um valor do tipo boolean, definido como true para quando a partida 

deve se encerrar ou como false para quando ela deve continuar. Para isso, ele dispõe de todos 

os dados discutidos, como a disposição das peças, a pontuação dos jogadores e quaisquer outros 

atributos que ele tenha acrescentado às classes concretas criadas por ele.

4.3 IMPLEMENTAÇÃO DOS JOGOS

A fim de executar o experimento desta pesquisa, descrevemos e implementamos os 

componentes necessários de três jogos no módulo games, quais sejam: o Jogo da Velha uma 

variante dele nomeada de Snowball e o Ligue-4. Para cada um, definimos objetos concretos 

de forma a permitir ao usuário do sistema jogá-los. Uma parte representativa dos objetos foi 

selecionada para realizar testes de unidade, a fim de garantir que as regras dos jogos estavam 

bem definidas antes de prosseguir com a execução dos métodos de busca.

Conforme descrito na Subseção 2.2.1, percebe-se que não há marcação de pontuação 

durante a partida do Jogo da Velha, nem há em seu espaço de busca complexidade suficiente 

para avaliar o uso de agentes inteligentes. Por isso, elaboramos e implementamos sua variante 

Snowball, que permitiu comprovar a viabilidade do ambiente de representação de jogos para 

aqueles dependentes de manutenção do dado de pontuação em cada estado.

Nesta seção, descrevemos o processo de implementação do jogo Ligue-4, discutido na 

Subseção 2.2.2, destacando seus componentes de descrição. Ele foi escolhido para realizar o 

experimento porque é um jogo de informação completa entre dois jogadores que apresenta um 

tamanho de tabuleiro razoável e uma quantidade pequena de movimentos possíveis. Em relação 

à implementação das classes abstratas, poucas adaptações foram necessárias. Todas as classes 

concretas seguiram a convenção de iniciar seus nomes com o termo ConnectFour seguido do 

nome da classe que ela implementa.

Conforme visto na Figura 20, as classes Slot e Move foram acrescidas de novos atributos. 

Além disso, observamos a necessidade de criar uma nova estrutura de dados abstrata para repre­

sentar os formatos considerados para levar à vitória, o que foi feito pelo tipo ConnectFourShape. 

Ele permite definir linhas de um tamanho arbitrário — embora tenhamos escolhido 4 peças 

conforme a descrição padrão do jogo — e a direção de marcação — se horizontal, vertical ou 

em uma diagonal principal ou secundária.

A primeira classe concreta implementada foi a ConnectFourPlayer, referente aos dados 

imutáveis de cada jogador. O Ligue-4 não guarda nenhuma informação relevante sobre um 

jogador exceto aquelas necessárias para a sua distinção na interface com o usuário. Assim, não 

foi necessária nenhuma alteração na classe. Ao criar seus objetos, escolhemos arbitrariamente o 

nome “Alice” e o símbolo “X” para o jogador de índice 0 e o nome “Bruno” e símbolo “O” para 



40

Figura 20 — Classes concretas alteradas na implementação do 
Ligue-4 e tipo utilitário nela definido.

Fonte: elaborado pelo autor (2026).
Nota: As propriedades com visibilidade privada têm métodos públicos 
de encapsulamento para a obtenção de seus valores que não foram repre­
sentados.

o jogador de índice 1. Tais valores não representam nomes reais de pessoas, mas servem apenas 

como facilitadores de distinção entre esses objetos para os desenvolvedores do protótipo.

Em seguida, implementamos a classe concreta ConnectFourSlot, que representa o con­

teúdo guardado em uma casa do tabuleiro. O Ligue-4 utiliza peças simples, cuja única diferença 

é a cor, que é associada a cada um dos jogadores. Por isso, a única informação relevante para 

cada casa é se ela está vazia ou, caso não esteja, qual jogador a preencheu. Então, acrescentamos 

o atributo indexOfOccupyingPlayer, que pode ser assinalado com o índice 0 caso o jogador 

“X” tenha marcado uma peça, com o índice 1 caso o jogador “O” o tenha feito, ou com o valor 

null se a casa estiver vazia. Quanto aos objetos utilizados pelo experimento, criamos todas as 

49 casas, definindo o atributo de jogador ocupante como null e nomeando-as com a convenção 

“rXcY”, em que os termos “X” representam o índice da linha que ela ocupa e o termo “Y” 

representa o da coluna. Para os testes de unidade, também criamos novos objetos preenchidos 

em diferentes combinações.

Diferentemente do Jogo da Velha, em que cada movimento tem relação direta com 

uma única casa do tabuleiro, o Ligue-4 precisa calcular a posição onde marcar uma peça 

a depender de dois fatores: o índice da coluna escolhida pelo jogador e a disposição de 

peças já marcadas nela. Percebe-se então que esse índice deve ser armazenado no atributo 

indexOfColumnInWhichPlacePiece da classe concreta ConnectFourMove. Implementamos 

também o método auxiliar getIndexOfSlotInWhichPlacePiece, responsável por acessar, de 

baixo para cima, cada casa da coluna para encontrar a primeira que esteja vazia no estado 

fornecido. Depois, criamos um objeto para cada uma das colunas, cujo índice guardamos no 

atributo discutido e cujos títulos e descrições foram dados em relação ao seu número ordinal.

A verificação acerca da marcação dos formatos de linha foi implementada por funções 

no arquivo nomeado ConnectFourShape. A lógica desses utilitários é sintetizada no Algoritmo 1, 
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que determina se um formato iniciado em dada casa está sendo ocupado por algum jogador e, 

caso esteja, qual é o seu índice.

Algoritmo 1 — Código-fonte simplificado da função 
getIndexOfPlayerWhoIsOccupyingShape.

function getIndexOfPlayerWhoIsOccupyingShape(

    indexOfFirstSlot: IndexOfSlot, shape: Shape

): IndexOfPlayer | null {

    const slots = getSlotsThatFormShape(indexOfFirstSlot, shape);

    let indexOfPlayerOccupyingPreviousSlot = null

    for (const slot of slots) {

        const indexOfPlayer = slot.getIndexOfOccupyingPlayer();

        if (indexOfPlayerOccupyingPreviousSlot == null) {

            indexOfPlayerOccupyingPreviousSlot = indexOfPlayer;

        } else if (indexOfPlayer !== indexOfPlayerOccupyingPreviousSlot) {

            return null;

        }

        indexOfPlayerOccupyingPreviousSlot = indexOfPlayer;

    }

    return indexOfPlayerOccupyingPreviousSlot;

}

Fonte: elaborado pelo autor (2026).

Essa função é utilizada na classe concreta ConnectFourScore, que representa e oferece 

métodos para calcular a pontuação dos jogadores. Quando seus objetos são inicializados, 

todos os jogadores têm atribuído o valor de 0 pontos. Por meio de seu método auxiliar 

getUpdatedScore, o programa verifica, para cada uma das casas, se houve marcação de qualquer 

uma das linhas de 4 peças adjacentes. Caso positivo, a função retorna um objeto Score em que 

o jogador vencedor é marcado com 1 ponto.

Então, a classe concreta ConnectFourGame utiliza todos os dados discutidos para repre­

sentar as regras do jogo. Ao criar seu objeto, o projetista deve fornecer as listas de jogadores, 

movimentos e casas previamente instanciadas. Um primeiro método de destaque dessa classe 

é o getIndexesOfValidMoves, cuja implementação recebe um estado e retorna os índices das 

colunas do tabuleiro em que alguma de suas casas ainda esteja vazia. Após selecionar um movi­

mento, o jogador deve executar o método play, que retorna o estado atualizado com a marcação 

da peça na posição escolhida, além da eventual pontuação nova caso tenha sido uma jogada 

vitoriosa. Em seguida, o algoritmo utiliza o método isFinal para determinar se a partida chegou 

ao fim com o novo estado, o que ocorre quando todas as casas estão preenchidas ou quando um 

dos jogadores marcou um ponto. Caso a partida continue, o método getIndexOfNextPlayer é 

responsável por passar a vez para o oponente.

Outra responsabilidade da implementação da classe Game é estabelecer a quantidade 

de linhas, de colunas e de canais do estado codificado. Decidimos utilizar a mesma dimensão 

do tabuleiro (6 linhas e 7 colunas) para a codificação e empilhar sobre ela 4 canais de dados, 

inicializados com o valor 0. Como descrito na Seção 2.5, o canal de índice 0 terá cada um de seus 

valores definido como 1 se a casa correspondente por estiver marcada pelo jogador “X”. Já as 

casas do canal de índice 1 serão ativadas pelas peças do jogador “O”, ao passo em que as casas 

vazias ativam o canal de índice 2. Finalmente, o canal de índice 3 tem a responsabilidade de 
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Figura 21 — Tipos de dados comuns definidos pelo pacote 
search.

Fonte: elaborado pelo autor (2026).
Nota: O pacote primitive se refere aos tipos de dados concretos 
disponibilizados pela linguagem JavaScript.

informar à rede neural de qual jogador é a vez no turno atual, sendo completamente preenchido 

com 0 caso seja do jogador “X” ou com 1 caso seja do jogador “O”.

4.4 ELABORAÇÃO DOS ALGORITMOS DE BUSCA

Havendo devidamente representado o jogo Ligue-4, passamos à implementação do 

módulo search, responsável pelos algoritmos de busca em árvore de Monte Carlo e de predição 

por meio de ResNets. A lógica de construção de suas principais classes foi inspirada pela 

implementação de referência de Förster (2023).

Primeiramente define-se tipos úteis para a melhor descrição de conceitos comuns, como 

mostrado na Figura  21. Todos eles são apelidos do tipo primitivo number, que representa 

números reais. Seus significados são descritos nesta seção, conforme a discussão acerca de 

seus usos.

O primeiro elemento necessário para implementar a MCTS é a classe abstrata TreeNode, 

cujo diagrama é apresentado na Figura 22. Ela tem a função de implementar um nó da árvore 

de busca, o qual representa um estado da partida simulada e que é guardado em seu atributo 

state. Também são importantes os dados sobre o histórico que levou até esse estado. Por isso, 

armazenamos no atributo indexOfPlayedMove o índice do movimento jogado no turno anterior 

e no atributo indexOfPlayerWhoPlayedMove o índice do jogador que o efetuou. O caso em que 

esses dois marcadores estarão vazios é no início da partida, que corresponde ao nó raiz da árvore.

Para representar a transição entre os nós e permitir realizar a fase de retro-propagação 

da busca, salvamos em cada nó a referência para seu nó pai por meio do atributo parentNode, 

que estará vazio apenas para a raiz da árvore. Uma vez que um estado pode levar a múltiplas 

configurações da partida por meio de cada um de seus movimentos válidos, decidimos repre­

sentar, no atributo childrenNodes, as transições do nó para seus filhos por meio de um mapa 

indexado, em que cada entrada marca o movimento escolhido e o nó que ele gerou.

Como discutido na Seção 2.3 sobre a diretriz de fitness da MCTS, a cada ciclo de busca, a 

etapa de retro-propagação incrementa o contador de visitas e atualiza a expectativa de qualidade 

da partida para todos os nós do ramo selecionado. Esses dois marcadores são armazenados nos 

atributos quantityOfVisits e qualityOfMatch, respectivamente.
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Figura 22 — Classe TreeNode definida no pacote search.

Fonte: elaborado pelo autor (2026).
Nota: As propriedades com visibilidade privada e protegida têm métodos públicos 
de encapsulamento para a obtenção de seus valores que não foram representados.

Quanto aos métodos da classe TreeNode, destacamos o getQualityOfMatchFromScore, 

que converte a pontuação final dos jogadores em um número do tipo QualityOfMatch, represen­

tante da qualidade da partida para o jogador atual. Uma vez que esse comportamento é necessário 

em outras partes do projeto, a maior parte do seu processamento é, na verdade, realizado por 

um método auxiliar chamado calculateQualityOfMatch, que recebe as pontuações e o índice 

do jogadores atual. Esse dado de qualidade é retro-propagado recursivamente até o nó raiz 

por meio do método updateQualityOfMatchAndQuantityOfVisitsOnBranch, incrementando-

-o nos turnos do jogador vencedor e decrementando-o para os demais.

Já a etapa de seleção é gerenciada pelo método selectBestChildNode, que calcula o 

valor de fitness para cada nó já expandido e escolhe o melhor. Para isso, é chamado o método 

calculateFitnessOfChild, que soma os componentes de aproveitamento e de exploração da 

equação de UCT, equilibrando-os por meio do coeficiente de exploração fornecida. Uma vez 

que a MCTS clássica e a adaptada pelo AlphaZero calculam o valor de fitness de forma diferente, 

utilizamos os métodos abstratos para defini-los.

Finalmente, o método qualityOfMove é responsável por classificar os movimentos 

válidos a partir do estado inicial da árvore. A forma de avaliação utilizada pela implementação 
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de referência (Förster, 2023) prioriza os movimentos que levaram a ramos com o maior número 

de visitas. Essa lógica se justifica porque se entende que um estado muito visitado foi aquele 

mais selecionado pela diretriz de busca. Entretanto, percebemos que, quando realizamos a busca 

a partir de um estado próximo de levar a uma vitória, essa heurística se prova falha. Isso ocorre 

porque o estado vitorioso não gera mais filhos e, dessa forma, não pode mais ser visitado pela 

busca. Assim, o algoritmo é obrigado a visitar seus vizinhos, o que os torna melhor classificados. 

Para resolver esse problema, decidimos alterar o cálculo da qualidade de um movimento para a 

Equação 3, que alinha a qualidade estimada da partida e a quantidade de visitas ao dado ramo.

Equação 3 — Cálculo da qualidade de um movimento a partir da árvore de busca construída 
pelo método de busca em árvore de Monte Carlo (MCTS).

𝐴(𝑛) = 𝑄(𝑛) + 4√𝑉 (𝑛) (3)
Na qual:

• 𝐴(𝑛) é a qualidade do movimento representado pelo nó 𝑛;

• 𝑄(𝑛) é a qualidade da partida calculada por meio de simulações a partir do nó 𝑛;

• 𝑉 (𝑛) é quantidade de vezes em que o nó 𝑛 foi visitado nas iterações anteriores.

Fonte: elaborado pelo autor (2026).

A busca em árvore de Monte Carlo é gerenciada pela classe abstrata Search, cujo 

diagrama é mostrado na Figura 23. Ela armazena dados relevantes para executar o algoritmo, 

como o coeficiente de exploração e a quantidade de ciclos a serem realizados, o que é guardado 

no atributo quantityOfExpansions, além de um objeto da classe auxiliar Random que realiza 

operações pseudo-aleatórias a partir da mesma seed informada ao programa.

O método abstrato expandTree da classe Search executa o ciclo de busca, utilizando 

o método selectNextNode para realizar a etapa de seleção e o método simulateMatch para 

implementar a etapa de simulação da MCTS clássica ou de predição da MCTS adaptada pelo 

AlphaZero. Esse primeiro algoritmo foi implementado nas classes concretas CommonSearch e 

CommonTreeNode. Essa define a etapa de expansão por um método chamado expand, que recebe 

o movimento a expandir e gera um único novo nó.

Já em relação à MCTS adaptada, a classe concreta AgentGuidedSearch implementa 

a busca e define um novo atributo chamado predictionModel, que guarda o modelo de 

ResNet responsável por orientar a etapa de predição. Em seguida, durante a etapa de 

expansão, os valores estimados por sua policy head geram todos os movimentos válidos 

Figura 23 — Classe Search definida no pacote 
search.

Fonte: elaborado pelo autor (2026).
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para o estado atual. Essa fase é implementada pelo método expand da classe concreta 

AgentGuidedTreeNode, que recebe aquele vetor e guarda a qualidade estimada no novo atributo 

qualityOfMoveAttributedByModel de cada nó filho. Por fim, a predição da qualidade da partida 

é utilizada para orientar a fase de retro-propagação.

4.5 CONSTRUÇÃO DA REDE NEURAL RESIDUAL

Considerando a variação de complexidade entre diferentes jogos e seguindo a recomen­

dação da implementação de referência (Förster, 2023), possibilitamos ao projetista de um 

protótipo definir parâmetros da arquitetura da rede neural residual utilizada pelos agentes inteli­

gentes. Para isso, criamos a classe ResidualNeuralNetwork, que recebe os seguintes dados: (1) 

seed, usado para inicializar os pesos e vieses da rede neural; (2) quantityOfResidualBlocks, 

para definir a quantidade de blocos residuais a serem criados na backbone da rede; e (3) 

quantityOfHiddenChannels, referente à quantidade de canais usada nas camadas internas de 

processamento da rede.

A classe construtora de modelos de rede neural e as operações sobre tensores foram 

disponibilizadas pelo pacote do projeto TensorFlow.js. Ele disponibiliza algumas formas de 

construir a arquitetura da rede, dentre as quais selecionamos a de LayersModel. Tomamos 

o cuidado de encapsular o uso do TensorFlow dentro dessa classe, a fim de permitir sua 

substituição se necessário sem requerer a refatoração de outros componentes do projeto. Então, 

definimos funções auxiliares para a construção das camadas de adaptação da entrada, de blocos 

residuais e de saída para a policy head e para a value head.

Acerca do treinamento, o método train dessa mesma classe recebe os conjuntos de 

estados codificados e de saídas esperadas para a policy head e para a value head. O alinha­

mento dos pesos e vieses é realizado pelo método fit do objeto de LayersModel, utilizando 

o otimizador estimativa de momento adaptativo (Adam). Para a policy head, selecionamos a 

função de perda de entropia cruzada categórica (em inglês, categorical cross-entropy), ao passo 

em que escolhemos a função de erro quadrático médio (em inglês, mean squared error) para 

calcular a perda da value head. Quanto à execução do programa, permitimos que o usuário 

escolha os seguintes parâmetros: (1) quantityOfEpochs, para definir a quantidade de épocas de 

treinamento; e (2) sizeOfBatch, para ajustar o tamanho do conjunto de entradas e saídas usado 

a cada passo de alinhamento.

4.6 GERAÇÃO DE MEMÓRIAS DE TREINAMENTO

Com o fim de encapsular o uso da ResNet e de relacioná-la com um jogo implementado, 

criamos uma nova classe no módulo search chamada PredictionModel. Seu método mais 

relevante é denominado predict, que recebe um estado e retorna dois elementos: (1) o vetor 

das qualidades atribuídas a cada movimento listado para aquele jogo; e (2) a qualidade estimada 

para a partida a partir do turno atual.

Definimos também a função auxiliar calculateProbabilityOfPlayingEachMove, que 

recebe o vetor de qualidades mencionado, o conjunto dos índices dos movimentos válidos 

naquele estado e um valor do tipo SofteningCoefficient, o qual é definido pelo usuário do 
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Figura 24 — Tipos de dados relacionados à criação de uma memória de 
partidas definidos pelo pacote search.

Fonte: elaborado pelo autor (2026).

programa. Essa função aplica uma transformação de softmax, utilizando o coeficiente citado 

para ajustar a proporção em que os movimentos mais bem avaliados devem se destacar entre 

as probabilidades calculadas. Essas são retornadas na estrutura de um mapa que contém apenas 

entradas para os movimentos válidos.

Criamos então, na classe auxiliar Random, o método pickMoveConsideringItsQuality, 

que usa essas probabilidades para ordenar a lista de movimentos válidos e sorteia um número 

aleatório para selecionar um deles. Dessa forma, aqueles com maiores probabilidades associadas 

têm mais chance de serem selecionados na roleta.

Para implementar o ciclo de treinamento do modelo, que envolve gerar uma memória 

de partidas simuladas e alinhar os pesos e vieses da rede neural aos resultados dos turnos, 

descrevemos os tipos de dados mostrados na Figura 24.

O uso dos tipos MemoryOfTurn e MemoryOfMatch estão associados ao algoritmo de 

self-play, implementado pela função buildMemoryOfMatch, cujo código-fonte simplificado é 

mostrado no Algoritmo 2. Ele recebe um objeto do tipo AgentGuidedSearch, que realiza a busca 

em árvore de Monte Carlo adaptada pelo projeto AlphaZero.

A inicialização do processo de geração de memória define a variável que armazenará 

o histórico de turnos, implementada como um vetor de objetos do tipo MemoryOfMatch. Além 

disso, são criados os marcadores auxiliares do estado atual e do jogador que realizou o último 

movimento na partida.

Então, inicia-se um laço de repetição, em que o algoritmo utiliza a MCTS para obter as 

qualidades atribuídas a cada um dos movimentos. Uma vez que a ResNet precisa receber o vetor 

completo de todos os movimentos possíveis no jogo, as posições referentes aos movimentos 

inválidos são preenchidas com o número especial que representa infinito negativo no JavaScript.

O algoritmo dá prosseguimento ao turno, ao utilizar o método pseudo-aleatório da roleta 

para selecionar um movimento. Em seguida, os dois marcadores, o vetor de qualidades, o estado 

codificado e o índice do movimento escolhido são armazenados no histórico.

Esse movimento selecionado é executado sobre o estado atual, gerando um novo estado, 

o qual é aferido para determinar se ele levou ao fim da partida. Caso positivo, a função 

buildMemoryOfMatch retorna um objeto do tipo QualityOfMatch, que é composto pelo histórico 
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Algoritmo 2 — Código-fonte simplificado da função buildMemoryOfMatch.
function buildMemoryOfMatch(

    search: AgentGuidedSearch

): MemoryOfTurn[] {

    const game = search.getGame();

    const memoryOfTurns: MemoryOfTurn[] = [];

    let currentState = game.constructInitialState();

    let indexOfPlayerWhoPlayedMove: IndexOfPlayer | null = null;

    while (true) {

        const qualitiesOfMoves = searchQualityOfMoves(search, currentState);

        const indexesOfValidMoves = game.getIndexesOfValidMoves(currentState);

        const indexOfPickedMove = random.pickMoveConsideringItsQuality( ↵

            indexesOfValidMoves, qualitiesOfMoves);

        memoryOfTurns.push({

            encodedState: currentState.getEncodedState(),

            indexOfPlayer: currentState.getIndexOfPlayer(),

            indexOfPlayerWhoPlayedMove,

            qualitiesOfMoves,

            indexOfPickedMove

        });

        const nextState = game.play(indexOfPickedMove, currentState);

        if (nextState.isFinal()) {

            const finalPointsOfEachPlayer = nextState.getScore() ↵

              .getPointsOfEachPlayer();

            return {

                finalPointsOfEachPlayer,

                memoryOfTurns,

            };

        }

        indexOfPlayerWhoPlayedMove = currentState.getIndexOfPlayer();

        currentState = nextState;

    }

}

Fonte: elaborado pelo autor (2026).

de turnos e pela pontuação de todos os jogadores no fim da partida. Caso contrário, os marca­

dores auxiliares são atualizados e mais um passo de simulação é realizado.

Considerando que o treinamento de um agente inteligente requer um histórico grande de 

partidas, criamos uma nova função chamada buildMemoryOfMatches. Ela recebe do usuário o 

parâmetro quantityOfIterations, acerca da quantidade de partidas a serem simuladas. Então, 

começa um laço de repetição que salva num vetor do tipo MemoryOfMatch todos os resultados 

das execuções do método buildMemoryOfMatch já discutido.

Por fim, o método convertMemoryOfMatchesToTrainingMemory transforma o resultado 

da fase de geração de memórias em três vetores de tipo único. O primeiro deles, encodedStates, 

guarda os estados codificados salvos em cada turno simulado. Por sua vez, o segundo, policies, 

armazena os vetores de qualidade de movimentos também salvos durante a simulação. Final­

mente, o terceiro, values, é obtido pelo uso do método auxiliar calculateQualityOfMatch, 



48

Figura 25 — Interface do programa Sistema de Teste de Jogabilidade Automatizado 
(APTS).

Fonte: elaborado pelo autor (2026).

que usa a pontuação e o marcador de jogador atual em cada turno para calcular a qualidade da 

partida. Esses três vetores são retornados num objeto do tipo TrainingMemory.

4.7 INTERFACE COM O USUÁRIO

As funcionalidades criadas e discutidas requeriam uma interface padronizada para 

que aplicações as acessassem sem interagir com os detalhes de implementação. Para isso, 

organizamos no pacote interface um conjunto de ações disponíveis ao usuário. Elas foram 

implementadas como comandos de terminal em um pacote do projeto chamado node, que 

utilizou para isso a biblioteca Commander.js. A Figura 25 exibe a interface da tela de ajuda do 

programa APTS, mostrando os comandos disponíveis, que são discutidos nesta seção.

Inicialmente, oferecemos no comando search-quality uma forma de visualização da 

árvore de busca gerada pelo método de MCTS. Para isso, o usuário fornece os seguintes dados: 

(1) a estratégia de busca — se a clássica ou a adaptada pelo AlphaZero —; (1a) o modelo 

de predição, caso o usuário escolha a versão adaptada; (2) o coeficiente de exploração para 

cálculo da diretriz UCT; (3) a quantidade de ciclos iterados pela MCTS; (4) o coeficiente de 

suavização para calcular as probabilidades atribuídas a cada movimento; (5) uma seed para 

calcular os valores pseudo-aleatórios; e (6) o estado sobre o qual se quer descobrir os melhores 

movimentos viáveis. O programa executará a busca, calculará as qualidades e probabilidades 

dos movimentos e os imprimirá, conforme exemplo dado da Figura 26. Além disso, será gerado 

um arquivo do formato SVG que exibe árvore de busca montada, o qual é gerado pelo programa 

Graphviz e cujos recortes são mostrados na Figura 27.
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Figura 26 — Qualidades de movimentos e probabilidades de vitória 
a efetuá-los estimadas pela MCTS clássica.

(a) Qualida­
des dos movi­

mentos.
(b) Probabilida­

des de vitória.

Fonte: elaborado pelo autor (2026).

Caso o usuário queira obter apenas a avaliação de um modelo de predição sobre um 

determinado estado, ele pode informá-los ao comando predict-quality, que também requer 

o coeficiente de suavização. Ela solicitará a predição ao modelo e imprimirá as qualidades dos 

movimentos retornadas e probabilidades calculadas.

O programa também oferece ambientes de execução de partidas entre dois jogadores 

humanos, que interajam pelo mesmo terminal por meio do comando play-match-pvp, como 

mostrado na Figura 28a. Ele requer que se informe o estado do jogo sobre o qual se deseja iniciar 

a partida. Então, inicia um laço de repetição até que a partida chegue a um estado de fim de 

Figura 27 — Árvore de busca montada ao avaliar a qualidade de um estado por meio da MCTS 
clássica.

(a) Recorte a partir da raiz. (b) Recorte a partir de um estado avançado.

Fonte: elaborado pelo autor (2026).



50

jogo. A cada iteração, o algoritmo obtém por meio das regras quais são os movimentos válidos a 

partir do estado atual. Em seguida, mostra essa lista ao usuário por meio da biblioteca Inquirer.js 

e requer que ele escolha um movimento. O programa o efetua, marca o estado gerado como o 

atual e verifica se ele representa o fim da partida.

Laços similares são implementados para as ações em que o usuário decide jogar contra 

o computador ou quando ele inicia um jogo entre dois agentes inteligentes, como exibido na 

Figura 28b. Nesses casos, em vez de solicitar a seleção de movimentos para o jogador, o algo­

ritmo utiliza a MCTS para obter as probabilidades dos movimentos por meio do comando play-

match-using-search, ou apenas solicita essas predições para modelos de ResNet fornecidos, 

por meio do comando play-match-using-agent. Então, o movimento efetuado é escolhido 

pseudo-aleatoriamente pelo método da roleta.

Acerca da geração de agentes inteligentes, o programa oferece três comandos relevantes. 

O primeiro é o constuct-model, que gera um modelo de ResNet segundo os parâmetros 

informados e o exporta em dois arquivos de descrição do TensorFlow. O primeiro é um arquivo 

de formato JSON que descreve toda a estrutura da rede neural — a qual pode ser observada 

na Figura 29 —, e o segundo é um arquivo binário que salva os pesos e vieses aleatoriamente 

gerados. Ao usar esse comando, o usuário deve fornecer os dados acerca: (1) do jogo a ser 

simulado; (2) da quantidade de blocos residuais; (3) da largura em canais da backbone da rede; 

e (4) da seed usada para inicializar as conexões.

Esse primeiro modelo gerado não estará apto a orientar um agente inteligente. Antes 

disso, é necessário sujeitá-lo ao processo de treinamento. O primeiro passo para isso é gerar a 

Figura 28 — Ambiente de jogatina entre jogadores e entre agentes inteligentes.
(a) Modo jogador vs. jo­

gador.
(b) Modo agente inteligente vs. agente in­

teligente.

Fonte: elaborado pelo autor (2026).
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Figura 29 — Estrutura de uma ResNet criada para o jogo Ligue-4 com dois blocos residuais.

Fonte: elaborado pelo autor (2026).

memória de partidas sintéticas. Com esse objetivo, o comando build-training-memory gera 

um vetor do tipo MemoryOfMatch por meio da função buildMemoryOfMatches discutida na 

Seção 4.6 e o salva em um arquivo de tipo JSON, como exibido na Figura 30. Em seguida, o 

programa converte a memória num objeto do tipo TrainingMemory e também o salva em outro 

arquivo de tipo JSON.

Finalmente, o comando train pode ser chamado para alinhar um modelo ao histórico 

gerado. Para isso, o algoritmo utiliza o método train discutido na Seção 4.5. Um parâmetro 

novo que esse comando requer é chamado valueToReplaceInfinity, que tem o objetivo de 

substituir o marcador de movimento impossível nos vetores de qualidade salvos na memória de 

partidas. Isso é necessário para que o TensorFlow consiga realizar operações sobre os valores 

de entrada dentro de seu limite de representação de bits. Dessa forma, o valor fornecido para o 

comando de treinamento atua como uma penalidade para os movimentos inválidos.
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Figura 30 — Dados representativos de memórias de partidas sintéticas geradas pelo método de 
self-play.

Fonte: elaborado pelo autor (2026).
Nota: Os estados codificados foram representados como tabuleiros para facilitar a visualização. Nos 
arquivos, eles são salvos no formato de canais binários.
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5 RESULTADOS

A execução do experimento de geração de agentes inteligentes requer que se realizem 

as atividades descritas na Seção 3.2. Seu primeiro passo é codificar classes de representação 

do jogo simulado, qual seja o Ligue-4, e instanciar os objetos relativos aos seus componentes 

fundamentais, como descrito na Seção  4.3. Então, deve-se criar um modelo de rede neural 

específico para essa implementação, realizar seu treinamento e executar a coleta de dados de 

partidas sintéticas. Este capítulo descreve como tais atividades foram efetuadas e discute os 

resultados delas obtidos.

5.1 GERAÇÃO DE AGENTES INTELIGENTES

A fim de gerar os agentes inteligentes usados no experimento, deve-se criar uma estru­

tura de ResNet por meio da execução do comando constuct-model, discutido na Seção 4.7. 

Inspirados pela sugestão dada pela implementação de referência (Förster, 2023), decidimos 

construir um modelo para o jogo Ligue-4 de 8 blocos residuais e com largura de 128 canais 

internos. O algoritmo desse comando constrói a rede neural e a exporta como uma pasta que 

guarda dois arquivos: o de estrutura das camadas; e o de definição dos pesos e vieses.

Em seguida, elaboramos, com o apoio da ferramenta de IA para geração de texto Claude 

Sonnet 4.521, um conjunto de scripts para facilitar a execução dos comandos previamente 

implementados no APTS e para extrair métricas a partir dos artefatos que ele gera. O primeiro 

script, chamado de train_model, é descrito em linguagem fish22 e realiza o ciclo de treinamento 

descrito na Seção 2.5.

Esse script chama o comando build-training-memory com argumentos especificados 

pelo usuário. Ele deve definir o agente inteligente usado para orientar a simulação de partidas, 

o que requer sua geração por meio do comando anterior. Seu algoritmo então começa a simular 

uma série de partidas jogadas segundo o método de MCTS adaptada pelo AlphaZero. Ao final, 

ele guarda, em uma pasta aninhada dentro da pasta do modelo de ResNet, as memórias de 

partidas e de treinamento geradas.

Para esse comando, definimos a MCTS para realizar 512 ciclos de busca, a um 

coeficiente de exploração de 1.4, com o fim de explorar suficientemente o espaço de busca, 

sem comprometer drasticamente o tempo de execução do experimento. Além disso, o agente 

inteligente utilizou o método de softmax a um coeficiente de suavização de 1 para selecionar 

um movimento avaliado. Também definimos o parâmetro de seed como 1.

O segundo passo do ciclo gerenciado pelo script train_model é executar o comando 

train para gerar um novo modelo de rede neural com pesos e vieses melhor alinhados à 

memória de treinamento. Seu algoritmo utiliza as ferramentas disponibilizadas bela biblioteca 

TensorFlow.js para dividir a memória em conjuntos de tamanho fixo e randomizar a ordem 

desses, a fim de aumentar a variabilidade. Encontramos uma limitação na biblioteca, que não 

permitiu definir valor de seed para esse sorteio. Por fim, é exportada uma nova pasta que contém 

21Acesso em: https://www.anthropic.com/claude/sonnet.
22Acesso em: https://fishshell.com/docs/current/language.html.

https://www.anthropic.com/claude/sonnet
https://fishshell.com/docs/current/language.html
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os arquivos da ResNet treinada. Sua localização é aninhada à pasta da memória de treinamento, 

o que forma uma estrutura de árvore de arquivos, em que cada ciclo gera mais um bloco.

Para esse comando, definimos o tamanho da janela de fornecimento dos dados sintéticos 

como 128 turnos, e determinamos que cada alinhamento deve ser realizado em 16 épocas. 

Dentro de cada época, 15% dos dados foram utilizados para validação do alinhamento. Por meio 

de alguns testes preliminares, identificamos que o valor de penalidade para movimentos invá­

lidos não mostrou diferença significativa nas métricas de acurácia do processo de alinhamento, 

o que nos motivou a defini-lo como 0. Executamos o ciclo de treinamento continuamente, o que 

resultou na geração de 21 modelos de ResNet consecutivamente treinados até a data de fim do 

experimento.

O comando train salva junto a cada um o registro de métricas de treinamento aferido 

pelo TensorFlow. Com base nisso, criamos um script chamado analyze_training_logs, que 

acessa a pasta do primeiro modelo e busca seus descendentes, que naquela são aninhados. Esse 

algoritmo lê as métricas de acurácia da policy head e da value head associadas à última época 

de treinamento de cada modelo e as salva em memória. Então, ele organiza os modelos em duas 

listas, ordenadas de forma decrescente para cada uma das métricas. Cada lista é exportada para 

um arquivo do formato CSV.

Por meio deste artefato, identificamos os melhores modelos de ResNet de acordo com 

a policy head, como disposto na Tabela 1, e de acordo com a value head, listados na Tabela 2. 

Percebemos que o melhor resultado convergiu relativamente cedo, no 4º ciclo de treinamento, 

para uma acurácia de 0.667935 na predição de movimentos e de 0.557322 na estimativa da 

qualidade da partida. Após isso, houve leve piora nas métricas, que variaram próximas de 

0.571429 para ambas as saídas por vários ciclos, comumente voltando a esse exato valor.

Tabela 1 — Melhores modelos de ResNet 
ordenados por acurácia da policy head.

Ciclo Policy head Value head

4º 0.667935 0.557322
7º 0.571429 0.571429
8º 0.571429 0.571429
13º 0.571429 0.571429
15º 0.571429 0.571429

Fonte: elaborado pelo autor (2026).

Tabela 2 — Melhores modelos de ResNet 
ordenados por acurácia da value head.

Ciclo Policy head Value head

7º 0.571429 0.571429
8º 0.571429 0.571429
13º 0.571429 0.571429
15º 0.571429 0.571429
16º 0.571429 0.571429

Fonte: elaborado pelo autor (2026).

Esses resultados parecem indicar que o agente inteligente é capaz de interpretar o 

cenário de um turno, ainda que não atinja uma compreensão tão expressiva como esperado. 

A proximidade das métricas com a faixa de 57% levanta preocupações sobre a capacidade do 

agente inteligente de reconhecer qual dos jogadores ele deve representar em cada turno. Outra 

percepção obtida é sobre a duração do processo. Para o jogo Ligue-4, que têm baixa comple­

xidade, é razoável considerar que poucos ciclos de treinamento são necessários, uma vez que 

após o 7º ciclo não foram observadas melhoras na acurácia.
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5.2 SIMULAÇÃO DE PARTIDAS

Após selecionarmos o melhor agente inteligente, avaliamos sua atuação em partidas 

simuladas do jogo Ligue-4. Para isso, executamos o comando play-match-using-agent do 

APTS, definindo o mesmo modelo de ResNet para orientar ambos os jogadores e configurando 

o coeficiente de suavização do método de softmax como 1.

A fim de diminuir a chance de obter um resultado pouco representativo, definimos um 

script para executar esse comando 100 vezes, variando o valor de seed de 1 a 100. Cada execução 

gera uma pasta que contém o arquivo de histórico da partida, da mesma forma como aquele 

gerado para construir a memória de treinamento.

Em seguida, criamos um script responsável por, para cada partida, ler seu histórico de 

turnos e coletar em um arquivo auxiliar os seguintes dados: (1) o índice do jogador vencedor, 

ou null caso haja empate; (2) a quantidade de turnos decorridos até o fim da partida; (3) a 

quantidade de vezes em que o primeiro jogador efetuou cada um dos 7 movimentos; e (4) essa 

mesma análise para as jogadas do segundo jogador.

Ao fim, esse script ainda compila os dados analíticos em um arquivo de estatísticas 

com um conjunto de informações. A primeira é o cálculo da média, da mediana e do desvio 

padrão da duração das partidas, como exibido no Quadro 1. Percebemos que a partida mais 

célere apresentou duração de 15 turnos, ao passo em que a mais longa decorreu por 40 turnos. 

Comparando todas as simulações, o jogo Ligue-4 tende a ser concluído numa média de 24.32 

turnos, apresentando mediana de 23.00 e desvio padrão de 5.94. Considerando o tamanho do 

tabuleiro de 42 casas e a baixa complexidade do jogo, essas métricas parecem razoáveis.

Quadro 1 — Métricas acerca da duração em turnos de partidas simuladas do 
jogo Ligue-4.

Mínimo Máximo Média Mediana Desv. pad.

15 40 24.32 23.00 5.94
Fonte: elaborado pelo autor (2026).

Outro dado coletado por aquele script é a quantidade de empates e de vitórias de cada 

jogador ao fim de cada partida. O algoritmo relaciona esse dado com a duração das partidas em 

turnos, classificada em quatro faixas, como apresentado na Tabela 3.

Essa análise demonstra uma vantagem para o jogador “X” caso ele consiga encerrar 

o jogo em até 20 turnos, ocasiões em que ele teve 80% de chance de vitória. Caso a partida 

dure mais, as chances para o jogador “O” se equilibram, ainda que se demonstre uma vantagem 

notável para o jogador “X”. Análises como essa podem ser especialmente úteis para projetistas 

de jogos, que devem buscar um equilíbrio entre os jogadores além do número total de turnos.

Tabela  3 — Análise de vitórias dos jogadores segundo 
faixas de duração de partidas simuladas do jogo Ligue-4.

Jogador “X” Jogador “O”
Duração Turnos

N % N %

T <= 20 25 20 80% 5 20%
20 < T <= 30 59 35 59% 24 41%
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Jogador “X” Jogador “O”
Duração Turnos

N % N %

30 < T 16 9 56% 7 44%
Total 100 64 64% 36 36%

Fonte: elaborado pelo autor (2026).

Por fim, a ferramenta também registra a frequência de jogada de cada movimento por 

cada um dos jogadores, como apresentado na Tabela 4. No jogo Ligue-4, esperávamos que os 

agentes inteligentes privilegiassem a 4ª coluna do tabuleiro, pois ela é a que permite formar 

mais linhas de peças adjacentes. Entretanto, percebemos que essa hipótese não se concretizou 

para o experimento simulado. Isso pode indicar vícios no processo de treinamento das ResNets, 

que não teriam explorado o suficiente estados em que tal coluna levou a vitórias.

Tabela  4 — Análise de movimentos mais jogados por 
cada agente inteligente em partidas partidas simuladas do 

jogo Ligue-4.

Coluna
Jogador

1ª 2ª 3ª 4ª 5ª 6ª 7ª

Jogador 
“X”

77 292 67 138 208 112 254

Jogador 
“O”

41 300 24 205 300 230 84

Total 118 592 91 343 508 342 338

Fonte: elaborado pelo autor (2026).

Quanto aos demais jogos implementados, o Jogo da Velha e o Snowball, não executamos 

o experimento de geração de agentes inteligentes e obtenção de estatísticas por meio de partidas 

sintéticas. Ainda assim, o Jogo da Velha foi útil para iniciarmos a modelagem da arquitetura 

do sistema e criarmos os testes de unidade. Em seguida, o Snowball teve a relevância de pôr à 

prova a capacidade de representação de jogos mais complexos e de uso de pontuação durante as 

partidas. Dessa forma, o APTS na atual versão permite ao usuário jogar esses jogos contra outras 

pessoas ou contra o algoritmo de MCTS clássica, que também afere a qualidade de movimentos 

viáveis a partir de um estado fornecido.
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6 CONSIDERAÇÕES FINAIS

Este trabalho se tratou de uma pesquisa de natureza aplicada e exploratória que visou o 

uso dos métodos usados no projeto AlphaZero como ferramenta de auxílio no projeto de jogos. 

Seu objetivo específico é criar um ambiente de representação de protótipos de jogos de turnos 

com o fim de auxiliar pessoas criadoras de jogos a realizarem a fase de play-test. Esse sistema 

representa jogos de turnos arbitrários e permite a simulação de partidas. Além disso, o programa 

avalia os movimentos viáveis a partir de um estado por meio do método clássico de MCTS e 

por meio de agentes inteligentes orientados por ResNets.

A hipótese tomada é que os agentes inteligentes são capazes de realizar a fase de play-test 

de jogo de forma automatizada por meio da geração do histórico de partidas sintéticas, e destacar 

estatísticas que delas emergem. Dessa forma, os projetistas de jogos de turnos podem reduzir 

o uso de recursos humanos quando o interesse é realizar testes de estresse e balanceamento. 

Então, esse estudo pode oferecer perspectivas e ferramentas inovadoras ao cenário de criação 

de jogos autorais.

Para isso, foi desenvolvido o sistema Sistema de Teste de Jogabilidade Automatizado 

(APTS) que, de forma geral, foi capaz de viabilizar a representação de jogos de turnos de 

informação completa e organizados em tabuleiros. Como resultado, foi possível modelar o Jogo 

da Velha, uma variação autoral dele em um tabuleiro maior chamada de Snowball, e ainda o jogo 

Ligue-4, o que comprovou a viabilidade de representar diferentes estilos de jogo na plataforma.

Esse último jogo foi selecionado para criarmos um agente inteligente orientado pela 

MCTS clássica, que é executada pelo programa e gera como artefatos a estimativa de qualidade 

de jogar cada um dos movimentos disponíveis e uma imagem da árvore de busca construída. 

Essa tecnologia foi aprimorada ao substituir a busca em árvore pela predição de modelos de 

ResNets, usada para gerar o artefato de estimativa de qualidades do movimentos.

Como objetivo de viabilizar essa técnica, implementamos no APTS métodos responsá­

veis por ajustar os modelos de rede neural para que suas predições sejam mais acuradas. Nesse 

sentido, o sistema permite criar uma instância de ResNet inicial e fornecê-la novamente ao 

programa para que seja usada como método de orientação de um agente inteligente focado em 

geração de memória de treinamento. Ele usa a MCTS com adaptações que incorporam a ResNet, 

conforme o projeto AlphaZero, para escolher os melhores movimentos em uma série de partidas 

simuladas.

Algoritmos auxiliares usaram comandos disponibilizados pelo APTS para continua­

mente alinhar os modelos aos dados por eles próprios gerados num processo de aprendizado por 

reforço, comumente chamado de self-play. Esse processo permite ao usuário do sistema ajustar 

os parâmetros para criar agentes inteligentes com diferentes estratégias de jogo.

Então, ele é capaz de usar comandos do APTS alinhados a um script auxiliar para que 

tais agentes treinados se enfrentem em uma série de partidas, cujos dados podem ser extraídos 

em métricas úteis acerca da quantidade de vitórias de cada jogador, da duração do jogo e da 

predileção por certos movimentos.

Essas métricas demonstram a capacidade de uso do sistema construído para auxiliar 

no processo de play-test, reduzindo a necessidade de testadores humanos nessa fase, ainda 
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que tenha sido atestada a necessidade de novos estudos e encontradas possíveis melhorias a 

fazer. Dessa forma, acreditamos ter contribuído diretamente às pessoas projetistas de jogos de 

tabuleiro autorais, por fornecer uma ferramenta diretamente aplicável ao seu trabalho.

Numa perspectiva maior, esperamos que este trabalho tenha contribuído de forma 

positiva para o cenário de criação de jogos de turnos autorais, que se encontra em crescimento e 

requer o estudo de métodos inovadores. Isso se justifica por termos fornecido uma avaliação de 

hipótese promissora acerca dos métodos abordados, e termos aplicado conceitos de represen­

tação de jogos de forma genérica o suficiente para compreender uma variabilidade grande de 

estilos de jogos.

Contudo, encontramos possíveis problemas no processo de alinhamento das redes 

neurais aos dados de memória gerados, de forma que não está certo se os agentes inteligentes 

foram capazes de compreender plenamente como qual dos jogadores eles deveriam atuar em 

cada turno. Uma proposta de solução razoável é gerar um agente inteligente que atue apenas 

como um jogador. Entretanto, isso incorreria em maior gasto de recursos e dificultaria o uso do 

sistema para jogos com uma quantidade grande de jogadores. Essa perspectiva faz necessário 

investigar formas mais adequadas de representar dados de um estado no formato de canais de 

números binários, o qual é requerido como entrada da ResNet.

Também é relevante ressaltar a necessidade de mais experimentos variando os parâme­

tros utilizados em várias fases do processo. Durante a fase de criação de memórias, poderíamos 

testar valores diversos para a quantidade de ciclos realizados pela MCTS ou o coeficiente de 

exploração por ela utilizado. Ainda, seria interessante testar diferentes quantidades de simula­

ções de partidas ao gerar as memórias, ou variar o coeficiente de suavização usado pelo método 

de seleção de movimento por roleta. Já durante a fase de alinhamento de pesos e vieses, é 

possível utilizar um tamanho diferente para o conjunto de turnos alinhado a cada passo ou, ainda 

mais relevante, a quantidade de épocas de treino e de ciclos de treinamento, que deixaram de 

variar significativamente depois de poucas iterações.

Outra questão que não ficou evidente é a determinação do parâmetro de penalização de 

movimentos inválidos, cujo valor foi dado como 0. Ao mesmo tempo em que seu uso poderia 

levar a uma convergência mais rápida para os movimentos úteis, um valor muito alto levaria a 

uma diferença expressiva entre os valores de qualidade calculados para os movimentos bons e 

o coeficiente, o que resultaria numa aferição alta para a função de perda.

Resta ainda uma reflexão acerca da construção da rede neural utilizada para o jogo 

simulado, o Ligue-4. Considerando o pequeno espaço de busca de seus movimentos, é possível 

que uma ResNet com menos blocos residuais e com menor largura de backbone compreenda 

melhor estratégias desse jogo. Nesse sentido, é interessante considerar também se uma estrutura 

de rede neural mais simples que a ResNet levaria a melhores resultados para espaços de busca 

pequenos.

Finalmente, destacamos que não foi possível definir um valor de seed para o método de 

alinhamento da rede neural disponibilizado pela biblioteca TensorFlow.js. O processo aleatório 

do qual ele depende é o sorteio do conjunto de entradas e saídas a alinhar em cada momento. 

Isso tornou essa etapa de execução não-determinística, o que prejudica a reprodutibilidade dos 

resultados. Quanto aos demais usos de valores pseudo-aleatórios, certificamo-nos de gerá-los 
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por meio da seed fornecida pelo usuário. Assim, também pode-se realizar mais experimentos 

variando seu valor.

Outro ponto a explorar é a avaliação da qualidade de um movimento realizada após o 

fim da construção da árvore de busca. É comum selecionar aquele que levou a mais visitas 

em seu ramo da árvore, mas isso prejudica movimentos que imediatamente levam a um estado 

vitorioso, o qual não pode mais ser visitado. Para resolver esse problema, criamos uma função 

de avaliação que alinha a qualidade estimada da partida com a quantidade de visitas em cada 

ramo. Contudo, sua especificação foi arbitrária e requer maiores experimentos ou uma mais 

intensa busca na literatura para substituí-la.

Acerca da representação de jogos, este trabalho apresentou como limitação o suporte 

apenas a jogos de turnos, o que se justifica pela tradução direta para código-fonte de compo­

nentes fundamentais que os definem. Os autores seguiram a convenção de que, a cada turno, 

pode existir apenas um estágio, no qual a única ação disponível é que o jogador do turno efetue 

um movimento. Em jogos mais complexos, cada turno pode se dividir em estágios com objetivos 

diferentes, como primeiramente comprar uma carta do baralho e depois escolher um movimento. 

Além disso, é possível que outros jogadores atuem dentro do turno que a princípio não está 

alocado a eles. Essas especificidades podem ser representadas em trabalhos futuros.

Nesse sentido, a necessidade de conhecimento da linguagem JavaScript para implemen­

tar as classes concretas e em seguida suas instâncias oferece uma restrição para parte dos 

usuários. Idealmente, os projetistas não deveriam precisar ter esse conhecimento específico, 

mas utilizariam uma plataforma com interface gráfica com suporte a navegadores web. Então, 

a descrição dos protótipos deveria ser completamente desconectada da base de código-fonte 

do sistema. Para isso, poderíamos adaptar o APTS para reconhecer linguagens específicas de 

domínio, como a Game Description Language (GDL)23 ou a Zillions by rules files (ZRF)24.

Ainda acerca da experiência do usuário, elenca-se como trabalho futuro implementar 

formas de extração e representação dos dados de play-test relevantes ao projetista de forma 

intuitiva e integrada no sistema. Para testar esse aprofundamento, pode-se utilizar a variante 

criada para o Jogo da Velha, o Snowball, que apresenta um espaço significativo de busca, de 81 

movimentos possíveis. Suas regras levam à expectativa de que um jogador atue para prejudicar 

o domínio de área do oponente no tabuleiro. Assim, pode-se realizar um experimento para 

verificar se essa impressão se materializa.

Nesse contexto, o sistema atualmente foi testado apenas para jogos de tabuleiro, ainda 

que os autores tenham tomado o cuidado de estabelecer os componentes de forma abstrata o 

suficiente para implementar jogos de cartas. Contudo, existe uma complicação para esse tipo 

de jogo em relação à sua codificação em canais, uma vez que a entrada da ResNet requer uma 

matriz de três dimensões, o que comumente representa as linhas e colunas do tabuleiro e, em 

seguida, os canais de dados. Para jogos de cartas, não há uma relação direta entre esses conceitos, 

o que também abre uma linha de investigação futura.

Ademais, é uma característica comum de jogos de cartas que os jogadores não mostrem 

aos demais as cartas que seguram em cada turno. Isso os configura seus estados como de infor­

23Acesso em: http://logic.stanford.edu/ggp/notes/gdl.html.
24Acesso em: https://www.zillionsofgames.com/language.

http://logic.stanford.edu/ggp/notes/gdl.html
https://www.zillionsofgames.com/language
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mação incompleta, o que exige mais estudos acerca da representação desses na forma codificada 

para a entrada na ResNet.

Outrossim, existe uma preocupação quanto à necessidade de descrever todos os movi­

mentos possíveis de um jogo no momento em que se realiza a sua representação. O jogo 

Ligue-4, usado no experimento deste trabalho, permitia executar apenas 7 movimentos, o que 

não constitui um problema. Já o jogo de Xadrez como implementado pelo projeto AlphaZero 

apresenta 4672 movimentos, os quais deveriam ter, cada um, um nome e descrição. Apesar de a 

maior parte desse número ser devido a combinações das mesmas peças em diferentes situações 

— cujas instâncias poderiam ser definidas por meio de scripts —, ainda é pouco ergonômico 

para um usuário pensar em todas essas possibilidades antes sequer de testar o protótipo. Por 

isso, é relevante pesquisar sobre a possibilidade de treinar a rede neural para atribuir qualidades 

apenas aos movimentos válidos dinamicamente gerados a cada turno.



GLOSSÁRIO

COMPUTAÇÃO

agente inteligente. Sistema capaz de interpretar um estado, tomar decisões autô­

nomas e agir para atingir objetivos definidos, aprendendo a adaptar seu comporta­

mento (Holmgård et al., 2019).

apelido. Em inglês, alias. Nome alternativo dado a um tipo de dado, função ou outro 

elemento de programação para referenciá-lo de forma mais conveniente.

AlphaZero. Algoritmo de autoaprendizado por reforço que combina MCTS e ResNets 

profundas para dominar jogos de tabuleiro, desenvolvido pelo laboratório Google 

DeepMind (Silver et al., 2018).

aprendizado de máquina. Em inglês, machine learning. Área da IA que desenvolve 

algoritmos capazes de aprender padrões a partir de dados sem programação explí­

cita, melhorando seu desempenho através da experiência (GeeksforGeeks, 2025a).

aproveitamento. Em inglês, exploitation. Componente do critério UCT na MCTS que 

favorece nós com maior valor médio estimado, aproveitando recompensas já obser­

vadas para guiar a seleção (Kocsis; Szepesvári, 2006).

entropia cruzada categórica. Em inglês, categorical cross-entropy. Função de perda 

utilizada em problemas de classificação multi-classe que mede a divergência entre 

a distribuição de probabilidade prevista pelo modelo e a distribuição real das classes 

(Li et al., 2022).

erro quadrático médio. Em inglês, mean squared error. Função de perda que calcula 

a média dos quadrados das diferenças entre valores previstos e valores reais, 

utilizada em problemas de regressão (Li et al., 2022).

exploração. Em inglês exploration. Componente do critério UCT na MCTS que prioriza 

nós pouco visitados, ampliando a busca e evitando convergir cedo demais (Kocsis; 

Szepesvári, 2006).

fitness. Em português, avaliação. Métrica que quantifica a qualidade de um estado 

ou solução em relação aos objetivos, atribuindo um valor numérico que orienta a 

tomada de decisão ou o processo de aprendizado.

linter. Em português, analisador estático de código. Ferramenta que analisa código-

-fonte para identificar e corrigir problemas de sintaxe, estilo e potenciais defeitos 

sem executar o programa.

overfitting. Em português, sobre-ajuste. Fenômeno em que um modelo de aprendi­

zado de máquina se ajusta excessivamente aos dados de treinamento, capturando 

ruído e padrões específicos em vez de generalizar para novos dados, resultando 

em baixo desempenho para dados não vistos (GeeksforGeeks, 2025b).

perda. Em inglês, loss. Métrica que quantifica a discrepância entre as predições de um 

modelo de aprendizado de máquina e os valores reais esperados (Li et al., 2022).



peso. Em inglês, weight. Parâmetro ajustável que pondera a conexão entre neurônios 

em uma rede neural, determinando a força da influência de uma entrada sobre a 

saída de uma unidade (Li et al., 2022).

pooling. Em português, agrupamento. Operação em CNNs que reduz a dimensio­

nalidade espacial dos dados, preservando as informações mais relevantes ao 

selecionar valores representativos de regiões locais (Li et al., 2022).

rede neural. Em inglês, neural network. Modelo computacional composto por camadas 

de unidades interligadas que aprendem padrões em dados por meio de ajustes de 

pesos (Li et al., 2022).

seed. Em português, semente. Valor inicial fornecido a um gerador de números 

pseudo-aleatórios para garantir reprodutibilidade dos resultados.

self-play. Em português, autoaprendizado por simulação de partidas. Técnica em que 

um agente inteligente treina jogando contra versões de si mesmo para aprender 

estratégias por reforço sem dados externos (Silver et al., 2017).

softmax. Função de ativação que converte um vetor de valores reais em uma distri­

buição de probabilidade, na qual cada elemento é transformado num valor entre 0 e 

1, e a soma de todos os elementos resulta em 1 (Li et al., 2022).

thread. Em português, linha de execução. Unidade básica de processamento que 

executa instruções de forma independente dentro de um processo. Um programa 

que opera com mais de uma thread permite que múltiplas tarefas sejam executadas 

concorrentemente.

vetor. Em inglês, array. Estrutura de dados que armazena uma coleção ordenada de 

elementos acessíveis por índices numéricos sequenciais.

viés. Em inglês, bias. Parâmetro aditivo em um neurônio de rede neural que ajusta 

o limiar de ativação, permitindo que o modelo se adapte melhor aos dados (Li et 

al., 2022).

JOGOS

casa. Em inglês, slot. Unidade discreta que compõe o tabuleiro e pode conter peças 

ou recursos.

estado. Em inglês, state. Representação completa da situação do jogo em um 

instante, incluindo o conteúdo das casas, os recursos, a pontuação dos jogadores 

e demais condições vigentes.

jogador. Em inglês, player. Participante que toma decisões e executa movimentos 

conforme as regras do jogo.

jogo. Em inglês, game. Sistema de regras que define objetivos, jogadores, movimen­

tos e condições de vitória ou encerramento (Suits, 1967).

jogo de tabuleiro. Em inglês, board game. Jogo que utiliza um tabuleiro composto por 

casas para posicionar peças ou marcadores, onde os movimentos seguem regras 

espaciais definidas pelo layout do tabuleiro.



jogo de turnos. Em inglês, turn-based game. Jogo em que os jogadores atuam de 

forma alternada em turnos sequenciais, fazendo o estado avançar passo a passo. 

Neste tipo de jogo, não são permitidos movimentos simultâneos.

movimento. Em inglês, move. Ação tomada a partir de um estado que altera as 

condições atuais, levando a um novo estado.

partida. Em inglês, match. Sessão completa do jogo, iniciando nas condições iniciais 

e terminando quando uma condição de fim é atingida.

play-test. Em português, teste de jogabilidade. Avaliação prática de um jogo com 

participantes para observar a experiência e coletar feedback de melhoria.

pontuação. Em inglês, score. Valor que indica o desempenho de um jogador segundo 

as regras do jogo.

rodada. Em inglês, round. Ciclo completo de turnos no qual todos os jogadores têm a 

oportunidade de agir uma vez.

turno. Em inglês, turn. Período em que um único jogador realiza seus movimentos 

antes de passar a vez.
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