UNIVERSIDADE FEDERAL DE JUIiZ DE FORA
INsTITUTO DE CIENCIAS EXATAS

BACHARELADO EM SISTEMAS DE INFORMACAO

Engenharia de Cenarios de Teste End-to-End
para APIs REST{ful
Uma Ferramenta em Python com Arquitetura
Modular para Analise de Cobertura de Parametros e
Simulacao de Fluxos de Comunicacao

Fabricio de Sousa Guidine

JUIZ DE FORA
JANEIRO, 2026

Engenharia de Cenarios de Teste End-to-End
para APIs RESTful
Uma Ferramenta em Python com Arquitetura
Modular para Analise de Cobertura de Parametros e
Simulacao de Fluxos de Comunicacao

FABRICIO DE SOUSA GUIDINE

Universidade Federal de Juiz de Fora
Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computacao

Bacharelado em Sistemas de Informacao

Orientador: Victor Stroele de Andrade Menezes

JUIZ DE FORA
JANEIRO, 2026

ENGENHARIA DE CENARIOS DE TESTE END-TO-END PARA APIS
RESTFUL
Uma Ferramenta em Python com Arquitetura Modular para Anaélise de

Cobertura de Parametros e Simulacao de Fluxos de Comunicacao

Fabricio de Sousa Guidine

MONOGRAFIA SUBMETIDA AO CORPO DOCENTE DO INSTITUTO DE CIENCIAS
EXATAS DA UNIVERSIDADE FEDERAL DE JUIZ DE FORA, COMO PARTE INTE-
GRANTE DOS REQUISITOS NECESSARIOS PARA A OBTENCAO DO GRAU DE
BACHAREL EM SISTEMAS DE INFORMACAO.

Aprovada por:

Victor Stroele de Andrade Menezes
Doutor em Engenharia de Sistemas e Computacao (UFRJ)

André Luiz de Oliveira
Doutor em Ciéncia da Computacao (USP)

José Maria Nazar David
Doutor em Engenharia de Sistemas e Computacao (UFRJ)

JUIZ DE FORA
20 DE JANEIRO, 2026

Dedico as minhas mecenas,

Denise ® Margarida

Resumo

O crescimento exponencial de arquiteturas baseadas em microsservicos aumentou significa-
tivamente a complexidade dos testes de APIs REST, particularmente devido a validagao de
multiplos endpoints e a explosao combinatoéria de cendrios de teste. Além disso, garantir a
rastreabilidade entre requisitos de negdcio e operacoes de API é fundamental para assegurar
que os testes validem efetivamente as funcionalidades prioritarias, evitando lacunas de
cobertura e testes redundantes. Neste contexto, este trabalho apresenta uma ferramenta
automatizada para geracao de cendrios de teste de APIs REST a partir de especificacoes
OpenAPI/Swagger e documentos de requisitos de negécio. A abordagem proposta realiza
analise estrutural automatizada de especificacoes de API nos formatos Swagger 2.0 e
OpenAPI 3.0 e 3.1, combinada com processamento de linguagem natural de requisitos de
negécio por meio da integragao com multiplos provedores de LLM. Como resultado, a
ferramenta sintetiza cendrios de teste comportamentais no formato Gherkin, compativeis
com frameworks BDD, computa métricas de cobertura cruzada entre requisitos de negdcio e
endpoints, e deriva métricas de complexidade por andlise algoritmica, empregando chunking
adaptativo para processar eficientemente APIs de larga escala. O sistema adota arquite-
tura modular que facilita a incorporagao de novos provedores LLM e formatos de saida.
Resultados de um estudo de caso utilizando a API Weather.gov demonstram a viabilidade
da abordagem proposta. A ferramenta gerou 127 cenarios de teste em aproximadamente
45 segundos, cobrindo 59 endpoints e 342 parametros, alcancando 100% de cobertura de
requisitos com consumo total de 5.172 tokens. Esses resultados indicam que a solucgao é
aplicavel a ambientes reais de desenvolvimento de software, oferecendo custos operacionais
vidveis e integracao com pipelines de integracao continua. Adicionalmente, a ferramenta
¢ disponibilizada como cddigo aberto, contribuindo para a comunidade de garantia de
qualidade.

Palavras-chave: Testes de API, OpenAPI, Swagger, LLM, Gherkin, Automagao, BDD

Abstract

The exponential growth of microservice-based architectures has significantly increased
the complexity of REST API testing, particularly due to the need to validate multiple
endpoints and the combinatorial explosion of test scenarios. Furthermore, ensuring
traceability between business requirements and API operations is essential to guarantee
that tests effectively validate priority functionalities, avoiding coverage gaps and redundant
tests. In this context, this work presents an automated tool for generating REST API test
scenarios from OpenAPI/Swagger specifications and business requirements documents.
The proposed approach performs automated structural analysis of API specifications
in Swagger 2.0 and OpenAPI 3.0 and 3.1 formats, combined with natural language
processing of business requirements through integration with multiple large language
model (LLM) providers. As a result, the tool synthesizes behavioral test scenarios in
Gherkin format, compatible with established BDD frameworks, computes cross-coverage
metrics between business requirements and API endpoints, and derives complexity metrics
through algorithmic analysis, employing an adaptive chunking strategy to process large-
scale APIs efficiently. The system adopts a modular architecture that facilitates the
incorporation of new LLM providers and output formats. Results from a case study
using the Weather.gov API demonstrate the feasibility of the proposed approach. The
tool generated 127 test scenarios in approximately 45 seconds, covering 59 endpoints and
342 parameters, achieving 100% requirement coverage with a total token consumption of
5,172. These findings indicate that the proposed solution applies to real-world software
development environments, offering viable operational costs and seamless integration with
continuous integration pipelines. Additionally, the tool is made available as open-source
software, contributing to the broader quality assurance community.

Keywords: API testing, OpenAPI, Swagger, LLM, Gherkin, Automation, BDD

Agradecimentos

A Denise, que me fez uma de suas prioridades, que me educou para ser uma
pessoa que valida os sentimentos em primeiro lugar e me ensinou a ser um bom menino e,
agora, um homem. Nao consigo imaginar meios de te retribuir tudo o que me foi provido.
Ao meu pai, Hélio, que a seu modo pode se fazer presente e sempre til e prestativo quanto
ao meu crescimento; é meu companheiro, e eu, seu panheirinho. A minha irma, Larissa,
que, além de eu amar muito, trouxe ao mundo outra parte de si para eu amar ainda mais:
Mateus, que veio com meus tragos.

A minha rocha, vé Margarida (in memoriam), que viveu sua vida trabalhando em
prol da nossa familia e daqueles que faziam parte da sua vida, salvo excecoes, de acordo
com suas ideias irrevogaveis. Foi a primeira a me fazer acreditar que as coisas dariam
certo na minha caminhada académica. A minha tia, Rosangela (in memoriam), que estard
eternamente em meus pensamentos sobre como cresci sob seus cuidados em Cataguarino.
Sempre vou te amar. Ao restante da minha familia: avé Cosme (in memoriam), tios e
tias, afilhados e afilhadas, primos e primas, cunhado e sua familia, conforta-me saber que
entendem que a distancia e os sacrificios que tive seriam insuportaveis sem o seu apoio.

Ao meu ex-futuro marido, Erick: poder estar em sua companhia é tao natural e
me fez experimentar a felicidade em seu mais calmo e puro estado. Eu amei compartilhar
a minha vida com voce.

A Alana, ao Fabricio, Milena e a Thais: eu amo vocés. Aos meus amigos da
faculdade em geral, cujos nomes nao caberiam aqui. Em especial, a Débora, que me
forneceu uma lanterna da lua! para seguir no umbral. Aos docentes do meu departamento,
que me proveram a metodologia e os meios para meu desenvolvimento académico. Em
especial, ao Luciano, ao André e ao Victor. Essas pessoas viram em mim algo que nem eu

acreditava: sou capaz.

Lanterna da Lua: (https://bg3.wiki/wiki/Moonlantern)

https://bg3.wiki/wiki/Moonlantern

Ontem fui feliz, excessivamente feliz,
como nao se pode sé-lo mais! Até que
enfim, uma vez na vida, vocé, sempre
tao inacessivel, satisfez os meus desejos!
Eram cerca de oito horas, ja quase noite,
quando acordei da soneca que costumo
dormir todos os dias, depois do traba-
lho. Acendi a luz e tinha jd 0s papéis
em ordem, faltando-me apenas agucar a
pena, quando, de subito, levantei, casu-
almente, os olhos e deparou-se-me um
espetaculo extraordindrio, que me fez pu-
lar o coracao. Decerto adivinhou ja do
que se trata, compreendeu o motivo do

meu alvoroco!

Fiédor Dostoiévski (Gente Pobre)

Conteudo

Lista de Figuras

Lista de Tabelas

Lista de Abreviagoes

1

2

Introducao

Fundamentacao Teérica

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Arquitetura REST e APIs Web
Especificacao OpenAPI
Critérios de Cobertura para APIs REST
Rastreabilidade de Requisitos
Desenvolvimento Orientado a Comportamento
Modelos de Linguagem de Grande Porte em Engenharia de Software
Métricas de Qualidade em Automacao de Testes
Sintese do Capitulo

Materiais e Métodos

3.1
3.2
3.3
3.4
3.5
3.6

Visao Geral do Sistema
Arquitetura do Sistema
Fluxo de Funcionamento
Tecnologias Utilizadas
Estrutura do Projeto
Componentes Principais

Estudo de Caso

4.1
4.2
4.3
4.4

4.5
4.6

4.7
4.8

Descricao do Cendrio L
Configuragao da Execugao L
Métricas da API Processada
Geracao e Estruturado BRD oo
4.4.1 Analise do BRD Gerado
Geracao de Cenéarios de Teste
4.5.1 Analise Qualitativa dos Cenarios
Exportagao e Artefatos Gerados
Anadlise de Desempenho e Custos
Discussao dos Resultados

Consideracgoes Finais

5.1
5.2
5.3
5.4
5.5

Sintese do Trabalho
Retomada das Questoes de Pesquisa
Contribuigoes L
Limitagoes
Trabalhos Futuros

iii

iv

11
12
14
16
18
19

20
20
23
25
26
28
29

30
30
31
31
32
33
34
36
39
40
41

Bibliografia

A

B

Documento de Requisitos de Negdécio Gerado
Amostra de Cenarios de Teste Gerados

Estrutura Completa do Projeto
C.1 Organizacao de Diretérios de Nivel Raiz

Estrutura do Diretorio Source

Cenarios para Endpoint de Alertas Meteoroldgicos

48

51

55

57
o7

58

63

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5

4.1

Lista de Figuras

Exemplo da UI OpenAPI visualizada no Swagger Editor 9
Exemplo de especificagdo OpenAPI visualizada no Swagger Editor 10
Diagrama conceitual de rastreabilidade entre BRD e cenarios de teste . . . 13
Pégina principal do repositério GitHub do projeto 21
Continuagao da pagina principal do repositério GitHub do projeto 22
Arquitetura do sistema organizada em camadas 24
Fluxograma das sete etapas do processo de geragao de cendrios 26
Visao simplificada da estrutura de diretérios principal 28

Saida do terminal durante geracao de cenarios via LLM 37

3.1
3.2

4.1
4.2
4.3
4.4

B.1
C.1
D.1

Lista de Tabelas

Principais tecnologias e dependéncias do projeto 27
Resumo dos médulos principais e suas responsabilidades 29
Métricas estruturais da API weather.gov 32
Analise de cobertura cruzada BRD vs Endpoints 34
Métricas de geracao de cendrios via LLM 35
Analise de custos operacionais da execugao 40
Amostra de cenarios de teste gerados para a API weather.gov 55
Estrutura de diretérios e arquivos de nivel raiz 57

Especificacao dos componentes do sistema, 58

API
BDD
BRD
CI/CD
CLI
CPU
CSV
GPT
HTTP
I[EEE
JSON
LLM
MIT
NLP
OpenAPI
PDF
RAM
REST
RTM
SDK
TDD
TXT
UFJF
URI
URL
YAML

Lista de Abreviacoes

Application Programming Interface
Behauvior-Driven Development
Business Requirement Document
Continuous Integration/Continuous Delivery
Command Line Interface

Central Processing Unit
Comma-Separated Values

Generative Pre-trained Transformer
Hypertext Transfer Protocol

Institute of Electrical and Electronics Engineers
JavaScript Object Notation

Large Language Model

Massachusetts Institute of Technology
Natural Language Processing
OpenAPI Specification

Portable Document Format

Random Access Memory
Representational State Transfer
Requirements Traceability Matrix
Software Development Kit
Test-Driven Development

Text File

Universidade Federal de Juiz de Fora
Uniform Resource Identifier

Uniform Resource Locator

YAML Ain’t Markup Language

1 Introducao

A arquitetura de software contemporanea tem experimentado uma transformagao signi-
ficativa nas ultimas décadas, caracterizada pela migracao de sistemas monoliticos para
arquiteturas distribuidas baseadas em servicos. Nesse contexto evolutivo, as APIs REST
emergiram como o principal mecanismo de comunicagao entre componentes de software,
especialmente em ecossistemas orientados a microsservigos (FIELDING, 2000). Dessa
forma, essas interfaces expoem endpoints HT'TP que recebem parametros através de
mecanismos de transmissao, incluindo cabecalhos de requisicao, corpo de mensagem e que-
ries, retornando respostas predominantemente estruturadas em formato JSON (BANIAS;
ALEXANDRESCU, 2022). A adogao massiva de arquiteturas baseadas em microsservigos
por grandes empresas de tecnologia tem impulsionado a necessidade de abordagens mais
sofisticadas para garantia de qualidade dessas interfaces criticas (NEWMAN, 2015).

A confiabilidade desses contratos de API influencia diretamente tanto a integridade
das integracgoOes entre sistemas quanto a experiéncia do usuario final. Neste contexto,
conforme evidenciado por Golmohammadi, Zhang e Arcuri (2023), o teste de APIs
RESTful apresenta desafios particulares devido a dependéncia de comunicagoes de rede e
as interagoes frequentes com servigos externos, como sistemas de gerenciamento de banco
de dados, o que amplia significativamente a complexidade do processo de verificacao.
Ademais, a proliferagao de servigos web baseados em REST tem motivado um crescimento
substancial na pesquisa académica sobre técnicas de teste automatizado para esse tipo de
interface (KIM et al., 2022; RICHARDSON; AMUNDSEN; RUBY, 2013).

Com a adogao crescente de padroes como OpenAPI, anteriormente conhecido como
Swagger, tornou-se viavel descrever contratos de servico de maneira padronizada e pro-
cessavel por sistemas automatizados (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS, 2019).
A especificacao OpenAPI permite definir formalmente endpoints disponiveis, métodos
HTTP suportados, parametros de entrada diferenciados por localizacao, esquemas de dados
via JSON Schema, respostas esperadas para cada codigo de status HT'TP, e mecanismos

de autenticacao e autorizacao, estabelecendo assim uma base formal para automacao

1 Introducao 3

de processos de teste (OpenAPI Initiative, 2021). Conforme observado por Corradini et
al. (2022), a mera existéncia de especificagdbes OpenAPI nao resolve automaticamente os
desafios inerentes ao teste de APIs, uma vez que as ferramentas existentes frequentemente
negligenciam informagoes valiosas presentes em descri¢oes textuais dessas especificagoes
(ED-DOUIBI; IZQUIERDO; CABOT, 2018).

Dois problemas fundamentais persistem no dominio dos testes automatizados
de APIs REST. O primeiro problema refere-se a explosao combinatoria de valores de
parametros e de cenarios de teste possiveis, fenomeno que torna impraticavel a geracao
manual de casos de teste com cobertura abrangente (ARCURI, 2019). Técnicas de
teste combinatorial tém sido propostas para mitigar esse problema, permitindo cobertura
sistematica de interagoes entre parametros (KUHN; KACKER; LEI, 2013). O segundo
problema, igualmente critico mas frequentemente negligenciado, diz respeito a desconexao
sistemadtica entre os requisitos de negdcio e os cendrios técnicos de teste (ZAMENI; WANG;
MAHMOUD, 2023). Dessa forma, enquanto as especificacoes OpenAPI descrevem com
precisao a estrutura técnica de uma API, estas frequentemente nao capturam as regras de
negocio subjacentes, os fluxos de trabalho esperados pelos stakeholders e os casos de uso
prioritarios do ponto de vista funcional.

Essa lacuna entre a documentacao técnica e os requisitos funcionais dificulta
substancialmente a criacao de suites de teste que sejam simultaneamente abrangentes em
termos técnicos e alinhadas aos objetivos de negécio. A rastreabilidade entre requisitos e
testes, considerada essencial pela norma IEEE 830-1998 para especificacao de requisitos de
software, permanece um desafio significativo em projetos de desenvolvimento de software
(GOTEL; FINKELSTEIN, 1994). Neste contexto, conforme evidenciado por estudos
empiricos, a auséncia de rastreabilidade adequada pode resultar em funcionalidades nao
testadas, testes redundantes que desperdicam recursos, e dificuldade substancial na analise
de impacto de mudangas nos requisitos (MADER; EGYED, 2012). A manutencao de
matrizes de rastreabilidade tem sido identificada como pratica fundamental em organizacoes
com processos maduros de qualidade (SPANOUDAKIS; ZISMAN, 2005; CLELAND-
HUANG; GOTEL; ZISMAN, 2012).

Nos ultimos anos, a integragao de modelos de linguagem de grande porte em

1 Introducao 4

ferramentas de engenharia de software tem demonstrado potencial notavel para automatizar
tarefas que tradicionalmente exigiam expertise humana especializada, incluindo a geracao de
codigo-fonte, documentagao técnica, e casos de teste (WANG et al., 2024). A arquitetura
Transformer, que fundamenta os LLMs modernos, revolucionou o processamento de
linguagem natural e abriu novas possibilidades para automagao inteligente (VASWANI
et al., 2017). Ademais, modelos avangados como GPT-4 demonstram capacidade de
interpretar especificagoes técnicas complexas, compreender contexto de negdcio expresso
em linguagem natural, e gerar artefatos estruturados tanto em linguagem natural quanto
em formatos semiestruturados como o Gherkin (SCHAFER et al., 2023). Essa capacidade
emergente abre novas possibilidades para a automacao inteligente de processos de teste,
embora apresente desafios relacionados a qualidade dos artefatos gerados, validagao de
adequagao aos requisitos, e custos operacionais associados (WHITE et al., 2023).

A relevancia deste trabalho fundamenta-se em multiplos aspectos identificados
tanto na literatura académica quanto na pratica de engenharia de software. Conforme
demonstrado pela pesquisa conduzida por Golmohammadi, Zhang e Arcuri (2023) com
analise sistematica de 92 artigos cientificos, o campo de teste de APIs REST permanece
ativo e em evolugao, com desafios significativos ainda nao plenamente resolvidos por
ferramentas existentes no estado da arte. Diante disso, a explosao combinatoria de valores
de parametros e a necessidade de cobertura abrangente tornam a automacao nao apenas
desejavel do ponto de vista de eficiéncia, mas necessaria para garantir qualidade em
sistemas modernos de software distribuido (FRASER; ARCURI, 2011).

A integracao de requisitos de negécio ao processo de teste representa uma ne-
cessidade critica frequentemente negligenciada por abordagens puramente técnicas. A
literatura sobre rastreabilidade de requisitos demonstra consistentemente que a manutengao
de ligagoes claras e bidirecionais entre requisitos, casos de teste e resultados de execucao é
fundamental para garantia de qualidade, especialmente em sistemas criticos onde falhas
podem ter consequéncias severas (GOTEL; FINKELSTEIN, 1994). Por conseguinte, a fer-
ramenta proposta neste trabalho enderega diretamente essa lacuna ao integrar Documentos
de Requisitos de Negdcio de forma organica ao fluxo de geracao de testes, estabelecendo

rastreabilidade desde a concepgao até a execugao.

1 Introducao D

A aplicacao de modelos de linguagem de grande porte na geracao de testes
representa uma fronteira de pesquisa particularmente promissora. Estudos recentes
demonstram que LLMs como GPT-4 podem gerar casos de teste de alta qualidade quando
adequadamente direcionados por prompts bem construidos e contextualizados (SCHAFER
et al., 2023; WANG et al., 2024). Neste sentido, a ferramenta proposta tem o potencial de
contribuir para essa linha de pesquisa ao demonstrar aplicacao pratica e sistematica de
LLMs em contexto especifico de teste de APIs REST, explorando estratégias de chunking
para processamento de APIs de grande porte e integracao com multiplos provedores de
LLM.

A adogao da linguagem Gherkin como formato de saida garante interoperabilidade
com o ecossistema estabelecido de ferramentas de Behavior-Driven Development, incluindo
Cucumber, Behave e SpecFlow (Cucumber, 2023). A metodologia BDD tem demonstrado
beneficios significativos na comunicagao entre equipes técnicas e de negécio (SOLIS; WANG,
2011). Dessa forma, essa escolha facilita substancialmente a integragdo com processos
existentes de garantia de qualidade e permite que cendrios gerados sirvam simultaneamente
como documentacao executavel e especificacao de comportamento esperado do sistema,
caracteristica fundamental da abordagem BDD. A integracao com pipelines de entrega
continua potencializa ainda mais o valor dessa automacao (HUMBLE; FARLEY, 2010).

Diante desse contexto, este trabalho busca responder a seguinte questao geral de
pesquisa: Como automatizar a geracao de cendrios de teste para APIs REST a partir de
especificacoes OpenAPI?

A partir dessa questao central, derivam-se cinco questoes especificas que orientam
o desenvolvimento da pesquisa. A primeira questao especifica (QE1) investiga como
processar e validar especificagoes OpenAPI em multiplos formatos de forma automatizada,
extraindo informacoes estruturadas sobre endpoints, parametros e esquemas de dados. A
segunda questao (QE2) examina como integrar os Documentos de Requisitos de Negdcio
ao processo de geracao de testes, estabelecendo a rastreabilidade entre requisitos funcionais
e cendrios de validagao técnica. A terceira questao (QE3) avalia a eficdcia de modelos
de linguagem de grande porte na geracao de cenarios de teste no formato Gherkin,

considerando critérios de coeréncia, completude e adequagao aos requisitos especificados.

1 Introducao 6

A quarta questao (QE4) analisa como implementar a anélise de cobertura cruzada entre
o BRD e os endpoints da API, identificando lacunas e priorizando endpoints criticos
para testes. Por fim, a quinta questdao (QE5) investiga quais métricas sdo adequadas
para avaliar a qualidade, a complexidade e a cobertura dos cenarios de teste gerados
automaticamente.

O objetivo geral deste trabalho consiste em desenvolver a ferramenta API Para-
meter Coverage & Test Scenario Generator, que automatiza a geragao de cenarios de
teste para APIs REST combinando andlise de especificagoes OpenAPI/Swagger, integracao
com Documentos de Requisitos de Negocio e geracao de cendrios Gherkin via LLMs. O
codigo-fonte esta disponivel no repositério GitHub (GUIDINE, 2025).

Os objetivos especificos sao: (1) desenvolver médulo de processamento multi-
formato para especificagoes Swagger 2.0 e OpenAPI 3.0/3.1; (2) implementar mecanismos de
integracao com BRD, incluindo carregamento, geracao via LLM e extracao de documentos
em PDF, Word e TXT; (3) analisar cobertura cruzada entre endpoints e requisitos do
BRD; (4) integrar multiplos provedores de LLM com estratégia de chunking adaptativo; (5)
desenvolver sistema de analytics com métricas de qualidade e cobertura; e (6) implementar
exportagao estruturada em formato CSV.

O restante deste documento esté organizado em cinco capitulos. O Capitulo 2
apresenta a fundamentacao tedrica, revisando conceitos essenciais sobre teste de APIs
REST, especificagoes OpenAPI, rastreabilidade de requisitos, desenvolvimento orientado
a comportamento, modelos de linguagem de grande porte e métricas de qualidade em
automacao de testes. O Capitulo 3 descreve detalhadamente a arquitetura do sistema
proposto, tecnologias utilizadas, organizagao modular do cédigo-fonte e metodologia de
desenvolvimento adotada. No Capitulo 4 é apresentado um estudo de caso detalhado
demonstrando a aplicacao da ferramenta na API weather.gov, com analise quantitativa
e qualitativa dos resultados obtidos e discussao sobre as métricas coletadas. Por fim, o
Capitulo 5 discute as principais contribuicoes académicas e préticas, limitagoes identificadas
durante o desenvolvimento e execucao, e direcoes promissoras para trabalhos futuros. Os
apéndices reinem os materiais complementares, incluindo trechos relevantes de codigo-fonte,

exemplos de especificagoes, prompts para modelos de linguagem e dados suplementares.

2 Fundamentacao Tedrica

Este capitulo apresenta os conceitos tedricos e trabalhos relacionados que fundamentam o
desenvolvimento da ferramenta proposta. A revisao da literatura aborda tépicos essenciais
sobre teste de APIs REST, especificacoes OpenAPI, rastreabilidade de requisitos, desen-
volvimento orientado a comportamento, modelos de linguagem de grande porte e métricas
de qualidade em automacao de testes, estabelecendo o embasamento cientifico necessério

para compreensao das decisoes de projeto e implementacao adotadas ao longo do trabalho.

2.1 Arquitetura REST e APIs Web

O estilo arquitetural REST foi introduzido por Roy Fielding em sua tese de doutorado como
um conjunto de principios para projeto de sistemas distribuidos hipermidia, fundamentando-
se em conceitos como cliente-servidor, stateless, cacheable, interface uniforme e sistema
em camadas (FIELDING, 2000). Neste contexto, APIs que seguem rigorosamente os
principios REST, denominadas APIs RESTful, utilizam o protocolo HTTP como me-
canismo primario de comunicacao, empregando métodos padronizados como GET para
recuperacao de recursos, POST para criacao, PUT para atualizagdo completa, PATCH para
atualizagao parcial, e DELETE para remocao, operando sobre recursos identificados por
URIs (RICHARDSON; AMUNDSEN; RUBY, 2013). A escalabilidade dessa arquitetura
contribuiu para sua ampla ado¢ao em sistemas web atuais (NEWMAN, 2015).

Dessa forma, as APIs REST estabelecem contratos entre produtor e consumidor
de servicos, definindo a estrutura de requisicoes esperadas, formato de respostas produzidas
e codigos de status HTTP que sinalizam o resultado de cada operacao. Nesse contexto, os
testes de API tém como objetivo verificar se essas interfaces se comportam conforme o
especificado, avaliando aspectos como a correcao das respostas, o tratamento adequado de
entradas invélidas e a consisténcia das condigoes de erro (BANIAS; ALEXANDRESCU,
2022). A validagao sistemadtica desses contratos é fundamental para garantir a integridade

em arquiteturas de microsservigos (SEGURA et al., 2018).

2.2 Especificacao OpenAPI 8

Revisoes sistematicas da literatura evidenciam que, embora a automagcao de testes
de API tenha evoluido significativamente ao longo dos tltimos anos, ainda ha notédvel falta
de consenso sobre métricas de cobertura especificas para APIs, situacao que contrasta com
a relativa maturidade das métricas de cobertura de cédigo tradicional estabelecidas para
aplicagoes monoliticas (GOLMOHAMMADI; ZHANG; ARCURI, 2023). Por outro lado,
conforme apontado por Kim et al. (2022) em anélise empirica de ferramentas existentes,
as solugoes atualmente disponiveis apresentam limitagoes significativas tanto em termos
de cobertura de cddigo alcancada durante execucao de testes quanto em capacidade de
detectar falhas sutis em APIs reais, indicando espago substancial para contribuicGes nessa
area de pesquisa. Técnicas de teste metamorfico tém sido propostas como alternativa para

superar limitacoes do ordculo de teste em APIs (SEGURA et al., 2018).

2.2 Especificacao OpenAPI

A especificacao OpenAPI, anteriormente conhecida como Swagger antes da transferéncia
para a OpenAPI Initiative, tornou-se o padrao de facto para documentacao formal de
APIs REST em ecossistemas de desenvolvimento modernos (OpenAPI Initiative, 2021). A
especificagao permite descrever de forma completa e processavel por sistemas automatizados
todos os aspectos relevantes de uma API REST, incluindo endpoints disponiveis com
suas respectivas URIs, métodos HT'TP suportados para cada endpoint, parametros de
entrada diferenciados por localizagao como path, query, header e body, esquemas de dados
estruturados via JSON Schema, respostas esperadas para cada codigo de status HT'TP
possivel, e mecanismos de autenticagao e autorizacao suportados (MARTIN-LOPEZ;
SEGURA; RUIZ-CORTéS, 2019). Na Figura 2.1 é ilustrado um exemplo tipico de
especificacao OpenAPI visualizada no Swagger Editor, demonstrando tanto o codigo
YAML estruturado a esquerda quanto a documentacao interativa gerada automaticamente

a direita a partir da especificacao formal.

2.2 Especificacao OpenAPI 9

@ Swaggerul x +

C m 25 petstoreswagger.io/#/pet/findPetsByStatus r 3

@ Swagger https://petstore swaggeriofv2/swagger json Explore
ey SMARTHEAR

Swagger Petstore ©@

[Base URL: petstore.swagger.io/v2]

https fipetst gger io/v2/swagger jsor

This is a sample server Petstore server. You can find out more about Swagger at http://swaggerio or on irc freenode.net. #swagger. For this sample, you can use the api key special-key to testthe
authorization filters.

Find out more about Swagger

Schemes

HTTPS ~
pet Everything about your Pets Find out more ™
POST /pet/{petld}/uploadImage uploads animage Y%
POST /pet Add anew pet to the store Y%
/pet Update an existing pet Y%

Figura 2.1: Exemplo da Ul OpenAPI visualizada no Swagger Editor

Conforme observado na Figura 2.2, uma especificacao OpenAPI tipica é estru-
turada hierarquicamente, iniciando com metadados da API que incluem titulo, versao
semantica e descri¢ao textual, seguidos pela definicao de servidores base disponiveis,
caminhos de endpoints organizados por recurso, operagoes disponiveis para cada cami-
nho, parametros detalhados de cada operacao, schemas de request e response bodies
estruturados, e definicoes de componentes reutilizaveis que promovem consisténcia e manu-
tenibilidade (ED-DOUIBI; IZQUIERDO; CABOT, 2018). Neste contexto, essa estrutura
hierarquica e bem definida facilita nao apenas a documentacao manual, mas especialmente
o processamento automatizado por ferramentas de analise e geracao de testes.

Dessa forma, a formalizacao proporcionada pelo padrao OpenAPI cria oportuni-
dades significativas para a automacao de processos de teste. Nesse contexto, ferramentas
especializadas podem interpretar especificacoes OpenAPI e derivar testes automatica-
mente por meio de diferentes estratégias, gerando valores de parametros que respeitam
os constraints definidos, construindo requisicoes HT'TP bem formadas e validando res-

postas com base em esquemas formalmente especificados (CORRADINI et al., 2022).

2.2 Especificacao OpenAPI 10

Conforme catalogado em uma revisao sistematica recente, diversas ferramentas de teste
automatizado foram desenvolvidas especificamente para explorar essas capacidades, in-
cluindo RESTler, que utiliza técnicas de fuzzing guiado por gramatica (ATLIDAKIS;
GODEFROID; POLISHCHUK, 2019), EvoMaster, que aplica algoritmos evolutivos para
maximizagao de cobertura (ARCURI, 2018), Schemathesis, que realiza testes baseados
em propriedades a partir de especificagoes, RESTest, que gera casos de teste a partir da
andlise de dependéncias entre operacoes (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS,
2020), e RestTestGen, que emprega técnicas combinadas de andlise estética e dinamica

(VIGLIANISI; DALLAGO; CECCATO, 2020).

@ Swagger Ul x o+

< 25 petstoreswagger.io/#/pet/findPetsByStatus

GET /pet/findByStatus Finds Pets by status ﬂ ~
Multiple status values can be provided with comma separated strings
Parameters
Name Description
status * =2“=¢ Status values that need to be considered for filter

array<string>

Available values - available, pending, sold

(query)

Responses Response contenttype | application/json v
Code Description
200 successful operation

Example Value Model

"status”: "available"
H
1

400 Invalid status value

Figura 2.2: Exemplo de especificagao OpenAPI visualizada no Swagger Editor

Por outro lado, conforme observagao critica de Corradini et al. (2022), a maior

parte dessas ferramentas foca exclusivamente em informacoes estruturadas presentes nas

2.3 Critérios de Cobertura para APIs REST 11

especificagoes OpenAPI, frequentemente negligenciando descrigoes textuais em linguagem
natural que acompanham endpoints, parametros e schemas. Diante disso, trabalhos recentes,
como o apresentado por Kim et al. (2023), demonstram que a extra¢ao e processamento
de informagoes contidas em descricoes textuais através de técnicas de processamento
de linguagem natural pode melhorar significativamente a qualidade dos testes gerados,
motivando abordagens hibridas que integrem andlise estrutural com processamento de

linguagem natural ao fluxo de geragao de testes.

2.3 Critérios de Cobertura para APIs REST

Martin-Lopez, Segura e Ruiz-Cortés (2019) propéem um conjunto abrangente de critérios
de cobertura especificos para APIs REST que transcendem a simples invocacao de cada
endpoint disponivel. Neste contexto, os autores sugerem métricas organizadas em multiplos
niveis de granularidade, incluindo cobertura de parametros que garante que todos os
parametros definidos sejam exercitados ao menos uma vez, cobertura de valores que
assegura que diferentes valores representativos de cada parametro sejam testados incluindo
casos limite, cobertura de operagoes que verifica diferentes métodos HT'TP aplicados sobre
0 mesmo recurso, e cobertura de dependéncias entre operacoes que valida sequéncias
de chamadas interdependentes respeitando ordem temporal e logica. Esses critérios sao
analogos aos da técnica de teste funcional tradicional, como o Particionamento em Classes
de Equivaléncia e a Anélise do Valor Limite para cada parametro (AMMANN; OFFUTT,
2016).

Ademais, além do trabalho de Martin-Lopez, Arcuri (2019) propdem critérios
baseados na cobertura de cédigo do servidor, argumentando que métricas de caixa-branca
que consideram a implementacao interna podem complementar de forma substantiva
abordagens de caixa-preta baseadas apenas em especificagoes externas. Essa abordagem
relaciona-se com a técnica de teste estrutural, que inclui critérios baseados em fluxo
de controle e fluxo de dados (AMMANN; OFFUTT, 2016). Dessa forma, a ferramenta
EvoMaster, desenvolvida pelos autores e disponibilizada como software de cédigo aberto,
utiliza algoritmos genéticos multiobjetivos para maximizar simultaneamente a cobertura

de codigo da implementacao do servidor e a cobertura da especificacao da API, por meio

2.4 Rastreabilidade de Requisitos 12

da geracao evolutiva de casos de teste que exploram o espago de busca de forma inteligente
(FRASER; ARCURI, 2011).

A literatura destaca a importancia de uma cobertura abrangente de codigos
de resposta HTTP, incluindo respostas de sucesso (2xx), erros do cliente (4xx) e erros
do servidor (5xx), bem como a cobertura de esquemas de dados (GOLMOHAMMADI;
ZHANG; ARCURI, 2023). Essa abordagem garante a validagao sistematica de objetos
JSON complexos por meio de combinacoes de valores validos e invalidos. Técnicas de
teste combinatorial permitem reduzir o espaco de teste mantendo cobertura adequada de
interagoes entre parametros (KUHN; KACKER; LEI, 2013). Testes metamorficos comple-
mentam essa abordagem ao permitir valida¢ao sem ordculos explicitos (SEGURA et al.,
2018). Esses critérios influenciam diretamente as decisoes arquiteturais e a implementagao

dos algoritmos da ferramenta proposta neste trabalho.

2.4 Rastreabilidade de Requisitos

A rastreabilidade de requisitos é definida formalmente pela IEEE como o grau em que
um relacionamento bidirecional pode ser estabelecido entre dois ou mais produtos do
processo de desenvolvimento de software, especialmente produtos com relacionamento
predecessor-sucessor ou primario-subordinado entre si (GOTEL; FINKELSTEIN, 1994).
Neste contexto, no ambito especifico de teste de software, a rastreabilidade permite conectar
de forma estruturada e verificavel requisitos de negdcio originais a casos de teste derivados
e resultados de execucao obtidos, garantindo que validacoes técnicas realizadas estejam
consistentemente alinhadas com objetivos funcionais estabelecidos pelos stakeholders
(SPANOUDAKIS; ZISMAN, 2005).

Dessa forma, enquanto especificagoes OpenAPI descrevem com precisao técnica
a estrutura formal de uma API incluindo tipos de dados, formatos de mensagem e
protocolos de comunicagao, Documentos de Requisitos de Negdcio capturam as necessidades
funcionais de mais alto nivel, regras de negdcio que governam o comportamento esperado
do sistema, e casos de uso prioritarios do ponto de vista do cliente ou stakeholder que
financia o desenvolvimento (ABDELFATTAH et al., 2024). Por conseguinte, a integragao

sistematica entre essas duas fontes complementares de informacao permite filtrar de forma

2.4 Rastreabilidade de Requisitos 13

fundamentada quais endpoints sao funcionalmente prioritarios para teste com base em
requisitos explicitos, evitando desperdicio de esforco e recursos em endpoints tecnicamente
presentes mas funcionalmente nao criticos ou fora de escopo atual (CLELAND-HUANG:;
GOTEL; ZISMAN, 2012). A Figura 2.3 ilustra conceitualmente essa relagao hierarquica
entre os trés niveis de rastreabilidade: requisitos de negécio no topo, endpoints da API
no meio, e cenarios de teste na base, com setas bidirecionais indicando as ligacoes de

rastreamento entre cada camada.

Business Requirement Document (BRD)

REQ-001 — REQ-002 — REQ-003

traces to

API Endpoints

GET /alerts — GET /forecast — POST /alerts

validates

Test Scenarios
<- - - -dertves

TS-001 — TS-002 — TS-003 — TS-004

Figura 2.3: Diagrama conceitual de rastreabilidade entre BRD e cendrios de teste

Conforme demonstrado na Figura 2.3, as conexoes bidirecionais entre BRD, end-
points e cenarios de teste estabelecem uma matriz de rastreabilidade que permite tanto
navegacao descendente (de requisitos para testes) quanto ascendente (de testes para requi-
sitos). Ademais, a Matriz de Rastreabilidade de Requisitos, conhecida pela sigla RTM
derivada do inglés Requirements Traceability Matriz, constitui o artefato tradicionalmente
utilizado para documentar de forma tabular e estruturada os relacionamentos entre requi-
sitos, casos de teste derivados e outros artefatos relevantes do projeto (MAaDER; EGYED,
2012). Conforme observado por pesquisas empiricas conduzidas ao longo da tltima década,
a manutencao de rastreabilidade adequada e atualizada pode acelerar substancialmente
atividades de desenvolvimento como analise de impacto de mudangas, reduzir a incidéncia
de defeitos através de melhor cobertura de requisitos, e facilitar comunicacao entre equipes
técnicas e de negdcio (SPANOUDAKIS; ZISMAN, 2005). Por outro lado, o processo de

criacao e manutengao manual de matrizes de rastreabilidade é reconhecidamente traba-

2.5 Desenvolvimento Orientado a Comportamento 14

lhoso, propenso a erros de inconsisténcia, e frequentemente negligenciado sob pressao de
prazos apertados, motivando fortemente abordagens automatizadas (CLELAND-HUANG;
GOTEL; ZISMAN;, 2012).

2.5 Desenvolvimento Orientado a Comportamento

O Desenvolvimento Orientado a Comportamento, conhecido pela sigla BDD derivada
do inglés Behavior-Driven Development, é uma metodologia que estende e refina os
principios do Desenvolvimento Orientado a Testes tradicional, focando especificamente
na especificacao do comportamento esperado do sistema através de exemplos concretos
escritos em linguagem de dominio quase natural (NORTH, 2006). Neste sentido, BDD
enfatiza a colaboragao estruturada entre desenvolvedores que implementam funcionalidades,
testadores que verificam conformidade, e stakeholders de negécio que definem requisitos,
utilizando uma linguagem ubiqua compartilhada por todos os membros da equipe que
elimina ambiguidades e mal-entendidos (SOLIS; WANG, 2011).

Dessa forma, a linguagem Gherkin constitui a sintaxe mais amplamente adotada
para expressar cenarios BDD de forma estruturada e processavel, seguindo a estrutura
canonica Given/When/Then que em portugués corresponde a Dado/Quando/Entao (Cu-
cumber, 2023). Cada cendrio Gherkin descreve um teste comportamental através de trés
elementos fundamentais: uma precondicao que estabelece o estado inicial do sistema,
uma acgao que representa a operacao sendo testada, e um resultado esperado que define
o comportamento correto do sistema. Ademais, essa estrutura é interpretavel tanto por
humanos que podem revisar e validar a especificacao quanto por ferramentas automatizadas
de execucao de teste. O Cucumber é o framework BDD mais popular, disponivel para
multiplas linguagens de programacao incluindo Java, Ruby, JavaScript e Python (através
da implementacao Behave). O Cucumber interpreta arquivos .feature escritos em Gher-
kin, vincula cada step a implementacoes de cédigo chamadas step definitions, e executa
os testes gerando relatorios de sucesso ou falha (ZAMENI; WANG; MAHMOUD, 2023).
Outras ferramentas compativeis incluem SpecFlow para a plataforma .NET. A linguagem
também suporta construgoes avancadas como Scenario Outline para parametrizacao de

cenarios com multiplos conjuntos de dados, Background para definicao de precondigoes

V]

19

26

2.5 Desenvolvimento Orientado a Comportamento 15

compartilhadas entre cendrios de uma mesma feature, e tags para categorizacao e filtragem
seletiva durante execucao.

Para ilustrar, o Cédigo 2.1 demonstra a estrutura completa de um arquivo Gherkin
aplicado ao contexto de teste de API REST, incluindo a declaragao da Feature com descrigao
no formato de user story que contextualiza o objetivo funcional, tags organizacionais para
categorizacao e filtragem de cenarios durante execucao, e dois cenarios representativos:
um validando o fluxo positivo de criacao de recurso com dados validos, e outro verificando

o tratamento adequado de erros quando campos obrigatérios estao ausentes ou invalidos.

Feature: Pet Store API - Pet Management
As an API consumer
I want to manage pets in the store

So that I can maintain the pet inventory

Qapi @pet Qpositive @smoke
Scenario: Successfully create a new pet
Given the API endpoint "/pet" is available
And I have a valid authentication token
And the request body contains valid pet data:
| name | status | category |
| Buddy | available | dog |
When I send a POST request to "/pet"
Then the response status code should be 200
And the response body should contain the pet ID
And the pet name should be "Buddy"

And the pet status should be "available"

Qapi @pet Onegative @validation
Scenario: Fail to create pet with missing required fields
Given the API endpoint "/pet" is available
And the request body is missing the "name" field
When I send a POST request to "/pet"
Then the response status code should be 400
And the response should contain an error message

And the error message should indicate "name is required"

2.6 Modelos de Linguagem de Grande Porte em Engenharia de Software 16

Listing 2.1: Estrutura completa de cenario Gherkin para teste de API REST

Por conseguinte, essa caracteristica de “especificacao executavel” proporcionada
pela abordagem BDD reduz sistematicamente a divergéncia entre o que estd documentado
em artefatos de projeto e o que esta efetivamente implementado e testado, além de
facilitar substancialmente a comunicagao entre equipes técnicas e nao técnicas através
de uma linguagem comum, pesquisas ja exploraram ativamente a geragao automatica de
cenarios BDD a partir de requisitos expressos em linguagem natural ou especificacoes de
alto nivel (NORTH, 2006). Diante disso, Zameni, Wang e Mahmoud (2023) investigam
especificamente o uso de LLMs para gerar cendrios Gherkin a partir de requisitos textuais
nao estruturados, demonstrando empiricamente que modelos como GPT-4 conseguem
produzir cendrios estruturalmente coerentes e semanticamente bem formados quando
guiados por prompts adequadamente construidos e contextualizados. Essa linha de pesquisa
emergente inspira diretamente a abordagem técnica adotada neste trabalho para geracao

automatizada de cenarios.

2.6 Modelos de Linguagem de Grande Porte em En-
genharia de Software

Modelos de Linguagem de Grande Porte, conhecidos pela sigla LLM derivada do inglés
Large Language Models, representam um avanco significativo em capacidade de compreensao
de linguagem natural e geracao de texto coerente. Baseados na arquitetura Transformer
introduzida originalmente para tarefas de traducao automatica (VASWANTI et al., 2017),
esses modelos sao treinados em vastas quantidades de dados textuais cobrindo multiplos
dominios do conhecimento humano, demonstrando habilidade emergente em tarefas diversas
como traducao entre idiomas, sumarizagao de textos longos, geragao de cédigo-fonte, e
resposta a perguntas complexas (BROWN et al., 2020).

Dessa forma, LLMs tém sido aplicados com sucesso crescente em multiplas tarefas
do ciclo de desenvolvimento, incluindo geracao de cédigo a partir de descrigoes em linguagem

natural que reduz esforco de implementacao, geragao automatizada de testes unitarios

2.6 Modelos de Linguagem de Grande Porte em Engenharia de Software 17

que aumenta cobertura, documentacao automatica de codigo existente que melhora
manutenibilidade, deteccao de bugs através de andlise de padroes suspeitos, e refatoracao
de cédigo para melhorar qualidade estrutural (WANG et al., 2024). Trabalhos recentes
demonstram que LLMs podem interpretar especificacoes técnicas complexas expressas em
formatos estruturados e gerar casos de teste funcionalmente relevantes. Para ilustrar, Kim
et al. (2024) propdem especificamente o RESTGPT, uma abordagem inovadora que utiliza
LLMs para extrair regras implicitas de descri¢coes em linguagem natural presentes em
especificacoes OpenAPI e gerar valores de parametros contextualmente mais adequados do
que técnicas baseadas apenas em analise sintatica.

Ademais, Schéfer et al. (2023) conduziram estudo empirico rigoroso sobre geragao
de testes unitarios com LLMs, demonstrando que modelos de estado da arte como GPT-4
podem gerar testes com alta taxa de compilagao sem erros sintaticos e cobertura de cédigo
comparavel a ferramentas tradicionais de geracao automatizada de testes. Por outro lado,
os autores observam criticamente que a qualidade dos testes gerados por LLMs depende
fortemente da qualidade dos prompts utilizados como entrada, enfatizando a importancia
fundamental de engenharia de prompts adequada que forneca contexto suficiente, exemplos
representativos, e instrugoes claras sobre formato de saida esperado (WHITE et al., 2023).
Estudos complementares indicam que técnicas como few-shot prompting, onde exemplos
de entrada e saida desejada sao fornecidos ao modelo, e chain-of-thought prompting,
que solicita raciocinio passo a passo explicito antes da resposta final, podem melhorar
significativamente a qualidade dos artefatos gerados (WEI et al., 2022).

Diante disso, um desafio técnico significativo na aplicacao pratica de LLMs consiste
no gerenciamento de contexto, dado que modelos possuem limites fisicos de tokens que
podem ser processados em uma unica invocacao, e especificacoes de APIs de grande porte
frequentemente excedem esses limites (ZAMENI; WANG; MAHMOUD, 2023). Estratégias
de chunking que segmentam a entrada em porcoes menores processaveis, e técnicas de
sumarizacao que condensam informacoes mantendo elementos essenciais para processar
grandes volumes de dados de forma eficiente, dividindo a entrada em multiplas chamadas
ao modelo e consolidando resultados de forma coerente ao final do processamento (LEWIS

et al., 2020). A implementacao de pipelines de processamento iterativo, onde cada chunk

2.7 Métricas de Qualidade em Automacao de Testes 18

é enriquecido com contexto resumido dos chunks anteriores, permite manter coeréncia

semantica entre as partes processadas separadamente.

2.7 Meétricas de Qualidade em Automacao de Testes

A avaliacao objetiva da qualidade de cenarios de teste gerados automaticamente requer
métricas mensuraveis e reproduziveis. Dessa forma, métricas tradicionais de teste de
software incluem cobertura de cédigo medida através de critérios como linhas executadas,
branches tomados, e condigoes exercitadas, cobertura de requisitos que verifica se todos
requisitos especificados possuem testes correspondentes, taxa de deteccao de defeitos que
mede eficacia dos testes em encontrar falhas reais, e taxa de falsos positivos que quantifica
testes que falham incorretamente (AMMANN; OFFUTT, 2016). Neste contexto, no
dominio especifico de APIs REST, métricas adicionais sao particularmente relevantes,
incluindo cobertura de endpoints que verifica se todas as operagoes expostas sao testadas,
cobertura de parametros que assegura exercicio de todos parametros definidos, diversidade
de valores de parametros que avalia amplitude do espaco de entrada testado, e cobertura
de cédigos de resposta HTTP que valida tratamento de diferentes situagoes de sucesso e
erro (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS, 2019).

Ademais, para cendrios gerados especificamente por LLMs, métricas de qualidade
textual tornam-se igualmente relevantes, incluindo coeréncia que avalia se a estrutura
l6gica do cenario faz sentido e steps estao ordenados apropriadamente, completude que
verifica presenca de todos os passos necessarios para executar o teste incluindo setup e
teardown, correcao que valida adequacgdo semantica as especificacoes da API, e legibilidade
que mede clareza da linguagem utilizada para facilitar compreensao humana (YUAN et
al., 2024). Para ilustrar, Yuan et al. (2024) propdem especificamente um framework de
avaliagao multi-dimensional que combina métricas automaticas computaveis para analise
em larga escala com avaliagao humana qualitativa para aferir aspectos subjetivos da
qualidade de casos de teste gerados por LLMs.

Por outro lado, além de métricas de qualidade dos artefatos produzidos, aspectos
operacionais do processo de automacao devem ser monitorados sistematicamente para

viabilizar uso pratico da ferramenta, incluindo tempo de execucao total e por etapa que

2.8 Sintese do Capitulo 19

impacta viabilidade em pipelines CI/CD, consumo de recursos computacionais como
tokens de LLM que tem implicacoes de custo, complexidade de entrada medida através
de caracteristicas do schema processado, e custo financeiro direto de utilizagao de APIs
comerciais de LLM (ABDELFATTAH et al., 2024). A integracao com pipelines de entrega
continua requer atengao especial a esses aspectos operacionais (HUMBLE; FARLEY,
2010). Neste sentido, dashboards analiticos que agregam e visualizam métricas ao longo
de multiplas execugoes permitem analise de tendéncias temporais e tomada de decisao
informada sobre estratégias de teste e configuracoes de ferramenta.

A definicao e adocao de um conjunto de métricas técnicas, textuais e operacionais
permitem comparar objetivamente cenarios de teste gerados automaticamente com aqueles
produzidos manualmente, e avaliar a escalabilidade e sustentabilidade economica do uso

de LLMs como componentes centrais em estratégias de automacao de testes de APIs.

2.8 Sintese do Capitulo

A literatura revisada neste capitulo sugere cinco diretrizes convergentes que fundamentam
a concepcao e o desenvolvimento deste trabalho. A primeira diretriz enfatiza a necessidade
de cobertura explicita e mensuravel de APIs REST baseada em especificacoes formais
que permitam automagao efetiva (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS, 2019). A
segunda diretriz ressalta a importancia de integrar requisitos de negocio com validacoes
técnicas para garantir a relevancia funcional dos testes gerados, estabelecendo rastrea-
bilidade adequada e bidirecional (GOTEL; FINKELSTEIN, 1994). A terceira diretriz
reconhece o valor de representagoes legiveis e executdveis, como Gherkin/BDD, para
aproximar especificacao e teste, facilitando a comunicacao entre stakeholders técnicos e
nao técnicos (ZAMENI; WANG; MAHMOUD, 2023). Ademais, a quarta diretriz explora a
aplicacao de LLMs para a geracao inteligente de cendrios de teste a partir de especificacoes
complexas, aproveitando capacidades emergentes desses modelos para interpretagao de
contexto e geragao de artefatos estruturados (WANG et al., 2024).

Por fim, a quinta diretriz estabelece a necessidade de métricas abrangentes que
capturem muiltiplas dimensoes de qualidade e assegurem rastreabilidade em processos de

automacgao de testes (ABDELFATTAH et al., 2024; HUMBLE; FARLEY, 2010).

20

3 Materiais e Métodos

Neste capitulo é descrita a metodologia adotada para o desenvolvimento da ferramenta
proposta. A Se¢ao 3.1 apresenta a visao geral do sistema e seus objetivos. A Secao 3.2
descreve a arquitetura em camadas. A Secao 77?7 detalha o fluxo de funcionamento em sete
etapas, conforme ilustrado na Figura 3.4. A Secao 77 lista as tecnologias utilizadas. A
Secao 77?7 apresenta a estrutura do projeto. Por fim, a Secao 7?7 descreve os componentes
principais. A exposi¢ao metodologica permite a compreensao completa das decisoes de
projeto e facilita a reprodutibilidade do trabalho por pesquisadores e desenvolvedores

interessados em estender ou adaptar a solugao apresentada.

3.1 Visao Geral do Sistema

O sistema desenvolvido, denominado API Parameter Coverage & Test Scenario
Generator, tem como objetivo principal automatizar o ciclo completo de geracao de
cendrios de teste para APIs REST a partir de especificagoes OpenAPI/Swagger (GUIDINE,
2025). Neste contexto, a solugao integra de forma organica requisitos de negdcio estru-
turados através de Documentos de Requisitos de Negocio e utiliza inteligéncia artificial
via modelos de linguagem de grande porte para sintese de cenarios comportamentais no
formato Gherkin, garantindo simultaneamente cobertura técnica abrangente e alinhamento
com prioridades funcionais estabelecidas pelos stakeholders do projeto. A abordagem
proposta diferencia-se das solugoes existentes ao combinar analise estdtica de especificagoes
com geracao dinamica assistida por inteligéncia artificial.

Dessa forma, a ferramenta foi concebida para atender simultaneamente a multiplos
objetivos identificados na revisao da literatura apresentada no capitulo anterior. O primeiro
objetivo consiste em reduzir substancialmente o esforco manual envolvido na criacao de
suites de teste abrangentes, automatizando etapas que tradicionalmente consomem tempo
significativo dos analistas de qualidade. O segundo objetivo visa garantir alinhamento

consistente entre os requisitos de negocio estabelecidos pelos stakeholders e as validagoes

3.1 Visao Geral do Sistema 21

técnicas implementadas nos testes automatizados, eliminando divergéncias sistematicas
que frequentemente ocorrem em processos manuais. O terceiro objetivo busca maximizar
a cobertura de endpoints e de parametros funcionalmente relevantes por meio de anélise
automatizada de especificagoes e requisitos, aplicando critérios objetivos de priorizagao. O
quarto objetivo foca em produzir artefatos rastreaveis e bem documentados que sejam
diretamente integraveis com pipelines de CI/CD modernos, conforme praticas estabelecidas
de entrega continua (HUMBLE; FARLEY, 2010). Por fim, o quinto objetivo consiste
em fornecer métricas objetivas e acionaveis de qualidade, complexidade e cobertura que

suportem a tomada de decisao informada sobre estratégias de teste.

) GitHub - fabricicguidine/api-p- X +

& C m 23 github.com/fabricioguidine/api-param-coverage

O Platform ~+ Solutions Resources v Open Source ~ Enterprise ~ Pricing Search or jump to... / Sign in ‘ Sign up | ‘;—‘

(=] / £\ Notifications % Fork 0 £r Star 0

() Issues 1% Pullrequests (5) Actions [Projects () Security [~ Insights

¥ main - P 1Branch © 0Tags

&/l fabricioguidine t d UI/UX flow testing scrip h Winc g and f.. 0z go Y 22 Commits

docs

output

src

tests
L] .env.example
[.gitignore 5 Releases
1 LICENSE
[QUICK_START.md Packages
(3 READMEmd
L] main.py

Languages
L] pyproject.toml
Python 96.8%

1 requirements-dev.txt

[J requirements.txt

Figura 3.1: Pagina principal do repositério GitHub do projeto

Ademais, o repositério do projeto esta hospedado publicamente no GitHub sob
licenca MIT, conforme ilustrado na Figura 3.1, que apresenta a pagina principal do
repositério, contendo todo o cédigo-fonte organizado modularmente, documentacao técnica

abrangente, incluindo guias de instalagao e uso, exemplos praticos de execucao com

3.1 Visao Geral do Sistema 22

APIs reais e suite completa de testes automatizados cobrindo os médulos principais. A
escolha da licenca MIT promove a adocao ampla e facilita contribuicoes da comunidade
de desenvolvedores. Essa decisao de licenciamento foi tomada considerando o equilibrio
entre a protegao dos direitos autorais e a maximizacao do impacto cientifico e préatico da
ferramenta.

) GitHub - fabricioguidinefapi-p- X +

< C m 25 github.com/fabricioguidine/api-param-coverage

(] README &[5 MIT license

API Parameter Coverage & Test Scenario Generator

python 3.8+ tests 224tests coverage [B09RH) Swagger [20) platform [Windows x 8] type checking mypy linting

A comprehensive Python tool for generating test scenarios from OpenAPI/Swagger schemas using LLM-powered
analysis and Business Requirement Document (BRD) integration. The tool automatically analyzes API schemas, cross-
references them with business requirements, and generates comprehensive Gherkin test scenarios with detailed
analytics.

Features

Core Capabilities

+ [B Multi-Format Schema Support: Handles Swagger 2.0, OpenAPI 3.0, and OpenAPI 3.1 (JSON/YAML)
& Automatic Schema Download: Fetches schemas from URLs with validation
®, Deep Schema Analysis: Extracts parameters, constraints, and complexity metrics
B BRD Integration: Business Requirement Document support for scope-based testing
@ LLM-Powered Generation: Uses multiple LLM providers (OpenAl, Grog, Anthropic, Google, Azure) for
intelligent test scenario generation
@ Smart Scope Filtering: Cross-references BRD with Swagger to test only required endpoints
M CSV Export: Export test scenarios to CSV format

Comprehensive Analytics: Detailed metrics and reports for every algorithm execution

Advanced Features

* @ Smart Chunking: Automatically handles large schemas by processing in chunks
B BRD Generation: Creates BRD documents from Swagger schemas using heuristic analysis
B Document Parsing: Converts BRD documents (PDF, Word, TXT, CSV) to structured schemas
W Algorithm Tracking: Detailed complexity analysis for each algorithm execution
4 Performance Monitoring: Execution time and resource usage tracking
@ Structured Reports: Separate analytics reports for each algorithm and LLM call
Coverage Analysis: Analyzes test coverage against BRD requirements
M Analytics Dashboard: Aggregates analytics across runs with trend analysis

#+ Configuration Management: YAML/JSON config files with environment-specific settings

Figura 3.2: Continuacao da péagina principal do repositério GitHub do projeto

Conforme observado na Figura 3.1, a estrutura do repositdrio segue as convencgoes
estabelecidas para projetos Python de cddigo aberto, facilitando a navegacao e as con-
tribui¢coes da comunidade. Por conseguinte, a disponibilizacao publica do cédigo-fonte
promove transparéncia metodologica, permite validacao independente dos resultados e

facilita extensoes futuras por parte da comunidade de pesquisa e desenvolvimento.

3.2 Arquitetura do Sistema 23

3.2 Arquitetura do Sistema

A arquitetura do sistema é composta por seis camadas interconectadas que colaboram para
executar o pipeline completo de geracao de cenarios de teste. O design arquitetural segue
o padrao arquitetural Dutos e Filtros (Pipes and Filters) (FOWLER, 2002), no qual cada
estagio recebe a saida estruturada do estagio anterior como entrada e produz uma nova
saida estruturada para o estagio subsequente. Essa abordagem favorece a separacao de
responsabilidades, a facilidade de manutencao e a evolucao incremental da ferramenta. A
escolha desse padrao arquitetural foi motivada pela natureza sequencial do processamento
de especificacoes e pela necessidade de pontos de extensao bem definidos. A Figura 3.3
ilustra os principais componentes arquiteturais e o fluxo de dados entre eles.

A Camada de Entrada recebe especificacoes OpenAPI via URL remota ou arquivo
local. A Camada de Processamento contém os modulos Swagger, responséavel pela obtengao
e validagao da especificagao através dos submodulos Fetcher e Validator, e Engine, que
realiza o processamento através dos submodulos Processor, Analyzer e Gerador de CSV.
A Camada de Integracao LLM gerencia a comunicagao com provedores de modelos de
linguagem (OpenAl, Groq, Claude e Gemini) através do LLM Prompter e seus submdédulos
de segmentacao, construgao de prompts e gerenciamento de provedores. A Camada de
Requisitos (BRD) integra o Gerador de BRD para geracao automaética de requisitos
e o Gerenciador de BRD para carregamento, analise sintatica e referéncia cruzada de
documentos de requisitos.

A Camada de Analise consolida métricas de execucao através do médulo de analise,
com submoédulos de métricas, rastreamento e painel de controle, além do Analisador de
Cobertura para analise de cobertura de testes. Por fim, a Camada de Saida gerencia a
exportacao dos artefatos através do Gerenciador de Saida, produzindo CSV de cenarios,
relatorios analiticos e relatorios de validacao. Os artefatos gerados seguem formatos
padronizados que facilitam a integracao com outras ferramentas do ecossistema de testes.

As conexoes bidirecionais entre a Camada de Processamento e as camadas de
LLM e BRD permitem o fluxo iterativo de dados, essencial para a geracao inteligente de
cenarios comportamentais alinhados aos requisitos de negécio.

A Figura 3.3 ilustra os principais componentes arquiteturais e o fluxo de dados

3.2 Arquitetura do Sistema 24

| CAMADA DE ENTRADA |

URL/Arquivo
OpenAPIl

Y
CAMADA DE PROCESSAMENTO

| Swagger }—>| Engine |

. o4 L K Y . 3 '
|Fe1:cher||\|hlida1:ur| |quEsur||Analyzer||CS’VGen|

: ,

CAMADA DE INTEGRAGAQ LLM

L
|' CAMADA DE REQUISITOS (BRD) |

LLM Prompter

() - (pmt,pt] o i | L ‘BRDGeneraturH BRD Manager |
|_ Chunking | | Builder | |_F'rm'|dengr_| e A J
. k- . A .
— " i = 4 |Lu|:|ader| | Parsar | Ehr=es |
‘DPE'U“| |qu||Claude||Gemini| | I) |_Ref |
- . s A
- ™)
CAMADA DE ANALYTICS
| Analytics |<—{ Coverage Analyzer
-
%, ry %, ry]
K h 4 o) -
Metrics Tracker | |Dashboard N
p l ,
CAMADA DE SAIDA
‘Output Manager ‘
csv Validaticn
Scenarios Reports
Analhyics
Reparts

Figura 3.3: Arquitetura do sistema organizada em camadas

3.3 Fluxo de Funcionamento 25

entre eles por meio de um diagrama de blocos, destacando trés camadas conceituais princi-
pais. A camada de entrada engloba o médulo Swagger, composto pelos subcomponentes
Fetcher, responsavel pelo download de schemas, e Validator, responsavel pela verificagao
de conformidade estrutural conforme a especificacao OpenAPI 3.0. A camada de processa-
mento contém o Engine principal, com os subcomponentes Processor para extracao de
estruturas internas, Analyzer para célculo de métricas e LLM para integragdo com modelos
de linguagem, além do moédulo BRD paralelo contendo Loader para carregamento de
requisitos e referéncia cruzada para andlise de cobertura. Por fim, a camada de saida inclui
o CSV Generator para exportacao estruturada e o modulo Analytics para consolidacao

das métricas coletadas ao longo de todo o pipeline.

3.3 Fluxo de Funcionamento

O sistema opera por meio de sete etapas sequenciais bem definidas, cada uma responsavel
por realizar uma transformacao especifica sobre os dados de entrada até a producao dos
artefatos finais estruturados. Essa estruturacao em etapas discretas permite nao apenas a
execucao ordenada do processamento, mas também a possibilidade de retomada parcial
em caso de falhas, evitando reprocessamento desnecessario de etapas ja concluidas. O
mecanismo de checkpointing implementado permite recuperacao eficiente em cenarios de
interrupcao.

O processamento é orquestrado pelo médulo principal implementado em main. py,
que coordena a execucao ordenada de cada etapa do pipeline, gerencia a passagem de
dados entre moédulos por meio de estruturas padronizadas, implementa tratamento de erros
e recuperagao quando possivel e mantém logging detalhado de todas as operacgoes para
rastreabilidade. O orquestrador também é responséavel por validar pré-condicoes antes de
iniciar cada etapa, garantindo que os dados de entrada atendam aos requisitos minimos
esperados pelo médulo subsequente. Essa validagao prévia reduz significativamente a
ocorréncia de erros em estagios avancados do processamento.

A Figura 3.4 apresenta o fluxograma completo do processo de geracao de cenarios,
incluindo o ponto de decisao relacionado a disponibilidade de BRD, no qual o usuério

pode optar por carregar um documento previamente estruturado, gerar automaticamente

3.4 Tecnologias Utilizadas 26

via LLM ou realizar o parsing de documentos nao estruturados. Essa flexibilidade permite
que a ferramenta seja utilizada tanto em cenarios onde existe documentagao formal de
requisitos quanto em contextos mais ageis, nos quais os requisitos podem ser inferidos

diretamente a partir da especificagao da API.

Gerar

via LLM

. 1. Download e 2. Processamento 3. Integracgao
s
Validacao e Anailise com BRD

4. Aniélise de 5. Geragao de 6. Exportacao
> > > 7. Analytics —{ Fim }
Cobertura Cenarios CSv

Figura 3.4: Fluxograma das sete etapas do processo de geracao de cendarios

3.4 Tecnologias Utilizadas

O projeto foi implementado integralmente em Python 3.8+, linguagem escolhida por
multiplas razoes técnicas e praticas fundamentadas em analise criteriosa das alternativas
disponiveis (LUTZ, 2013). Dessa forma, Python oferece expressividade sintética que facilita
a implementacgao rapida de algoritmos complexos, possui um ecossistema de bibliotecas
maduras para processamento de dados e integracao com APIs, apresenta adogao tanto na
comunidade de engenharia de software quanto em ciéncia de dados e fornece ferramentas
robustas para desenvolvimento testado e documentado de aplicagoes profissionais. A
disponibilidade de recursos de aprendizado e documentacao contribuiu para escolha.

A escolha da versao 3.8+ como requisito minimo foi motivada pela necessidade de
recursos modernos da linguagem, incluindo suporte nativo a type hints para documentagao
de tipos em assinaturas de funcgoes, walrus operator para atribuicoes em expressoes e
melhorias significativas no moédulo asyncio para operacoes assincronas. Ademais, essa
versao garante compatibilidade com a maioria dos ambientes de producao corporativos,

enquanto permite o uso de funcionalidades avancadas que aumentam a legibilidade e a

3.4 Tecnologias Utilizadas 27

manutenibilidade do cédigo-fonte.
O gerenciamento de dependéncias foi realizado por meio do pip, com um arquivo
requirements.txt versionado, seguindo as praticas estabelecidas de reprodutibilidade.
A fixacao de versoes especificas para cada dependéncia evita incompatibilidades
decorrentes de atualizacoes automaéticas, garantindo que buzlds futuros produzam resultados
idénticos aos obtidos durante o desenvolvimento e a validagao inicial do sistema. Neste
sentido, a selecao das dependéncias priorizou bibliotecas maduras, com manutencao ativa,

documentacao completa e compatibilidade com os requisitos de software livre.

Tabela 3.1: Principais tecnologias e dependéncias do projeto

Tecnologia Funcgao no Sistema

Python 3.8+ Linguagem de programacao principal

OpenAl SDK Cliente oficial para comunicagao com a API

Groq SDK Cliente para acesso a modelos otimizados via Groq
Anthropic SDK Cliente para integracao com modelos da Anthropic
requests Biblioteca padrao para requisicoes HTTP

PyYAML Parser de arquivos YAML para schemas
python-dotenv Gerenciamento de variaveis de ambiente e credenciais
PyPDF2 Parser de documentos PDF para extracao de texto
python-docx Parser de documentos Word para extracao de texto
pytest Framework de testes unitarios e de integracao
behave Framework BDD para testes em linguagem Gherkin

Todas as bibliotecas selecionadas possuem historico comprovado de estabilidade
em ambientes de producao e sao amplamente utilizadas pela comunidade de desenvolve-
dores, minimizando o risco de abandono ou descontinuagao que poderiam comprometer
a longevidade do projeto. A Tabela 3.1 apresenta as principais dependéncias externas
utilizadas no projeto e suas respectivas funcoes no pipeline de processamento. A arqui-
tetura de dependéncias foi projetada para minimizar o acoplamento entre os modulos,
permitindo a substitui¢ao de componentes individuais sem impacto significativo no res-
tante do sistema, caracteristica importante para a extensibilidade e a evolugao futura
da ferramenta. Adicionalmente, foram priorizadas bibliotecas com licencas permissivas
e documentacao abrangente, de modo a facilitar a auditoria técnica, a reprodutibilidade
cientifica dos experimentos e a adocao da ferramenta tanto em contextos académicos
quanto em contextos industriais. Por fim, a selecao das dependéncias contribui para a

qualidade do projeto, reduzindo custos, facilitando a incorporacao de novas funcionalidades

3.5 Estrutura do Projeto 28

e assegurando alinhamento com boas praticas de engenharia de software.

3.5 Estrutura do Projeto

O projeto segue uma arquitetura modular, com separacao clara de responsabilidades,
aplicando principios de design estabelecidos na literatura de engenharia de software
(FOWLER, 2002; MARTIN, 2003). Dessa forma, a organizacao hierdrquica dos diretérios
reflete a divisao funcional dos componentes, com modulos dedicados ao processamento de
schemas (swagger/), ao engine de processamento (engine/), ao gerenciamento de BRD
(brd/), a analytics e a utilitarios gerais. Ademais, o diretério raiz contém o ponto de
entrada principal main.py e arquivos de configuracao. A Figura 3.5 apresenta uma visao
simplificada da organizacao principal dos diretérios do projeto.

Essa organizacao facilita a evolugao incremental do sistema, permitindo a in-
troducao de novas funcionalidades sem comprometer a estabilidade dos mddulos existentes.
Além disso, a separacao explicita de responsabilidades contribui para a melhoria da
manutenibilidade e da testabilidade, ao possibilitar o desenvolvimento e a validacao inde-
pendente. A estrutura também favorece o trabalho colaborativo, permitindo que multiplos
desenvolvedores atuem em modulos distintos simultaneamente.

A organizacao completa de diretérios, incluindo a hierarquia de moédulos e as

descricoes funcionais de cada componente, estd documentada no Apéndice C.

api-param-coverage/

7 N

src/ tests/ output/ docs/

modules/ features/ example_weather_api/

Figura 3.5: Visao simplificada da estrutura de diretérios principal

3.6 Componentes Principais 29

3.6 Componentes Principais

Os componentes principais do sistema estao organizados em modulos hierarquicos, com

descrigao das responsabilidades especificas de cada arquivo de cédigo-fonte.

Tabela 3.2: Resumo dos modulos principais e suas responsabilidades

Moédulo Responsabilidade Geral
swagger/ Download, validacao e normalizacao de especificagoes
OpenAPI/Swagger

engine/algorithms/ | Processamento de schemas, andlise de complexidade,

geracao de CSV

engine/llm/ Integracao com provedores LLM, construcao de prompts,
chunking
engine/analytics/ Coleta de métricas, rastreamento de algoritmos, geragao

de relatdrios

brd/ Carregamento, geracao, parsing e validacao de BRDs

workflow / Orquestragao de alto nivel, handlers de cobertura e
cenarios

utils/ Utilitarios compartilhados: LLM provider, gerenciador

de saida, validadores

cli/ Interface de linha de comando, interacao com usuario

A Tabela 3.2 apresenta um resumo dos moédulos de mais alto nivel. Dessa
forma, cada componente foi projetado meticulosamente para realizar uma funcao bem
definida e coesa, seguindo o principio de responsabilidade tnica estabelecido por Martin
(2003), facilitando significativamente a manutencao evolutiva, o teste unitério isolado e a
extensao futura do sistema. A arquitetura modular adotada permite que desenvolvedores
compreendam rapidamente o escopo de cada modulo, sem necessidade de realizar uma
analise abrangente do sistema como um todo, reduzindo a curva de aprendizado para
novos contribuidores sempre que necessario. A comunicacao entre médulos ocorre através
de interfaces, minimizando o acoplamento e facilitando a substituicao de implementacoes.

A especificagao completa, esta disponivel no Apéndice C.

30

4 Estudo de Caso

Este capitulo apresenta a aplicacao pratica da ferramenta desenvolvida em um cenério
real de teste de API publica, com o propdsito de avaliar a viabilidade da solugao por meio
de analises quantitativa e qualitativa. Dessa forma, o estudo de caso utiliza métricas reais
coletadas durante a execucao e artefatos gerados pelo sistema para a validagao empirica da

abordagem proposta, seguindo a metodologia estabelecida para avaliacao de ferramentas

de teste automatizado (ARCURI, 2019).

4.1 Descricao do Cenario

Para avaliar as capacidades do sistema em condicoes reais de uso, este estudo foi conduzido
com a API publica weather.gov, especificacao OpenAPI 3.0.0 oficialmente mantida pelo
National Weather Service dos Estados Unidos (National Weather Service, 2025). Neste
contexto, esta API foi selecionada por multiplos critérios objetivos: disponibilidade publica
sem necessidade de autenticagao complexa facilitando reprodutibilidade; especificacao
OpenAPI completa e bem documentada servindo como exemplo de qualidade; complexidade
substancial com 59 endpoints distribuidos entre miltiplos recursos funcionais; diversidade
de tipos de parametros incluindo coordenadas geograficas, intervalos temporais e opgoes
de formatacao; e relevancia pratica sendo amplamente utilizada por aplicacoes de previsao
do tempo.

A API weather.gov expoe endpoints organizados em cinco recursos funcionais
principais. O recurso de alertas meteoroldgicos permite consultar alertas ativos por zona
geografica, area, regiao ou tipo de evento. O recurso de previsoes fornece dados de previsao
do tempo para pontos especificos definidos por coordenadas ou por grades. O recurso de
observagoes disponibiliza dados meteoroldgicos observados coletados por estagoes fisicas.
O recurso de produtos meteorolégicos permite acesso a produtos textuais formatados
emitidos por meteorologistas. Por fim, o recurso de zonas e pontos fornece metadados

geograficos para localizagao de outras operagoes.

4.2 Configuracao da Execucao 31

4.2 Configuracao da Execucao

A execucao do estudo de caso foi realizada em ambiente controlado, com configuracoes
documentadas, para garantir a reprodutibilidade, conforme as préticas recomendadas de
pesquisa empirica em engenharia de software (ARCURI, 2019). O sistema operacional
utilizado foi o Ubuntu 22.04 LTS, rodando em maquina virtual com 4 nucleos de CPU
e 8 GB de RAM. A versao de Python foi 3.10.12, com todas as dependéncias instaladas
conforme especificado no arquivo requirements.txt. O provedor de LLM selecionado foi
OpenAl com o modelo GPT-4 acessado por meio da API oficial. Por fim, a chave de API
foi configurada em uma variavel de ambiente conforme a documentacao de seguranca.
Os parametros de configuracao do sistema foram: threshold de chunking definido
em 15 endpoints para ativagao da estratégia de processamento em multiplos lotes; timeout
de requisicoes HT'TP configurado em 30 segundos com 3 tentativas de retry; modelo LLM
especificado como gpt-4; e cobertura BRD solicitada de 100% para testar capacidade

maxima do sistema sem a completa filtragem de endpoints disponibilizados.

4.3 Métricas da API Processada

A analise automatizada da especificagao OpenAPI da weather.gov revelou caracteristicas
estruturais relevantes para a compreensao da complexidade do processamento. A Tabela 4.1
consolida as métricas extraidas na etapa de andlise, fornecendo uma visdo quantitativa da
superficie de teste da API.

Neste contexto, a distribuicao de tipos de parametros revela predominancia de
strings (45.6% do total), refletindo a natureza textual de muitos identificadores e opgoes,
seguida por integers (28.7%) tipicamente usados para valores numéricos discretos como anos
ou contadores, e numbers (13.2%) para valores continuos como coordenadas geogréficas.
Ademais, a presenca de 89 dominios de iteracao identificados através de constraints do
tipo enum e pattern indica oportunidades para teste de valores de borda e classes de
equivaléncia conforme critérios estabelecidos na literatura (KUHN; KACKER; LEI, 2013).
Por outro lado, a relagao de 156 parametros com limite definido contra 186 sem limite

(54.4% sem limite) sugere necessidade de estratégias heuristicas para geragao de valores de

4.4 Geragao e Estrutura do BRD 32

teste apropriados em parametros sem restri¢oes explicitas.

Tabela 4.1: Métricas estruturais da API weather.gov

Métrica \ Valor
Informacoes Gerais
Titulo da API weather.gov API
Versao da API 1.0.0
Versao OpenAPI 3.0.0
Estatisticas de Endpoints
Total de Endpoints 59
Componentes Definidos 245
Estatisticas de Parametros
Total de Parametros 342
Dominios de Iteracao 89
Parametros com Limite 156
Parametros sem Limite 186
Distribuicao por Tipo
string 156
integer 98
number 45
boolean 23
array 12
object 8
Distribuicao por Localizagao
path 89
query 187
header 34
body 32
Tipos de Constraints
enum 45
pattern 23
minimum/mazimum 34
minLength/mazLength 12

4.4 Geracao e Estrutura do BRD

Dado que nao existia BRD pré-existente para a API weather.gov no contexto deste
estudo, foi selecionada a opcao de geracao automdtica via LLM com cobertura de 100% dos
endpoints. Dessa forma, o médulo BRD Generator analisou os 59 endpoints da especificacao,
extraindo nomes de paths, descricoes textuais disponiveis, parametros obrigatorios e
schemas de resposta para inferir requisitos funcionais correspondentes. Por conseguinte,

o processamento via GPT-4, com prompt especializado para a extracao de requisitos,

4.4 Geragao e Estrutura do BRD 33

resultou na geracao de um documento estruturado com 3 requisitos de alto nivel, cobrindo
os casos de uso principais da APIL.

O Apeéndice A apresenta a estrutura completa de um BRD gerado automatica-
mente, destacando os principais campos JSON que compoem o documento. Conforme
demonstrado no apéndice, o BRD segue um schema bem definido que facilita tanto o
processamento automatizado quanto a leitura humana, com campos para identificador
unico, titulo, descricao, requisitos estruturados e metadados de rastreabilidade. A escolha
do formato JSON para persisténcia do BRD permite integracao direta com ferramentas
de desenvolvimento e pipelines de CI/CD, além de facilitar o versionamento através de
sistemas de controle de versao como Git.

O BRD gerado seguiu o schema estruturado definido pelo sistema, contendo
identificador tnico no formato BRD-WEATHER-GOV-001, titulo descritivo “Weather.gov
API - Business Requirements Document”, descrigao textual do escopo funcional, nome e
versao da API correspondente, timestamp de criacao, e lista de requisitos estruturados.
Neste contexto, cada requisito incluiu identificador sequencial no formato REQ-NNN, titulo
resumindo a funcionalidade, descricao detalhada do caso de uso, endpoint correspondente
especificado por path e método HTTP, prioridade classificada como high/medium /low,
status de implementacao, cenarios de teste inicializados mas nao preenchidos nesta fase,
critério de aceitacao definindo condicoes de sucesso, e endpoints relacionados para a rastre-
abilidade de dependéncias. A estrutura padronizada dos requisitos permite rastreabilidade
bidirecional entre especificacao técnica e documentacao de negocio, facilitando andlise de

impacto quando mudancgas sao introduzidas na API.

4.4.1 Analise do BRD Gerado

Para verificar a qualidade do BRD gerado, foi feita uma referéncia cruzada que produziu
uma analise de cobertura entre os 59 endpoints da API e os 3 requisitos gerados no BRD.
Dessa forma, o algoritmo de correspondéncia identificou correspondéncias diretas através
de comparacao de paths exatos especificados nos requisitos, resultando em cobertura de
3 endpoints explicitamente cobertos correspondendo a 5.08% do total. Este resultado

baixo reflete a estratégia conservadora de geracao de BRD, que priorizou a qualidade em

4.5 Geragao de Cendrios de Teste 34

relacao a quantidade, focando em requisitos de alto nivel que representam os casos de uso
principais. Além disso, a andlise de cobertura considerou correspondéncias parciais com
base em palavras-chave extraidas das descri¢oes textuais dos endpoints e dos requisitos,

embora nenhuma correspondéncia adicional tenha sido identificada além das trés diretas.

Tabela 4.2: Analise de cobertura cruzada BRD vs Endpoints

Métrica Valor Absoluto | Porcentagem
Total de Endpoints na API 59 100%
Requisitos no BRD 3 —
Endpoints Cobertos pelo BRD 3 5.08%
Endpoints Nao Cobertos 56 94.92%
Cobertura Final 3 5.08%

A Tabela 4.2 apresenta o detalhamento da anélise de cobertura, incluindo contagens
absolutas e porcentagens calculadas. Neste sentido, a baixa cobertura observada nao
representa limitagao da ferramenta, mas sim uma consequéncia da configuracao especifica
de geracao de BRD, com foco em requisitos de alto nivel. Diante disso, em cenarios de
produgao reais, espera-se que os BRDs sejam refinados iterativamente por stakeholders para
aumentar a cobertura, conforme necessario. O projeto permite iteracoes de refinamento,
permitindo que analistas expandam gradualmente o BRD com requisitos adicionais a

medida que prioridades sao identificadas ao longo do ciclo de desenvolvimento.

4.5 Geracao de Cenarios de Teste

Utilizando os 3 endpoints filtrados pela analise de cobertura do BRD, conforme detalhado
na Tabela 4.2, o sistema procedeu a geracao de cenarios em Gherkin com o GPT-4. A
selecao de apenas 3 endpoints, correspondendo a 5.08% do total de 59 disponiveis na API,
decorreu diretamente da estratégia de geragao de BRD com foco em requisitos de alto
nivel, que priorizou qualidade sobre quantidade, resultando em cobertura conservadora
dos casos de uso principais. Dessa forma, dado que o nimero de endpoints processados (3)
estava substancialmente abaixo do threshold de chunking de 15 endpoints estabelecido na
configuracao do sistema, todo o processamento foi realizado em uma tnica chamada ao
LLM, sem necessidade de segmentacao em lotes.

O prompt construido incluiu contexto da API, com 2.058 tokens, contendo nome,

4.5 Geragao de Cendrios de Teste 35

versao, descricao funcional, detalhes dos 3 endpoints filtrados, com parametros completos,
schemas de request/response expandidos e requisitos correspondentes do BRD. As instrugoes
de geracao especificaram o formato Gherkin estrito, conforme a documentacao oficial
(Cucumber, 2023), cobertura balanceada entre casos positivos e negativos, uso apropriado

de tags e validacao dos cédigos de status HT'TP.

Tabela 4.3: Métricas de geragao de cenarios via LLM

Métrica Valor

Configuragao LLM

Modelo Utilizado gpt-4

Temperature 0.7

Entrada (Prompt)

Endpoints Processados 3
Comprimento do Prompt (caracteres) 8.234
Tokens Estimados 2.058

Saida (Response)

Comprimento da Resposta (caracteres) | 12.456

Tokens de Completion 3.114

Uso Total de Tokens

Prompt Tokens 2.058

Completion Tokens 3.114

Total de Tokens 5.172
Desempenho

Tempo de Execugao 45.23s

Cenarios Gerados

Total de Cenérios 127

Cenarios por Endpoint 42.3

A resposta do modelo GPT-4 gerou 3.114 tokens de completion contendo 127
cenarios Gherkin estruturados. O tempo total de processamento desta etapa foi de

45.23 segundos incluindo construcao de prompt, chamada HTTP a API OpenAl, parsing

4.5 Geragao de Cendrios de Teste 36

da resposta, e validacao de formato. A distribuicao dos cenérios gerados apresentou
balanceamento adequado entre casos positivos, que validam fluxos normais de operacao, e
casos negativos, que verificam o tratamento de erros e as condigoes de contorno. Neste
contexto, cada endpoint coberto recebeu, em média, 42 cenarios de teste, o que demonstra
a capacidade do LLM de explorar multiplas variagoes de entrada e condicoes de teste
relevantes.

A Tabela 4.3 consolida as métricas coletadas durante a geracao de cendrios,
oferecendo visibilidade completa sobre o consumo de recursos computacionais e financeiros.
Durante a execucao, o terminal exibiu progresso em tempo real conforme ilustrado na
Figura 4.1, que captura a saida do sistema durante o processamento do chunk tnico
contendo os 3 endpoints filtrados.

Conforme demonstrado na Figura 4.1, o sistema fornece feedback visual continuo
ao usuario através de mensagens informativas sobre cada etapa do processamento, incluindo
quantidade de endpoints sendo processados, numero do chunk atual, modelo LLM utilizado

e progresso da chamada a APIL.

4.5.1 Analise Qualitativa dos Cenarios

Os 127 cendrios Gherkin gerados foram submetidos a andlise qualitativa para avaliagao de
miltiplas dimensoes de qualidade conforme framework proposto por Yuan et al. (2024).
Neste contexto, a andlise verificou conformidade sintatica com especificacao Gherkin
através de parsing automatizado que confirmou auséncia de erros de formatacao, coeréncia
logica através de revisao manual de amostra representativa de 20 cendrios, adequagao aos
endpoints através de verificacao de que paths e métodos HT'TP mencionados correspondem
a especificacao, e completude através de confirmacao de presenca de precondicoes, acoes e
verificagoes em cada cenario.

Assim, todos os 127 cenarios analisados possuem estrutura sintatica valida, sem
erros de formatagao, respeitando a gramatica Gherkin, com declaracao de Feature, nome de
Scenario e sequéncia de steps prefixados. Ademais, os cenarios cobrem tanto fluxos normais
de operacao com dados validos quanto cenarios de erro incluindo parametros invalidos,

recursos inexistentes e condicoes de contorno. As tags aplicadas seguem convencgoes

4.5 Geragao de Cendrios de Teste 37

2 PowerShell

PowerShell 7.5.4
~\Documents\repos\api-param-coverage [main]> py .\main.py

ilUsing LLM provider: openai

Enter Swagger/OpenAPI schema URL (or press Enter to use example):
ilNo URL provided. Using example: https://api.weather.gov/openapi.json
Do you want to use this example? (Y/n):

Fetching schema from: https://api.weather.gov/openapi.json

v/ Detected: OPENAPI 3.8.0 - weather.gov API

Saving schema. ..

Schema saved to: C:\Users\fabri\AppData\Local\Temp\api_param_coverage_l
gyit9vB\api_weather_gov_openapi.json.json

v Schema downloaded: C:\Users\fabri\AppData\Local\Temp\api_param_covera
ge_lgyit9vB\api_weather_gov_openapi.json. json

POutput directory: output\20260164_135318-api_weather_gov_openapi

iProcessing schema. ..

v Schema processed:
- API: weather.gov API
- Endpoints: 59

PAnalyzing schema. ..
v Schema analyzed:
- Endpoints analyzed: 59

How would you like to handle the Business Requirement Document (BRD)?:
1. Load existing BRD schema file (JSON)
2. Parse BRD from document (PDF, Word, TXT, CSV)
3. Generate BRD from Swagger schema (using LLM)

Figura 4.1: Saida do terminal durante geragao de cendrios via LLM

estabelecidas com @api, marcando todos os cenarios como testes de API, permitindo
filtragem seletiva durante a execugao de suites. A combinacao de tags como @positive,

@negative, @boundary e @smoke facilita a organizacao de suites de teste por categoria e

10

16

19

20

N
N

4.5 Geragao de Cendrios de Teste 38

prioridade de execucao.

Feature: weather.gov API
As a weather application developer
I want to retrieve active alerts for zones

So that I can display warnings to users

@api @alerts G@positive
Scenario: Get alerts for a zone
Given the weather API is available
And I have a valid zone ID "ALZOO2"
When I send a GET request to "/alerts/active/zone/{zoneId}"
Then the response status code should be 200
And the response body should contain alert data
And each alert should have severity property

And each alert should have description property

@api @alerts G@negative
Scenario: Get alerts with invalid zomne ID
Given the weather API is available
And I have an invalid zome ID "INVALID123"
When I send a GET request to "/alerts/active/zone/{zoneId}"
Then the response status code should be 404

And the response should contain error message

Listing 4.1: Exemplo de cenario gerado automaticamente para weather.gov API

Para ilustrar, o Codigo 4.1 apresenta um exemplo representativo de cenério gerado
para o endpoint de consulta de alertas meteoroldgicos por zona, demonstrando a qualidade
estrutural e semantica da saida do sistema. Neste sentido, o cendario inclui Feature com
descricao no formato de user story, tags apropriadas para categorizagao, pré-condigoes
explicitas estabelecendo o estado inicial, acao clara representando a operacao testada e
verificagoes abrangentes validando a resposta esperada. A estrutura segue as convencoes
estabelecidas pela comunidade BDD, facilitando a compreensao tanto por desenvolvedores
quanto por analistas de negdcio sem conhecimento técnico aprofundado. Ademais, os steps

foram formulados de forma reutilizavel, permitindo sua aplicacao em outros cenarios.

4.6 Exportagao e Artefatos Gerados 39

4.6 Exportacao e Artefatos Gerados

A etapa de exportacao converteu os 127 cendrios Gherkin para um formato CSV estruturado,
compativel com ferramentas de gerenciamento de testes. Dessa forma, o arquivo CSV
resultante contém 127 linhas de dados mais 1 linha de cabegalho, com 7 colunas estruturadas
conforme especificacao: Feature, Scenario, Tags, Given, When, Then, e All Steps.

O arquivo CSV gerado foi salvo em <output/example_weather_api/20251230_
140457-scenarios.csv>, seguindo a convencao de nomenclatura que inclui a marcagao
temporal para rastreabilidade. O Apéndice B apresenta uma amostra detalhada de 10
cenarios representativos, evidenciando a estrutura Given- When-Then caracteristica do
formato Gherkin, demonstrando a estrutura tabular clara e o conteido legivel do arquivo
exportado.

Conforme ilustrado no Apéndice B, a estrutura tabular do CSV facilita operagoes
comuns de gerenciamento de testes, como filtragem por tags para execucao seletiva,
busca textual por palavras-chave nas descricoes de cenarios, ordenacao por features para
visualizacao organizada e agregacao de estatisticas sobre cobertura de teste por categoria
funcional. Neste contexto, este arquivo pode ser importado diretamente em ferramentas
como Excel, Google Sheets, JIRA Test Management, Azure Test Plans ou sistemas
customizados de gestao de qualidade.

Além do arquivo CSV principal, o sistema gera automaticamente multiplos ar-
tefatos complementares no mesmo diretério com marcacao temporal. O arquivo de
analytics <202561230_140457-analytics.txt> contém relatério completo com todas as
métricas coletadas organizadas em secoes. O arquivo de referéncia cruzada <20251230_
140457-cross_reference_schemacrossreference.txt> documenta a analise de cober-
tura com detalhamento de correspondéncia entre endpoints e requisitos. O arquivo de BRD
<weather_gov_api_brd. json> preserva o documento de requisitos gerado para referéncia
futura e auditoria. Adicionalmente, o sistema produz um arquivo de rastreabilidade que
consolida a relacao entre cenarios de teste gerados e os requisitos funcionais corresponden-
tes. Também é gerado um registro de execucao contendo informagoes sobre parametros
de entrada, versoes das dependéncias e data de processamento, permitindo a reproducao

exata dos experimentos.

4.7 Anélise de Desempenho e Custos 40

4.7 Analise de Desempenho e Custos

A anélise de desempenho considerou multiplas dimensoes temporais e economicas do
processamento. Dessa forma, o tempo total de execugao ponta a ponta foi de aproximada-
mente 65 segundos distribuidos entre etapas conforme detalhamento a seguir. A etapa de
download e validagao consumiu 2.1 segundos, incluindo requisigao HTTP e parsing JSON.
A etapa de processamento e analise levou 0.8 segundos para extracao de estruturas e
célculo de métricas. A geracao de BRD via LLM levou 12.4 segundos, incluindo construgao
de prompt e chamada a API. A analise de referéncia cruzada foi executada em menos
de 0,1 segundos, dado o niimero reduzido de requisitos. A geracao de cenarios via LLM
consumiu 45.23 segundos, sendo a etapa mais longa. A exportacao CSV executou em 0.3
segundos para parsing e escrita de arquivo. Por fim, a geracao de analytics consumiu 0.2
segundos para consolidagao e formatagao de relatorios.

O custo financeiro da execucao pode ser estimado através de precos publicos da
API OpenAl para GPT-4. Neste contexto, com base nas taxas vigentes em dezembro
de 2024, de aproximadamente $0.03 por 1K tokens de prompt e $0.06 por 1K tokens de

completion, o custo total estimado é calculado conforme detalhado na Tabela 4.4.

Tabela 4.4: Analise de custos operacionais da execugao

Operagao \ Tokens \ Taxa \ Custo
Geragao de BRD
Prompt Tokens 800 | $0.03/1K | $0.024

Completion Tokens 1.200 | $0.06/1K | $0.072
Geragao de Cenarios

Prompt Tokens 2.058 | $0.03/1K | $0.062
Completion Tokens 3.114 | $0.06/1K | $0.187
Total
Total de Tokens | 7172 | — | $0.345

Dessa forma, o custo total estimado em $0.345 para processar uma API de 59
endpoints demonstra viabilidade economica da abordagem, especialmente considerando
a reducao de esforco manual que seria necessaria para gerar manualmente 127 cenérios
de teste bem estruturados. Em ambiente de produgao com APIs maiores, o custo escala

linearmente com o ntmero de endpoints processados, pela estratégia de chunking.

4.8 Discussao dos Resultados 41

4.8 Discussao dos Resultados

Os resultados do estudo de caso permitem extrair conclusoes sobre diferentes aspectos da
ferramenta desenvolvida, validando empiricamente as questoes de pesquisa apresentadas na
introducao. Dessa forma, quanto a automacao completa do pipeline, toda a sequéncia, desde
o download da especificacao até a exportacao dos cenarios, foi executada automaticamente,
sem intervencoes manuais além da entrada inicial da URL e da selecao de opgcoes em menus
interativos. Por conseguinte, o tempo total de 65 segundos demonstra viabilidade para
uso em pipelines de CI/CD que tipicamente toleram um overhead de alguns minutos na
execucao de testes abrangentes (HUMBLE; FARLEY, 2010).

Neste contexto, em relacao a qualidade dos cendrios gerados, a analise qualitativa
revelou formatagao consistente, respeitando a especificagao Gherkin, estrutura légica
coerente com precondigoes, agoes e verificagoes apropriadas, e cobertura funcional alinhada
aos requisitos definidos no BRD. Ademais, a auséncia de cenarios malformados ou de
inconsisténcias logicas severas na amostra analisada sugere a robustez do processo de
geragao via LLM quando adequadamente direcionado por prompts estruturados, conforme
recomendagoes da literatura (WHITE et al., 2023). Dessa forma, a média de 42.3 cendrios
por endpoint indica cobertura abrangente incluindo casos positivos, negativos e de borda.

Por outro lado, quanto a escalabilidade da solugao, embora o estudo de caso tenha
processado apenas 3 endpoints apoés a filtragem por BRD, a arquitetura com chunking
adaptativo e as métricas coletadas indicam capacidade de processar APIs de grande porte.
Neste sentido, o consumo aproximadamente linear de tokens em funcao do ntimero de
endpoints (evidenciado pela razao de 686 tokens de prompt por endpoint) permite estimar
custos e tempos para APIs maiores. Diante disso, extrapolando linearmente, uma API
hipotética com 100 endpoints consumiria aproximadamente 17.240 tokens totais custando
cerca de $1.16 e executando em aproximadamente 3 minutos.

Por fim, a rastreabilidade proporcionada pelo sistema foi validada através dos
multiplos artefatos gerados incluindo BRD estruturado em JSON permitindo ligacao
entre requisitos e endpoints, relatério de referéncia cruzada documentando explicitamente
cobertura, arquivo CSV de cendrios preservando associacao com features correspondentes,

e relatorios de analytics registrando métricas de cada execucao.

42

5 Consideracoes Finais

Este capitulo apresenta as conclusoes do trabalho, sintetizando as principais contribuicoes
académicas e praticas, discutindo as limitacoes identificadas durante o desenvolvimento e
a avaliacao empirica, e apontando direcoes promissoras para pesquisas futuras que possam

estender e aprimorar a solugao proposta.

5.1 Sintese do Trabalho

Este trabalho apresentou o desenvolvimento de uma ferramenta de automacao para
geragao de cendrios de teste de APIs REST, integrando o processamento de especificagoes
OpenAPI/Swagger, a anélise de requisitos de negécio em formato BRD e a sintese de
cenarios Gherkin por meio de modelos de linguagem de grande porte. A solucao implementa
um pipeline ponta a ponta, desde a ingestao da especificacao até a exportagao de artefatos
de teste estruturados e rastreaveis, estando disponivel publicamente no repositorio GitHub
sob licenca MIT (GUIDINE, 2025).

A ferramenta suporta multiplos formatos de especificacao: Swagger 2.0 para
compatibilidade com sistemas legados e OpenAPI 3.0/3.1 para alinhamento com padroes
modernos (OpenAPI Initiative, 2021). A integragao com BRD é oferecida por trés
mecanismos complementares: carregamento de arquivos estruturados, geracao automatica
via LLM e parsing de documentos nao estruturados. O sistema utiliza multiplos provedores
de LLM com detecgao automatica, incluindo OpenAl GPT-4, Groq LLaMA, Anthropic
Claude, Google Gemini e Azure OpenAl. Para APIs de grande porte, a estratégia de
chunking adaptativo garante geracao escalavel sem exceder limites de contexto.

A convergéncia entre especificagoes formais OpenAPI, requisitos de negécio BRD
e inteligéncia artificial via LLM cria oportunidades significativas para automagao avancada
em engenharia de software. Este trabalho demonstrou empiricamente que é possivel
automatizar a geracao de cendrios de teste com qualidade estrutural e semantica, reduzindo

custos temporais e financeiros, aumentando a cobertura através de anélise sistematica e

5.2 Retomada das Questoes de Pesquisa 43

garantindo alinhamento com objetivos funcionais.

A medida que modelos de linguagem evoluem em capacidade de compreensao e
raciocinio (VASWANTI et al., 2017; BROWN et al., 2020), ferramentas como a proposta
tém potencial crescente para integrar pipelines de desenvolvimento modernos (HUMBLE;
FARLEY, 2010). Essa integragao é especialmente relevante em ambientes de microsservigos,
onde a superficie de teste é vasta e dinamica devido a evolugao continua de contratos
(NEWMAN, 2015). A capacidade de regenerar automaticamente cendrios em resposta
a alteragoes nas especificagoes representa um diferencial competitivo para equipes sob
pressao de entregas continuas.

Por fim, a abordagem modular e extensivel adotada facilita a incorporacao de
avancos futuros em LLMs, a evolucao de padroes OpenAPI e a emergéncia de novos
frameworks de teste. Espera-se que pesquisadores e profissionais possam utilizar os
resultados aqui apresentados como ponto de partida para investigacoes sobre a aplicagao

de LLMs em contextos de garantia de qualidade de software.

5.2 Retomada das Questoes de Pesquisa

As questoes de pesquisa formuladas no capitulo introdutoério foram abordadas ao longo do
desenvolvimento e respondidas por meio do estudo de caso. Dessa forma, a questao geral
sobre a viabilidade de automacao integrada com BRD e LLM foi respondida positivamente
através da implementacao funcional e validacao pratica. Por conseguinte, o estudo de
caso demonstrou empiricamente que é possivel automatizar a geragao de cendrios de teste
com qualidade estrutural e semantica comparavel a cenarios escritos manualmente por
especialistas, mantendo alinhamento consistente com requisitos de negoécio através da
andlise de cobertura cruzada implementada.

Neste contexto, quanto a questao especifica QE1 sobre processamento multi-
formato, o modulo Swagger implementado demonstrou capacidade de validacao e nor-
malizacao de especificagoes nos formatos JSON e YAML, com detec¢ao automatica de
versao através de analise das chaves raiz presentes e tratamento apropriado de campos

opcionais ausentes através de preenchimento com valores padrao conformes (ED-DOUIBI;

IZQUIERDO; CABOT, 2018).

5.3 Contribuicoes 44

A questao especifica QE2 sobre integracao de BRD foi abordada de forma abran-
gente por meio de trés mecanismos implementados e validados: carregamento de arquivos
JSON seguindo um schema bem definido, geracao automatica via LLM a partir das
especificagoes, com controle configuravel de cobertura, e parsing de documentos nao estru-
turados em formatos PDF, Word, TXT, CSV e Markdown. Dessa forma, a rastreabilidade
bidirecional ¢é estabelecida pelo mdédulo de referéncia cruzada através de estruturas de
dados relacionais (SPANOUDAKIS; ZISMAN;, 2005).

A questao especifica QE3 sobre a eficacia de LLMs foi validada empiricamente
no estudo de caso, demonstrando que o GPT-4 produz cenarios Gherkin estruturalmente
corretos, com formatacao valida, logicamente coerentes com a sequéncia apropriada de steps
e com cobertura adequada, balanceada entre casos positivos que validam comportamento
normal e casos negativos que verificam o tratamento de erros (SCHAFER et al., 2023).

A questao especifica QE4 sobre andlise de cobertura cruzada foi implementada no
moédulo schema_cross_reference, que realiza correspondéncia multiestratégia entre endpoints
e requisitos, calcula porcentagens de cobertura com precisao e identifica lacunas por meio
de listagem explicita de endpoints nao cobertos para priorizacao do refinamento do BRD
(M&A&DER; EGYED, 2012).

Por fim, a questao especifica QE5 sobre métricas adequadas foi enderecada pelo
sistema de analytics implementado. Este sistema coleta e consolida multiplas dimensoes
de métricas. A complexidade de entrada é medida através de contagem de endpoints,
parametros, profundidade de schemas e distribuicao de tipos. A qualidade de saida
¢ avaliada por contagem de cenarios, distribuicao de tags, cobertura de endpoints e
balanceamento positivo/negativo. O uso de recursos computacionais é rastreado através
de tokens de LLM, separados por prompt e completion, além do tempo de execugao total e

por etapa com granularidade de segundos. Os custos financeiros sao estimados com base

nos pregos publicos de APIs comerciais (AMMANN; OFFUTT, 2016).

5.3 Contribuicoes

As contribuigoes deste trabalho situam-se em trés dimensoes complementares que, coletiva-

mente, avangam o estado da arte na automagao de testes de APIs REST. No ambito técnico,

5.4 Limitacoes 45

o trabalho implementa pipeline automatizado ponta a ponta com estratégia inovadora
de chunking adaptativo para APIs de grande porte, demonstrando integragao pratica e
funcional entre especificacoes OpenAPI, documentos de requisitos de negécio estruturados,
e multiplos provedores de modelos de linguagem de grande porte através de abstracao
unificada (GUIDINE, 2025). Dessa forma, a arquitetura modular desenvolvida seguindo
principios estabelecidos de design de software (FOWLER, 2002; MARTIN, 2003) facilita
a extensao futura para incorporar novos provedores de LLM, formatos de especificagao
emergentes e mecanismos adicionais de integragao com BRD.

No ambito metodoldgico, o trabalho propoe e valida uma abordagem orientada
por requisitos para geracao automatizada de testes, priorizando endpoints com base em
relevancia funcional explicitada em requisitos de negocio ao invés de processar indiscrimi-
nadamente todos endpoints, e estabelecendo rastreabilidade bidirecional entre requisitos,
endpoints e cenérios de teste que facilita andlise de impacto de mudancas e auditoria de
qualidade (CLELAND-HUANG; GOTEL; ZISMAN, 2012).

No ambito empirico, o estudo de caso apresentado fornece evidéncias quantitativas
e qualitativas sobre a viabilidade pratica e a eficicia da abordagem proposta em uma API
real de complexidade substancial. Dessa forma, as métricas detalhadas coletadas incluindo
tempos de execucao, consumo de tokens, custos financeiros, e contagens de artefatos gerados
fornecem baseline para comparagoes futuras e permitem tomada de decisao informada
sobre adogao da ferramenta em contextos diversos. Por conseguinte, a disponibiliza¢ao
publica do cédigo-fonte sob licenca permissiva promove a reprodutibilidade dos resultados

e facilita a validacao independente por pesquisadores e profissionais interessados.

5.4 Limitacoes

Apesar dos resultados positivos obtidos e validados empiricamente, algumas limitacoes
foram identificadas durante o desenvolvimento, a execucao e a analise do estudo de caso.
A primeira limitacao refere-se a dependéncia de LLM externo comercial que implica
custos operacionais recorrentes proporcionais ao volume de processamento, necessidade
de conectividade de rede estavel para acesso as APIs, e exposicao a mudancas de precos,

depreciacao de modelos, e politicas de uso que estao fora do controle do usuério da

5.5 Trabalhos Futuros 46

ferramenta.

A segunda limitacao diz respeito a qualidade do BRD gerado automaticamente,
que depende criticamente das descri¢oes textuais da especificacdo OpenAPI original. Neste
sentido, quando as especificagoes sao mal documentadas, com descri¢coes ausentes ou
muito genéricas, o LLM dispoe de informagcao limitada para inferir requisitos funcionais de
qualidade, resultando em BRDs com requisitos superficiais ou potencialmente incorretos
que requerem refinamento manual subsequente por stakeholders. A terceira limitacao
consiste na auséncia de validagao semantica profunda dos cenérios gerados, que verifica
apenas a conformidade sintdtica com a gramatica Gherkin, mas nao verifica se os cendrios
realmente testam comportamentos funcionalmente relevantes ou se cobrem casos criticos
que deveriam ser priorizados.

A quarta limitagao relaciona-se a restricao de exportacao apenas em formato CSV
que, embora seja amplamente compativel e processavel por multiplas ferramentas, requer
conversao manual quando a integracao direta com ferramentas especificas como Postman
Collections ou arquivos Feature do Cucumber é desejada. Por fim, a quinta limitacao
importante é que os cendarios gerados sao especificagoes em linguagem Gherkin que requerem
implementacao manual de step definitions em linguagem de programacao apropriada antes
que possam ser executados automaticamente contra API real, representando esforco

adicional significativo que nao é eliminado pela ferramenta.

5.5 Trabalhos Futuros

Muiltiplas diregoes promissoras para trabalhos futuros emergiram durante o desenvolvimento
e a analise deste projeto. A primeira diregao consiste em implementar geracao automatica de
step definitions executaveis em linguagens populares como Python usando frameworks como
Behave, JavaScript/TypeScript para frameworks como Cucumber.js, e Java para Cucumber
JVM, reduzindo substantivamente o esforco manual necessario para tornar cenérios gerados
diretamente executdveis. A segunda direcao envolve desenvolver exportadores diretos para
formatos especificos de ferramentas amplamente utilizadas incluindo Postman Collections
com pre-request scripts e testes automatizados, arquivos feature do Cucumber com template

de step definitions, e Azure Test Plans ou JIRA Test Management com mapeamento

5.5 Trabalhos Futuros 47

apropriado de campos.

A terceira diregao explora integracao de LLMs locais como LLaMA rodando via
Ollama, Mistral via plataformas de inferéncia local, e modelos menores especializados,
para reducao de custos operacionais, eliminag¢ao de dependéncia de conectividade de
rede, e maior controle sobre privacidade de dados sensiveis presentes em especificacoes
proprietarias. A quarta direcao propoe implementar camada de validacao semantica
adicional via LLM onde modelo especializado analisa cenérios gerados e fornece pontuagao
de qualidade baseado em critérios como cobertura de funcionalidade critica, balanceamento
entre casos positivos e negativos, inclusao de testes de borda, e adequagao a padroes de
qualidade estabelecidos.

A quinta direcdo sugere desenvolvimento de interface web colaborativa para
edicao de BRDs onde multiplos stakeholders podem colaborar na definigao e refinamento
de requisitos, visualizar cobertura de endpoints em tempo real através de dashboards
interativos, e exportar versoes com marcacao temporal de BRDs para controle de versao e
auditoria. A sexta direcao propoe analise avancada de fluxos de trabalho multi-endpoint
onde sistema identifica automaticamente sequéncias de operacoes interdependentes como
criar recurso — buscar recurso — atualizar recurso — deletar recurso, e gera cenérios de
teste de integracao que validam fluxos completos ao invés de apenas operagoes isoladas.

A sétima direcao envolve implementar execucao automatica dos cendarios gerados
contra APIs reais com coleta de estatisticas de execucao incluindo taxas de sucesso e falha,
tempos de resposta, cdédigos de status retornados, e comparacao entre comportamento
esperado especificado e comportamento real observado para identificacao automatizada de
divergéncias e potenciais bugs. Por fim, a oitava direcao sugere investigacao de técnicas
de aprendizado de maquina para otimizacao automatica de parametros do sistema como
threshold de chunking, temperature de LLM, e estratégias de correspondéncia entre BRD e
endpoints, através de andlise de métricas coletadas ao longo de multiplas execucoes. Essas
direcoes representam oportunidades concretas para evolucao continua da ferramenta e
ampliacao de seu impacto na comunidade de engenharia de software. A implementagao
dessas melhorias contribuiria para consolidar a ferramenta como solucao de referéncia para

automagao de testes de APIs REST baseada em inteligéncia artificial.

BIBLIOGRAFIA 48

Bibliografia

ABDELFATTAH, A. et al. Rest api testing in devops: A study on an evolving healthcare
iot application. arXiv preprint arXiv:2410.12547, 2024. Disponivel em: (https://arxiv.org/
abs/2410.12547).

AMMANN, P.; OFFUTT, J. Introduction to Software Testing. 2. ed. Cambridge, UK:
Cambridge University Press, 2016. ISBN 978-1-107-17201-2.

ARCURI, A. Evomaster: Evolutionary multi-context automated system test generation. In:
Proceedings of the IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST). [S.1.]: IEEE, 2018. p. 394-397.

ARCURI, A. Restful api automated test case generation with evomaster. ACM Transactions
on Software Engineering and Methodology, ACM, v. 28, n. 1, p. 1-37, 2019.

ATLIDAKIS, V.; GODEFROID, P.; POLISHCHUK, M. Restler: Stateful rest api fuzzing.
IEEE/ACM, p. 748-758, 2019.

BANIAS, O.; ALEXANDRESCU, E. Restful api testing methodologies: Rationale, chal-
lenges, and solution directions. Applied Sciences, MDPI v. 12, n. 9, p. 4369, 2022.

BROWN, T. et al. Language models are few-shot learners. Advances in Neural Information
Processing Systems, v. 33, p. 1877-1901, 2020.

CLELAND-HUANG, J.; GOTEL, O.; ZISMAN, A. Software and Systems Traceability.
London, UK: Springer, 2012. ISBN 978-1-4471-2238-8.

CORRADINI, D. et al. Automated black-box testing of nominal and error scenarios in
restful apis. Software Testing, Verification and Reliability, Wiley, v. 32, n. 3, 2022.

Cucumber. Gherkin Reference. 2023. (https://cucumber.io/docs/gherkin/reference/). Aces-
sado em: 30 dez. 2025.

ED-DOUIBI, H.; IZQUIERDO, J. L. C.; CABOT, J. Automatic generation of test cases for
rest apis: A specification-based approach. In: Proceedings of the IEEE 22nd International
Enterprise Distributed Object Computing Conference (EDOC). [S.1.]: IEEE, 2018. p.
181-190.

FIELDING, R. T. Architectural Styles and the Design of Network-Based Software Archi-
tectures. Tese (Doutorado) — University of California, Irvine, Irvine, CA, USA, 2000.

FOWLER, M. Patterns of Enterprise Application Architecture. Boston, MA, USA: Addison-
Wesley Professional, 2002. ISBN 978-0-321-12742-6.

FRASER, G.; ARCURI, A. Evosuite: Automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium on Foundations of
Software Engineering (FSE). [S.1.]: ACM, 2011. p. 416-419.

GOLMOHAMMADI, A.; ZHANG, M.; ARCURI, A. Testing restful apis: A survey. ACM
Transactions on Software Engineering and Methodology, ACM, v. 33, n. 1, p. 1-41, 2023.

https://arxiv.org/abs/2410.12547
https://arxiv.org/abs/2410.12547
https://cucumber.io/docs/gherkin/reference/

BIBLIOGRAFIA 49

GOTEL, O. C. Z.; FINKELSTEIN, A. C. W. An analysis of the requirements tracea-
bility problem. In: Proceedings of the First International Conference on Requirements
Engineering. Colorado Springs, CO, USA: IEEE, 1994. p. 94-101.

GUIDINE, F. API Parameter Coverage € Test Scenario Generator. [S.1.]: GitHub, 2025.
(https://github.com/fabricioguidine/api-param-coverage). Acessado em: 30 dez. 2025.

HUMBLE, J.; FARLEY, D. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Boston, MA, USA: Addison-Wesley Professional,
2010. ISBN 978-0-321-60191-9.

KIM, M. et al. Enhancing rest api testing with nlp techniques. In: Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
Seattle, WA, USA: ACM, 2023. p. 1232-1243.

KIM, M. et al. Leveraging large language models to improve rest api testing. In: Proceedings
of the 2024 ACM/IEEE }4th International Conference on Software Engineering: New
Ideas and Emerging Results (ICSE-NIER). Lisbon, Portugal: ACM/IEEE, 2024. p. 85-89.

KIM, M. et al. Automated test generation for rest apis: No time to rest yet. In: Proceedings
of the 31st ACM SIGSOF'T International Symposium on Software Testing and Analysis
(ISSTA). Virtual Event, South Korea: ACM, 2022. p. 289-301.

KUHN, D. R.; KACKER, R. N.; LEL Y. Introduction to Combinatorial Testing. Boca
Raton, FL, USA: CRC Press, 2013. ISBN 978-1-4665-5229-6.

LEWIS, P. et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. In:
Advances in Neural Information Processing Systems. [S.1.]: Curran Associates, Inc., 2020.
v. 33, p. 9459-9474.

LUTZ, M. Learning Python. 5. ed. Sebastopol, CA, USA: O’Reilly Media, 2013. ISBN
978-1-449-35573-9.

MARTIN-LOPEZ, A.; SEGURA, S.; RUIZ-CORTéS, A. A catalogue of inter-parameter
dependencies in restful web apis. In: International Conference on Service-Oriented Com-
puting. [S.1.]: Springer, 2019. (Lecture Notes in Computer Science, v. 11895), p. 399-414.

MARTIN-LOPEZ, A.; SEGURA, S.; RUIZ-CORTéS, A. Restest: Black-box constraint-
based testing of restful web apis. In: Proceedings of the 18th International Conference on
Service-Oriented Computing (ICSOC). [S.1.]: Springer, 2020. p. 459-475.

MARTIN, R. C. Agile Software Development: Principles, Patterns, and Practices. Upper
Saddle River, NJ, USA: Prentice Hall, 2003. ISBN 978-0-13-597444-5.

M&aDER, P.; EGYED, A. Assessing the effect of requirements traceability for software
maintenance. In: Proceedings of the 28th IEEE International Conference on Software
Maintenance (ICSM). Trento, Italy: IEEE, 2012. p. 171-180.

National Weather Service. weather.gov APIL 2025. (https://www.weather.gov/
documentation /services-web-api). Acessado em: 30 dez. 2025.

NEWMAN, S. Building Microservices: Designing Fine-Grained Systems. Sebastopol, CA,
USA: O'Reilly Media, 2015. ISBN 978-1-491-95035-7.

NORTH, D. Introducing bdd. Better Software, v. 8, n. 3, p. 12-17, 2006.

https://github.com/fabricioguidine/api-param-coverage
https://www.weather.gov/documentation/services-web-api
https://www.weather.gov/documentation/services-web-api

BIBLIOGRAFIA 90

OpenAPI Initiative. OpenAPI Specification. 2021. (https://spec.openapis.org/oas/v3.1.0).
Version 3.1.0. Acessado em: 30 dez. 2025.

RICHARDSON, L.; AMUNDSEN, M.; RUBY, S. RESTful Web APIs: Services for a
Changing World. Sebastopol, CA, USA: O’Reilly Media, 2013. ISBN 978-1-449-35806-8.

SCHAFER, M. et al. An empirical evaluation of using large language models for automated
unit test generation. IEEE Transactions on Software Engineering, IEEE, v. 49, n. 4, p.
1617-1640, 2023.

SEGURA, S. et al. Metamorphic testing of restful web apis. IEEE Transactions on Software
Engineering, IEEE, v. 44, n. 11, p. 1083-1099, 2018.

SOLIS, C.; WANG, X. A study of the characteristics of behaviour driven development. In:
Proceedings of the 37th EUROMICRO Conference on Software Engineering and Advanced
Applications. [S.1.]: TEEE, 2011. p. 383-387.

SPANOUDAKIS, G.; ZISMAN, A. Software Traceability. [S.1.]: World Scientific, 2005.
395428 p.

VASWANI, A. et al. Attention is all you need. In: Advances in Neural Information
Processing Systems. [S.1.]: Curran Associates, Inc., 2017. v. 30, p. 5998-6008.

VIGLIANISI, E.; DALLAGO, M.; CECCATO, M. Resttestgen: Automated black-box
testing of restful apis. In: Proceedings of the IEEE 13th International Conference on
Software Testing, Verification and Validation (ICST). [S.1.]: IEEE, 2020. p. 142-152.

WANG, J. et al. Software testing with large language models: Survey, landscape, and
vision. IEEE Transactions on Software Engineering, IEEE, v. 50, n. 5, p. 911-936, 2024.

WEI, J. et al. Chain-of-thought prompting elicits reasoning in large language models. In:
Advances in Neural Information Processing Systems. [S.1.]: Curran Associates, Inc., 2022.
v. 35, p. 24824-24837.

WHITE, J. et al. A prompt pattern catalog to enhance prompt engineering with chatgpt.
arXiv preprint arXiv:2302.11382, 2023. Disponivel em: (https://arxiv.org/abs/2302.11382).

YUAN, W. et al. Automatic high-level test case generation using large language models.
arXiv preprint arXiv:2403.17998, 2024. Disponivel em: (https://arxiv.org/abs/2403.17998).

ZAMENI, S.; WANG, X.; MAHMOUD, A. Automatic generation of bdd test scenarios
using large language models. arXiv preprint arXiv:2306.03268, 2023. Disponivel em:
(https://arxiv.org/abs/2306.03268).

https://spec.openapis.org/oas/v3.1.0
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2403.17998
https://arxiv.org/abs/2306.03268

51

A Documento de Requisitos de Negodcio

Gerado

Este apéndice apresenta um exemplo de Business Requirements Document (BRD) gerado
automaticamente pela ferramenta a partir da especificagaio OpenAPI da Weather.gov API.

O Cédigo A.1 apresenta o BRD em formato JSON, contendo trés requisitos funcionais

mapeados a partir dos endpoints principais da API.

{

"brd_id": "BRD-WEATHER-GOV-001",

"title": "Weather.gov API - Business Requirements Document",

"description": "Comprehensive BRD for weather.gov API covering
all

endpoints for weather data retrieval, alerts, forecasts,
and observations",
"api_name": "weather.gov API",
"api_version": "1.0.0",
"created_date": "2025-12-30T12:00:002",
"requirements": [
{
"requirement_id": "REQ-001",
"title": "Get Active Alerts for Zone",
"description": "Retrieve active weather alerts for a
specific zone",
"endpoint_path": "/alerts/active/zone/{zoneId}",
"endpoint_method": "GET",
"priority": "high",
"status": "pending",

"test_scenarios": [

{

10

16

19

50

A Documento de Requisitos de Negocio Gerado

52

"scenario_id": "TS-001-001",
"scenario_name": "",
"description": "",
"test_steps": [],

"expected_result": "",

"priority": "medium",
"tags": []

}s

{
"scenario_id": "TS-001-002",

"scenario_name": "",
"description": "",

n n .
test_steps": [],

"expected_result": "",

"priority": "medium",
"tags": []
}
1,
"acceptance_criteria": [
"API returns active alerts for valid zone IDs",
"API returns appropriate error for invalid zone IDs",
"Response includes alert severity and description"
1,
"related_endpoints": []
"requirement_id": "REQ-002",
"title": "Get Forecast for Grid Point",
"description": "Retrieve weather forecast for a specific
grid point",
"endpoint_path": "/gridpoints/{wfo}/{x},{y}/forecast",

"endpoint_method": "GET",

60

61

66

69

76

80

A Documento de Requisitos de Negocio Gerado 53

"priority": "high",
"status": "pending",
"test_scenarios": [

{

"scenario_id": "TS-002-001",
"scenario_name": "",
"description": "",
"test_steps": [],
"expected_result": "",
"priority": "medium",

"tags" . []

1)
"acceptance_criteria": [
"API returns forecast data for valid grid points",
"Forecast includes temperature, precipitation, and
conditions"
1,

"related_endpoints": []

"requirement_id": "REQ-003",

"title": "Get Latest Observation",

"description": "Retrieve the latest weather observation
from a station",

"endpoint_path": "/stations/{stationId}/observations/latest

n
b

"endpoint_method": "GET",
"priority": "high",
"status": "pending",

"test_scenarios": [

{

81

84

86

88

90

91

96

97

98

99

100

A Documento de Requisitos de Negocio Gerado 54

"scenario_id": "TS-003-001",
"scenario_name": "",
"description": "",
"test_steps": [],

"expected_result": "",

"priority": "medium",
"tags": []
}
P
"acceptance_criteria": [
"API returns latest observation for valid station IDs",
"Observation includes temperature, humidity, and wind
data"
1
"related_endpoints": []

] b

"metadata": {

"generated_by": "BRDGenerator",
"generation_timestamp": "2025-12-30T12:00:00Z",
"coverage_percentage": 100.0,

"total_endpoints": 59,

"covered_endpoints": 59

Listing A.1: BRD gerado para Weather.gov API

A estrutura do BRD segue um schema padronizado que permite rastreabilidade
bidirecional entre requisitos funcionais e endpoints da API, onde cada requisito inclui
identificador tinico, mapeamento direto ao endpoint, prioridade de negébcio, cenarios de

teste associados e critérios de aceitacao derivados da especificagao OpenAPI.

B Amostra de Cenarios de Teste Gerados

Este apéndice apresenta uma amostra representativa dos cendrios de teste gerados automaticamente pela ferramenta para a API weather.gov.

Os cenérios seguem o formato Gherkin, amplamente utilizado em metodologias BDD (Behavior-Driven Development). O conjunto completo de
127 cenarios gerados estd disponivel no repositério do projeto, sendo apresentados na Tabela B.1 os 10 mais representativos. Cada cendario inclui
pré-condigoes (Given), agoes (When) e validagoes esperadas (Then), cobrindo tanto fluxos de sucesso (cédigos HTTP 2xx) quanto tratamento

de erros (cédigos HTTP 4xx).

Tabela B.1: Amostra de cenarios de teste gerados para a

API weather.gov

Cenario Given When Then

Get alerts for a zone | The weather API is avai- | I send a GET request to /alerts/acti- | I should receive a 200 OK res-

lable ve/zone/zoneld ponse with alert data

Get alerts with invalid | The weather API is avai- | I send a GET request to /alerts/acti- | I should receive a 404 Not

zone 1D lable ve/zone /invalid Found response

Get forecast for a point | I have valid latitude and | I send a GET request to /gridpoints/w- | I should receive a 200 OK res-

longitude coordinates fo/x,y /forecast ponse with forecast data

Gg

Cenario

Given

When

Then

Get forecast with inva-

lid coordinates

I have invalid coordinates

I send a GET request to /gridpoints/w-

fo/x,y/forecast

I should receive a 400 Bad Re-

quest response

Get observation stati-

ons

The weather API is avai-

lable

I send a GET request to /stations

I should receive a 200 OK res-

ponse with station list

Get observation for a

station

I have a valid station ID

I send a GET request to /stations/sta-

tionld/observations/latest

I should receive a 200 OK res-

ponse with observation data

Get observation with

invalid station ID

I have an invalid station

ID

I send a GET request to /stations/sta-

tionld/observations/latest

I should receive a 404 Not

Found response

Get zone forecast

I have a valid zone 1D

I send a GET request to /zones/fore-

cast /zoneld /forecast

I should receive a 200 OK res-

ponse with zone forecast

Get zone list

The weather API is avai-

lable

I send a GET request to /zones

I should receive a 200 OK res-

ponse with zone list

Get point information

I have valid latitude and

longitude

I send a GET request to /points/point

I should receive a 200 OK res-

ponse with point information

OpRIor) OID0FON Op SOYSIMbay op ojuewWNIO([Y

Nota: A ferramenta exporta os cendrios em formato CSV para integragao com pipelines de CI/CD e frameworks BDD. O arquivo
completo com os cenarios gerados esta disponivel no repositério do projeto em /outputs/scenarios/. O formato permite conversao automatizada

para arquivos .feature através de scripts auxiliares, viabilizando execucao direta em frameworks como Cucumber, Behave ou SpecFlow.

9¢

o7

C Estrutura Completa do Projeto

Este apéndice apresenta a estrutura completa de diretorios do projeto API Parameter
Coverage & Test Scenario Generator, organizada hierarquicamente com descri¢oes
funcionais de cada componente principal. A arquitetura modular adotada segue convengoes
estabelecidas de projetos Python de codigo aberto (LUTZ, 2013), facilitando navegagao,
manutencao e contribuigbes da comunidade. A organizagao segue o principio de separacao
de responsabilidades, onde cada médulo encapsula funcionalidades coesas e relacionadas,

minimizando acoplamento entre componentes e maximizando a coesao interna de cada

unidade (MARTIN, 2003).

C.1 Organizacao de Diretérios de Nivel Raiz

A Tabela C.1 apresenta os diretdrios e arquivos principais localizados na raiz do repositério,

cada um com funcao especifica no ciclo de desenvolvimento e execucao da ferramenta.

Tabela C.1: Estrutura de diretérios e arquivos de nivel raiz

Caminho Descricao Funcional

src/ Cédigo-fonte principal contendo todos os médulos da
aplicagao

tests/ Suite completa de testes unitarios, de integracao e BDD

output/ Diretério de artefatos gerados durante execugoes do pipe-
line

docs/ Documentacao técnica complementar do projeto

main.py Ponto de entrada principal e orquestrador do pipeline

requirements.txt

Especificagao de dependéncias Python com versoes

pytest.ini

Configuracao do framework pytest para execugao de testes

.env.example

Template de variaveis de ambiente para configuracao

LICENSE

Licenca MIT do projeto de cédigo aberto

README.md

Documentacao principal com instrucoes de uso

o8

D Estrutura do Diretorio Source

O diretério src/modules/ contém a implementacao de todos os médulos funcionais do
sistema, organizados por dominio de responsabilidade conforme principios de design
estabelecidos (FOWLER, 2002). A Tabela D.1 apresenta a especificagdo detalhada de
todos os componentes implementados. Os modulos estao agrupados por dominio funcional:
swagger/ para ingestao e validacao de especificagoes, engine/ para algoritmos centrais e
integracao com LLMs, brd/ para gerenciamento de requisitos de negocio, workflow/ para
orquestracao do pipeline, utils/ para utilitarios compartilhados, e c1i/ para interface de
linha de comando. Essa organizacao modular facilita a manutengao independente de cada
componente e permite a evolugao incremental do sistema sem impacto em funcionalidades

existentes.

Tabela D.1: Especificacdo dos componentes do sistema

Moédulo Componente | Responsabilidades Funcionais

swagger/ sch_fetcher Download de especificagoes OpenAPI via
HTTP/HTTPS com suporte a URLs remotas.
Implementa detecgao automética de formato
através de analise de extensao, header Content-
Type e estrutura sintatica. Inclui tratamento
robusto de erros de rede com légica de retry e

backoff exponencial configuravel.

swagger/ sch_validator | Validacao estrutural de especificagoes contra
padroes Swagger 2.0 e OpenAPI 3.x. Realiza
deteccao automatica de versao através de chaves
raiz, verificacdo de campos obrigatérios conforme
especificacao relevante, e normalizacao de cam-

pos opcionais com valores padrao.

Continua na prozima pdgina

C Estrutura Completa do Projeto

99

Tabela D.1 — Continuagao da pagina anterior

Moédulo

Componente

Responsabilidades Funcionais

engine/

algorithms/

processor

Extracao sistematica de metadados da API in-
cluindo informacoes gerais, endpoints disponiveis
e métodos HTTP suportados. Processa compo-
nentes reutilizaveis como schemas, parameters
e responses. Implementa resolugao recursiva de
referéncias $ref para expansao de estruturas ani-

nhadas.

engine/

algorithms/

analyzer

Analise profunda de estrutura de schemas com
extracao exaustiva de parametros diferenciados
por localizagao (path, query, header, body) e tipo
de dados. Calcula dominios de iteragao baseados
em constraints e produz métricas de complexi-

dade estrutural.

engine/

algorithms/

csv_generator

Parsing de cenéarios Gherkin em texto livre re-
tornados por LLM. Identifica blocos sintaticos
de Feature, Scenario e Steps individuais. Extrai
metadados como tags organizacionais. Converte
para formato CSV estruturado com colunas pa-

dronizadas.

engine/

analytics/

mtc_collector

Registro centralizado de métricas operacionais
coletadas durante execugao do pipeline. Rastreia
tempo de execucao total e por etapa, uso de to-
kens LLM separados por prompt e completion,
métricas de complexidade de entrada, e indica-

dores de qualidade de saida.

Continua na prozima pdgina

C Estrutura Completa do Projeto

60

Tabela D.1 — Continuagao da pagina anterior

Moédulo

Componente

Responsabilidades Funcionais

engine/

analytics/

alg_tracker

Rastreamento detalhado de cada algoritmo exe-
cutado durante processamento. Registra identi-
ficac@o tnica, timestamp de execugao, complexi-
dade computacional estimada, transformacoes de
dados realizadas com tamanhos de entrada/saida,

e indicadores de qualidade.

engine/

11m/

prompter

Construcao de prompts contextualizados e estru-
turados para geracao de cenarios. Implementa
integracao unificada com muiltiplos provedores
LLM (OpenAl, Groq, Anthropic, Google, Azure).
Gerencia estratégia de chunking adaptativo para

APIs grandes e controle de limites de tokens.

brd/

brd_schema

Defini¢ao formal de schemas JSON para va-
lidagao de estrutura de BRDs. Implementa
classes de dados tipadas para representacao de
requisitos individuais e documentos completos.
Mantém constantes de configuracao e valores

padrao do mddulo.

brd/

brd_loader

Operagoes de entrada e saida para arquivos BRD
em formato JSON. Implementa leitura com va-
lidagao de formato, escrita de BRDs gerados
com formatacao consistente, e persisténcia em
diretorios configuraveis com nomenclatura pa-

dronizada.

Continua na prorima pdgina

C Estrutura Completa do Projeto

61

Tabela D.1 — Continuagao da pagina anterior

Moédulo

Componente

Responsabilidades Funcionais

brd/

brd_parser

Parsing de documentos de requisitos nao estrutu-
rados em multiplos formatos. Suporta extragao
de texto de PDF via PyPDF2, Word via python-
docx, e formatos texto como TXT, CSV e Mark-
down. Processa texto extraido via LLM para

estruturacao.

brd/

brd_validator

Validacao de conformidade de BRDs contra
schema formal definido. Verifica presenca de
campos obrigatérios, valida formato de identifi-
cadores, e gera relatérios detalhados de conformi-

dade com indicacao de problemas encontrados.

brd/

brd_generator

Geragao automatica de BRD a partir de anélise
de especificacdo OpenAPI. Constréi prompts es-
pecializados para inferéncia de requisitos funci-
onais via LLM. Aplica threshold de cobertura
configuravel para controle de granularidade do

documento gerado.

brd/

sch_cross_ref

Analise sistematica de cobertura cruzada entre
requisitos do BRD e endpoints da API. Imple-
menta multiplas estratégias de correspondéncia
incluindo correspondéncia exata e por palavras-
chave. Identifica lacunas de cobertura e gera

relatérios de rastreabilidade.

workflow/

scn_generator

Orquestracao de alto nivel do processo com-
pleto de geragao de cenérios de teste. Coor-
dena execucao sequencial entre médulos proces-
sor, analyzer, LLM e csv_generator. Gerencia
estado do pipeline e passagem de dados entre

etapas com logging detalhado.

Continua na proxima pdgina

C.1 Organizacao de Diretoérios de Nivel Raiz

62

Tabela D.1 — Continuagao da pagina anterior

Moédulo

Componente

Responsabilidades Funcionais

workflow/

cvg_handler

Orquestracao do fluxo de anélise de cobertura
entre BRD e especificacao. Coordena carrega-
mento/geragao de BRD, execucao de referéncia
cruzada, e filtragem de endpoints baseada em
requisitos funcionais para processamento subse-

quente.

utils/

11m_provider

Abstracdo unificada para integracdo com
multiplos provedores de LLM. Implementa de-
tecgao automatica de provedor através de analise
de formato de chave API. Configura parametros
especificos como temperature e maz_tokens.

Trata erros especificos de cada provedor.

utils/

out_manager

Gerenciamento completo de arquivos e diretérios
de saida. Cria estrutura de diretérios com
marcacao temporal para organizacao cronoldgica.
Implementa nomenclatura padronizada de ar-
quivos e escrita de relatérios de analytics em

formato estruturado.

utils/

validators

Colegao de fungoes de validagao genéricas reuti-
lizaveis por multiplos médulos. Inclui validacao
de URLs, verificacao de formatos de arquivo, va-
lidagao de schemas JSON, e fungoes auxiliares

de verificacao de tipos e estruturas.

cli/

cli_utils

Interface interativa de linha de comando para
execucao da ferramenta. Implementa menus
de selecao de opcoes, validacao de entrada do
usudrio, formatagao de mensagens de progresso, e
coleta estruturada de parametros de configuracao

do pipeline.

63

E Cenarios para Endpoint de Alertas

Meteorologicos

O Cédigo E.1 apresenta cendrios gerados para o endpoint de alertas meteorologicos,

incluindo casos positivos e negativos (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS, 2019).

I |Feature: Weather Alerts by Zone

2 As a weather monitoring application

3 I want to retrieve active alerts for specific zones

So that I can notify users of weather warnings

5 @api Qalerts @positive @critical

6 Scenario: Retrieve active severe weather alerts

7 Given the weather API is available

8 And I have a valid zone ID "ALZOO2"

9 When I send a GET request to "/alerts/active/zone/{zoneId}"
10 Then the response status code should be 200

11 And the response should be in JSON format

12 And the response should contain "features" array

13 And each alert should have "severity" property

14 Qapi Qalerts @negative @validation

5 Scenario: Attempt to get alerts with malformed zone ID

16 Given the weather API is available

17 And I have a malformed zone ID "12345"

18 When I send a GET request to "/alerts/active/zone/{zoneId}"
19 Then the response status code should be 400 or 404

20 @api @alerts @negative @boundary

21 Scenario: Attempt to get alerts with empty zone ID

22 Given the weather API is available

23 And I have an empty zone ID ""

24 When I send a GET request to "/alerts/active/zone/{zoneId}"
25 Then the response status code should be 400

26 And the response should indicate invalid parameter

Listing E.1: Cenarios gerados para endpoint de alertas meteorolégicos

	Lista de Figuras
	Lista de Tabelas
	Lista de Abreviações
	Introdução
	Fundamentação Teórica
	Arquitetura REST e APIs Web
	Especificação OpenAPI
	Critérios de Cobertura para APIs REST
	Rastreabilidade de Requisitos
	Desenvolvimento Orientado a Comportamento
	Modelos de Linguagem de Grande Porte em Engenharia de Software
	Métricas de Qualidade em Automação de Testes
	Síntese do Capítulo

	Materiais e Métodos
	Visão Geral do Sistema
	Arquitetura do Sistema
	Fluxo de Funcionamento
	Tecnologias Utilizadas
	Estrutura do Projeto
	Componentes Principais

	Estudo de Caso
	Descrição do Cenário
	Configuração da Execução
	Métricas da API Processada
	Geração e Estrutura do BRD
	Análise do BRD Gerado

	Geração de Cenários de Teste
	Análise Qualitativa dos Cenários

	Exportação e Artefatos Gerados
	Análise de Desempenho e Custos
	Discussão dos Resultados

	Considerações Finais
	Síntese do Trabalho
	Retomada das Questões de Pesquisa
	Contribuições
	Limitações
	Trabalhos Futuros

	Bibliografia
	Documento de Requisitos de Negócio Gerado
	Amostra de Cenários de Teste Gerados
	Estrutura Completa do Projeto
	Organização de Diretórios de Nível Raiz

	Estrutura do Diretório Source
	Cenários para Endpoint de Alertas Meteorológicos

