
UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

BACHARELADO EM SISTEMAS DE INFORMAÇÃO

Celso Gabriel Dutra Almeida Malosto

Ferramenta de apoio automatizado à fase de balanceamento de regras em jogos

de turnos

Juiz de Fora

2026

Celso Gabriel Dutra Almeida Malosto

Ferramenta de apoio automatizado à fase de balanceamento de regras em jogos

de turnos

Trabalho de conclusão de curso apresentado
ao Bacharelado em Sistemas de Informação da
Universidade Federal de Juiz de Fora como re­
quisito parcial à obtenção do título de Bacharel
em Sistemas de Informação.

Orientador: Prof. Dr. Igor de Oliveira Knop

Coorientadora: Prof.ª Dr.ª Luciana Conceição Dias Campos

Juiz de Fora

2026

Malosto, Celso Gabriel Dutra Almeida.
Ferramenta de apoio automatizado à fase de balanceamento de

regras em jogos de turnos / Celso Gabriel Dutra Almeida Malosto. – Juiz
de Fora, 2026.

66 f. : il.

Orientador: Igor de Oliveira Knop
Coorientadora: Luciana Conceição Dias Campos
Trabalho de Conclusão de Curso (bacharelado) – Universidade Fe­

deral de Juiz de Fora, Instituto de Ciências Exatas. Bacharelado em
Sistemas de Informação, 2026.

1. Game design. 2. Play-test automático. 3. AlphaZero. 4. Redes
neurais artificiais. I. Knop, Igor de Oliveira, orient. II. Campos, Luciana
Conceição Dias, coorient. III. Instituto de Ciências Exatas. IV. Título.

Celso Gabriel Dutra Almeida Malosto

Ferramenta de apoio automatizado à fase de balanceamento de regras em jogos

de turnos

Trabalho de conclusão de curso apresentado
ao Bacharelado em Sistemas de Informação da
Universidade Federal de Juiz de Fora como re­
quisito parcial à obtenção do título de Bacharel
em Sistemas de Informação.

Aprovado em 23 de janeiro de 2026

Banca examinadora

Prof. Dr. Igor de Oliveira Knop – Orientador

Universidade Federal de Juiz de Fora

Prof.ª Dr.ª Luciana Conceição Dias Campos – Coorientadora

Universidade Federal de Juiz de Fora

Prof. Dr. Heder Soares Bernardino

Universidade Federal de Juiz de Fora

Prof. Dr. Marcelo Caniato Renhe

Universidade Federal de Juiz de Fora

AGRADECIMENTOS

Inescapavelmente, gostaria de fazer um aceno final às paredes e jardins com quem

convivi noturnamente durante todos esses anos de formação na Universidade Federal de Juiz de

Fora. Foi neles que contei com o apoio e o carinho de professores, técnicos e colegas.

Em especial, agradeço ao Prof Dr. Igor Knop e à Prof.ª Dr.ª Luciana Campos por cari­

nhosamente terem atuado como orientadores desta pesquisa. Eles permitiram-me a flexibilidade

da qual eu precisei para explorar, mas reforçando o ponderamento sobre o escopo.

Agradeço também ao querido coordenador do meu curso de Bacharelado em Sistemas

de Informação, Prof. Dr. Luciano Jerez, que me ajudou a percorrer o caminho e compreender o

meu objetivo nessa área de conhecimento.

Agradeço novamente ao Prof. Dr. Igor Knop, e aos Prof. Dr. Stênio de Sã e Prof. Dr.

Marcelo Caniato por terem atuado brilhantemente como tutores do Grupo de Educação Tutorial

em Sistemas de Informação (GetSi), do qual eu fiz parte e que forneceu recursos para o desen­

volvimento desta pesquisa por meio de uma bolsa de graduação financiada pela UFJF.

Agradeço a todos os amigos cujas trajetórias se cruzaram com a minha nesse tempo.

Em especial, desejo um abraço ao meu colega Lucas Paiva, com quem agradavelmente estudei

diversas disciplinas e elaborei extensos trabalhos.

Agradeço com muito carinho ao meu companheiro, Samuel Nascimento, que esteve ao

meu lado em todos os momentos de que precisei, apoiando-me emocionalmente e com sugestões

práticas. Foi com a felicidade que me mostrou que pude me motivar a realizar esta pesquisa.

Com especialíssima gratidão, agradeço à minha família e aos meus pais, Leandra Dutra

e Celso Malosto, por acreditarem em mim e por me apoiarem de todas as formas durante tantas

mudanças necessárias para meu amadurecimento como pessoa e como pesquisador.

Perguntar-me-á o leitor porque não o construí

mais cedo, ao mesmo tempo que os meus

dirigíveis. É que o inventor, como a natureza

de Linneu, não faz saltos; progride de manso,

evolui. Comecei por fazer-me bom piloto de

balão livre e só depois ataquei o problema de

sua dirigibilidade. Fiz-me bom aeronauta no

manejo dos meus dirigíveis; durante muitos

anos, estudei a fundo o motor a petróleo e

só quando verifiquei que o seu estado de per­

feição era bastante para fazer voar, ataquei o

problema do mais pesado que o ar (Dumont,

1918, p. 49).

RESUMO

Introdução: O mercado de jogos autorais apresenta um crescimento contínuo, com

milhares de jogos publicados anualmente nas maiores feiras do mundo. Esse crescimento

cria uma demanda por melhorias nas ferramentas de apoio à fase de criação. Nessa fase, um

protótipo passa por play-test repetidamente a fim de identificar desbalanceamentos e estratégias

dominantes, o que exige muito tempo e recursos humanos. Objetivos: Esta pesquisa busca

desenvolver meios de aliviar a necessidade da equipe de play-test, ao explorar por exaustão

os sistemas do jogo usando agentes inteligentes. Dessa forma, espera-se que os humanos se

concentrem nos aspectos da experiência de jogo e não em testes de estresse. Métodos: Esta

é uma pesquisa exploratória na qual é avaliado o uso de agentes inteligentes treinados por

métodos de self-play inspirados pelo projeto AlphaZero, que é baseado nos métodos de busca

em árvore de Monte Carlo (MCTS) e de redes neurais residuais (ResNets). Foi criado um

sistema computacional de representação de jogos de turnos, de geração e treinamento de agentes

inteligentes e de simulação e avaliação de partidas, que foi testado com o jogo Ligue-4. Dados

colhidos durante e após o processo de treinamento são utilizados para levantar observações

do comportamento emergente das regras do jogo. Resultados: Com as partidas sintéticas, a

equipe de desenvolvimento passa a ter um conjunto de partidas para avaliar, coletadas com

custos reduzidos. Essa abordagem permitiu construir um sistema que gera métricas acerca do

jogo e visualizá-las, o que indicou a viabilidade de usar o método de play-test automatizado

como apoio ao projetista, ainda que mais experimentos sejam requeridos utilizando diferentes

parâmetros.

Palavras-chave: game design; play-test automático; AlphaZero; redes neurais artificiais.

ABSTRACT

Introduction: The market for designer’s games shows continuous growth, with thou­

sands of games published annually at the world’s largest fairs. This growth creates a demand for

improvements in tools supporting the creation phase. In this phase, a prototype undergoes play-

test repeatedly to identify imbalances and dominant strategies, which requires significant time

and human resources. Objectives: This research seeks to develop ways to alleviate the need

for a play-test team by exhaustively exploring the game systems using intelligent agents. Thus,

humans are expected to focus on aspects of the game experience rather than on stress testing.

Methods: This is an exploratory research evaluating the use of intelligent agents trained by self-

play methods inspired by the AlphaZero project, which is based on Monte Carlo tree search

(MCTS) and residual neural networks (ResNets) methods. A computer system was created for

representing turn-based games, generating and training intelligent agents, and simulating and

evaluating matches, which was tested with the game ConnectFour. Data collected during and

after the training process are used to raise observations about the emergent behavior of the

game rules. Results: With synthetic matches, the development team now has a set of matches

to evaluate, collected with reduced costs. This approach allowed creating a system to generate

metrics about the game and visualize them, which has indicated the viability of using the

automated play-test method as support for the designer, although further experiments using

different parameters are required.

Keywords: game design; automated play-test; AlphaZero; artificial neural networks.

LISTA DE ILUSTRAÇÕES

Figura 1 Tabuleiro do Jogo da Velha e sua representação numérica. ⁠16

Figura 2 Tabuleiro do Snowball e os pontos atribuídos a cada jogador após efe­

tuar cada jogada. ⁠17

Figura 3 Tabuleiro do Ligue-4 e sua representação numérica. ⁠18

Figura 4 Ciclo da busca em árvore de Monte Carlo: suas quatro etapas são a se­

leção, a expansão, a simulação e a retro-propagação. ⁠20

Equação 1 Cálculo de fitness da diretriz de limite superior de confiança aplicado a

árvores (UCT) usada pela busca em árvore de Monte Carlo (MCTS)

clássica. ⁠20

Figura 5 Uso da busca em árvore de Monte Carlo (MCTS) para calcular as pro­

babilidades de jogar cada um dos movimentos válidos a partir de um es­

tado inicial. ⁠21

Figura 6 Arquitetura dos métodos uma rede neural convolucional (CNN). ⁠22

Figura 7 Métodos de processamento de entrada em uma rede neural convolucio­

nal (CNN). ⁠22

Figura 8 Estrutura de um bloco residual usado em uma rede neural residual

(ResNet). ⁠23

Figura 9 Arquitetura de uma rede neural residual (ResNet) composta por uma ca­

mada de adaptação da entrada, uma backbone e camadas de saída

policy head e value head. ⁠24

Figura 10 Predição de um modelo de rede neural residual (ResNet) para as quali­

dades estimadas de cada movimento do jogo e para a expectativa de

qualidade da partida a partir de um estado do tabuleiro no turno do joga­

dor “X”. ⁠25

Figura 11 Ciclo de treinamento de um modelo do AlphaZero, constituído das fases

de geração da memória de partidas e de alinhamento do modelo de

rede neural residual (ResNet). ⁠25

Figura 12 Ciclo da busca em árvore de Monte Carlo guiada por agentes inteligen­

tes, conforme adaptação do AlphaZero: suas quatro etapas são a sele­

ção, a predição, a expansão e a retro-propagação. ⁠26

Equação 2 Cálculo de fitness da diretriz de limite superior de confiança aplicado a

árvores (UCT) usada pela busca em árvore de Monte Carlo (MCTS)

adaptada pelo AlphaZero. ⁠27

Figura 13 Estado do Jogo da Velha representado como canais binários. ⁠28

Figura 14 Estado do Ligue-4 representado como canais binários. ⁠28

Figura 15 Fluxo de trabalho dos métodos necessários e seus artefatos. ⁠32

Figura 16 Dependências entre os módulos do sistema e com pacotes exter­

nos. ⁠34

Figura 17 Tipos de dados comuns definidos pelo pacote core. ⁠35

Figura 18 Tipos de dados comuns definidos pelo pacote game. ⁠36

Figura 19 Classes definidas pelo pacote game. ⁠36

Figura 20 Classes concretas alteradas na implementação do Ligue-4 e tipo utilitá­

rio nela definido. ⁠39

Algoritmo 1 Código-fonte simplificado da função

getIndexOfPlayerWhoIsOccupyingShape. ⁠41

Figura 21 Tipos de dados comuns definidos pelo pacote search. ⁠42

Figura 22 Classe TreeNode definida no pacote search. ⁠42

Equação 3 Cálculo da qualidade de um movimento a partir da árvore de busca

construída pelo método de busca em árvore de Monte Carlo

(MCTS). ⁠44

Figura 23 Classe Search definida no pacote search. ⁠44

Figura 24 Tipos de dados relacionados à criação de uma memória de partidas de­

finidos pelo pacote search. ⁠46

Algoritmo 2 Código-fonte simplificado da função buildMemoryOfMatch. ⁠46

Figura 25 Interface do programa Sistema de Teste de Jogabilidade Automatizado

(APTS). ⁠48

Figura 26 Qualidades de movimentos e probabilidades de vitória a efetuá-los esti­

madas pela MCTS clássica. ⁠49

Figura 27 Árvore de busca montada ao avaliar a qualidade de um estado por meio

da MCTS clássica. ⁠49

Figura 28 Ambiente de jogatina entre jogadores e entre agentes inteligentes. . . ⁠50

Figura 29 Estrutura de uma ResNet criada para o jogo Ligue-4 com dois blocos re­

siduais. ⁠50

Figura 30 Dados representativos de memórias de partidas sintéticas geradas pelo

método de self-play. ⁠51

Quadro 1 Métricas acerca da duração em turnos de partidas simuladas do jogo Li­

gue-4. ⁠55

LISTA DE TABELAS

Tabela 1 Melhores modelos de ResNet ordenados por acurácia da policy head. . . ⁠54

Tabela 2 Melhores modelos de ResNet ordenados por acurácia da value head. . . ⁠54

Tabela 3 Análise de vitórias dos jogadores segundo faixas de duração de partidas

simuladas do jogo Ligue-4. ⁠55

Tabela 4 Análise de movimentos mais jogados por cada agente inteligente em parti­

das partidas simuladas do jogo Ligue-4. ⁠56

LISTA DE ABREVIATURAS E SIGLAS

APTS Sistema de Teste de Jogabilidade Automatizado.

COMPUTAÇÃO

Adam estimativa de momento adaptativo.

API interface de programação de aplicações.

CNN rede neural convolucional.

IA inteligência artificial.

JSON notação de objetos do JavaScript.

MCTS busca em árvore de Monte Carlo.

ReLU unidade linear retificada.

ResNet rede neural residual.

UCT limite superior de confiança aplicado a árvores.

SUMÁRIO

1 INTRODUÇÃO . ⁠13

2 FUNDAMENTAÇÃO TEÓRICA . ⁠16

2.1 COMPONENTES FUNDAMENTAIS DE UM JOGO . ⁠16

2.2 JOGOS DE TURNOS DE DESTAQUE . ⁠16

2.2.1 Jogo da Velha . ⁠16

2.2.2 Ligue-4 . ⁠18

2.2.3 Go . ⁠18

2.3 BUSCA EM ÁRVORE DE MONTE CARLO . ⁠19

2.4 REDES NEURAIS RESIDUAIS . ⁠21

2.5 PROJETO ALPHAZERO . ⁠23

2.6 TRABALHOS RELACIONADOS . ⁠28

3 MATERIAL E MÉTODOS . ⁠30

3.1 MATERIAL . ⁠30

3.1.1 Ambiente de execução . ⁠30

3.1.2 Ambiente de desenvolvimento . ⁠30

3.1.3 Dependências externas . ⁠31

3.2 MÉTODOS . ⁠32

4 DESENVOLVIMENTO . ⁠34

4.1 UTILITÁRIOS . ⁠34

4.2 DESCRIÇÃO DE JOGOS . ⁠35

4.3 IMPLEMENTAÇÃO DOS JOGOS . ⁠39

4.4 ELABORAÇÃO DOS ALGORITMOS DE BUSCA . ⁠42

4.5 CONSTRUÇÃO DA REDE NEURAL RESIDUAL . ⁠45

4.6 GERAÇÃO DE MEMÓRIAS DE TREINAMENTO . ⁠45

4.7 INTERFACE COM O USUÁRIO . ⁠48

5 RESULTADOS . ⁠53

5.1 GERAÇÃO DE AGENTES INTELIGENTES . ⁠53

5.2 SIMULAÇÃO DE PARTIDAS . ⁠55

6 CONSIDERAÇÕES FINAIS . ⁠57

REFERÊNCIAS . ⁠64

13

1 INTRODUÇÃO

Jogos são conceituados como atividades com propósito bem definido, o qual comumente

é vencer um desafio. Um jogador apenas pode ser considerado vitorioso caso ele atinja o objetivo

segundo condições pré-estabelecidas, definidas como as regras do jogo. Tais regras permitem

diferentes estratégias, as quais podem ser consideradas melhores ou piores para obter a vitória,

de acordo com o contexto da partida (Suits, 1967).

Dentre as categorias existentes, destacam-se os jogos de turnos (turn-based games), em

que o tempo de partida evolui em unidades discretas. Essas são chamadas de turnos, nos quais

os jogadores realizam um número finito de movimentos que resultam em mudanças no estado

do jogo. Comumente, os turnos se alternam de forma pré-estabelecida, ao que se denomina

rodada. Nessa classe de jogos, as rodadas se sucedem até que a partida chegue a um estado final

o qual é avaliado com alguma métrica para decidir o sucesso ou fracasso dos jogadores dentro

do desafio proposto. Uma característica marcante deles é a possibilidade representar a tomada

de decisão dos jogadores durante uma partida por meio de árvores de decisão. Essas estruturas

permitem formalizar em um grafo os movimentos possíveis, definidos pelas regras, e os estados

resultantes delas (Salen; Zimmerman, 2003, p. 410).

O mercado dos jogos de tabuleiro (board game) modernos teve um marco com o

lançamento de Colonizadores de Catan (Teuber, 1995), quando jogos contemporâneos se

tornaram populares mundialmente a partir da Alemanha e criaram um novo movimento cultural.

Atualmente existem sites focados em catalogar esses jogos, sendo o maior o BoardGameGeek1,

que registra mais de 140 mil itens entre jogos, suas reimplementações e suas subsequentes

expansões.

Uma grande parcela desses jogos se destaca pelo seu perfil tático ou estratégico durante

as partidas, com uma série de reações em cadeia oriundas dos movimentos escolhidos pelas

decisões dos jogadores, ocasionando diversas dinâmicas sociais e complexidade emergente.

Estes jogos são também conhecidos como designer’s games, ou jogos autorais, por trazerem o

nome do autor na capa. Eles são fruto de uma organização de criadores que proporciona uma

série de benefícios para um mercado baseado em novidades (Woods, 2012). Anualmente, acima

de 1000 novos jogos são apresentados nas maiores convenções do meio, além de reimpressões,

reedições expansões de conteúdo e jogabilidade (BoardGameGeek, LLC, 2025).

O processo de criação de um jogo é um processo exaustivamente iterativo. O criador

implementa a sua ideia em um protótipo para facilitar as contínuas modificações necessárias.

Assim que o autor julga que esse protótipo está pronto dentro da experiência de jogo desejada,

ele deve ser testado na que se denomina a fase de play-test (teste de jogabilidade). Esta é a etapa

na qual se realizam partidas para explorar o comportamento dos sistemas e encontrar possíveis

desequilíbrios (Fullerton, 2019; Marcelo; Pescuite, 2009).

Deve-se ressaltar que desenvolvimento de um jogo autoral é um processo complexo e

custoso, sobretudo durante a fase de play-test. Não é incomum o autor realizar os testes sozinho,

simulando vários jogadores. Contudo, ao considerar dinâmicas e mecanismos mais complexos, é

necessário convidar outras pessoas para auxiliá-lo. Adicionalmente, são feitos testes de estresse

1Acesso em: https://boardgamegeek.com/wiki/page/Welcome_to_BoardGameGeek.

https://boardgamegeek.com/wiki/page/Welcome_to_BoardGameGeek

14

para diversos sistemas do jogo. Entre eles, podemos citar a realização da mesma ação durante

quase toda a partida, caso aparente ser muito vantajosa, o que ajuda a verificar se ela consegue

sobrepujar todas as demais (Marcelo; Pescuite, 2009). Esta é a etapa do play-test que é conhecida

como balanceamento.

A busca pelo balanceamento em jogos apresenta um desafio grande para a indústria,

pois o próprio termo não é consenso (Becker; Görlich, 2020). Tal processo é altamente depen­

dente de contexto, com desdobramentos para equilíbrio matemático, progressão de dificuldade,

progressão de conteúdo, variedade de estratégias e imparcialidade entre jogadores. Cada um

desses grupos apresenta suas próprias características, constituindo subsistemas altamente inter-

-relacionados de um sistema complexo maior, que é o jogo (Romero; Schreiber, 2021).

Essa etapa, na qual partidas do jogo são performadas repetidamente, tem alto custo de

recursos humanos e tempo. É difícil manter um grupo de teste ativo e focado, dado que se trata de

um processo cansativo quando o número de partidas começa a ficar alto. Além disso, o objetivo

do teste repetitivo nem sempre é claro para os jogadores, de forma que o projetista tenta não

contaminar a partida divulgando quais mecanismos estão sob teste (Trzewiczek, 2017).

Ademais, efeitos sobre os próprios testadores podem influenciar os resultados dos

testes com suas expectativas, humores, excessos ou falta de concentração. Esses são pontos

importantes a se observar em um teste de experiência de jogo (Marcelo; Pescuite, 2009), mas

não são relevantes quando os objetivos são equilíbrios durante testes de estresse, nos quais os

movimentos executados devem ser puramente efetivos e alheios ao divertimento e emoções dos

jogadores ou dinâmicas do grupo.

O estudo de jogos de mesa por meios computacionais segue a própria história da

Computação, em que pioneiros buscaram construir máquinas, modelos e algoritmos para jogar

xadrez em um nível avançado (Silver et al., 2018). Tradicionalmente, jogos de tabuleiro são

descritos por estados discretos e tidos como jogos combinatoriais. A área foi conduzida pelo

estudo da busca eficiente em árvores de decisão via variações do algoritmo minimax e poda em

árvore alfa-beta nas últimas duas décadas (Plaat et al., 1995).

Os estudos continuaram com as heurísticas especializadas até que os resultados da busca

em árvore de Monte Carlo (MCTS) na implementação de algoritmos de decisão se mostraram

positivos (Holmgård et al., 2019; Kocsis; Szepesvári, 2006). Seu uso não requeria qualquer

outro conhecimento prévio além das regras do jogo e apresentava um bom desempenho sem

necessitar que se implementasse uma heurística especializada.

Com base nela, o projeto AlphaZero, do laboratório de pesquisa Google DeepMind, se

destacou por substituir a necessidade de adaptar conhecimento de domínio de um jogo específico

pelo uso de uma rede neural residual (ResNet), atuando como um algoritmo de aprendizado

profundo independente de heurísticas especializadas (Silver et al., 2016). Essa estratégia

permitiu realizar buscas eficientes na árvore de decisão através de um modelo treinado por

aprendizado profundo. Esse método teve várias aplicações em jogos diferentes, como o Shogi

e Go, que apresentavam complexidade superior ao xadrez. Assim, ao considerar o aprendizado

não informado resultante das repetidas partidas simuladas, percebe-se que essas tecnologias são

promissoras para aprimorar jogos de mesa em desenvolvimento, observando desde a avaliação

do estado do jogo, bem como a massa de dados gerada ao final do treinamento.

15

Dado este contexto, o presente trabalho continua uma pesquisa exploratória para inves­

tigar relações de balanceamento em jogos durante sua criação (Araki; Knop, 2020; Malosto;

Campos; Knop, 2025; Malosto; Knop; Campos, 2023). Seu objetivo geral é oferecer perspec­

tivas e ferramentas inovadoras ao cenário de criação de jogos de turnos, estabelecendo como

foco a fase de play-test.

Os autores estabelecem como hipótese que é viável construir sistemas computacionais

para a execução de partidas sintéticas que ofereçam dados relevantes aos projetistas de jogos, de

forma a reduzir o emprego de recursos humanos nessa fase. Assim, espera-se que a participação

de pessoas seja empregada para investigar aspectos lúdicos, sociais e a experiência do jogador,

ao passo em que os testes repetitivos sejam realizados majoritariamente por agentes inteligentes.

A nível dos objetivos específicos, é proposto construir um ambiente de play-test

simulado para auxiliar as pessoas autoras de jogos a realizar as primeiras iterações do processo

de teste. Esse sistema deve permitir representar um jogo de turnos arbitrário e descrever suas

regras na forma de classes específicas elaboradas em código-fonte da linguagem JavaScript.

Ele deve então oferecer ao usuário um ambiente de simulação de partidas sintéticas que exporte

históricos das jogadas. Nessa perspectiva, é necessário estudar a modelagem de estruturas de

dados capazes de organizar informações sobre diferentes conceitos, como: jogo, partida, rodada,

turno, jogador, movimento e estado.

Outro requisito do sistema é oferecer formas de avaliação dos movimentos viáveis a

partir de um estado fornecido pelo usuário. Isso deve ser implementado tanto pelo método

clássico do algoritmo de MCTS, como também pelo uso de agentes inteligentes guiados por

ResNets. O treinamento desses é feito no processo de aprendizado por reforço, o que requer que

o sistema gerencie a criação de massas de dados por meio do processo de self-play ao simular

partidas sintéticas pelo método AlphaZero e, em seguida, utilize-os no alinhamento de pesos e

vieses.

O presente trabalho está organizado em seis capítulos. Este Capítulo 1, de Introdução,

apresenta o tema geral e a situação de mercado, delimita o problema de pesquisa e descreve a

contribuição esperada. O Capítulo 2, de Fundamentação teórica, aborda conceitos fundamentais

para a pesquisa segundo a literatura, apresentando estudos que abordam o tema proposto ou

correlatos, a fim de situar o presente trabalho no contexto da pesquisa. Por sua vez, o Capítulo 3,

de Material e métodos, descreve a metodologia de pesquisa e desenvolvimento da solução

proposta. Segue o Capítulo 4, de Desenvolvimento, que apresenta o processo de construção do

sistema de representação de jogos e de simulação de partidas sintéticas. Então, o Capítulo 5

descreve a execução de um experimento realizado com o sistema para gerar agentes inteligentes

e testar seu uso no processo de coleta de dados de partidas, além de discutir resultados obtidos

e os artefatos gerados no processo. Por fim, o Capítulo 6, de Considerações finais, apresenta

comentários acerca da pesquisa, suas limitações e as perspectivas para trabalhos futuros.

16

2 FUNDAMENTAÇÃO TEÓRICA

A fim de atingir os objetivos propostos, o presente trabalho investiga duas técnicas

para a construção de jogadores digitais autônomos para jogos de mesa, sendo elas a MCTS

e as ResNets, de acordo com os usos que o AlphaZero faz delas. Este capítulo faz a revisão

desses métodos, bem como elenca os trabalhos relacionados a uso de agentes inteligentes como

ferramentas de play-test.

2.1 COMPONENTES FUNDAMENTAIS DE UM JOGO

A descrição de um jogo num ambiente de simulação exige identificar seus componentes

fundamentais. Com esse objetivo, a comunidade de projetistas e desenvolvedores de software

criou o projeto colaborativo BoardGame.io (Boardgame.io developers, 2022), que disponibiliza

um ambiente de representação e simulação de jogos de turnos. Ele define uma partida como

uma sequência de fases, que estão associadas às regras que definem as ações que os jogadores

podem efetuar. Uma fase pode ser constituída por rodadas, em que os jogadores se alternam

segundo uma ordem definida pelas regras. A permissão dada a um jogador de realizar uma ou

mais ações é chamada de turno, o qual pode ser divido em estágios, similarmente às fases.

O projeto mantém dados mutáveis acerca de um momento da partida por meio de estados

e contextos. A manipulação dos estados deve ser descrita pelo projetista do jogo, ao passo em

que o contexto de cada turno é gerenciado pela plataforma e salva dados como a quantidade de

jogadores e o marcador do jogador atual. Essa atualização dos dados de um estado ao efetuar

uma ação é formalmente definida como um movimento, que é implementado como uma função

imutável. Isso significa que todas as informações manipuladas por um movimento devem estar

no estado que ele recebe como argumento.

2.2 JOGOS DE TURNOS DE DESTAQUE

Alguns jogos de turnos clássicos são utilizados como exemplo ou como método nesta

pesquisa e nos trabalhos a ela relacionados. Esta seção contextualiza os seguintes jogos: Jogo da

Velha, Ligue-4 e Go, que são jogos de tabuleiro entre dois jogadores com informação completa.

2.2.1 Jogo da Velha

O clássico Jogo da Velha (em inglês, Tic-tac-toe)2 é jogado em um tabuleiro de 3 linhas e

3 colunas, em que os jogadores se alternam marcando peças nas casas disponíveis. Um jogador

é considerado vitorioso quando três peças adjacentes por ele colocadas formam uma linha

na horizontal ou na vertical ou ainda uma diagonal principal ou secundária no tabuleiro. Um

tabuleiro parcialmente preenchido desse jogo está demonstrado na Figura 1a, ao passo em que

a Figura 1b mostra o mesmo tabuleiro com uma representação de cada jogador na forma de

números inteiros. Nesse caso, o primeiro jogador é salvo como o valor 0 enquanto o segundo é

registrado como o número 1.

A fim de adaptar o Jogo da Velha para marcar pontuação dos jogadores, os autores deste

trabalho elaboraram um jogo variante chamado Snowball. Ele é jogado em um tabuleiro de 9
2Acesso em https://boardgamegeek.com/boardgame/11901/tic-tac-toe.

https://boardgamegeek.com/boardgame/11901/tic-tac-toe

17

Figura 1 — Tabuleiro do Jogo da Velha e sua representação
numérica.

(a) Tabuleiro do Jogo da
Velha.

(b) Tabuleiro do Jogo
da Velha representado

numericamente.

Fonte: elaborado pelo autor (2026).
Nota: Neste estado, o jogador atual é o de símbolo “X”.

linhas e 9 colunas, de forma que um jogador marca 1 ponto quando a casa em que ele posiciona

sua peça forma um formato especificado com as suas casas previamente marcadas.

Os formatos que conferem pontos são uma linha ou diagonal de 5 peças adjacentes, ou

ainda um quadrado de dimensão 2 ou 3. Por isso, beneficia-se o jogador que focar seu controle

sobre uma região do tabuleiro, porque cada nova casa marcada tende a levar a mais de um

formato ao mesmo tempo, o que aumenta a pontuação como uma bola de neve — o que motivou

na escolha do nome da variante.

Essa mecânica é demonstrada na Figura 2, em que o jogador “X” fez 15 pontos e o

jogador “O” fez 14. A partida chega ao fim quando um dos jogadores marca 15 pontos ou

quando 45 dentre as 81 peças do tabuleiro são preenchidas. Então, o jogador com mais pontos

é reconhecido como vencedor.

Figura 2 — Tabuleiro do Snowball e os pontos atribuídos a cada jogador
após efetuar cada jogada.

(a) Tabuleiro do Snowball.
(b) Pontuação dos jogadores

num estado do Snowball.

Fonte: elaborado pelo autor (2026).
Nota: Os jogadores escolheram sequencialmente suas casas da esquerda para
a direita e de cima para baixo.

18

2.2.2 Ligue-4

O Ligue-4 (em inglês, ConnectFour)3 é jogado em um tabuleiro vertical de 6 linhas

e 7 colunas, o que resulta em 42 casas disponíveis para marcação. Suas peças são discos de

mesmo tamanho divididas igualmente entre cada um dos jogadores, que recebe todas as peças

de uma das duas cores disponíveis. Demonstrando as casas marcadas, a Figura 3a representa

um tabuleiro parcialmente preenchido, cujo turno atual é do jogador “O”. Sua representação

numérica considerando a ordem de turnos dos jogadores é exibida na Figura 3b.

Figura 3 — Tabuleiro do Ligue-4 e sua representação nu­
mérica.

(a) Tabuleiro do Li­
gue-4.

(b) Tabuleiro do Li­
gue-4 representado nu­

mericamente.

Fonte: elaborado pelo autor (2026).
Nota: Neste estado, o jogador atual é o de símbolo “O”.

Dentro de um turno, o jogador atual deve escolher uma coluna que já não tenha sido

completamente preenchida para colocar sua peça. Sendo o tabuleiro vertical, ela cairá até a linha

mais baixa ainda não preenchida naquela coluna. Após colocada, uma peça não pode mais ser

removida naquela partida.

Então, a rodada passa a vez para o segundo jogador, que deve escolher seu movimento

da mesma forma que o primeiro. Um jogador vence caso ele posicione 4 de suas peças de forma

adjacente na mesma linha, coluna ou diagonal. Configura um empate o caso em que todas as

casas tenham sido preenchidas e nenhum jogador tenha marcado um dos formatos especificados.

Essas regras fazem com que haja mais de 4.5 trilhões de combinações possíveis de peças no

tabuleiro, mesmo que o jogo permita no máximo 7 movimentos em qualquer turno (Cahn, 2024).

2.2.3 Go

O Go4 é um jogo de estratégia baseados em turnos originado na China. Ele é jogado

por duas pessoas, sendo composto por um tabuleiro de 19 linhas verticais e horizontais. Assim,

consideram-se casas as intersecções das linhas horizontais e verticais, que totalizam 361. O jogo

dispõe de 180 peças brancas e 180 peças pretas, sendo cada cor associada a um dos jogadores.

Uma partida se inicia com o tabuleiro vazio e, em cada rodada, os jogadores se alternam

colocando uma de suas peças em qualquer intersecção não ocupada. Então, elas não podem mais

ser movidas até o fim da partida.

3Acesso em https://boardgamegeek.com/boardgame/2719/connect-four.
4Acesso em https://boardgamegeek.com/boardgame/188/go.

https://boardgamegeek.com/boardgame/2719/connect-four
https://boardgamegeek.com/boardgame/188/go

19

O objetivo do jogo é cercar totalmente as peças adversárias pois, quando um grupo

dessas é totalmente cercado, elas são removidas do tabuleiro. O outro jogador tenta evitar a

captura ao posicionar peças em interseções não dominadas pelo oponente. Vence o jogador que,

ao se esgotarem todos os movimentos, ainda tiver a maior quantidade de peças dispostas no

tabuleiro (Britannica, 2023).

2.3 BUSCA EM ÁRVORE DE MONTE CARLO

O método de busca em árvore de Monte Carlo (MCTS) é um algoritmo de decisão

em que cada nó de uma árvore representa dado estado de um jogo (Coulom, 2006; Kocsis;

Szepesvári, 2006). Além disso, cada nó guarda um contador de visitas e um marcador referente

à qualidade daquele nó para a partida. Os nós se relacionam por arestas entre nó pai e nó filho.

Uma dada aresta representa um movimento tomado por um jogador, que conduz uma transição

entre os estados representados.

O nó raiz da árvore de busca é considerado o seu primeiro nível. Esse nó representa o

primeiro turno, em que está disposto o estado inicial do jogo. O agente inteligente que opera

como o jogador inicial escolhe aleatoriamente um dentre todos os movimentos disponíveis,

segundo as regras do jogo. Essa jogada leva à criação de um novo estado, que é colocado

no segundo nível da árvore. Para o caso de um jogo entre dois jogadores, o segundo jogador

escolherá um dentre os movimentos possíveis. Isso criará um novo estado, que passa o turno

novamente para o primeiro jogador. Esse estado é posicionado no terceiro nível da árvore.

Os níveis irão alternadamente representar as jogadas de cada um dos jogadores. Essa

estrutura possibilita ao algoritmo jogar como cada um dos jogadores, de forma a explorar o

próximo movimento realizado pelo oponente. Dessa forma, o método busca prever a melhor

ação futura segundo o histórico disponível a cada iteração (Świechowski et al., 2022).

O processo de busca em árvore de Monte Carlo tem o objetivo de encontrar as melhores

sequências de jogadas, que conduzam a uma vitória do jogador. Ele é formado por quatro

etapas: seleção, expansão, simulação, e retro-propagação, as quais são representas na Figura 4

(Świechowski et al., 2022, p. 2504).

Figura 4 — Ciclo da busca em árvore de Monte Carlo: suas quatro
etapas são a seleção, a expansão, a simulação e a retro-propagação.

Fonte: Adaptado de Świechowski et al. (2022, p. 2504).

20

A etapa de seleção procura, a partir do nó raiz, o ramo com o melhor nó folha a explorar,

orientada por uma diretriz de busca. A mais frequentemente utilizada nas implementações de

referência é chamada de limite superior de confiança aplicado a árvores (UCT) — ou Upper

Confidence bounds applied to Trees, em inglês — (Kocsis; Szepesvári, 2006).

Essa política atribui a cada nó da árvore um contador de visitas e um marcador da

qualidade parcial da partida, incrementado conforme o ramo da árvore do qual ele faz parte leva

a mais vitórias, ou decrementado caso contrário. Com base nesses dados, a Equação 1 apresenta

como o valor de fitness (avaliação) de um movimento é calculado. Seu objetivo é alinhar a

exploração (exploration) e o aproveitamento (exploitation) do espaço de busca.

Equação 1 — Cálculo de fitness da diretriz de limite superior de confiança aplicado a árvores
(UCT) usada pela busca em árvore de Monte Carlo (MCTS) clássica.

𝑚∗ = max
𝑚∈𝑀(𝑠)

(
𝑄(𝑠,𝑚) + 𝐶 ∗√ln(𝑉 (𝑠))

𝑉 (𝑠,𝑚)
)
 (1)

Na qual:

• 𝑚∗ é o nó que representa o movimento ótimo selecionado pela diretriz;

• 𝑀(𝑠) é o conjunto de nós que representam os movimentos válidos a partir do estado

𝑠, segundo as regras do jogo;

• 𝑄(𝑠,𝑚) é a qualidade da partida calculada por meio de simulações ao jogar o

movimento 𝑚 no estado 𝑠;
• 𝑉 (𝑠) é quantidade de vezes em que o nó que guarda o estado 𝑠 foi visitado nas

iterações anteriores;

• 𝑉 (𝑠,𝑚) é a quantidade de vezes em que o nó que representa o movimento 𝑚 foi

visitado nas interações anteriores;

• 𝐶 é o coeficiente que regula a relação entre exploração e aproveitamento.

Fonte: Adaptado de Świechowski et al. (2022, p. 2505).

Havendo sido selecionado um nó folha e não sendo este um nó que represente o fim do

jogo, então se executa a fase de expansão. Nela, escolhe-se aleatoriamente um movimento dentre

aqueles disponíveis para o estado atual segundo as regras do jogo. Então o estado resultante é

criado, o qual é armazenado em um novo nó, definido como filho daquele que fora selecionado.

A partir do nó criado, realiza-se a fase de simulação. Nela, sucedem-se turnos entre

os jogadores, em que os movimentos são aleatoriamente selecionados. A simulação se encerra

quando é atingido um estado que represente o fim da partida. Uma função de fitness (avaliação)

quantifica a qualidade da partida com o objetivo de aferir a influência do movimento escolhido

na pontuação dos jogadores.

Por fim, na fase de retro-propagação, os nós do ramo selecionado são atualizados com

os dados gerados. O contador de visitas é aumentado em 1, ao passo em que o marcador de

qualidade é incrementado pelo valor de fitness calculado.

Para executar o ciclo de busca, deve-se definir o número de iterações desejado. Cada

iteração levará à expansão de um único novo nó. Ao final de todos os ciclos, os filhos diretos

do nó raiz terão os marcadores de visitas e de qualidade atualizados segundo o andamento das

partidas. A partir desses dados, uma função deve calcular a probabilidade de jogar cada um dos

21

Figura 5 — Uso da busca em árvore de Monte
Carlo (MCTS) para calcular as probabilidades
de jogar cada um dos movimentos válidos a

partir de um estado inicial.

Fonte: Adaptado de Świechowski et al. (2022, p.
2505).
Nota: Neste exemplo, o cálculo das probabilidades
dos três movimentos válidos a partir do estado ini­
cial utilizou apenas a quantidade de visitas a cada
um dos ramos iniciados pelo respectivo movimento.

movimentos. Um exemplo de função que utiliza somente o contador de visitas a cada ramo para

calcular as probabilidades é demonstrado na Figura 5. Dispondo do vetor de probabilidades, o

método da seleção aleatória por roleta escolhe um dos movimentos.

A descrição do método de MCTS permite concluir que ele apresenta boas soluções para

problemas nos quais o espaço de busca não pode ser percorrido completamente em tempo hábil.

Isso se dá porque a política de seleção (UCT) descrita na Equação 1 privilegia os ramos com

maior relevância e deixa de gastar recursos explorando aqueles que não tendem a gerar bons

resultados. O método também diminui a necessidade de uma heurística prévia sobre o domínio

para operar, embora existam trabalhos que buscam defini-la para melhorar o desempenho.

2.4 REDES NEURAIS RESIDUAIS

As redes neurais convolucionais (CNNs) são uma classe de redes neurais profundas

especialmente projetadas para processar dados estruturados em grade. Seus usos se destacam

na áreas de visão computacional, sobretudo para o reconhecimento de imagens. Aprimorando

as redes neurais tradicionais totalmente conectadas, as CNNs utilizam operações de convolução

que permitem capturar padrões espaciais e hierárquicos nos dados de entrada sem definição

prévia dos elementos de interesse (Li et al., 2022).

A arquitetura típica de uma CNN consiste em camadas convolucionais, camadas de

pooling (agrupamento) e camadas totalmente conectadas, conforme demonstrado na Figura 6.

As camadas convolucionais aplicam filtros que detectam características locais, como bordas

e texturas, enquanto as camadas de pooling reduzem a dimensionalidade espacial (downsam

pling), preservando as informações mais relevantes (Li et al., 2022), como representado na

22

Figura 7. Dessa forma, essa classe de redes neurais balanceia a precisão dos detalhes com a

rapidez de convergência pelo processo de downsampling.

Figura 6 — Arquitetura dos métodos uma rede neural
convolucional (CNN).

Fonte: Li et al. (2022, p. 7000).

Figura 7 — Métodos de processamento de entrada em uma rede neural convolucional (CNN).

Fonte: Li et al. (2022, p. 7000).

Seguindo os trabalhos na área, He et al. (2015) introduziram as redes neurais residuais

(ResNets) como uma evolução importante das CNNs. Seu principal objetivo era resolver o

problema de degradação em redes muito profundas. Quando redes neurais convencionais se

tornam excessivamente profundas, sua acurácia tende a saturar e depois degradar, não devido

ao overfitting (sobre-ajuste), mas à dificuldade de otimização (He et al., 2015).

A inovação fundamental das ResNets é a introdução de conexões residuais (shortcut

connections), que permitem que o gradiente flua diretamente através da rede durante o treina­

mento (He et al., 2015; Liang, 2020).

Tais conexões são incorporadas em uma estrutura padrão chamada bloco residual, como

se pode observar na Figura 8. Em vez de aprender uma transformação direta 𝐻(𝑥), cada bloco

aprende uma função residual 𝐹(𝑥) = 𝐻(𝑥) − 𝑥, onde 𝑥 é a entrada do bloco. A saída final do

bloco é então 𝐹(𝑥) + 𝑥, combinando a transformação aprendida com a entrada original (He

et al., 2015). Essa estrutura permite que a rede aprenda transformações incrementais enquanto

preserva informações da entrada (Liang, 2020).

23

Figura 8 — Estrutura de um bloco residual
usado em uma rede neural residual (Res­

Net).

Fonte: He et al. (2015).

O formato de uma ResNet consiste de sucessivos blocos residuais, cada um composto

por camadas convolucionais e normalizações, nas quais a função de ativação utilizada é a

unidade linear retificada (ReLU). Essa função é não-linear, de forma que retorna exatamente o

valor de entrada caso seja positivo, ou retorna 0, caso seja negativo, como detalhado nos traba­

lhos de Nair; Hinton (2010). Essa arquitetura possibilita a construção de redes extremamente

profundas mantendo alta precisão e facilitando o treinamento (He et al., 2015).

2.5 PROJETO ALPHAZERO

O laboratório DeepMind, que é um braço de pesquisa em inteligência artificial (IA)

da Google, visava a criar um jogador autônomo para o Go a nível competitivo. Para atingir

esse objetivo, seus pesquisadores desenvolveram o método de construção de modelos de redes

neurais chamado de AlphaGo. Essa versão gerava dados para treinar o modelo ao colocá-lo para

jogar contra jogadores humanos.

Foi então desenvolvida sua evolução, chamada de AlphaGo Zero, que acumula dados

de treinamento jogando contra si mesma, no que se define como self-play (autoaprendizado por

simulação de partidas). Um novo modelo construído é iniciado com pesos (weight) e vieses

(bias) aleatórios, o que leva a movimentos arbitrários. Ainda assim, a massa de dados gerada

permite identificar quais estados levaram a melhores avaliações pela função de fitness (Silver

et al., 2016).

Dessa forma, por meio de treinamentos e geração de dados sucessivos, o modelo tende

a alcançar desempenho excepcional. Esse processo de lapidação dos pesos e vieses por meio de

self-play é compreendido como um método de aprendizado por reforço (Silver et al., 2017).

O método foi então generalizado para permitir a criação de modelos capazes de aprender

qualquer jogo de tabuleiro dadas apenas as suas regras, ao que se denominou AlphaZero. Os

principais destaques foram os jogos Go, Shogi e Xadrez (Silver et al., 2018).

Um dos objetivos do método AlphaZero é reduzir o custo computacional de agentes

inteligentes que atuam como jogadores. Essa preocupação se torna mais evidente ao considerar

a complexidade das árvores de busca para jogos que apresentam muitos movimentos. Com esse

foco, os pesquisadores propuseram substituir as buscas por modelos de inteligência artificial

baseados em redes neurais. Em vez de simular uma partida para calcular a qualidade de cada

24

movimento, o agente inteligente pode solicitar uma predição a um modelo de ResNet previa­

mente treinado para aquele jogo.

A arquitetura da ResNet aplicada no AlphaZero é representada na Figura 9. Ela se

inicia pela recepção do estado do jogo cujos movimentos viáveis se deseja analisar. Esse estado

passa por uma camada de adaptação, que transforma a entrada em um formato adequado para

realizar as sucessivas convoluções. Em seguida, inicia-se a construção da cadeia profunda de

blocos residuais, ao que se denomina backbone. Por fim, a rede neural duplica o tensor em

processamento para gerar duas saídas.

Figura 9 — Arquitetura de uma rede neural residual (ResNet) composta por
uma camada de adaptação da entrada, uma backbone e camadas de saída

policy head e value head.

Fonte: elaborado pelo autor (2026).

A primeira saída é construída pela camada de policy head, que retorna um vetor de

números reais. Esses valores representam a qualidade atribuída a cada um dos movimentos

válidos a partir do estado fornecido. Na verdade, devido à restrição de formato da saída da rede,

o modelo atribuirá uma classificação para todos os movimentos possíveis de acordo com as

regras do jogo, sendo estes válidos ou não a partir do estado atual. Dessa forma, é necessário

que o designer do jogo simulado descreva previamente a lista de todos os movimentos e os

guarde em um vetor. O algoritmo do agente inteligente indexará as posições deste àquelas do

vetor retornado pela rede.

A segunda saída da ResNet é construída pela camada de value head. Seu retorno é um

valor escalar que representa a estimativa da qualidade do resultado da partida a partir do estado

fornecido. Esse valor será maior para quando houver uma expectativa de vitória e menor para

quando a expectativa for de derrota.

Esses retornos são exemplificados pela Figura 10, que utiliza valores fictícios. O

exemplo considera um estado vantajoso no Jogo da Velha para o jogador “X” que será o próximo

a jogar. O primeiro retorno se refere às qualidades atribuídas pela policy head5. As casas já

preenchidas por peças têm qualidade 0 atribuída, uma vez que nelas não são permitidos mais

movimentos. A casa no canto superior direito, que pode ser marcada pelo terceiro movimento,

apresenta uma qualidade de 0.9, uma vez que sua marcação levaria à vitória imediata do jogador

“X”. As demais casas apresentam qualidades pouco significativas. Além disso, a figura também

5Para fins de melhor visualização consideramos que os valores de qualidade foram transformados em
probabilidades. O retorno da rede neural na verdade é composto por valores reais não normalizados.
No algoritmo, eles devem passar por uma função de softmax para poderem ser sorteados pelo método
da roleta.

25

mostra a forma de retorno da estimativa de qualidade da partida, dada pela value head. Uma

vez que o estado analisado está a um movimento de levar à vitória, a probabilidade de vitória

se mostra alta.

Figura 10 — Predição de um modelo de rede neural residual
(ResNet) para as qualidades estimadas de cada movimento do jogo
e para a expectativa de qualidade da partida a partir de um estado

do tabuleiro no turno do jogador “X”.

Fonte: elaborado pelo autor (2026).
Nota: As predições de qualidade são representadas como probabilidades
para facilitar a visualização, mas seus valores são números reais sem
normalização.

O processo de treinamento de um modelo é feito em duas fases. A primeira se denomina

fase de geração de memória de treinamento, que utiliza a técnica de self-play. Ela constrói

um histórico de partidas que guarda, para cada partida, a pontuação final dos jogadores e a

sequência de turnos e seus estados. No caso de jogos sem cálculo de pontuação, como o Jogo da

Velha ou Xadrez, o resultado final será de 1 ponto para o vencedor e 0 pontos para o perdedor

(Świechowski et al., 2022, p. 2533).

Segue-se então a fase de alinhamento do modelo, que utiliza aprendizado de máquina

(machine learning) para ajustar os pesos e vieses. Para isso, o conjunto de dados gerado é

convertido em conjuntos de entradas e de saídas esperadas, que são fornecidos para um algo­

ritmo de treinamento. Espera-se que o modelo resultante possa gerar uma memória de partidas

mais significativa que o anterior. Assim, entende-se o treinamento como um ciclo, conforme

demonstrado na Figura 11.

É interessante que, durante a fase de geração de memória de treinamento, o agente inte­

ligente tenha alguma orientação sobre quais movimentos levam a melhores jogadas. Para esse

objetivo, o método de MCTS se mostrou útil. Para otimizar sua aplicação, o método AlphaZero

Figura 11 — Ciclo de treinamento de um modelo do
AlphaZero, constituído das fases de geração da memória
de partidas e de alinhamento do modelo de rede neural

residual (ResNet).

Fonte: elaborado pelo autor (2026).

26

removeu a etapa de simulação do ciclo de busca. Em vez dela, a etapa de predição solicita à

ResNet uma estimativa da qualidade dos movimentos e da qualidade da partida, como mostrado

na Figura 12.

Figura 12 — Ciclo da busca em árvore de Monte Carlo guiada
por agentes inteligentes, conforme adaptação do AlphaZero: suas
quatro etapas são a seleção, a predição, a expansão e a retro-propa­

gação.

Fonte: elaborado pelo autor (2026).

Outra alteração se dá na fase de expansão. No método adaptado, em vez de expandir um

único movimento por iteração e avaliar seu resultado, a MCTS guiada por agente inteligente

expande todos os movimentos viáveis a partir do estado atual. Para cada nó gerado, ela incre­

menta o contador de visitas e define um novo marcador de qualidade do movimento, o qual é

preenchido com a estimativa de qualidade dada pela rede para o movimento que gera aquele nó.

Sem que haja uma simulação da partida, não seria possível realizar a retro-propagação,

uma vez que ela depende da análise da pontuação final dos jogadores. Para adaptar essa questão,

a retro-propagação é realizada a partir do nó selecionado e não mais a partir do filho expandido.

O valor de qualidade da partida utilizado como referência é aquele fornecido pela rede.

Uma exceção a esse ciclo se dá quando o estado selecionado pela iteração atual

representa o fim do jogo. Nesse caso, não se realiza predição nem expansão. Em vez disso, a

pontuação dos jogadores é utilizada para calcular a qualidade da partida segundo a perspectiva

do jogador do turno atual. Então, a retro-propagação é feita a partir desse nó terminal com base

na qualidade calculada.

A definição do novo marcador de qualidade em cada nó é relevante para realizar o

cálculo de uma diretriz de fitness adaptada, como demonstrada na Equação 2. A UCT passa a

considerar como componente de aproveitamento apenas a qualidade da partida simulada pelas

iterações. Já como componente de exploração, a política alinha dois fatores: como numerador,

a predição do modelo para o sucesso do movimento representado; e como denominador, a

quantidade de visitas realizadas ao nó resultante da aplicação do movimento, que é somada ao

número 1 para garantir que o resultado não seja indefinido.

27

Equação 2 — Cálculo de fitness da diretriz de limite superior de confiança aplicado a árvores
(UCT) usada pela busca em árvore de Monte Carlo (MCTS) adaptada pelo AlphaZero.

𝑚∗ = max(𝑚 ∈ 𝑀(𝑠)) = 𝑄(𝑠,𝑚) + 𝑋(𝑠,𝑚) (2.1)

𝑋(𝑠,𝑚) = 𝐶 × 𝑃(𝑠,𝑚)
𝑉 (𝑠,𝑚) + 1

(2.2)

Na qual:

• 𝑚∗ é o nó que representa o movimento ótimo selecionado pela diretriz;

• 𝑀(𝑠) é o conjunto de nós que representam os movimentos válidos a partir do estado

𝑠, segundo as regras do jogo;

• 𝑄(𝑠,𝑚) é a qualidade da partida calculada por meio de simulações ao jogar o

movimento 𝑚 no estado 𝑠;
• 𝑋(𝑠,𝑚) é o componente de exploração (exploration) calculado ao jogar o movimento

𝑚 no estado 𝑠;
• 𝑉 (𝑠) é quantidade de vezes em que o nó que guarda o estado 𝑠 foi visitado nas

iterações anteriores;

• 𝑉 (𝑠,𝑚) é a quantidade de vezes em que o nó que representa o movimento 𝑚 foi

visitado nas interações anteriores;

• 𝑃(𝑠,𝑚) é a qualidade previamente atribuída pelo modelo de ResNet para jogar o

movimento 𝑚 no estado 𝑠;
• 𝐶 é o coeficiente que regula a relação entre exploração e aproveitamento.

Fonte: Adaptado de Silver et al. (2016, p. 486); Świechowski et al. (2022, p. 2505).

É relevante considerar como a MCTS utilizada pelo AlphaZero representa um estado do

jogo. Cada casa do tabuleiro guarda a informação sobre a peça marcada em si e o jogador que

a posicionou. O tabuleiro é salvo atribuindo um número a cada um dos jogadores, que pode ser

indexado pela lista de jogadores definida previamente pelo designer do jogo. Essa representação

foi brevemente discutida na Subseção 2.2.1, em que a Figura 1 mostra como o tabuleiro do

Jogo da Velha na Figura 1a é codificado em um estado na Figura 1b. Nessa forma, o primeiro

jogador, de símbolo “X”, é representado pelo número 0, ao passo que o segundo jogador, de

símbolo “O”, é representado pelo número 1. As posições sem peças são definidas com o valor

null. Outra informação armazenada no estado é um marcador de qual jogador deve jogar no

turno atual, o que é feito pelo uso dos mesmos índices da ordem dos jogadores.

A entrada da ResNet utilizada pelo agente inteligente requer que o estado seja codificado

como uma pilha de canais que contêm apenas valores binários (0 ou 1). Essa técnica busca

aproximar a representação do tabuleiro daquela usada por imagens RGB, comumente fornecidas

como entrada a ResNets de reconhecimento de imagens.

No exemplo do Jogo da Velha, o tabuleiro representado na Figura 1b se torna um

conjunto de três canais, como disposto na Figura 13. O primeiro, associado à cor vermelha,

tem uma posição ativada quando o primeiro jogador (representado pelo símbolo “X”) posiciona

nela uma peça, como mostrado na Figura 13a. Similarmente, o segundo canal, associado à cor

verde, representa as casas marcadas pelo segundo jogador (representado pelo símbolo “O”),

28

como mostrado na Figura 13b. Por fim, as casas vazias são representadas no terceiro canal,

associado à cor azul, como mostrado na Figura 13c.

Caso necessário, outras informações podem ser representadas por meio da adição de

novos canais à pilha. Os jogos de tabuleiro para dois jogadores citados requerem a representação

de qual jogador deve executar um movimento no turno atual. Isso é definido em um quarto canal,

cujas posições são marcadas com o número atribuído ao jogador, como mostrado na Figura 13d.

Assim, um estado do Jogo da Velha define todo esse canal como 0 para o jogador de símbolo

“X”, e como 1 para o jogador de símbolo “O”.

Figura 13 — Estado do Jogo da Velha representado como canais binários.
(a) Canal do jogador

“X”.
(b) Canal do jogador

“O”.
(c) Canal de casas va­

zias. (d) Jogador atual.

Fonte: elaborado pelo autor (2026).

Similarmente, a codificação do jogo Ligue-4 pode ser realizada em quatro canais. Essa

forma é exemplificada na Figura 14, em que os canais mostram o resultado da codificação do

estado mostrado na Figura 3, discutido na Subseção 2.2.2. os dois primeiros codificam as casas

marcadas por cada um dos jogadores, o terceiro representa as casas vazias e o quarto indica que

o jogador do turno atual é o de símbolo “O”.

Figura 14 — Estado do Ligue-4 representado como canais binários.
(a) Canal do jogador

“X”.
(b) Canal do jogador

“O”.
(c) Canal de casas va­

zias. (d) Jogador atual.

Fonte: elaborado pelo autor (2026).

2.6 TRABALHOS RELACIONADOS

Os autores deste trabalho buscaram pesquisas relacionadas à área de estudo em dois

campos de interesse. No primeiro foco, elencam-se estudos acerca do uso de agentes inteligentes

na criação e avaliação de jogos. Essa perspectiva visa a verificar o andamento da proposta de

realizar a fase de play-test de forma automatizada, considerando seus métodos e parâmetros

de interesse. Em seguida, os autores buscaram elencar estudos acerca da visualização de dados

analíticos sobre partidas de uma forma efetiva para o usuário dos sistemas.

29

Zook; Fruchter; Riedl (2019) reforçam as vantagens da substituição de jogadores

humanos em partes bem específicas do processo de play-test. O principal destaque é no ajuste

de parâmetros e de dificuldade quando os sistemas do jogo já estão definidos mas se busca uma

melhor experiência para o público alvo do jogo.

Ademais, os autores desenvolvem um estudo combinando técnicas de regressão e

classificação para realizar uma aprendizagem ativa (Cohn; Atlas; Ladner, 1994) de um jogo

shoot’em up. A mecânica desse jogo é bem definida, mas os parâmetros — como velocidades

de jogador, inimigos e tiros — são ajustados através de testes exaustivos. Nesse trabalho, eles

foram substituídos pelo play-test automatizado.

Nos trabalhos de Gudmundsson et al. (2018); Zook; Fruchter; Riedl (2019), a MCTS é

utilizada junto a redes neurais convolucionais (CNNs). Elas são treinadas através de um massivo

conjunto de dados de jogadores reais para prever a dificuldade de missões em jogos digitais

match-3 — respectivamente Candy Crush e Jewels Star Story. Neste tipo de jogo, o jogador

deve mover figuras em uma grade, buscando colocar três ou mais figuras iguais adjacentes, que

são retiradas do tabuleiro e podem gerar outras remoções em cadeia. Os trabalhos conseguem

reproduzir comportamentos de jogadores humanos e avaliar a dificuldade do nível proposto pelo

game designer para uma melhor experiência de jogo.

Sob a ótica de comunicação dos dados gerados ao designer, Wallner; Halabi; Mirza-

-Babaei (2019) desenvolveram um sistema para traçar, em jogos digitais de plataforma, a

trajetória de dados de partidas colhidas diretamente sobre os mapas do jogo. Ele integra dados

de fontes diferentes em uma única visualização capaz de representar o feedback dado pelos

jogadores, suas medidas fisiológicas colhidas e a rastreabilidade dos movimentos em jogo.

Esses dados fisiológicos relacionados ao estímulo do jogador são visualizados de forma

intuitiva pela sua representação em mapas de cor. O espaço do jogo é dividido em regiões, de

forma que a movimentação por linhas que conectam essas regiões têm sua opacidade e espessura

relacionadas à frequência. Ademais, os eventos discretos são agrupados em ícones cujo tamanho

é relacionado à sua frequência, relatando observações de comportamentos durante a partida. A

abordagem diminui a poluição visual, compila um grande conjunto de informações e provê um

grande valor para avaliar um cenário em desenvolvimento.

Similarmente, Stahlke; Nova; Mirza-Babaei (2020) investigam técnicas de representa­

ção de dados em jogos em três dimensões, apresentando os caminhos sobre superfícies para

auxiliar no processo de projeto dos níveis. Registra-se também o uso de agentes para o projeto

ou validação da economia interna dos jogos, mostrado nos resultados iniciais de Ranandeh;

Mirza-Babaei (2023).

Apesar de os trabalhos de testes serem em sua maioria referentes a jogos digitais, que

são normalmente modelados sistemas em tempo contínuo, acreditamos que as mesmas técnicas

podem ser aplicadas a jogos físicos e modelados por sistemas discretos.

30

3 MATERIAL E MÉTODOS

O presente trabalho se classifica como uma pesquisa de natureza aplicada acerca do uso

de agentes inteligentes para realizar a fase de play-test em jogos de tabuleiro. Ela busca, através

de uma abordagem qualitativa, aplicar os métodos utilizados no projeto AlphaZero para criar um

sistema de representação de jogos e simulação de partidas sintéticas para gerar dados de apoio

ao balanceamento. A pesquisa também é exploratória, pois permitirá aumentar familiaridade

acerca da modelagem de jogos e seus mecanismos com os métodos de aprendizagem profunda

para uso como ferramentas de projeto.

3.1 MATERIAL

Dando continuidade aos trabalho desenvolvidos em Araki; Knop (2020); Malosto;

Campos; Knop (2025); Malosto; Knop; Campos (2023), foi desenvolvida neste trabalho a apli­

cação de linha de comando chamada APTS, capaz de representar jogos discretos e gerar agentes

inteligentes que simulem partidas conforme o método de self-play. As simulações coletam dados

sobre as partidas para prover ao projetista do jogo informações estatísticas usadas para orientar

testes de estresse e de balanceamento, que focam em aspectos técnicos em vez de tratar da

experiência do jogador.

3.1.1 Ambiente de execução

Os autores têm a expectativa de que o APTS possa ser acessado por meio de programas

navegadores da internet, dispondo de uma interface de usuário satisfatória para usuários não fa­

miliarizados com programação. Entretanto, concluiu-se que seria vantajoso desenvolver scripts

de teste de software para verificar sua qualidade durante as versões iniciais de desenvolvimento.

Por isso, estabeleceu-se como requisito que o sistema funcionasse como uma biblioteca, de

forma que possa ser utilizado tanto por um programa de linha de comando, como também por

uma página da web.

Com essa perspectiva, escolhemos escrever o código-fonte do sistema na linguagem de

programação JavaScript. Essa é utilizada comumente para o desenvolvimento de páginas da

web, tendo suporte oferecido pelos principais navegadores. Essa linguagem também pode ser

utilizada em um ambiente de execução de linha de comando, sendo o mais comum o Node.js.

Ele utiliza o motor de JavaScript V8, o que aprimora o desempenho dos programas ao compilar

o código-fonte na forma de Just-In-Time (JIT). Apesar de rodar em apenas uma thread, o ciclo

de processamento trata eventos assíncronas por meio de operações primitivas (Node.js, 2025).

3.1.2 Ambiente de desenvolvimento

O ambiente de desenvolvimento do projeto foi configurado utilizando o gerenciador de

pacotes PNPM6. Ele instala e mantém atualizadas as ferramentas citadas e suas dependências

por meio do registro de pacotes NPM7.

6Acesso em: https://pnpm.io/motivation.
7Acesso em: https://www.npmjs.com/.

https://pnpm.io/motivation
https://www.npmjs.com/

31

A fim de evitar enganos de programação, utilizamos um superset do JavaScript chamado

TypeScript, que permite atribuir tipos estáticos e mais complexos a variáveis e funções. Isso

assegura a compatibilidade entre elas ainda em tempo de compilação (TypeScript Team, 2026).

Outra ferramenta de inspeção de código-fonte utilizada é o ESLint (ESLint contributors,

2025) e sua extensão typescript-eslint8. Esse programa é um linter, que encontra e corrige pro­

blemas no código-fonte segundo os padrões e regras configurados. Associamos essa ferramenta

ao formatador automático de código-fonte Prettier9 com o fim de padronizar a disposição de

importações e de atributos de classes, funções, objetos, e demais estruturas.

A fim de arquitetar o APTS como uma biblioteca modular, utilizamos o sistema de

construção Turborepo10. Ele divide um repositório em pacotes, cada um com suas dependências.

Um pacote pode ter dependência em outro dentro do mesmo repositório, o que permite construir

um sistema complexo, mas composto por partes simples. De acordo com as relações inter-

-módulos, o Turborepo gerencia a compilação e a execução do linter de forma independente e

faz cache dos resultados quando possível.

Finalmente, utilizamos a biblioteca de testes de unidade Vitest11. Ela permite definir

casos de teste e executá-los para entradas variadas, o que se provou útil sobretudo para garantir

que as regras dos jogos modelados de fato levem às alterações esperadas nos estados.

3.1.3 Dependências externas

A construção do sistema requereu o uso de bibliotecas e demais pacotes externos

instalados por meio do registro NPM. A biblioteca de maior destaque é a implementação em

JavaScript12 do projeto TensorFlow (Abadi et al., 2016). Ele foi desenvolvido pelo time de

pesquisa da empresa Google e se propõe a facilitar a construção e o treinamento de modelos

de aprendizado de máquina. Os autores deste trabalho selecionaram-no para construir dinami­

camente ResNets em JavaScript, ao passo em que o processamento efetivo do treinamento é

descrito internamento pela linguagem C++.

Com o objetivo de tornar a execução do programa construído o mais determinística

possível, os autores utilizaram a biblioteca seedrandom. Isso foi necessário porque a função

disponibilizada pela linguagem JavaScript para gerar números pseudo-aleatórios não permite

ao desenvolvedor definir uma seed.

Outro pacote utilizado foi o ts-graphviz13, que disponibiliza uma interface de programa­

ção de aplicações (API) para o uso do programa Graphviz14, em conjunto com uma aplicação em

JavaScript. Esse projeto descreve uma linguagem de representação de grafos e redes e oferece

algoritmos que geram imagens a partir das descrições. Os autores o utilizaram para exibir ao

usuário as árvores de busca construídas ao executar o método de MCTS.

8Acesso em: https://typescript-eslint.io/.
9Acesso em: https://prettier.io/.
10Acesso em: https://turborepo.com/docs.
11Acesso em: https://vitest.dev/guide/.
12Acesso em: https://www.tensorflow.org/js.
13Acesso em: https://ts-graphviz.github.io/.
14Acesso em: https://graphviz.org/.

https://typescript-eslint.io/
https://prettier.io/
https://turborepo.com/docs
https://vitest.dev/guide/
https://www.tensorflow.org/js
https://ts-graphviz.github.io/
https://graphviz.org/

32

Finalmente, para elaborar a aplicação de linha de comando, os autores dispuseram da

biblioteca Commander.js15, que facilita a definição de comandos e argumentos. Ela gerencia

o tratamento de dados recebidos do terminal e exibe mensagens de auxílio ao usuário sobre

como preenchê-los. Já para permitir ao usuário selecionar dentre opções de interface já dentro

da execução de um comando, os autores escolheram a biblioteca Inquirer.js16.

3.2 MÉTODOS

Os métodos dessa pesquisa descrevem os passos que o pesquisador deve efetuar para

executar o experimento. As atividades desempenhadas e os artefatos por elas gerados gerados

são representados na Figura 15.

O primeiro requisito para executar a plataforma APTS é descrever por meio de classes

concretas e suas consequentes instâncias todos os componentes fundamentais de um jogo. Então,

o pesquisador poderá simular partidas por meio do algoritmo de MCTS clássico.

Figura 15 — Fluxo de trabalho dos métodos necessários e seus artefatos.

Fonte: elaborado pelo autor (2026).

A fim de construir os agentes inteligentes conforme o método do projeto AlphaZero, o

usuário deve gerar, para aquele jogo, um modelo de ResNet que tenha pesos e vieses aleatórios.

Esse processo exporta a rede em arquivos que definem sua estrutura e seus pesos e vieses. Então,

esse modelo precisa passar por um processo de treinamento em ciclos, contando com coleta de

partidas sintéticas e alinhamento das conexões da rede neural.

A primeira etapa do ciclo de treinamento é executar um algoritmo de self-play que usa

a técnica de MCTS adaptada pelo AlphaZero para direcionar a simulação de várias partidas.

Nesse processo, é gerado um artefato que guarda dados relevantes da atuação dos jogadores

durante as partidas. Entre eles estão a sequências de turnos, em que cada um guarda o estado do

jogo, a expectativa dada pela ResNet da qualidade de cada movimento possível e o movimento

que o agente inteligente de fato tomou. Além disso, para cada partida, é salva pontuação final

15Acesso em: https://github.com/tj/commander.js.
16Acesso em: https://github.com/SBoudrias/Inquirer.js/.

https://github.com/tj/commander.js
https://github.com/SBoudrias/Inquirer.js/

33

dos jogadores, o que permite avaliar se a tomada de uma decisão em certo estado levou a uma

vitória ou não.

O passo seguinte do ciclo de treinamento é fornecer o conjunto de dados sintéticos

construído para um algoritmo que utiliza a técnica de aprendizado de máquina para reforçar

as conexões da rede neural. Esse processo tem o objetivo de capacitar a rede neural a prever

movimentos mais adequados para um estado fornecido. Ao final do alinhamento de pesos e

vieses, o algoritmo exporta como artefato o novo modelo de ResNet. Então, essa rede treinada

pode voltar ao primeiro passo do ciclo para gerar mais um conjunto de memórias, agora mais

especializadas.

Após dispor de modelos de ResNet suficientemente treinados, o APTS deve permitir que

seu usuário os utilize para orientar agentes inteligentes na simulação de partidas. Elas devem

salvar os mesmos artefatos de registro de histórico, que podem ser usados para extrair dados

relevantes sobre a atuação de cada jogador.

Espera-se que esse processo seja capaz de levantar informações comuns à fase de play-

test, mas reduzindo a necessidade de testadores humanos. Dessa forma, foi determinado como

foco do experimento realizado nesta pesquisa: verificar se o processo de treinamento de modelos

de inteligência artificial é capaz de gerar agentes inteligentes viáveis para realizar a etapa de

play-test na prototipagem de jogos.

Para executar o experimento, os autores deste trabalho representaram no sistema o jogo

Ligue-4, que é organizado em turnos e apresenta informação completa. Em seguida, geraram

uma ResNet compatível com o jogo, e a sujeitaram a 21 ciclos de treinamento. Dentre os

modelos criados, os autores selecionaram o que apresentava as melhores métricas de acurácia

segundo determinado pelo algoritmo de alinhamento de pesos e o utilizaram para orientar ambos

os jogadores.

Então, esses agentes inteligentes foram usados na simulação de 100 partidas, cujo histó­

rico foi salvo da mesma forma como os artefatos utilizados no ciclo de treinamento. Por meio

de um algoritmo, os autores extraíram informações de interesse dos históricos e as compilaram

em um artefato final. Esse descreve métricas acerca: (1) da duração das partidas, medida em

quantidade de turnos; (2) da distribuição de movimentos mais escolhidos por cada jogador; e

(3) da contagem de vitórias e derrotas de cada jogador relacionada à duração da partida.

A avaliação da solução proposta foi realizada de forma qualitativa por meio da análise e

discussão sobre a capacidade de os artefatos gerados expressarem conclusões relevantes acerca

do jogo testado. Além disso, também foi avaliada a capacidade do sistema de representar o

Ligue-4 e de gerar agentes inteligentes que o simulem.

34

4 DESENVOLVIMENTO

Este capítulo descreve o desenvolvimento do sistema APTS, realizado como um projeto

de código-livre em um repositório público17 (Malosto; Knop, 2026). Essa aplicação permite a

uma pessoa projetista de um jogo de tabuleiro descrever as regras de um protótipo de jogo.

Então, o programa oferece métodos para gerar e treinar modelos de inteligência artificial que

atuam como agentes inteligentes para simular partidas.

As simulações geram conjuntos de dados acerca de quais movimentos tomados levam

a melhores resultados. Espera-se que, por meio deles, o projetista possa gerar informações

estatísticas acerca das regras implementadas. Isso tem o objetivo de diminuir o esforço humano

nas etapas de play-test, sobretudo aquelas que envolvem testes de estresse e balanceamento, em

que a experiência do jogador não é a variável principal.

O projeto da aplicação desenvolvida a divide em cinco módulos, quais sejam: core,

game, search, games e interface. A Figura 16 representa as relações de dependência entre tais

módulos e com os pacotes externos ts-graphviz e tensorflow. Esta seção discute a responsa­

bilidade e a implementação de cada um dos módulos internos.

4.1 UTILITÁRIOS

O módulo core tem a responsabilidade de definir constantes, tipos e funções utilitárias

para todos os demais módulos. Destacam-se algumas funções de conversão de tipos de dados,

sobretudo para tratar argumentos fornecidos pela linha de comando em suas representações

numéricas. Também estão disponíveis utilitários para a formatação de dados de tipos compostos

e de descritores dos testes de unidade. Além disso, o módulo gerencia a codificação de dados

para o formato de notação de objetos do JavaScript (JSON)18 e a equivalente conversão para

objetos em memória, o que é necessário para salvar e interpretar o histórico de partidas para o

treinamento de modelos.

Figura 16 — Dependências entre os módulos do
sistema e com pacotes externos.

Fonte: elaborado pelo autor (2026).
Nota: Um módulo aponta para o pacote do qual ele
depende.

17Acesso em: https://github.com/ufjf-gamelab/apts.
18Acesso em: https://www.json.org/json-en.html.

https://github.com/ufjf-gamelab/apts
https://www.json.org/json-en.html

35

Figura 17 — Tipos de dados comuns definidos pelo pacote
core.

Fonte: elaborado pelo autor (2026).
Nota: O pacote primitive se refere aos tipos de dados concretos
disponibilizados pela linguagem JavaScript.

A fim de facilitar a compreensão de conceitos comuns ao domínio da aplicação, defini­

mos por meio do TypeScript alguns tipos derivados, utilizados por todo o projeto. Os principais

estão dispostos na Figura 17. Ela explicita os tipos concretos string e number da linguagem

JavaScript, que guardam, respectivamente, texto e números reais. O tipo Char foi um apelido

(em inglês, alias) dado para campos de texto de apenas um caractere, como a marcação de uma

peça em uma casa do tabuleiro. Já o tipo Integer é um apelido para um valor numérico que

deve ser preenchido apenas por um número inteiro, como por exemplo na indexação de dados

em vetores.

4.2 DESCRIÇÃO DE JOGOS

Seguindo a descrição modular do sistema, o módulo game é responsável por estabelecer

os componentes necessários para descrever um jogo de turnos digitalmente. Primeiramente,

definimos tipos úteis para esse pacote e para seus dependentes, como apresentado na Figura 18.

Uma vez que utilizamos vetores extensamente pelo projeto, decidimos criar apelidos para

nomear os índices de movimentos (moves), de casas (slots) e de jogadores (players).

Figura 18 — Tipos de dados comuns definidos pelo pacote
game.

Fonte: elaborado pelo autor (2026).
Nota: O pacote primitive se refere aos tipos de dados concretos
disponibilizados pela linguagem JavaScript.

36

Outro dado comumente referenciado é a marcação de pontos dos jogadores, que é feita

com números inteiros pelo apelido Points. Guardamos a pontuação completa de todos os joga­

dores por meio da estrutura de indexação por chave-valor Map, do JavaScript. No tipo abstrato

PointsOfEachPlayer, as chaves são definidas pelo índice de cada jogador, conforme registrado

pelo projetista do jogo, ao passo em que os pontos são salvos no campo de valor. Finalmente, o

tipo EncodedState representa o formato de codificação de um estado em canais, como descrito

na Seção 2.5. Ele aceita qualquer matriz multidimensional de valores reais, embora tenhamos

respeitado a convenção de utilizar apenas os valores 0 e 1 para definirmos tais codificações.

Após definir os tipos, passa-se à construção dos componentes fundamentais para

descrever um jogo. Eles foram implementados por meio de classes abstratas, uma vez que a

linguagem JavaScript não dispõe de estruturas como interfaces ou protocolos. Os principais

atributos e métodos de cada classe, além das relações entre elas, podem ser vistos na Figura 19.

A classe mais simples é a que representa uma casa do tabuleiro, chamada de Slot. Esse

conceito é um dos mais variáveis em jogos de turnos. Por exemplo, no Jogo da Velha, cada casa

pode apenas ser marcada com o símbolo de um jogador. Já no Xadrez, há vários conjuntos de

peças, que apresentam comportamentos diferentes. Ainda há jogos, como o Gobblet Gobblers19,

em que cada casa pode receber camadas empilhadas de peças. Ou ainda, essa classe poderia

representar uma carta específica dentro de uma mão20. Essa variabilidade não nos permite

Figura 19 — Classes definidas pelo pacote game.

Fonte: elaborado pelo autor (2026).
Nota: As propriedades com visibilidade privada têm métodos públicos de encapsulamento para a
obtenção de seus valores que não foram representados.
19Descrição disponível em: https://boardgamegeek.com/boardgame/13230/gobblet-gobblers.
20Apesar de termos determinado como limite do escopo desta pesquisa a investigação de jogos de

tabuleiro, tentamos manter a implementação genérica para representar jogos de cartas futuramente.

https://boardgamegeek.com/boardgame/13230/gobblet-gobblers

37

atribuir nenhum dado comum. Dessa forma, cabe inteiramente ao projetista definir o conteúdo

possível por meio de uma classe concreta que a implemente.

Em seguida, implementamos a classe abstrata Player, que representa os dados fixos de

um jogador durante todo o período de duração da partida. Os dados comuns identificados foram

acerca da distinção entre os jogadores na interface de execução por linha de comando. Nesse

sentido, quando o projetista for criar um objeto da classe Player, ele deve atribuir um nome

por meio do atributo name e um símbolo por meio do atributo symbol — como “primeiro” (1) e

“segundo” (2), peças “brancas” (B) e “pretas” (P), ou (X) e (O), por exemplo.

Para registrar as possibilidades de transição entre estados, criamos a classe abstrata Move

que representa um movimento. Por padrão, ela apenas guarda dados de identificação para a

interface com o usuário, quais sejam o título com atributo title e sua descrição com atributo

description. Para todas as classes abstratas, o projetista pode definir novos atributos caso sejam

necessários para efetuar as regras do jogo.

A fim de permitir que os agentes inteligentes gerados possam avaliar as qualidade dos

movimentos, é necessário que o projetista descreva previamente ao início da partida todos

aqueles que são possíveis em qualquer momento. Por exemplo, Silver et al. (2017) representam

o Xadrez por meio de 4672 movimentos, por meio de uma matriz de 8 casas na horizontal, 8

casas na vertical e 73 mudanças de estado que uma peça pode efetuar. Apesar de essa lista de

opções ser extensa, ela é necessária porque a estrutura da rede neural usada pelo agente atribui

um valor de qualidade para todos os movimentos do jogo, mesmo aqueles que não são válidos

em um estado específico.

As classes descritas previamente têm a função de armazenar dados imutáveis no con­

texto de uma partida. Para representar um estado — o qual sintetiza a disposição variável dos

elementos em um turno —, desenvolvemos a classe abstrata State. Ela deve manter, por meio

do atributo game, uma referência para a classe que representa um jogo a fim de ter acesso às

suas regras e a outros dados invariáveis.

Outra característica de um estado é manter a disposição de peças nas casas do tabuleiro,

o que é feito por meio do vetor slots. Ele guarda objetos da classe Slot e deve ser indexado

da mesma forma em todos os estados para que o programa consiga acessar os componentes

de forma direta. O método concreto getSlot oferece uma facilidade ao desenvolvedor por

implementar uma busca de uma casa naquele vetor dado o seu índice. Por isso, a decisão de

como organizar os objetos naquele vetor deve ser pensada no mesmo momento em que o proje­

tista implementa o método abstrato getEncodedState, o qual sintetiza todas as informações

relevantes num conjunto de canais a ser fornecido para a rede neural. Outro atributo armazenado

em cada objeto da classe State é o indexOfPlayer, que guarda a informação sobre qual dos

jogadores pode realizar um movimento no turno atual, usualmente chamada de “vez do jogador”.

A pontuação dos jogadores também depende de como os turnos decorreram durante a

partida, o que é salvo no atributo score. Para fins de organização do código-fonte e de abertura

para expansão, criamos uma classe abstrata chamada Score para representar a pontuação de

todos os jogadores em um determinado estado. O único atributo dessa classe é o mapa

pointsOfEachPlayer, que atribui um valor em pontos para cada jogador de acordo com o índice

a esse atribuído pelo projetista. É relevante ressaltar que alguns jogos de tabuleiro, como o

38

Xadrez, não utilizam sistema de pontuação, atribuindo apenas o resultado de vitória para um

dos jogadores. Nesses casos, recomendamos a implementação de forma que a quantidade de

pontos permaneça como 0 durante toda a partida e que, no estado que representa fim de jogo,

esse marcador seja alterado para 1 na entrada referente ao vencedor.

Finalmente, a classe abstrata Game representa as regras do jogo e guarda os conjuntos de

dados imutáveis durante uma partida. Para representá-lo em interfaces com o usuário, o atributo

name requer que o projetista o nomeie. Então, no atributo slots, o projetista deve fornecer a

lista de casas organizada previamente. O mesmo deve ser feito em relação ao argumento moves

para a lista de movimentos e em relação ao atributo players para a lista de jogadores. A classe

oferece métodos auxiliares que buscam por um movimento ou por um jogador em seu respectivo

vetor dado o seu índice.

Em relação aos métodos abstratos da classe Game, destacamos os getQuantityOfRows,

getQuantityOfColumns e getQuantityOfChannels que respectivamente definem a a quanti­

dade de linhas, de colunas e de canais da matriz que representa um estado codificado. Esses

dados devem ser definidos previamente e ser imutáveis para um jogo, porque eles são usados

na construção da arquitetura da ResNet que orienta o agente inteligente.

Outro método que deve ser determinístico é o constructInitialState, em que o

projetista descreve a forma como o estado inicial da partida é construído. Por exemplo, no Jogo

da Velha, ele se iniciaria com um tabuleiro vazio. Já no Xadrez, as casas de um lado do tabuleiro

e do outro devem estar preenchidas pelas devidas peças de cada um dos jogadores.

O comportamento dos quatro últimos métodos citados seria melhor representado por

métodos abstratos estáticos, uma vez que seus resultados não dependem de nenhum dos atributos

guardados da classe. Entretanto, a linguagem JavaScript não permite a definição desse tipo de

método, motivo pelo qual foram implementados como métodos abstratos e dinâmicos.

Agora tratando dos métodos da classe State que utilizam dados de seus objetos,

destacamos a responsabilidade do método getIndexesOfValidMoves. Sua função é determinar,

a partir de um certo estado fornecido, quais são os movimentos que o jogador daquele turno

poderá executar. Para fins de otimização de memória, seu retorno deve ser um conjunto sem

repetição de índices referentes aos movimentos válidos de acordo com a ordem dada pelo vetor

salvo na classe Game. Esse comportamento é obtido pela estrutura de dados Set, implementada

na linguagem JavaScript. Esse conjunto de jogadas válidas é utilizado, entre outros, para filtrar

o vetor de qualidades atribuídas pelo modelo de ResNet e apresentar apenas os adequados ao

agente inteligente.

Com uma lógica de implementação similar, o método getIndexOfNextPlayer deve

determinar de qual jogador será a vez no próximo turno. É comum que os jogadores se alternem

sequencialmente a cada turno durante uma rodada, mas é possível para o projetista definir as

regras do jogo de forma que um jogador deixe de jogar por um turno ou que tenha nele mais

de um movimento. O retorno desse método deve ser o índice do jogador escolhido conforme o

vetor salvo na classe Game.

Com o auxílio do último método, o projetista pode descrever as regras para atualizar

um dado estado. Uma vez que seguimos a convenção de que os componentes de descrição do

jogo devem ser imutáveis, o método play, responsável por essa atualização, retorna um novo

39

objeto da classe State. Seus argumentos são o estado do turno atual e o índice do movimento

a ser realizado. O projetista deve codificar a lógica para descrever a lista de casas atualizada,

incrementar ou decrementar as pontuações e definir próximo jogador.

Após cada turno, é necessário determinar se o estado gerado leva ao fim da partida.

O projetista deve descrever essa consulta por meio do método isFinal, que recebe o estado

referenciado e retorna um valor do tipo boolean, definido como true para quando a partida

deve se encerrar ou como false para quando ela deve continuar. Para isso, ele dispõe de todos

os dados discutidos, como a disposição das peças, a pontuação dos jogadores e quaisquer outros

atributos que ele tenha acrescentado às classes concretas criadas por ele.

4.3 IMPLEMENTAÇÃO DOS JOGOS

A fim de executar o experimento desta pesquisa, descrevemos e implementamos os

componentes necessários de três jogos no módulo games, quais sejam: o Jogo da Velha uma

variante dele nomeada de Snowball e o Ligue-4. Para cada um, definimos objetos concretos

de forma a permitir ao usuário do sistema jogá-los. Uma parte representativa dos objetos foi

selecionada para realizar testes de unidade, a fim de garantir que as regras dos jogos estavam

bem definidas antes de prosseguir com a execução dos métodos de busca.

Conforme descrito na Subseção 2.2.1, percebe-se que não há marcação de pontuação

durante a partida do Jogo da Velha, nem há em seu espaço de busca complexidade suficiente

para avaliar o uso de agentes inteligentes. Por isso, elaboramos e implementamos sua variante

Snowball, que permitiu comprovar a viabilidade do ambiente de representação de jogos para

aqueles dependentes de manutenção do dado de pontuação em cada estado.

Nesta seção, descrevemos o processo de implementação do jogo Ligue-4, discutido na

Subseção 2.2.2, destacando seus componentes de descrição. Ele foi escolhido para realizar o

experimento porque é um jogo de informação completa entre dois jogadores que apresenta um

tamanho de tabuleiro razoável e uma quantidade pequena de movimentos possíveis. Em relação

à implementação das classes abstratas, poucas adaptações foram necessárias. Todas as classes

concretas seguiram a convenção de iniciar seus nomes com o termo ConnectFour seguido do

nome da classe que ela implementa.

Conforme visto na Figura 20, as classes Slot e Move foram acrescidas de novos atributos.

Além disso, observamos a necessidade de criar uma nova estrutura de dados abstrata para repre­

sentar os formatos considerados para levar à vitória, o que foi feito pelo tipo ConnectFourShape.

Ele permite definir linhas de um tamanho arbitrário — embora tenhamos escolhido 4 peças

conforme a descrição padrão do jogo — e a direção de marcação — se horizontal, vertical ou

em uma diagonal principal ou secundária.

A primeira classe concreta implementada foi a ConnectFourPlayer, referente aos dados

imutáveis de cada jogador. O Ligue-4 não guarda nenhuma informação relevante sobre um

jogador exceto aquelas necessárias para a sua distinção na interface com o usuário. Assim, não

foi necessária nenhuma alteração na classe. Ao criar seus objetos, escolhemos arbitrariamente o

nome “Alice” e o símbolo “X” para o jogador de índice 0 e o nome “Bruno” e símbolo “O” para

40

Figura 20 — Classes concretas alteradas na implementação do
Ligue-4 e tipo utilitário nela definido.

Fonte: elaborado pelo autor (2026).
Nota: As propriedades com visibilidade privada têm métodos públicos
de encapsulamento para a obtenção de seus valores que não foram repre­
sentados.

o jogador de índice 1. Tais valores não representam nomes reais de pessoas, mas servem apenas

como facilitadores de distinção entre esses objetos para os desenvolvedores do protótipo.

Em seguida, implementamos a classe concreta ConnectFourSlot, que representa o con­

teúdo guardado em uma casa do tabuleiro. O Ligue-4 utiliza peças simples, cuja única diferença

é a cor, que é associada a cada um dos jogadores. Por isso, a única informação relevante para

cada casa é se ela está vazia ou, caso não esteja, qual jogador a preencheu. Então, acrescentamos

o atributo indexOfOccupyingPlayer, que pode ser assinalado com o índice 0 caso o jogador

“X” tenha marcado uma peça, com o índice 1 caso o jogador “O” o tenha feito, ou com o valor

null se a casa estiver vazia. Quanto aos objetos utilizados pelo experimento, criamos todas as

49 casas, definindo o atributo de jogador ocupante como null e nomeando-as com a convenção

“rXcY”, em que os termos “X” representam o índice da linha que ela ocupa e o termo “Y”

representa o da coluna. Para os testes de unidade, também criamos novos objetos preenchidos

em diferentes combinações.

Diferentemente do Jogo da Velha, em que cada movimento tem relação direta com

uma única casa do tabuleiro, o Ligue-4 precisa calcular a posição onde marcar uma peça

a depender de dois fatores: o índice da coluna escolhida pelo jogador e a disposição de

peças já marcadas nela. Percebe-se então que esse índice deve ser armazenado no atributo

indexOfColumnInWhichPlacePiece da classe concreta ConnectFourMove. Implementamos

também o método auxiliar getIndexOfSlotInWhichPlacePiece, responsável por acessar, de

baixo para cima, cada casa da coluna para encontrar a primeira que esteja vazia no estado

fornecido. Depois, criamos um objeto para cada uma das colunas, cujo índice guardamos no

atributo discutido e cujos títulos e descrições foram dados em relação ao seu número ordinal.

A verificação acerca da marcação dos formatos de linha foi implementada por funções

no arquivo nomeado ConnectFourShape. A lógica desses utilitários é sintetizada no Algoritmo 1,

41

que determina se um formato iniciado em dada casa está sendo ocupado por algum jogador e,

caso esteja, qual é o seu índice.

Algoritmo 1 — Código-fonte simplificado da função
getIndexOfPlayerWhoIsOccupyingShape.

function getIndexOfPlayerWhoIsOccupyingShape(

 indexOfFirstSlot: IndexOfSlot, shape: Shape

): IndexOfPlayer | null {

 const slots = getSlotsThatFormShape(indexOfFirstSlot, shape);

 let indexOfPlayerOccupyingPreviousSlot = null

 for (const slot of slots) {

 const indexOfPlayer = slot.getIndexOfOccupyingPlayer();

 if (indexOfPlayerOccupyingPreviousSlot == null) {

 indexOfPlayerOccupyingPreviousSlot = indexOfPlayer;

 } else if (indexOfPlayer !== indexOfPlayerOccupyingPreviousSlot) {

 return null;

 }

 indexOfPlayerOccupyingPreviousSlot = indexOfPlayer;

 }

 return indexOfPlayerOccupyingPreviousSlot;

}

Fonte: elaborado pelo autor (2026).

Essa função é utilizada na classe concreta ConnectFourScore, que representa e oferece

métodos para calcular a pontuação dos jogadores. Quando seus objetos são inicializados,

todos os jogadores têm atribuído o valor de 0 pontos. Por meio de seu método auxiliar

getUpdatedScore, o programa verifica, para cada uma das casas, se houve marcação de qualquer

uma das linhas de 4 peças adjacentes. Caso positivo, a função retorna um objeto Score em que

o jogador vencedor é marcado com 1 ponto.

Então, a classe concreta ConnectFourGame utiliza todos os dados discutidos para repre­

sentar as regras do jogo. Ao criar seu objeto, o projetista deve fornecer as listas de jogadores,

movimentos e casas previamente instanciadas. Um primeiro método de destaque dessa classe

é o getIndexesOfValidMoves, cuja implementação recebe um estado e retorna os índices das

colunas do tabuleiro em que alguma de suas casas ainda esteja vazia. Após selecionar um movi­

mento, o jogador deve executar o método play, que retorna o estado atualizado com a marcação

da peça na posição escolhida, além da eventual pontuação nova caso tenha sido uma jogada

vitoriosa. Em seguida, o algoritmo utiliza o método isFinal para determinar se a partida chegou

ao fim com o novo estado, o que ocorre quando todas as casas estão preenchidas ou quando um

dos jogadores marcou um ponto. Caso a partida continue, o método getIndexOfNextPlayer é

responsável por passar a vez para o oponente.

Outra responsabilidade da implementação da classe Game é estabelecer a quantidade

de linhas, de colunas e de canais do estado codificado. Decidimos utilizar a mesma dimensão

do tabuleiro (6 linhas e 7 colunas) para a codificação e empilhar sobre ela 4 canais de dados,

inicializados com o valor 0. Como descrito na Seção 2.5, o canal de índice 0 terá cada um de seus

valores definido como 1 se a casa correspondente por estiver marcada pelo jogador “X”. Já as

casas do canal de índice 1 serão ativadas pelas peças do jogador “O”, ao passo em que as casas

vazias ativam o canal de índice 2. Finalmente, o canal de índice 3 tem a responsabilidade de

42

Figura 21 — Tipos de dados comuns definidos pelo pacote
search.

Fonte: elaborado pelo autor (2026).
Nota: O pacote primitive se refere aos tipos de dados concretos
disponibilizados pela linguagem JavaScript.

informar à rede neural de qual jogador é a vez no turno atual, sendo completamente preenchido

com 0 caso seja do jogador “X” ou com 1 caso seja do jogador “O”.

4.4 ELABORAÇÃO DOS ALGORITMOS DE BUSCA

Havendo devidamente representado o jogo Ligue-4, passamos à implementação do

módulo search, responsável pelos algoritmos de busca em árvore de Monte Carlo e de predição

por meio de ResNets. A lógica de construção de suas principais classes foi inspirada pela

implementação de referência de Förster (2023).

Primeiramente define-se tipos úteis para a melhor descrição de conceitos comuns, como

mostrado na Figura 21. Todos eles são apelidos do tipo primitivo number, que representa

números reais. Seus significados são descritos nesta seção, conforme a discussão acerca de

seus usos.

O primeiro elemento necessário para implementar a MCTS é a classe abstrata TreeNode,

cujo diagrama é apresentado na Figura 22. Ela tem a função de implementar um nó da árvore

de busca, o qual representa um estado da partida simulada e que é guardado em seu atributo

state. Também são importantes os dados sobre o histórico que levou até esse estado. Por isso,

armazenamos no atributo indexOfPlayedMove o índice do movimento jogado no turno anterior

e no atributo indexOfPlayerWhoPlayedMove o índice do jogador que o efetuou. O caso em que

esses dois marcadores estarão vazios é no início da partida, que corresponde ao nó raiz da árvore.

Para representar a transição entre os nós e permitir realizar a fase de retro-propagação

da busca, salvamos em cada nó a referência para seu nó pai por meio do atributo parentNode,

que estará vazio apenas para a raiz da árvore. Uma vez que um estado pode levar a múltiplas

configurações da partida por meio de cada um de seus movimentos válidos, decidimos repre­

sentar, no atributo childrenNodes, as transições do nó para seus filhos por meio de um mapa

indexado, em que cada entrada marca o movimento escolhido e o nó que ele gerou.

Como discutido na Seção 2.3 sobre a diretriz de fitness da MCTS, a cada ciclo de busca, a

etapa de retro-propagação incrementa o contador de visitas e atualiza a expectativa de qualidade

da partida para todos os nós do ramo selecionado. Esses dois marcadores são armazenados nos

atributos quantityOfVisits e qualityOfMatch, respectivamente.

43

Figura 22 — Classe TreeNode definida no pacote search.

Fonte: elaborado pelo autor (2026).
Nota: As propriedades com visibilidade privada e protegida têm métodos públicos
de encapsulamento para a obtenção de seus valores que não foram representados.

Quanto aos métodos da classe TreeNode, destacamos o getQualityOfMatchFromScore,

que converte a pontuação final dos jogadores em um número do tipo QualityOfMatch, represen­

tante da qualidade da partida para o jogador atual. Uma vez que esse comportamento é necessário

em outras partes do projeto, a maior parte do seu processamento é, na verdade, realizado por

um método auxiliar chamado calculateQualityOfMatch, que recebe as pontuações e o índice

do jogadores atual. Esse dado de qualidade é retro-propagado recursivamente até o nó raiz

por meio do método updateQualityOfMatchAndQuantityOfVisitsOnBranch, incrementando-

-o nos turnos do jogador vencedor e decrementando-o para os demais.

Já a etapa de seleção é gerenciada pelo método selectBestChildNode, que calcula o

valor de fitness para cada nó já expandido e escolhe o melhor. Para isso, é chamado o método

calculateFitnessOfChild, que soma os componentes de aproveitamento e de exploração da

equação de UCT, equilibrando-os por meio do coeficiente de exploração fornecida. Uma vez

que a MCTS clássica e a adaptada pelo AlphaZero calculam o valor de fitness de forma diferente,

utilizamos os métodos abstratos para defini-los.

Finalmente, o método qualityOfMove é responsável por classificar os movimentos

válidos a partir do estado inicial da árvore. A forma de avaliação utilizada pela implementação

44

de referência (Förster, 2023) prioriza os movimentos que levaram a ramos com o maior número

de visitas. Essa lógica se justifica porque se entende que um estado muito visitado foi aquele

mais selecionado pela diretriz de busca. Entretanto, percebemos que, quando realizamos a busca

a partir de um estado próximo de levar a uma vitória, essa heurística se prova falha. Isso ocorre

porque o estado vitorioso não gera mais filhos e, dessa forma, não pode mais ser visitado pela

busca. Assim, o algoritmo é obrigado a visitar seus vizinhos, o que os torna melhor classificados.

Para resolver esse problema, decidimos alterar o cálculo da qualidade de um movimento para a

Equação 3, que alinha a qualidade estimada da partida e a quantidade de visitas ao dado ramo.

Equação 3 — Cálculo da qualidade de um movimento a partir da árvore de busca construída
pelo método de busca em árvore de Monte Carlo (MCTS).

𝐴(𝑛) = 𝑄(𝑛) + 4√𝑉 (𝑛) (3)
Na qual:

• 𝐴(𝑛) é a qualidade do movimento representado pelo nó 𝑛;

• 𝑄(𝑛) é a qualidade da partida calculada por meio de simulações a partir do nó 𝑛;

• 𝑉 (𝑛) é quantidade de vezes em que o nó 𝑛 foi visitado nas iterações anteriores.

Fonte: elaborado pelo autor (2026).

A busca em árvore de Monte Carlo é gerenciada pela classe abstrata Search, cujo

diagrama é mostrado na Figura 23. Ela armazena dados relevantes para executar o algoritmo,

como o coeficiente de exploração e a quantidade de ciclos a serem realizados, o que é guardado

no atributo quantityOfExpansions, além de um objeto da classe auxiliar Random que realiza

operações pseudo-aleatórias a partir da mesma seed informada ao programa.

O método abstrato expandTree da classe Search executa o ciclo de busca, utilizando

o método selectNextNode para realizar a etapa de seleção e o método simulateMatch para

implementar a etapa de simulação da MCTS clássica ou de predição da MCTS adaptada pelo

AlphaZero. Esse primeiro algoritmo foi implementado nas classes concretas CommonSearch e

CommonTreeNode. Essa define a etapa de expansão por um método chamado expand, que recebe

o movimento a expandir e gera um único novo nó.

Já em relação à MCTS adaptada, a classe concreta AgentGuidedSearch implementa

a busca e define um novo atributo chamado predictionModel, que guarda o modelo de

ResNet responsável por orientar a etapa de predição. Em seguida, durante a etapa de

expansão, os valores estimados por sua policy head geram todos os movimentos válidos

Figura 23 — Classe Search definida no pacote
search.

Fonte: elaborado pelo autor (2026).

45

para o estado atual. Essa fase é implementada pelo método expand da classe concreta

AgentGuidedTreeNode, que recebe aquele vetor e guarda a qualidade estimada no novo atributo

qualityOfMoveAttributedByModel de cada nó filho. Por fim, a predição da qualidade da partida

é utilizada para orientar a fase de retro-propagação.

4.5 CONSTRUÇÃO DA REDE NEURAL RESIDUAL

Considerando a variação de complexidade entre diferentes jogos e seguindo a recomen­

dação da implementação de referência (Förster, 2023), possibilitamos ao projetista de um

protótipo definir parâmetros da arquitetura da rede neural residual utilizada pelos agentes inteli­

gentes. Para isso, criamos a classe ResidualNeuralNetwork, que recebe os seguintes dados: (1)

seed, usado para inicializar os pesos e vieses da rede neural; (2) quantityOfResidualBlocks,

para definir a quantidade de blocos residuais a serem criados na backbone da rede; e (3)

quantityOfHiddenChannels, referente à quantidade de canais usada nas camadas internas de

processamento da rede.

A classe construtora de modelos de rede neural e as operações sobre tensores foram

disponibilizadas pelo pacote do projeto TensorFlow.js. Ele disponibiliza algumas formas de

construir a arquitetura da rede, dentre as quais selecionamos a de LayersModel. Tomamos

o cuidado de encapsular o uso do TensorFlow dentro dessa classe, a fim de permitir sua

substituição se necessário sem requerer a refatoração de outros componentes do projeto. Então,

definimos funções auxiliares para a construção das camadas de adaptação da entrada, de blocos

residuais e de saída para a policy head e para a value head.

Acerca do treinamento, o método train dessa mesma classe recebe os conjuntos de

estados codificados e de saídas esperadas para a policy head e para a value head. O alinha­

mento dos pesos e vieses é realizado pelo método fit do objeto de LayersModel, utilizando

o otimizador estimativa de momento adaptativo (Adam). Para a policy head, selecionamos a

função de perda de entropia cruzada categórica (em inglês, categorical cross-entropy), ao passo

em que escolhemos a função de erro quadrático médio (em inglês, mean squared error) para

calcular a perda da value head. Quanto à execução do programa, permitimos que o usuário

escolha os seguintes parâmetros: (1) quantityOfEpochs, para definir a quantidade de épocas de

treinamento; e (2) sizeOfBatch, para ajustar o tamanho do conjunto de entradas e saídas usado

a cada passo de alinhamento.

4.6 GERAÇÃO DE MEMÓRIAS DE TREINAMENTO

Com o fim de encapsular o uso da ResNet e de relacioná-la com um jogo implementado,

criamos uma nova classe no módulo search chamada PredictionModel. Seu método mais

relevante é denominado predict, que recebe um estado e retorna dois elementos: (1) o vetor

das qualidades atribuídas a cada movimento listado para aquele jogo; e (2) a qualidade estimada

para a partida a partir do turno atual.

Definimos também a função auxiliar calculateProbabilityOfPlayingEachMove, que

recebe o vetor de qualidades mencionado, o conjunto dos índices dos movimentos válidos

naquele estado e um valor do tipo SofteningCoefficient, o qual é definido pelo usuário do

46

Figura 24 — Tipos de dados relacionados à criação de uma memória de
partidas definidos pelo pacote search.

Fonte: elaborado pelo autor (2026).

programa. Essa função aplica uma transformação de softmax, utilizando o coeficiente citado

para ajustar a proporção em que os movimentos mais bem avaliados devem se destacar entre

as probabilidades calculadas. Essas são retornadas na estrutura de um mapa que contém apenas

entradas para os movimentos válidos.

Criamos então, na classe auxiliar Random, o método pickMoveConsideringItsQuality,

que usa essas probabilidades para ordenar a lista de movimentos válidos e sorteia um número

aleatório para selecionar um deles. Dessa forma, aqueles com maiores probabilidades associadas

têm mais chance de serem selecionados na roleta.

Para implementar o ciclo de treinamento do modelo, que envolve gerar uma memória

de partidas simuladas e alinhar os pesos e vieses da rede neural aos resultados dos turnos,

descrevemos os tipos de dados mostrados na Figura 24.

O uso dos tipos MemoryOfTurn e MemoryOfMatch estão associados ao algoritmo de

self-play, implementado pela função buildMemoryOfMatch, cujo código-fonte simplificado é

mostrado no Algoritmo 2. Ele recebe um objeto do tipo AgentGuidedSearch, que realiza a busca

em árvore de Monte Carlo adaptada pelo projeto AlphaZero.

A inicialização do processo de geração de memória define a variável que armazenará

o histórico de turnos, implementada como um vetor de objetos do tipo MemoryOfMatch. Além

disso, são criados os marcadores auxiliares do estado atual e do jogador que realizou o último

movimento na partida.

Então, inicia-se um laço de repetição, em que o algoritmo utiliza a MCTS para obter as

qualidades atribuídas a cada um dos movimentos. Uma vez que a ResNet precisa receber o vetor

completo de todos os movimentos possíveis no jogo, as posições referentes aos movimentos

inválidos são preenchidas com o número especial que representa infinito negativo no JavaScript.

O algoritmo dá prosseguimento ao turno, ao utilizar o método pseudo-aleatório da roleta

para selecionar um movimento. Em seguida, os dois marcadores, o vetor de qualidades, o estado

codificado e o índice do movimento escolhido são armazenados no histórico.

Esse movimento selecionado é executado sobre o estado atual, gerando um novo estado,

o qual é aferido para determinar se ele levou ao fim da partida. Caso positivo, a função

buildMemoryOfMatch retorna um objeto do tipo QualityOfMatch, que é composto pelo histórico

47

Algoritmo 2 — Código-fonte simplificado da função buildMemoryOfMatch.
function buildMemoryOfMatch(

 search: AgentGuidedSearch

): MemoryOfTurn[] {

 const game = search.getGame();

 const memoryOfTurns: MemoryOfTurn[] = [];

 let currentState = game.constructInitialState();

 let indexOfPlayerWhoPlayedMove: IndexOfPlayer | null = null;

 while (true) {

 const qualitiesOfMoves = searchQualityOfMoves(search, currentState);

 const indexesOfValidMoves = game.getIndexesOfValidMoves(currentState);

 const indexOfPickedMove = random.pickMoveConsideringItsQuality(↵

 indexesOfValidMoves, qualitiesOfMoves);

 memoryOfTurns.push({

 encodedState: currentState.getEncodedState(),

 indexOfPlayer: currentState.getIndexOfPlayer(),

 indexOfPlayerWhoPlayedMove,

 qualitiesOfMoves,

 indexOfPickedMove

 });

 const nextState = game.play(indexOfPickedMove, currentState);

 if (nextState.isFinal()) {

 const finalPointsOfEachPlayer = nextState.getScore() ↵

 .getPointsOfEachPlayer();

 return {

 finalPointsOfEachPlayer,

 memoryOfTurns,

 };

 }

 indexOfPlayerWhoPlayedMove = currentState.getIndexOfPlayer();

 currentState = nextState;

 }

}

Fonte: elaborado pelo autor (2026).

de turnos e pela pontuação de todos os jogadores no fim da partida. Caso contrário, os marca­

dores auxiliares são atualizados e mais um passo de simulação é realizado.

Considerando que o treinamento de um agente inteligente requer um histórico grande de

partidas, criamos uma nova função chamada buildMemoryOfMatches. Ela recebe do usuário o

parâmetro quantityOfIterations, acerca da quantidade de partidas a serem simuladas. Então,

começa um laço de repetição que salva num vetor do tipo MemoryOfMatch todos os resultados

das execuções do método buildMemoryOfMatch já discutido.

Por fim, o método convertMemoryOfMatchesToTrainingMemory transforma o resultado

da fase de geração de memórias em três vetores de tipo único. O primeiro deles, encodedStates,

guarda os estados codificados salvos em cada turno simulado. Por sua vez, o segundo, policies,

armazena os vetores de qualidade de movimentos também salvos durante a simulação. Final­

mente, o terceiro, values, é obtido pelo uso do método auxiliar calculateQualityOfMatch,

48

Figura 25 — Interface do programa Sistema de Teste de Jogabilidade Automatizado
(APTS).

Fonte: elaborado pelo autor (2026).

que usa a pontuação e o marcador de jogador atual em cada turno para calcular a qualidade da

partida. Esses três vetores são retornados num objeto do tipo TrainingMemory.

4.7 INTERFACE COM O USUÁRIO

As funcionalidades criadas e discutidas requeriam uma interface padronizada para

que aplicações as acessassem sem interagir com os detalhes de implementação. Para isso,

organizamos no pacote interface um conjunto de ações disponíveis ao usuário. Elas foram

implementadas como comandos de terminal em um pacote do projeto chamado node, que

utilizou para isso a biblioteca Commander.js. A Figura 25 exibe a interface da tela de ajuda do

programa APTS, mostrando os comandos disponíveis, que são discutidos nesta seção.

Inicialmente, oferecemos no comando search-quality uma forma de visualização da

árvore de busca gerada pelo método de MCTS. Para isso, o usuário fornece os seguintes dados:

(1) a estratégia de busca — se a clássica ou a adaptada pelo AlphaZero —; (1a) o modelo

de predição, caso o usuário escolha a versão adaptada; (2) o coeficiente de exploração para

cálculo da diretriz UCT; (3) a quantidade de ciclos iterados pela MCTS; (4) o coeficiente de

suavização para calcular as probabilidades atribuídas a cada movimento; (5) uma seed para

calcular os valores pseudo-aleatórios; e (6) o estado sobre o qual se quer descobrir os melhores

movimentos viáveis. O programa executará a busca, calculará as qualidades e probabilidades

dos movimentos e os imprimirá, conforme exemplo dado da Figura 26. Além disso, será gerado

um arquivo do formato SVG que exibe árvore de busca montada, o qual é gerado pelo programa

Graphviz e cujos recortes são mostrados na Figura 27.

49

Figura 26 — Qualidades de movimentos e probabilidades de vitória
a efetuá-los estimadas pela MCTS clássica.

(a) Qualida­
des dos movi­

mentos.
(b) Probabilida­

des de vitória.

Fonte: elaborado pelo autor (2026).

Caso o usuário queira obter apenas a avaliação de um modelo de predição sobre um

determinado estado, ele pode informá-los ao comando predict-quality, que também requer

o coeficiente de suavização. Ela solicitará a predição ao modelo e imprimirá as qualidades dos

movimentos retornadas e probabilidades calculadas.

O programa também oferece ambientes de execução de partidas entre dois jogadores

humanos, que interajam pelo mesmo terminal por meio do comando play-match-pvp, como

mostrado na Figura 28a. Ele requer que se informe o estado do jogo sobre o qual se deseja iniciar

a partida. Então, inicia um laço de repetição até que a partida chegue a um estado de fim de

Figura 27 — Árvore de busca montada ao avaliar a qualidade de um estado por meio da MCTS
clássica.

(a) Recorte a partir da raiz. (b) Recorte a partir de um estado avançado.

Fonte: elaborado pelo autor (2026).

50

jogo. A cada iteração, o algoritmo obtém por meio das regras quais são os movimentos válidos a

partir do estado atual. Em seguida, mostra essa lista ao usuário por meio da biblioteca Inquirer.js

e requer que ele escolha um movimento. O programa o efetua, marca o estado gerado como o

atual e verifica se ele representa o fim da partida.

Laços similares são implementados para as ações em que o usuário decide jogar contra

o computador ou quando ele inicia um jogo entre dois agentes inteligentes, como exibido na

Figura 28b. Nesses casos, em vez de solicitar a seleção de movimentos para o jogador, o algo­

ritmo utiliza a MCTS para obter as probabilidades dos movimentos por meio do comando play-

match-using-search, ou apenas solicita essas predições para modelos de ResNet fornecidos,

por meio do comando play-match-using-agent. Então, o movimento efetuado é escolhido

pseudo-aleatoriamente pelo método da roleta.

Acerca da geração de agentes inteligentes, o programa oferece três comandos relevantes.

O primeiro é o constuct-model, que gera um modelo de ResNet segundo os parâmetros

informados e o exporta em dois arquivos de descrição do TensorFlow. O primeiro é um arquivo

de formato JSON que descreve toda a estrutura da rede neural — a qual pode ser observada

na Figura 29 —, e o segundo é um arquivo binário que salva os pesos e vieses aleatoriamente

gerados. Ao usar esse comando, o usuário deve fornecer os dados acerca: (1) do jogo a ser

simulado; (2) da quantidade de blocos residuais; (3) da largura em canais da backbone da rede;

e (4) da seed usada para inicializar as conexões.

Esse primeiro modelo gerado não estará apto a orientar um agente inteligente. Antes

disso, é necessário sujeitá-lo ao processo de treinamento. O primeiro passo para isso é gerar a

Figura 28 — Ambiente de jogatina entre jogadores e entre agentes inteligentes.
(a) Modo jogador vs. jo­

gador.
(b) Modo agente inteligente vs. agente in­

teligente.

Fonte: elaborado pelo autor (2026).

51

Figura 29 — Estrutura de uma ResNet criada para o jogo Ligue-4 com dois blocos residuais.

Fonte: elaborado pelo autor (2026).

memória de partidas sintéticas. Com esse objetivo, o comando build-training-memory gera

um vetor do tipo MemoryOfMatch por meio da função buildMemoryOfMatches discutida na

Seção 4.6 e o salva em um arquivo de tipo JSON, como exibido na Figura 30. Em seguida, o

programa converte a memória num objeto do tipo TrainingMemory e também o salva em outro

arquivo de tipo JSON.

Finalmente, o comando train pode ser chamado para alinhar um modelo ao histórico

gerado. Para isso, o algoritmo utiliza o método train discutido na Seção 4.5. Um parâmetro

novo que esse comando requer é chamado valueToReplaceInfinity, que tem o objetivo de

substituir o marcador de movimento impossível nos vetores de qualidade salvos na memória de

partidas. Isso é necessário para que o TensorFlow consiga realizar operações sobre os valores

de entrada dentro de seu limite de representação de bits. Dessa forma, o valor fornecido para o

comando de treinamento atua como uma penalidade para os movimentos inválidos.

52

Figura 30 — Dados representativos de memórias de partidas sintéticas geradas pelo método de
self-play.

Fonte: elaborado pelo autor (2026).
Nota: Os estados codificados foram representados como tabuleiros para facilitar a visualização. Nos
arquivos, eles são salvos no formato de canais binários.

53

5 RESULTADOS

A execução do experimento de geração de agentes inteligentes requer que se realizem

as atividades descritas na Seção 3.2. Seu primeiro passo é codificar classes de representação

do jogo simulado, qual seja o Ligue-4, e instanciar os objetos relativos aos seus componentes

fundamentais, como descrito na Seção 4.3. Então, deve-se criar um modelo de rede neural

específico para essa implementação, realizar seu treinamento e executar a coleta de dados de

partidas sintéticas. Este capítulo descreve como tais atividades foram efetuadas e discute os

resultados delas obtidos.

5.1 GERAÇÃO DE AGENTES INTELIGENTES

A fim de gerar os agentes inteligentes usados no experimento, deve-se criar uma estru­

tura de ResNet por meio da execução do comando constuct-model, discutido na Seção 4.7.

Inspirados pela sugestão dada pela implementação de referência (Förster, 2023), decidimos

construir um modelo para o jogo Ligue-4 de 8 blocos residuais e com largura de 128 canais

internos. O algoritmo desse comando constrói a rede neural e a exporta como uma pasta que

guarda dois arquivos: o de estrutura das camadas; e o de definição dos pesos e vieses.

Em seguida, elaboramos, com o apoio da ferramenta de IA para geração de texto Claude

Sonnet 4.521, um conjunto de scripts para facilitar a execução dos comandos previamente

implementados no APTS e para extrair métricas a partir dos artefatos que ele gera. O primeiro

script, chamado de train_model, é descrito em linguagem fish22 e realiza o ciclo de treinamento

descrito na Seção 2.5.

Esse script chama o comando build-training-memory com argumentos especificados

pelo usuário. Ele deve definir o agente inteligente usado para orientar a simulação de partidas,

o que requer sua geração por meio do comando anterior. Seu algoritmo então começa a simular

uma série de partidas jogadas segundo o método de MCTS adaptada pelo AlphaZero. Ao final,

ele guarda, em uma pasta aninhada dentro da pasta do modelo de ResNet, as memórias de

partidas e de treinamento geradas.

Para esse comando, definimos a MCTS para realizar 512 ciclos de busca, a um

coeficiente de exploração de 1.4, com o fim de explorar suficientemente o espaço de busca,

sem comprometer drasticamente o tempo de execução do experimento. Além disso, o agente

inteligente utilizou o método de softmax a um coeficiente de suavização de 1 para selecionar

um movimento avaliado. Também definimos o parâmetro de seed como 1.

O segundo passo do ciclo gerenciado pelo script train_model é executar o comando

train para gerar um novo modelo de rede neural com pesos e vieses melhor alinhados à

memória de treinamento. Seu algoritmo utiliza as ferramentas disponibilizadas bela biblioteca

TensorFlow.js para dividir a memória em conjuntos de tamanho fixo e randomizar a ordem

desses, a fim de aumentar a variabilidade. Encontramos uma limitação na biblioteca, que não

permitiu definir valor de seed para esse sorteio. Por fim, é exportada uma nova pasta que contém

21Acesso em: https://www.anthropic.com/claude/sonnet.
22Acesso em: https://fishshell.com/docs/current/language.html.

https://www.anthropic.com/claude/sonnet
https://fishshell.com/docs/current/language.html

54

os arquivos da ResNet treinada. Sua localização é aninhada à pasta da memória de treinamento,

o que forma uma estrutura de árvore de arquivos, em que cada ciclo gera mais um bloco.

Para esse comando, definimos o tamanho da janela de fornecimento dos dados sintéticos

como 128 turnos, e determinamos que cada alinhamento deve ser realizado em 16 épocas.

Dentro de cada época, 15% dos dados foram utilizados para validação do alinhamento. Por meio

de alguns testes preliminares, identificamos que o valor de penalidade para movimentos invá­

lidos não mostrou diferença significativa nas métricas de acurácia do processo de alinhamento,

o que nos motivou a defini-lo como 0. Executamos o ciclo de treinamento continuamente, o que

resultou na geração de 21 modelos de ResNet consecutivamente treinados até a data de fim do

experimento.

O comando train salva junto a cada um o registro de métricas de treinamento aferido

pelo TensorFlow. Com base nisso, criamos um script chamado analyze_training_logs, que

acessa a pasta do primeiro modelo e busca seus descendentes, que naquela são aninhados. Esse

algoritmo lê as métricas de acurácia da policy head e da value head associadas à última época

de treinamento de cada modelo e as salva em memória. Então, ele organiza os modelos em duas

listas, ordenadas de forma decrescente para cada uma das métricas. Cada lista é exportada para

um arquivo do formato CSV.

Por meio deste artefato, identificamos os melhores modelos de ResNet de acordo com

a policy head, como disposto na Tabela 1, e de acordo com a value head, listados na Tabela 2.

Percebemos que o melhor resultado convergiu relativamente cedo, no 4º ciclo de treinamento,

para uma acurácia de 0.667935 na predição de movimentos e de 0.557322 na estimativa da

qualidade da partida. Após isso, houve leve piora nas métricas, que variaram próximas de

0.571429 para ambas as saídas por vários ciclos, comumente voltando a esse exato valor.

Tabela 1 — Melhores modelos de ResNet
ordenados por acurácia da policy head.

Ciclo Policy head Value head

4º 0.667935 0.557322
7º 0.571429 0.571429
8º 0.571429 0.571429
13º 0.571429 0.571429
15º 0.571429 0.571429

Fonte: elaborado pelo autor (2026).

Tabela 2 — Melhores modelos de ResNet
ordenados por acurácia da value head.

Ciclo Policy head Value head

7º 0.571429 0.571429
8º 0.571429 0.571429
13º 0.571429 0.571429
15º 0.571429 0.571429
16º 0.571429 0.571429

Fonte: elaborado pelo autor (2026).

Esses resultados parecem indicar que o agente inteligente é capaz de interpretar o

cenário de um turno, ainda que não atinja uma compreensão tão expressiva como esperado.

A proximidade das métricas com a faixa de 57% levanta preocupações sobre a capacidade do

agente inteligente de reconhecer qual dos jogadores ele deve representar em cada turno. Outra

percepção obtida é sobre a duração do processo. Para o jogo Ligue-4, que têm baixa comple­

xidade, é razoável considerar que poucos ciclos de treinamento são necessários, uma vez que

após o 7º ciclo não foram observadas melhoras na acurácia.

55

5.2 SIMULAÇÃO DE PARTIDAS

Após selecionarmos o melhor agente inteligente, avaliamos sua atuação em partidas

simuladas do jogo Ligue-4. Para isso, executamos o comando play-match-using-agent do

APTS, definindo o mesmo modelo de ResNet para orientar ambos os jogadores e configurando

o coeficiente de suavização do método de softmax como 1.

A fim de diminuir a chance de obter um resultado pouco representativo, definimos um

script para executar esse comando 100 vezes, variando o valor de seed de 1 a 100. Cada execução

gera uma pasta que contém o arquivo de histórico da partida, da mesma forma como aquele

gerado para construir a memória de treinamento.

Em seguida, criamos um script responsável por, para cada partida, ler seu histórico de

turnos e coletar em um arquivo auxiliar os seguintes dados: (1) o índice do jogador vencedor,

ou null caso haja empate; (2) a quantidade de turnos decorridos até o fim da partida; (3) a

quantidade de vezes em que o primeiro jogador efetuou cada um dos 7 movimentos; e (4) essa

mesma análise para as jogadas do segundo jogador.

Ao fim, esse script ainda compila os dados analíticos em um arquivo de estatísticas

com um conjunto de informações. A primeira é o cálculo da média, da mediana e do desvio

padrão da duração das partidas, como exibido no Quadro 1. Percebemos que a partida mais

célere apresentou duração de 15 turnos, ao passo em que a mais longa decorreu por 40 turnos.

Comparando todas as simulações, o jogo Ligue-4 tende a ser concluído numa média de 24.32

turnos, apresentando mediana de 23.00 e desvio padrão de 5.94. Considerando o tamanho do

tabuleiro de 42 casas e a baixa complexidade do jogo, essas métricas parecem razoáveis.

Quadro 1 — Métricas acerca da duração em turnos de partidas simuladas do
jogo Ligue-4.

Mínimo Máximo Média Mediana Desv. pad.

15 40 24.32 23.00 5.94
Fonte: elaborado pelo autor (2026).

Outro dado coletado por aquele script é a quantidade de empates e de vitórias de cada

jogador ao fim de cada partida. O algoritmo relaciona esse dado com a duração das partidas em

turnos, classificada em quatro faixas, como apresentado na Tabela 3.

Essa análise demonstra uma vantagem para o jogador “X” caso ele consiga encerrar

o jogo em até 20 turnos, ocasiões em que ele teve 80% de chance de vitória. Caso a partida

dure mais, as chances para o jogador “O” se equilibram, ainda que se demonstre uma vantagem

notável para o jogador “X”. Análises como essa podem ser especialmente úteis para projetistas

de jogos, que devem buscar um equilíbrio entre os jogadores além do número total de turnos.

Tabela 3 — Análise de vitórias dos jogadores segundo
faixas de duração de partidas simuladas do jogo Ligue-4.

Jogador “X” Jogador “O”
Duração Turnos

N % N %

T <= 20 25 20 80% 5 20%
20 < T <= 30 59 35 59% 24 41%

56

Jogador “X” Jogador “O”
Duração Turnos

N % N %

30 < T 16 9 56% 7 44%
Total 100 64 64% 36 36%

Fonte: elaborado pelo autor (2026).

Por fim, a ferramenta também registra a frequência de jogada de cada movimento por

cada um dos jogadores, como apresentado na Tabela 4. No jogo Ligue-4, esperávamos que os

agentes inteligentes privilegiassem a 4ª coluna do tabuleiro, pois ela é a que permite formar

mais linhas de peças adjacentes. Entretanto, percebemos que essa hipótese não se concretizou

para o experimento simulado. Isso pode indicar vícios no processo de treinamento das ResNets,

que não teriam explorado o suficiente estados em que tal coluna levou a vitórias.

Tabela 4 — Análise de movimentos mais jogados por
cada agente inteligente em partidas partidas simuladas do

jogo Ligue-4.

Coluna
Jogador

1ª 2ª 3ª 4ª 5ª 6ª 7ª

Jogador
“X”

77 292 67 138 208 112 254

Jogador
“O”

41 300 24 205 300 230 84

Total 118 592 91 343 508 342 338

Fonte: elaborado pelo autor (2026).

Quanto aos demais jogos implementados, o Jogo da Velha e o Snowball, não executamos

o experimento de geração de agentes inteligentes e obtenção de estatísticas por meio de partidas

sintéticas. Ainda assim, o Jogo da Velha foi útil para iniciarmos a modelagem da arquitetura

do sistema e criarmos os testes de unidade. Em seguida, o Snowball teve a relevância de pôr à

prova a capacidade de representação de jogos mais complexos e de uso de pontuação durante as

partidas. Dessa forma, o APTS na atual versão permite ao usuário jogar esses jogos contra outras

pessoas ou contra o algoritmo de MCTS clássica, que também afere a qualidade de movimentos

viáveis a partir de um estado fornecido.

57

6 CONSIDERAÇÕES FINAIS

Este trabalho se tratou de uma pesquisa de natureza aplicada e exploratória que visou o

uso dos métodos usados no projeto AlphaZero como ferramenta de auxílio no projeto de jogos.

Seu objetivo específico é criar um ambiente de representação de protótipos de jogos de turnos

com o fim de auxiliar pessoas criadoras de jogos a realizarem a fase de play-test. Esse sistema

representa jogos de turnos arbitrários e permite a simulação de partidas. Além disso, o programa

avalia os movimentos viáveis a partir de um estado por meio do método clássico de MCTS e

por meio de agentes inteligentes orientados por ResNets.

A hipótese tomada é que os agentes inteligentes são capazes de realizar a fase de play-test

de jogo de forma automatizada por meio da geração do histórico de partidas sintéticas, e destacar

estatísticas que delas emergem. Dessa forma, os projetistas de jogos de turnos podem reduzir

o uso de recursos humanos quando o interesse é realizar testes de estresse e balanceamento.

Então, esse estudo pode oferecer perspectivas e ferramentas inovadoras ao cenário de criação

de jogos autorais.

Para isso, foi desenvolvido o sistema Sistema de Teste de Jogabilidade Automatizado

(APTS) que, de forma geral, foi capaz de viabilizar a representação de jogos de turnos de

informação completa e organizados em tabuleiros. Como resultado, foi possível modelar o Jogo

da Velha, uma variação autoral dele em um tabuleiro maior chamada de Snowball, e ainda o jogo

Ligue-4, o que comprovou a viabilidade de representar diferentes estilos de jogo na plataforma.

Esse último jogo foi selecionado para criarmos um agente inteligente orientado pela

MCTS clássica, que é executada pelo programa e gera como artefatos a estimativa de qualidade

de jogar cada um dos movimentos disponíveis e uma imagem da árvore de busca construída.

Essa tecnologia foi aprimorada ao substituir a busca em árvore pela predição de modelos de

ResNets, usada para gerar o artefato de estimativa de qualidades do movimentos.

Como objetivo de viabilizar essa técnica, implementamos no APTS métodos responsá­

veis por ajustar os modelos de rede neural para que suas predições sejam mais acuradas. Nesse

sentido, o sistema permite criar uma instância de ResNet inicial e fornecê-la novamente ao

programa para que seja usada como método de orientação de um agente inteligente focado em

geração de memória de treinamento. Ele usa a MCTS com adaptações que incorporam a ResNet,

conforme o projeto AlphaZero, para escolher os melhores movimentos em uma série de partidas

simuladas.

Algoritmos auxiliares usaram comandos disponibilizados pelo APTS para continua­

mente alinhar os modelos aos dados por eles próprios gerados num processo de aprendizado por

reforço, comumente chamado de self-play. Esse processo permite ao usuário do sistema ajustar

os parâmetros para criar agentes inteligentes com diferentes estratégias de jogo.

Então, ele é capaz de usar comandos do APTS alinhados a um script auxiliar para que

tais agentes treinados se enfrentem em uma série de partidas, cujos dados podem ser extraídos

em métricas úteis acerca da quantidade de vitórias de cada jogador, da duração do jogo e da

predileção por certos movimentos.

Essas métricas demonstram a capacidade de uso do sistema construído para auxiliar

no processo de play-test, reduzindo a necessidade de testadores humanos nessa fase, ainda

58

que tenha sido atestada a necessidade de novos estudos e encontradas possíveis melhorias a

fazer. Dessa forma, acreditamos ter contribuído diretamente às pessoas projetistas de jogos de

tabuleiro autorais, por fornecer uma ferramenta diretamente aplicável ao seu trabalho.

Numa perspectiva maior, esperamos que este trabalho tenha contribuído de forma

positiva para o cenário de criação de jogos de turnos autorais, que se encontra em crescimento e

requer o estudo de métodos inovadores. Isso se justifica por termos fornecido uma avaliação de

hipótese promissora acerca dos métodos abordados, e termos aplicado conceitos de represen­

tação de jogos de forma genérica o suficiente para compreender uma variabilidade grande de

estilos de jogos.

Contudo, encontramos possíveis problemas no processo de alinhamento das redes

neurais aos dados de memória gerados, de forma que não está certo se os agentes inteligentes

foram capazes de compreender plenamente como qual dos jogadores eles deveriam atuar em

cada turno. Uma proposta de solução razoável é gerar um agente inteligente que atue apenas

como um jogador. Entretanto, isso incorreria em maior gasto de recursos e dificultaria o uso do

sistema para jogos com uma quantidade grande de jogadores. Essa perspectiva faz necessário

investigar formas mais adequadas de representar dados de um estado no formato de canais de

números binários, o qual é requerido como entrada da ResNet.

Também é relevante ressaltar a necessidade de mais experimentos variando os parâme­

tros utilizados em várias fases do processo. Durante a fase de criação de memórias, poderíamos

testar valores diversos para a quantidade de ciclos realizados pela MCTS ou o coeficiente de

exploração por ela utilizado. Ainda, seria interessante testar diferentes quantidades de simula­

ções de partidas ao gerar as memórias, ou variar o coeficiente de suavização usado pelo método

de seleção de movimento por roleta. Já durante a fase de alinhamento de pesos e vieses, é

possível utilizar um tamanho diferente para o conjunto de turnos alinhado a cada passo ou, ainda

mais relevante, a quantidade de épocas de treino e de ciclos de treinamento, que deixaram de

variar significativamente depois de poucas iterações.

Outra questão que não ficou evidente é a determinação do parâmetro de penalização de

movimentos inválidos, cujo valor foi dado como 0. Ao mesmo tempo em que seu uso poderia

levar a uma convergência mais rápida para os movimentos úteis, um valor muito alto levaria a

uma diferença expressiva entre os valores de qualidade calculados para os movimentos bons e

o coeficiente, o que resultaria numa aferição alta para a função de perda.

Resta ainda uma reflexão acerca da construção da rede neural utilizada para o jogo

simulado, o Ligue-4. Considerando o pequeno espaço de busca de seus movimentos, é possível

que uma ResNet com menos blocos residuais e com menor largura de backbone compreenda

melhor estratégias desse jogo. Nesse sentido, é interessante considerar também se uma estrutura

de rede neural mais simples que a ResNet levaria a melhores resultados para espaços de busca

pequenos.

Finalmente, destacamos que não foi possível definir um valor de seed para o método de

alinhamento da rede neural disponibilizado pela biblioteca TensorFlow.js. O processo aleatório

do qual ele depende é o sorteio do conjunto de entradas e saídas a alinhar em cada momento.

Isso tornou essa etapa de execução não-determinística, o que prejudica a reprodutibilidade dos

resultados. Quanto aos demais usos de valores pseudo-aleatórios, certificamo-nos de gerá-los

59

por meio da seed fornecida pelo usuário. Assim, também pode-se realizar mais experimentos

variando seu valor.

Outro ponto a explorar é a avaliação da qualidade de um movimento realizada após o

fim da construção da árvore de busca. É comum selecionar aquele que levou a mais visitas

em seu ramo da árvore, mas isso prejudica movimentos que imediatamente levam a um estado

vitorioso, o qual não pode mais ser visitado. Para resolver esse problema, criamos uma função

de avaliação que alinha a qualidade estimada da partida com a quantidade de visitas em cada

ramo. Contudo, sua especificação foi arbitrária e requer maiores experimentos ou uma mais

intensa busca na literatura para substituí-la.

Acerca da representação de jogos, este trabalho apresentou como limitação o suporte

apenas a jogos de turnos, o que se justifica pela tradução direta para código-fonte de compo­

nentes fundamentais que os definem. Os autores seguiram a convenção de que, a cada turno,

pode existir apenas um estágio, no qual a única ação disponível é que o jogador do turno efetue

um movimento. Em jogos mais complexos, cada turno pode se dividir em estágios com objetivos

diferentes, como primeiramente comprar uma carta do baralho e depois escolher um movimento.

Além disso, é possível que outros jogadores atuem dentro do turno que a princípio não está

alocado a eles. Essas especificidades podem ser representadas em trabalhos futuros.

Nesse sentido, a necessidade de conhecimento da linguagem JavaScript para implemen­

tar as classes concretas e em seguida suas instâncias oferece uma restrição para parte dos

usuários. Idealmente, os projetistas não deveriam precisar ter esse conhecimento específico,

mas utilizariam uma plataforma com interface gráfica com suporte a navegadores web. Então,

a descrição dos protótipos deveria ser completamente desconectada da base de código-fonte

do sistema. Para isso, poderíamos adaptar o APTS para reconhecer linguagens específicas de

domínio, como a Game Description Language (GDL)23 ou a Zillions by rules files (ZRF)24.

Ainda acerca da experiência do usuário, elenca-se como trabalho futuro implementar

formas de extração e representação dos dados de play-test relevantes ao projetista de forma

intuitiva e integrada no sistema. Para testar esse aprofundamento, pode-se utilizar a variante

criada para o Jogo da Velha, o Snowball, que apresenta um espaço significativo de busca, de 81

movimentos possíveis. Suas regras levam à expectativa de que um jogador atue para prejudicar

o domínio de área do oponente no tabuleiro. Assim, pode-se realizar um experimento para

verificar se essa impressão se materializa.

Nesse contexto, o sistema atualmente foi testado apenas para jogos de tabuleiro, ainda

que os autores tenham tomado o cuidado de estabelecer os componentes de forma abstrata o

suficiente para implementar jogos de cartas. Contudo, existe uma complicação para esse tipo

de jogo em relação à sua codificação em canais, uma vez que a entrada da ResNet requer uma

matriz de três dimensões, o que comumente representa as linhas e colunas do tabuleiro e, em

seguida, os canais de dados. Para jogos de cartas, não há uma relação direta entre esses conceitos,

o que também abre uma linha de investigação futura.

Ademais, é uma característica comum de jogos de cartas que os jogadores não mostrem

aos demais as cartas que seguram em cada turno. Isso os configura seus estados como de infor­

23Acesso em: http://logic.stanford.edu/ggp/notes/gdl.html.
24Acesso em: https://www.zillionsofgames.com/language.

http://logic.stanford.edu/ggp/notes/gdl.html
https://www.zillionsofgames.com/language

60

mação incompleta, o que exige mais estudos acerca da representação desses na forma codificada

para a entrada na ResNet.

Outrossim, existe uma preocupação quanto à necessidade de descrever todos os movi­

mentos possíveis de um jogo no momento em que se realiza a sua representação. O jogo

Ligue-4, usado no experimento deste trabalho, permitia executar apenas 7 movimentos, o que

não constitui um problema. Já o jogo de Xadrez como implementado pelo projeto AlphaZero

apresenta 4672 movimentos, os quais deveriam ter, cada um, um nome e descrição. Apesar de a

maior parte desse número ser devido a combinações das mesmas peças em diferentes situações

— cujas instâncias poderiam ser definidas por meio de scripts —, ainda é pouco ergonômico

para um usuário pensar em todas essas possibilidades antes sequer de testar o protótipo. Por

isso, é relevante pesquisar sobre a possibilidade de treinar a rede neural para atribuir qualidades

apenas aos movimentos válidos dinamicamente gerados a cada turno.

GLOSSÁRIO

COMPUTAÇÃO

agente inteligente. Sistema capaz de interpretar um estado, tomar decisões autô­

nomas e agir para atingir objetivos definidos, aprendendo a adaptar seu comporta­

mento (Holmgård et al., 2019).

apelido. Em inglês, alias. Nome alternativo dado a um tipo de dado, função ou outro

elemento de programação para referenciá-lo de forma mais conveniente.

AlphaZero. Algoritmo de autoaprendizado por reforço que combina MCTS e ResNets

profundas para dominar jogos de tabuleiro, desenvolvido pelo laboratório Google

DeepMind (Silver et al., 2018).

aprendizado de máquina. Em inglês, machine learning. Área da IA que desenvolve

algoritmos capazes de aprender padrões a partir de dados sem programação explí­

cita, melhorando seu desempenho através da experiência (GeeksforGeeks, 2025a).

aproveitamento. Em inglês, exploitation. Componente do critério UCT na MCTS que

favorece nós com maior valor médio estimado, aproveitando recompensas já obser­

vadas para guiar a seleção (Kocsis; Szepesvári, 2006).

entropia cruzada categórica. Em inglês, categorical cross-entropy. Função de perda

utilizada em problemas de classificação multi-classe que mede a divergência entre

a distribuição de probabilidade prevista pelo modelo e a distribuição real das classes

(Li et al., 2022).

erro quadrático médio. Em inglês, mean squared error. Função de perda que calcula

a média dos quadrados das diferenças entre valores previstos e valores reais,

utilizada em problemas de regressão (Li et al., 2022).

exploração. Em inglês exploration. Componente do critério UCT na MCTS que prioriza

nós pouco visitados, ampliando a busca e evitando convergir cedo demais (Kocsis;

Szepesvári, 2006).

fitness. Em português, avaliação. Métrica que quantifica a qualidade de um estado

ou solução em relação aos objetivos, atribuindo um valor numérico que orienta a

tomada de decisão ou o processo de aprendizado.

linter. Em português, analisador estático de código. Ferramenta que analisa código-

-fonte para identificar e corrigir problemas de sintaxe, estilo e potenciais defeitos

sem executar o programa.

overfitting. Em português, sobre-ajuste. Fenômeno em que um modelo de aprendi­

zado de máquina se ajusta excessivamente aos dados de treinamento, capturando

ruído e padrões específicos em vez de generalizar para novos dados, resultando

em baixo desempenho para dados não vistos (GeeksforGeeks, 2025b).

perda. Em inglês, loss. Métrica que quantifica a discrepância entre as predições de um

modelo de aprendizado de máquina e os valores reais esperados (Li et al., 2022).

peso. Em inglês, weight. Parâmetro ajustável que pondera a conexão entre neurônios

em uma rede neural, determinando a força da influência de uma entrada sobre a

saída de uma unidade (Li et al., 2022).

pooling. Em português, agrupamento. Operação em CNNs que reduz a dimensio­

nalidade espacial dos dados, preservando as informações mais relevantes ao

selecionar valores representativos de regiões locais (Li et al., 2022).

rede neural. Em inglês, neural network. Modelo computacional composto por camadas

de unidades interligadas que aprendem padrões em dados por meio de ajustes de

pesos (Li et al., 2022).

seed. Em português, semente. Valor inicial fornecido a um gerador de números

pseudo-aleatórios para garantir reprodutibilidade dos resultados.

self-play. Em português, autoaprendizado por simulação de partidas. Técnica em que

um agente inteligente treina jogando contra versões de si mesmo para aprender

estratégias por reforço sem dados externos (Silver et al., 2017).

softmax. Função de ativação que converte um vetor de valores reais em uma distri­

buição de probabilidade, na qual cada elemento é transformado num valor entre 0 e

1, e a soma de todos os elementos resulta em 1 (Li et al., 2022).

thread. Em português, linha de execução. Unidade básica de processamento que

executa instruções de forma independente dentro de um processo. Um programa

que opera com mais de uma thread permite que múltiplas tarefas sejam executadas

concorrentemente.

vetor. Em inglês, array. Estrutura de dados que armazena uma coleção ordenada de

elementos acessíveis por índices numéricos sequenciais.

viés. Em inglês, bias. Parâmetro aditivo em um neurônio de rede neural que ajusta

o limiar de ativação, permitindo que o modelo se adapte melhor aos dados (Li et

al., 2022).

JOGOS

casa. Em inglês, slot. Unidade discreta que compõe o tabuleiro e pode conter peças

ou recursos.

estado. Em inglês, state. Representação completa da situação do jogo em um

instante, incluindo o conteúdo das casas, os recursos, a pontuação dos jogadores

e demais condições vigentes.

jogador. Em inglês, player. Participante que toma decisões e executa movimentos

conforme as regras do jogo.

jogo. Em inglês, game. Sistema de regras que define objetivos, jogadores, movimen­

tos e condições de vitória ou encerramento (Suits, 1967).

jogo de tabuleiro. Em inglês, board game. Jogo que utiliza um tabuleiro composto por

casas para posicionar peças ou marcadores, onde os movimentos seguem regras

espaciais definidas pelo layout do tabuleiro.

jogo de turnos. Em inglês, turn-based game. Jogo em que os jogadores atuam de

forma alternada em turnos sequenciais, fazendo o estado avançar passo a passo.

Neste tipo de jogo, não são permitidos movimentos simultâneos.

movimento. Em inglês, move. Ação tomada a partir de um estado que altera as

condições atuais, levando a um novo estado.

partida. Em inglês, match. Sessão completa do jogo, iniciando nas condições iniciais

e terminando quando uma condição de fim é atingida.

play-test. Em português, teste de jogabilidade. Avaliação prática de um jogo com

participantes para observar a experiência e coletar feedback de melhoria.

pontuação. Em inglês, score. Valor que indica o desempenho de um jogador segundo

as regras do jogo.

rodada. Em inglês, round. Ciclo completo de turnos no qual todos os jogadores têm a

oportunidade de agir uma vez.

turno. Em inglês, turn. Período em que um único jogador realiza seus movimentos

antes de passar a vez.

REFERÊNCIAS

ABADI, Martín et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
9 nov. 2016. Disponível em: https://arxiv.org/abs/1603.04467. Acesso em: 13 jan. 2026.

ARAKI, Davi Sadao; KNOP, Igor O. Testes de software e simulações como ferramentas para
game design. In: Brazilian Symposium on Computer Games and Digital Entertainment
2020 Proceedings. Recife, Pernambuco: SBC, 2020.

BECKER, Alexander; GÖRLICH, Daniel. What Is Game Balancing? - An Examination of
Concepts. ParadigmPlus, v. 1, n. 1, p. 22–41, abr. 2020. DOI: 10.55969/paradigmplus.v1n1a2.
Disponível em: https://doi.org/10.55969/paradigmplus.v1n1a2. Acesso em: 16 set. 2023.

BOARDGAME.IO DEVELOPERS. Concepts. [S.l.]: boardgame.io, 11 out. 2022. Disponível
em: https://boardgame.io/documentation/#/. Acesso em: 12 jan. 2026.

BOARDGAMEGEEK, LLC. SPIEL'25 Preview. Essen, Germany: BoardGameGeek, LLC,
2025. Disponível em: https://boardgamegeek.com/geekpreview/78/spiel-essen-25-preview.
Acesso em: 9 jan. 2026.

BRITANNICA, The Editors of Encyclopaedia. Go. [S.l.]: [S.n.], 23 maio 2023. (Nota técnica).
Disponível em: https://www.britannica.com/topic/go-game. Acesso em: 3 set. 2023.

CAHN, Lauren. How to Win Connect 4 Every Time, According to the Computer Scientist
Who Solved It. [S.l.]: Reader's Digest, 8 out. 2024. Disponível em: https://boardgamegeek.
com/geekpreview/78/spiel-essen-25-preview. Acesso em: 11 jan. 2026.

COHN, David; ATLAS, Les; LADNER, Richard. Improving generalization with active lear­
ning. Machine learning, v. 15, p. 201–221, 1994. DOI: 10.1007/BF00993277. Disponível em:
https://doi.org/10.1007/BF00993277. Acesso em: 31 jan. 2025.

COULOM, Rémi. Efficient selectivity and backup operators in Monte-Carlo tree search. In:
International conference on computers and games. [S.l.]: [S.n.], 2006. Disponível em:
https://doi.org/10.1007/978-3-540-75538-8_7. Acesso em: 31 jan. 2025.

DUMONT, Alberto Santos. O que eu vi, o que nós veremos. 1. ed. São Paulo: Wiki­
source, 1918. Disponível em: https://pt.wikisource.org/wiki/O_que_eu_vi,_o_que_n%C3%B3
s_veremos. Acesso em: 2 ago. 2025.

ESLINT CONTRIBUTORS. Core Concepts. Disponível em: https://eslint.org/docs/latest/use/
core-concepts/. Acesso em: 9 jan. 2026.

FULLERTON, Tracy. Game Design Workshop: A Playcentric Approach to Creating Inno
vative Games. 4. ed. Boca Raton: CRC Press, 2019

FÖRSTER, Robert. AlphaZero from Scratch. [S.l.]: [S.n.], 2023. Disponível em: https://
github.com/foersterrobert/AlphaZeroFromScratch. Acesso em: 6 jan. 2026.

GEEKSFORGEEKS. Machine Learning Algorithms. [S.l.]: GeeksforGeeks, 18 nov.
2025a. Disponível em: https://www.geeksforgeeks.org/machine-learning/machine-learning-
-algorithms/. Acesso em: 12 jan. 2026.

GEEKSFORGEEKS. Underfitting and Overfitting in ML. [S.l.]: GeeksforGeeks, 10
dez. 2025b. Disponível em: https://www.geeksforgeeks.org/machine-learning/underfitting-and-
-overfitting-in-machine-learning/. Acesso em: 12 jan. 2026.

GUDMUNDSSON, Stefan Freyr et al. Human-like playtest with deep learning. In: 2018 IEEE
Conference on Computational Intelligence and Games (CIG). [S.l.]: [S.n.], 2018. Dispo­
nível em: https://doi.org/10.1109/CIG.2018.8490442. Acesso em: 31 jan. 2025.

https://arxiv.org/abs/1603.04467
https://doi.org/10.55969/paradigmplus.v1n1a2
https://doi.org/10.55969/paradigmplus.v1n1a2
https://boardgame.io/documentation/#/
https://boardgamegeek.com/geekpreview/78/spiel-essen-25-preview
https://www.britannica.com/topic/go-game
https://boardgamegeek.com/geekpreview/78/spiel-essen-25-preview
https://boardgamegeek.com/geekpreview/78/spiel-essen-25-preview
https://doi.org/10.1007/BF00993277
https://doi.org/10.1007/BF00993277
https://doi.org/10.1007/978-3-540-75538-8_7
https://pt.wikisource.org/wiki/O_que_eu_vi,_o_que_n%C3%B3s_veremos
https://pt.wikisource.org/wiki/O_que_eu_vi,_o_que_n%C3%B3s_veremos
https://eslint.org/docs/latest/use/core-concepts/
https://eslint.org/docs/latest/use/core-concepts/
https://github.com/foersterrobert/AlphaZeroFromScratch
https://github.com/foersterrobert/AlphaZeroFromScratch
https://www.geeksforgeeks.org/machine-learning/machine-learning-algorithms/
https://www.geeksforgeeks.org/machine-learning/machine-learning-algorithms/
https://www.geeksforgeeks.org/machine-learning/machine-learning-algorithms/
https://www.geeksforgeeks.org/machine-learning/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/machine-learning/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/machine-learning/underfitting-and-overfitting-in-machine-learning/
https://doi.org/10.1109/CIG.2018.8490442

HE, Kaiming et al. Deep Residual Learning for Image Recognition. 2015. DOI: 10.1109/
CVPR.2016.90. Disponível em: https://doi.org/10.1109/CVPR.2016.90. Acesso em: 31 jan.
2025.

HOLMGÅRD, Christoffer et al. Automated playtest With Procedural Personas Through MCTS
With Evolved Heuristics. IEEE Transactions on Games, v. 11, n. 4, p. 352–362, 2019. DOI:
10.1109/TG.2018.2808198. Disponível em: https://doi.org/10.1109/TG.2018.2808198. Acesso
em: 31 jan. 2025.

KOCSIS, Levente; SZEPESVÁRI, Csaba. Bandit Based Monte-Carlo Planning. In: Machine
Learning: ECML 2006. FÜRNKRANZ, Johannes; SCHEFFER, Tobias; SPILIOPOULOU,
Myra (orgs.). Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. Disponível em: https://doi.
org/10.1007/11871842_29. Acesso em: 7 jan. 2026.

LI, Zewen et al. A Survey of Convolutional Neural Networks: Analysis, Applications, and
Prospects. IEEE Transactions on Neural Networks and Learning Systems, v. 33, n. 12,
p. 6999–7019, 2022. DOI: 10.1109/TNNLS.2021.3084827. Disponível em: https://doi.org/10.
1109/TNNLS.2021.3084827. Acesso em: 31 jan. 2025.

LIANG, Jiazhi. Image classification based on RESNET. Journal of Physics: Conference
Series, v. 1634, p. 12110, 2020. DOI: 10.1088/1742-6596/1634/1/012110. Disponível em:
https://doi.org/10.1088/1742-6596/1634/1/012110. Acesso em: 6 fev. 2025.

MALOSTO, Celso Gabriel Dutra Almeida; CAMPOS, Luciana Conceição Dias; KNOP, Igor
de Oliveira. Moving towards automated game play-testing. In: Anais Estendidos do XXIV
Simpósio Brasileiro de Jogos e Entretenimento Digital. Salvador, Bahia: SBC, 2025. Dispo­
nível em: https://sol.sbc.org.br/index.php/sbgames_estendido/article/view/37117. Acesso em: 6
jan. 2026.

MALOSTO, Celso Gabriel Dutra Almeida; KNOP, Igor Oliveira; CAMPOS, Luciana Concei­
ção Dias. AlphaZero como ferramenta de playtest. Revista ComInG - Communications and
Innovations Gazette, v. 7, n. 1, p. 39–50, 2023. DOI: 10.5902/2448190485269. Disponível
em: https://doi.org/10.5902/2448190485269. Acesso em: 31 jan. 2025.

MALOSTO, Celso Gabriel; KNOP, Igor. Repositório do projeto APTS. [S.l.]: GitHub, 2026.
Disponível em: https://github.com/ufjf-gamelab/apts. Acesso em: 9 jan. 2026.

MARCELO, Antonio; PESCUITE, Júlio. Design de jogos: Fundamentos. 1. ed. Rio de janeiro:
Brasport, 26 mar. 2009. p. 188

NAIR, Vinod; HINTON, Geoffrey E. Rectified linear units improve restricted boltzmann ma­
chines. In: Proceedings of the 27th International Conference on International Conference
on Machine Learning. ICML'10. Haifa, Israel: Omnipress, 2010. Disponível em: https://dl.
acm.org/doi/10.5555/3104322.3104425. Acesso em: 31 jan. 2025.

NODE.JS. Introduction to Node.js. [S.l.]: OpenJS Foundation, 23 jul. 2025. Disponível em:
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs. Acesso em: 9 jan. 2026.

PLAAT, Aske et al. A Minimax Algorithm Better Than Alpha-beta?: No and Yes. Edmonton,
Alberta, Canada: The University of Alberta, 6 jul. 1995. Disponível em: https://arxiv.org/abs/
1702.03401. Acesso em: 15 jan. 2026.

RANANDEH, Vahid; MIRZA-BABAEI, Pejman. Beyond Equilibrium: Utilizing AI Agents in
Video Game Economy Balancing. In: Companion Proceedings of the Annual Symposium on
Computer-Human Interaction in Play. [S.l.]: [S.n.], 2023. Disponível em: https://doi.org/10.
1145/3573382.3616092. Acesso em: 31 jan. 2025.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TG.2018.2808198
https://doi.org/10.1109/TG.2018.2808198
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1088/1742-6596/1634/1/012110
https://doi.org/10.1088/1742-6596/1634/1/012110
https://sol.sbc.org.br/index.php/sbgames_estendido/article/view/37117
https://doi.org/10.5902/2448190485269
https://doi.org/10.5902/2448190485269
https://github.com/ufjf-gamelab/apts
https://dl.acm.org/doi/10.5555/3104322.3104425
https://dl.acm.org/doi/10.5555/3104322.3104425
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://arxiv.org/abs/1702.03401
https://arxiv.org/abs/1702.03401
https://doi.org/10.1145/3573382.3616092
https://doi.org/10.1145/3573382.3616092

ROMERO, Brenda; SCHREIBER, Ian. Game Balance. 1st edition ed. Boca Raton: CRC Press,
2021

SALEN, Katie; ZIMMERMAN, Eric. Rules of Play: Game Design Fundamentals. Cam­
bridge: MIT Press, 2003. p. 688. Disponível em: https://mitpress.mit.edu/9780262240451/
rules-of-play/. Acesso em: 31 jan. 2025.

SILVER, David et al. Mastering the Game of Go with Deep Neural Networks and Tree Search.
Nature, v. 529, n. 7587, p. 484–489, jan. 2016. DOI: 10.1038/nature16961. Disponível em:
https://doi.org/10.1038/nature16961. Acesso em: 16 set. 2023.

SILVER, David et al. Mastering Chess and Shogi by Self-Play with a General Reinforcement
Learning Algorithm. 2017. DOI: 10.48550/arXiv.1712.01815. Disponível em: https://doi.org/
10.48550/arXiv.1712.01815. Acesso em: 16 set. 2023.

SILVER, David et al. A General Reinforcement Learning Algorithm That Masters Chess, Shogi,
and Go through Self-Play. Science, v. 362, n. 6419, p. 1140–1144, 2018. DOI: 10.1126/
science.aar6404. Disponível em: https://doi.org/10.1126/science.aar6404. Acesso em: 16 set.
2023.

STAHLKE, Samantha; NOVA, Atiya; MIRZA-BABAEI, Pejman. Artificial players in the
design process: Developing an automated testing tool for game level and world design. In: Pro
ceedings of the Annual Symposium on Computer-Human Interaction in Play. [S.l.]: [S.n.],

2020. Disponível em: https://doi.org/10.1145/3410404.3414249. Acesso em: 31 jan. 2025.

SUITS, Bernard. What is a Game?. Philosophy of Science, v. 34, n. 2, p. 148–156, 1967. DOI:
10.1086/288138. Disponível em: https://doi.org/10.1086/288138. Acesso em: 31 jan. 2025.

TEUBER, Klaus. Colonizadores de Catan. Disponível em: https://boardgamegeek.com/
boardgame/13/catan. Acesso em: 31 jan. 2025.

TRZEWICZEK, Ignacy. I play-tested it 100 times. [S.l.]: Portal Games, 22 jun. 2017. Dispo­
nível em: https://trzewik.medium.com/i-play-tested-it-100-times-fcb142c38c80. Acesso em: 7
set. 2023.

TYPESCRIPT TEAM. TypeScript for JavaScript Programmers. [S.l.]: TypeScript, 7 jan.
2026. Disponível em: https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.
html. Acesso em: 9 jan. 2026.

WALLNER, Günter; HALABI, Nour; MIRZA-BABAEI, Pejman. Aggregated visualization of
playtest data. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. [S.l.]: [S.n.], 2019. Disponível em: https://doi.org/10.1145/3290605.3300593. Acesso
em: 31 jan. 2025.

WOODS, Stewart. Eurogames: The Design, Culture and Play of Modern European Board
Games. Jefferson: McFarland, Incorporated, Publishers, 2012. p. 262

ZOOK, Alexander; FRUCHTER, Eric; RIEDL, Mark O. Automatic playtest for Game Parame­
ter Tuning via Active Learning. 2019. DOI: 10.48550/arXiv.1908.01417. Disponível em: https://
doi.org/10.48550/arXiv.1908.01417. Acesso em: 31 jan. 2025.

ŚWIECHOWSKI, Maciej et al. Monte Carlo Tree Search: a review of recent modifications
and applications. Artificial Intelligence Review, v. 56, n. 3, p. 2497–2562, jul. 2022. DOI:
10.1007/s10462-022-10228-y. Disponível em: https://doi.org/10.1007%2Fs10462-022-10228-
-y. Acesso em: 16 set. 2023.

https://mitpress.mit.edu/9780262240451/rules-of-play/
https://mitpress.mit.edu/9780262240451/rules-of-play/
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.48550/arXiv.1712.01815
https://doi.org/10.48550/arXiv.1712.01815
https://doi.org/10.48550/arXiv.1712.01815
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1145/3410404.3414249
https://doi.org/10.1086/288138
https://doi.org/10.1086/288138
https://boardgamegeek.com/boardgame/13/catan
https://boardgamegeek.com/boardgame/13/catan
https://trzewik.medium.com/i-play-tested-it-100-times-fcb142c38c80
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://doi.org/10.1145/3290605.3300593
https://doi.org/10.48550/arXiv.1908.01417
https://doi.org/10.48550/arXiv.1908.01417
https://doi.org/10.48550/arXiv.1908.01417
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007%2Fs10462-022-10228-y
https://doi.org/10.1007%2Fs10462-022-10228-y
https://doi.org/10.1007%2Fs10462-022-10228-y

	1 Introdução
	2 Fundamentação teórica
	2.1 Componentes fundamentais de um jogo
	2.2 de destaque
	2.2.1 Jogo da Velha
	2.2.2 Ligue-4
	2.2.3 Go

	2.3 Busca em árvore de Monte Carlo
	2.4 Redes neurais residuais
	2.5 Projeto
	2.6 Trabalhos relacionados

	3 Material e métodos
	3.1 Material
	3.1.1 Ambiente de execução
	3.1.2 Ambiente de desenvolvimento
	3.1.3 Dependências externas

	3.2 Métodos

	4 Desenvolvimento
	4.1 Utilitários
	4.2 Descrição de
	4.3 Implementação dos jogos
	4.4 Elaboração dos algoritmos de busca
	4.5 Construção da
	4.6 Geração de memórias de treinamento
	4.7 Interface com o usuário

	5 Resultados
	5.1 Geração de
	5.2 Simulação de

	6 Considerações finais
	Referências

