
Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Bacharelado em Sistemas de Informação

Engenharia de Cenários de Teste End-to-End
para APIs RESTful

Uma Ferramenta em Python com Arquitetura

Modular para Análise de Cobertura de Parâmetros e

Simulação de Fluxos de Comunicação

Fabŕıcio de Sousa Guidine

JUIZ DE FORA

JANEIRO, 2026

Engenharia de Cenários de Teste End-to-End
para APIs RESTful

Uma Ferramenta em Python com Arquitetura

Modular para Análise de Cobertura de Parâmetros e

Simulação de Fluxos de Comunicação

Fabŕıcio de Sousa Guidine

Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Departamento de Ciência da Computação

Bacharelado em Sistemas de Informação

Orientador: Victor Ströele de Andrade Menezes

JUIZ DE FORA

JANEIRO, 2026

ENGENHARIA DE CENÁRIOS DE TESTE END-TO-END PARA APIS

RESTFUL

Uma Ferramenta em Python com Arquitetura Modular para Análise de

Cobertura de Parâmetros e Simulação de Fluxos de Comunicação

Fabŕıcio de Sousa Guidine

MONOGRAFIA SUBMETIDA AO CORPO DOCENTE DO INSTITUTO DE CIÊNCIAS

EXATAS DA UNIVERSIDADE FEDERAL DE JUIZ DE FORA, COMO PARTE INTE-

GRANTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE

BACHAREL EM SISTEMAS DE INFORMAÇÃO.

Aprovada por:

Victor Ströele de Andrade Menezes
Doutor em Engenharia de Sistemas e Computação (UFRJ)

André Luiz de Oliveira
Doutor em Ciência da Computação (USP)

José Maria Nazar David
Doutor em Engenharia de Sistemas e Computação (UFRJ)

JUIZ DE FORA

20 DE JANEIRO, 2026

Dedico às minhas mecenas,

Denise ❀ Margarida

Resumo

O crescimento exponencial de arquiteturas baseadas em microsserviços aumentou significa-

tivamente a complexidade dos testes de APIs REST, particularmente devido à validação de

múltiplos endpoints e à explosão combinatória de cenários de teste. Além disso, garantir a

rastreabilidade entre requisitos de negócio e operações de API é fundamental para assegurar

que os testes validem efetivamente as funcionalidades prioritárias, evitando lacunas de

cobertura e testes redundantes. Neste contexto, este trabalho apresenta uma ferramenta

automatizada para geração de cenários de teste de APIs REST a partir de especificações

OpenAPI/Swagger e documentos de requisitos de negócio. A abordagem proposta realiza

análise estrutural automatizada de especificações de API nos formatos Swagger 2.0 e

OpenAPI 3.0 e 3.1, combinada com processamento de linguagem natural de requisitos de

negócio por meio da integração com múltiplos provedores de LLM. Como resultado, a

ferramenta sintetiza cenários de teste comportamentais no formato Gherkin, compat́ıveis

com frameworks BDD, computa métricas de cobertura cruzada entre requisitos de negócio e

endpoints, e deriva métricas de complexidade por análise algoŕıtmica, empregando chunking

adaptativo para processar eficientemente APIs de larga escala. O sistema adota arquite-

tura modular que facilita a incorporação de novos provedores LLM e formatos de sáıda.

Resultados de um estudo de caso utilizando a API Weather.gov demonstram a viabilidade

da abordagem proposta. A ferramenta gerou 127 cenários de teste em aproximadamente

45 segundos, cobrindo 59 endpoints e 342 parâmetros, alcançando 100% de cobertura de

requisitos com consumo total de 5.172 tokens. Esses resultados indicam que a solução é

aplicável a ambientes reais de desenvolvimento de software, oferecendo custos operacionais

viáveis e integração com pipelines de integração cont́ınua. Adicionalmente, a ferramenta

é disponibilizada como código aberto, contribuindo para a comunidade de garantia de

qualidade.

Palavras-chave: Testes de API, OpenAPI, Swagger, LLM, Gherkin, Automação, BDD

Abstract

The exponential growth of microservice-based architectures has significantly increased

the complexity of REST API testing, particularly due to the need to validate multiple

endpoints and the combinatorial explosion of test scenarios. Furthermore, ensuring

traceability between business requirements and API operations is essential to guarantee

that tests effectively validate priority functionalities, avoiding coverage gaps and redundant

tests. In this context, this work presents an automated tool for generating REST API test

scenarios from OpenAPI/Swagger specifications and business requirements documents.

The proposed approach performs automated structural analysis of API specifications

in Swagger 2.0 and OpenAPI 3.0 and 3.1 formats, combined with natural language

processing of business requirements through integration with multiple large language

model (LLM) providers. As a result, the tool synthesizes behavioral test scenarios in

Gherkin format, compatible with established BDD frameworks, computes cross-coverage

metrics between business requirements and API endpoints, and derives complexity metrics

through algorithmic analysis, employing an adaptive chunking strategy to process large-

scale APIs efficiently. The system adopts a modular architecture that facilitates the

incorporation of new LLM providers and output formats. Results from a case study

using the Weather.gov API demonstrate the feasibility of the proposed approach. The

tool generated 127 test scenarios in approximately 45 seconds, covering 59 endpoints and

342 parameters, achieving 100% requirement coverage with a total token consumption of

5,172. These findings indicate that the proposed solution applies to real-world software

development environments, offering viable operational costs and seamless integration with

continuous integration pipelines. Additionally, the tool is made available as open-source

software, contributing to the broader quality assurance community.

Keywords: API testing, OpenAPI, Swagger, LLM, Gherkin, Automation, BDD

Agradecimentos

À Denise, que me fez uma de suas prioridades, que me educou para ser uma

pessoa que valida os sentimentos em primeiro lugar e me ensinou a ser um bom menino e,

agora, um homem. Não consigo imaginar meios de te retribuir tudo o que me foi provido.

Ao meu pai, Hélio, que a seu modo pôde se fazer presente e sempre útil e prestativo quanto

ao meu crescimento; é meu companheiro, e eu, seu panheirinho. À minha irmã, Larissa,

que, além de eu amar muito, trouxe ao mundo outra parte de si para eu amar ainda mais:

Mateus, que veio com meus traços.

À minha rocha, vó Margarida (in memoriam), que viveu sua vida trabalhando em

prol da nossa famı́lia e daqueles que faziam parte da sua vida, salvo exceções, de acordo

com suas ideias irrevogáveis. Foi a primeira a me fazer acreditar que as coisas dariam

certo na minha caminhada acadêmica. À minha tia, Rosângela (in memoriam), que estará

eternamente em meus pensamentos sobre como cresci sob seus cuidados em Cataguarino.

Sempre vou te amar. Ao restante da minha famı́lia: avô Cosme (in memoriam), tios e

tias, afilhados e afilhadas, primos e primas, cunhado e sua famı́lia, conforta-me saber que

entendem que a distância e os sacrif́ıcios que tive seriam insuportáveis sem o seu apoio.

Ao meu ex-futuro marido, Erick: poder estar em sua companhia é tão natural e

me fez experimentar a felicidade em seu mais calmo e puro estado. Eu amei compartilhar

a minha vida com você.

À Alana, ao Fabŕıcio, Milena e à Tháıs: eu amo vocês. Aos meus amigos da

faculdade em geral, cujos nomes não caberiam aqui. Em especial, à Débora, que me

forneceu uma lanterna da lua1 para seguir no umbral. Aos docentes do meu departamento,

que me proveram a metodologia e os meios para meu desenvolvimento acadêmico. Em

especial, ao Luciano, ao André e ao Victor. Essas pessoas viram em mim algo que nem eu

acreditava: sou capaz.

1Lanterna da Lua: ⟨https://bg3.wiki/wiki/Moonlantern⟩

https://bg3.wiki/wiki/Moonlantern

Ontem fui feliz, excessivamente feliz,

como não se pode sê-lo mais! Até que

enfim, uma vez na vida, você, sempre

tão inacesśıvel, satisfez os meus desejos!

Eram cerca de oito horas, já quase noite,

quando acordei da soneca que costumo

dormir todos os dias, depois do traba-

lho. Acendi a luz e tinha já os papéis

em ordem, faltando-me apenas aguçar a

pena, quando, de súbito, levantei, casu-

almente, os olhos e deparou-se-me um

espetáculo extraordinário, que me fez pu-

lar o coração. Decerto adivinhou já do

que se trata, compreendeu o motivo do

meu alvoroço!

Fiódor Dostoiévski (Gente Pobre)

Conteúdo

Lista de Figuras iii

Lista de Tabelas iv

Lista de Abreviações 1

1 Introdução 2

2 Fundamentação Teórica 7
2.1 Arquitetura REST e APIs Web . 7
2.2 Especificação OpenAPI . 8
2.3 Critérios de Cobertura para APIs REST 11
2.4 Rastreabilidade de Requisitos . 12
2.5 Desenvolvimento Orientado a Comportamento 14
2.6 Modelos de Linguagem de Grande Porte em Engenharia de Software 16
2.7 Métricas de Qualidade em Automação de Testes 18
2.8 Śıntese do Caṕıtulo . 19

3 Materiais e Métodos 20
3.1 Visão Geral do Sistema . 20
3.2 Arquitetura do Sistema . 23
3.3 Fluxo de Funcionamento . 25
3.4 Tecnologias Utilizadas . 26
3.5 Estrutura do Projeto . 28
3.6 Componentes Principais . 29

4 Estudo de Caso 30
4.1 Descrição do Cenário . 30
4.2 Configuração da Execução . 31
4.3 Métricas da API Processada . 31
4.4 Geração e Estrutura do BRD . 32

4.4.1 Análise do BRD Gerado . 33
4.5 Geração de Cenários de Teste . 34

4.5.1 Análise Qualitativa dos Cenários 36
4.6 Exportação e Artefatos Gerados . 39
4.7 Análise de Desempenho e Custos . 40
4.8 Discussão dos Resultados . 41

5 Considerações Finais 42
5.1 Śıntese do Trabalho . 42
5.2 Retomada das Questões de Pesquisa . 43
5.3 Contribuições . 44
5.4 Limitações . 45
5.5 Trabalhos Futuros . 46

Bibliografia 48

A Documento de Requisitos de Negócio Gerado 51

B Amostra de Cenários de Teste Gerados 55

C Estrutura Completa do Projeto 57
C.1 Organização de Diretórios de Nı́vel Raiz 57

D Estrutura do Diretório Source 58

E Cenários para Endpoint de Alertas Meteorológicos 63

Lista de Figuras

2.1 Exemplo da UI OpenAPI visualizada no Swagger Editor 9
2.2 Exemplo de especificação OpenAPI visualizada no Swagger Editor 10
2.3 Diagrama conceitual de rastreabilidade entre BRD e cenários de teste . . . 13

3.1 Página principal do repositório GitHub do projeto 21
3.2 Continuação da página principal do repositório GitHub do projeto 22
3.3 Arquitetura do sistema organizada em camadas 24
3.4 Fluxograma das sete etapas do processo de geração de cenários 26
3.5 Visão simplificada da estrutura de diretórios principal 28

4.1 Sáıda do terminal durante geração de cenários via LLM 37

Lista de Tabelas

3.1 Principais tecnologias e dependências do projeto 27
3.2 Resumo dos módulos principais e suas responsabilidades 29

4.1 Métricas estruturais da API weather.gov 32
4.2 Análise de cobertura cruzada BRD vs Endpoints 34
4.3 Métricas de geração de cenários via LLM 35
4.4 Análise de custos operacionais da execução 40

B.1 Amostra de cenários de teste gerados para a API weather.gov 55

C.1 Estrutura de diretórios e arquivos de ńıvel raiz 57

D.1 Especificação dos componentes do sistema 58

Lista de Abreviações

API Application Programming Interface

BDD Behavior-Driven Development

BRD Business Requirement Document

CI/CD Continuous Integration/Continuous Delivery

CLI Command Line Interface

CPU Central Processing Unit

CSV Comma-Separated Values

GPT Generative Pre-trained Transformer

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

JSON JavaScript Object Notation

LLM Large Language Model

MIT Massachusetts Institute of Technology

NLP Natural Language Processing

OpenAPI OpenAPI Specification

PDF Portable Document Format

RAM Random Access Memory

REST Representational State Transfer

RTM Requirements Traceability Matrix

SDK Software Development Kit

TDD Test-Driven Development

TXT Text File

UFJF Universidade Federal de Juiz de Fora

URI Uniform Resource Identifier

URL Uniform Resource Locator

YAML YAML Ain’t Markup Language

2

1 Introdução

A arquitetura de software contemporânea tem experimentado uma transformação signi-

ficativa nas últimas décadas, caracterizada pela migração de sistemas monoĺıticos para

arquiteturas distribúıdas baseadas em serviços. Nesse contexto evolutivo, as APIs REST

emergiram como o principal mecanismo de comunicação entre componentes de software,

especialmente em ecossistemas orientados a microsserviços (FIELDING, 2000). Dessa

forma, essas interfaces expõem endpoints HTTP que recebem parâmetros através de

mecanismos de transmissão, incluindo cabeçalhos de requisição, corpo de mensagem e que-

ries, retornando respostas predominantemente estruturadas em formato JSON (BANIAS;

ALEXANDRESCU, 2022). A adoção massiva de arquiteturas baseadas em microsserviços

por grandes empresas de tecnologia tem impulsionado a necessidade de abordagens mais

sofisticadas para garantia de qualidade dessas interfaces cŕıticas (NEWMAN, 2015).

A confiabilidade desses contratos de API influencia diretamente tanto a integridade

das integrações entre sistemas quanto a experiência do usuário final. Neste contexto,

conforme evidenciado por Golmohammadi, Zhang e Arcuri (2023), o teste de APIs

RESTful apresenta desafios particulares devido à dependência de comunicações de rede e

às interações frequentes com serviços externos, como sistemas de gerenciamento de banco

de dados, o que amplia significativamente a complexidade do processo de verificação.

Ademais, a proliferação de serviços web baseados em REST tem motivado um crescimento

substancial na pesquisa acadêmica sobre técnicas de teste automatizado para esse tipo de

interface (KIM et al., 2022; RICHARDSON; AMUNDSEN; RUBY, 2013).

Com a adoção crescente de padrões como OpenAPI, anteriormente conhecido como

Swagger, tornou-se viável descrever contratos de serviço de maneira padronizada e pro-

cessável por sistemas automatizados (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS, 2019).

A especificação OpenAPI permite definir formalmente endpoints dispońıveis, métodos

HTTP suportados, parâmetros de entrada diferenciados por localização, esquemas de dados

via JSON Schema, respostas esperadas para cada código de status HTTP, e mecanismos

de autenticação e autorização, estabelecendo assim uma base formal para automação

1 Introdução 3

de processos de teste (OpenAPI Initiative, 2021). Conforme observado por Corradini et

al. (2022), a mera existência de especificações OpenAPI não resolve automaticamente os

desafios inerentes ao teste de APIs, uma vez que as ferramentas existentes frequentemente

negligenciam informações valiosas presentes em descrições textuais dessas especificações

(ED-DOUIBI; IZQUIERDO; CABOT, 2018).

Dois problemas fundamentais persistem no domı́nio dos testes automatizados

de APIs REST. O primeiro problema refere-se à explosão combinatória de valores de

parâmetros e de cenários de teste posśıveis, fenômeno que torna impraticável a geração

manual de casos de teste com cobertura abrangente (ARCURI, 2019). Técnicas de

teste combinatorial têm sido propostas para mitigar esse problema, permitindo cobertura

sistemática de interações entre parâmetros (KUHN; KACKER; LEI, 2013). O segundo

problema, igualmente cŕıtico mas frequentemente negligenciado, diz respeito à desconexão

sistemática entre os requisitos de negócio e os cenários técnicos de teste (ZAMENI; WANG;

MAHMOUD, 2023). Dessa forma, enquanto as especificações OpenAPI descrevem com

precisão a estrutura técnica de uma API, estas frequentemente não capturam as regras de

negócio subjacentes, os fluxos de trabalho esperados pelos stakeholders e os casos de uso

prioritários do ponto de vista funcional.

Essa lacuna entre a documentação técnica e os requisitos funcionais dificulta

substancialmente a criação de súıtes de teste que sejam simultaneamente abrangentes em

termos técnicos e alinhadas aos objetivos de negócio. A rastreabilidade entre requisitos e

testes, considerada essencial pela norma IEEE 830-1998 para especificação de requisitos de

software, permanece um desafio significativo em projetos de desenvolvimento de software

(GOTEL; FINKELSTEIN, 1994). Neste contexto, conforme evidenciado por estudos

emṕıricos, a ausência de rastreabilidade adequada pode resultar em funcionalidades não

testadas, testes redundantes que desperdiçam recursos, e dificuldade substancial na análise

de impacto de mudanças nos requisitos (MäDER; EGYED, 2012). A manutenção de

matrizes de rastreabilidade tem sido identificada como prática fundamental em organizações

com processos maduros de qualidade (SPANOUDAKIS; ZISMAN, 2005; CLELAND-

HUANG; GOTEL; ZISMAN, 2012).

Nos últimos anos, a integração de modelos de linguagem de grande porte em

1 Introdução 4

ferramentas de engenharia de software tem demonstrado potencial notável para automatizar

tarefas que tradicionalmente exigiam expertise humana especializada, incluindo a geração de

código-fonte, documentação técnica, e casos de teste (WANG et al., 2024). A arquitetura

Transformer, que fundamenta os LLMs modernos, revolucionou o processamento de

linguagem natural e abriu novas possibilidades para automação inteligente (VASWANI

et al., 2017). Ademais, modelos avançados como GPT-4 demonstram capacidade de

interpretar especificações técnicas complexas, compreender contexto de negócio expresso

em linguagem natural, e gerar artefatos estruturados tanto em linguagem natural quanto

em formatos semiestruturados como o Gherkin (SCHäFER et al., 2023). Essa capacidade

emergente abre novas possibilidades para a automação inteligente de processos de teste,

embora apresente desafios relacionados à qualidade dos artefatos gerados, validação de

adequação aos requisitos, e custos operacionais associados (WHITE et al., 2023).

A relevância deste trabalho fundamenta-se em múltiplos aspectos identificados

tanto na literatura acadêmica quanto na prática de engenharia de software. Conforme

demonstrado pela pesquisa conduzida por Golmohammadi, Zhang e Arcuri (2023) com

análise sistemática de 92 artigos cient́ıficos, o campo de teste de APIs REST permanece

ativo e em evolução, com desafios significativos ainda não plenamente resolvidos por

ferramentas existentes no estado da arte. Diante disso, a explosão combinatória de valores

de parâmetros e a necessidade de cobertura abrangente tornam a automação não apenas

desejável do ponto de vista de eficiência, mas necessária para garantir qualidade em

sistemas modernos de software distribúıdo (FRASER; ARCURI, 2011).

A integração de requisitos de negócio ao processo de teste representa uma ne-

cessidade cŕıtica frequentemente negligenciada por abordagens puramente técnicas. A

literatura sobre rastreabilidade de requisitos demonstra consistentemente que a manutenção

de ligações claras e bidirecionais entre requisitos, casos de teste e resultados de execução é

fundamental para garantia de qualidade, especialmente em sistemas cŕıticos onde falhas

podem ter consequências severas (GOTEL; FINKELSTEIN, 1994). Por conseguinte, a fer-

ramenta proposta neste trabalho endereça diretamente essa lacuna ao integrar Documentos

de Requisitos de Negócio de forma orgânica ao fluxo de geração de testes, estabelecendo

rastreabilidade desde a concepção até a execução.

1 Introdução 5

A aplicação de modelos de linguagem de grande porte na geração de testes

representa uma fronteira de pesquisa particularmente promissora. Estudos recentes

demonstram que LLMs como GPT-4 podem gerar casos de teste de alta qualidade quando

adequadamente direcionados por prompts bem constrúıdos e contextualizados (SCHäFER

et al., 2023; WANG et al., 2024). Neste sentido, a ferramenta proposta tem o potencial de

contribuir para essa linha de pesquisa ao demonstrar aplicação prática e sistemática de

LLMs em contexto espećıfico de teste de APIs REST, explorando estratégias de chunking

para processamento de APIs de grande porte e integração com múltiplos provedores de

LLM.

A adoção da linguagem Gherkin como formato de sáıda garante interoperabilidade

com o ecossistema estabelecido de ferramentas de Behavior-Driven Development, incluindo

Cucumber, Behave e SpecFlow (Cucumber, 2023). A metodologia BDD tem demonstrado

benef́ıcios significativos na comunicação entre equipes técnicas e de negócio (SOLIS; WANG,

2011). Dessa forma, essa escolha facilita substancialmente a integração com processos

existentes de garantia de qualidade e permite que cenários gerados sirvam simultaneamente

como documentação executável e especificação de comportamento esperado do sistema,

caracteŕıstica fundamental da abordagem BDD. A integração com pipelines de entrega

cont́ınua potencializa ainda mais o valor dessa automação (HUMBLE; FARLEY, 2010).

Diante desse contexto, este trabalho busca responder à seguinte questão geral de

pesquisa: Como automatizar a geração de cenários de teste para APIs REST a partir de

especificações OpenAPI?

A partir dessa questão central, derivam-se cinco questões espećıficas que orientam

o desenvolvimento da pesquisa. A primeira questão espećıfica (QE1) investiga como

processar e validar especificações OpenAPI em múltiplos formatos de forma automatizada,

extraindo informações estruturadas sobre endpoints, parâmetros e esquemas de dados. A

segunda questão (QE2) examina como integrar os Documentos de Requisitos de Negócio

ao processo de geração de testes, estabelecendo a rastreabilidade entre requisitos funcionais

e cenários de validação técnica. A terceira questão (QE3) avalia a eficácia de modelos

de linguagem de grande porte na geração de cenários de teste no formato Gherkin,

considerando critérios de coerência, completude e adequação aos requisitos especificados.

1 Introdução 6

A quarta questão (QE4) analisa como implementar a análise de cobertura cruzada entre

o BRD e os endpoints da API, identificando lacunas e priorizando endpoints cŕıticos

para testes. Por fim, a quinta questão (QE5) investiga quais métricas são adequadas

para avaliar a qualidade, a complexidade e a cobertura dos cenários de teste gerados

automaticamente.

O objetivo geral deste trabalho consiste em desenvolver a ferramenta API Para-

meter Coverage & Test Scenario Generator, que automatiza a geração de cenários de

teste para APIs REST combinando análise de especificações OpenAPI/Swagger, integração

com Documentos de Requisitos de Negócio e geração de cenários Gherkin via LLMs. O

código-fonte está dispońıvel no repositório GitHub (GUIDINE, 2025).

Os objetivos espećıficos são: (1) desenvolver módulo de processamento multi-

formato para especificações Swagger 2.0 e OpenAPI 3.0/3.1; (2) implementar mecanismos de

integração com BRD, incluindo carregamento, geração via LLM e extração de documentos

em PDF, Word e TXT; (3) analisar cobertura cruzada entre endpoints e requisitos do

BRD; (4) integrar múltiplos provedores de LLM com estratégia de chunking adaptativo; (5)

desenvolver sistema de analytics com métricas de qualidade e cobertura; e (6) implementar

exportação estruturada em formato CSV.

O restante deste documento está organizado em cinco caṕıtulos. O Caṕıtulo 2

apresenta a fundamentação teórica, revisando conceitos essenciais sobre teste de APIs

REST, especificações OpenAPI, rastreabilidade de requisitos, desenvolvimento orientado

a comportamento, modelos de linguagem de grande porte e métricas de qualidade em

automação de testes. O Caṕıtulo 3 descreve detalhadamente a arquitetura do sistema

proposto, tecnologias utilizadas, organização modular do código-fonte e metodologia de

desenvolvimento adotada. No Caṕıtulo 4 é apresentado um estudo de caso detalhado

demonstrando a aplicação da ferramenta na API weather.gov, com análise quantitativa

e qualitativa dos resultados obtidos e discussão sobre as métricas coletadas. Por fim, o

Caṕıtulo 5 discute as principais contribuições acadêmicas e práticas, limitações identificadas

durante o desenvolvimento e execução, e direções promissoras para trabalhos futuros. Os

apêndices reúnem os materiais complementares, incluindo trechos relevantes de código-fonte,

exemplos de especificações, prompts para modelos de linguagem e dados suplementares.

7

2 Fundamentação Teórica

Este caṕıtulo apresenta os conceitos teóricos e trabalhos relacionados que fundamentam o

desenvolvimento da ferramenta proposta. A revisão da literatura aborda tópicos essenciais

sobre teste de APIs REST, especificações OpenAPI, rastreabilidade de requisitos, desen-

volvimento orientado a comportamento, modelos de linguagem de grande porte e métricas

de qualidade em automação de testes, estabelecendo o embasamento cient́ıfico necessário

para compreensão das decisões de projeto e implementação adotadas ao longo do trabalho.

2.1 Arquitetura REST e APIs Web

O estilo arquitetural REST foi introduzido por Roy Fielding em sua tese de doutorado como

um conjunto de prinćıpios para projeto de sistemas distribúıdos hipermı́dia, fundamentando-

se em conceitos como cliente-servidor, stateless, cacheable, interface uniforme e sistema

em camadas (FIELDING, 2000). Neste contexto, APIs que seguem rigorosamente os

prinćıpios REST, denominadas APIs RESTful, utilizam o protocolo HTTP como me-

canismo primário de comunicação, empregando métodos padronizados como GET para

recuperação de recursos, POST para criação, PUT para atualização completa, PATCH para

atualização parcial, e DELETE para remoção, operando sobre recursos identificados por

URIs (RICHARDSON; AMUNDSEN; RUBY, 2013). A escalabilidade dessa arquitetura

contribuiu para sua ampla adoção em sistemas web atuais (NEWMAN, 2015).

Dessa forma, as APIs REST estabelecem contratos entre produtor e consumidor

de serviços, definindo a estrutura de requisições esperadas, formato de respostas produzidas

e códigos de status HTTP que sinalizam o resultado de cada operação. Nesse contexto, os

testes de API têm como objetivo verificar se essas interfaces se comportam conforme o

especificado, avaliando aspectos como a correção das respostas, o tratamento adequado de

entradas inválidas e a consistência das condições de erro (BANIAS; ALEXANDRESCU,

2022). A validação sistemática desses contratos é fundamental para garantir a integridade

em arquiteturas de microsserviços (SEGURA et al., 2018).

2.2 Especificação OpenAPI 8

Revisões sistemáticas da literatura evidenciam que, embora a automação de testes

de API tenha evolúıdo significativamente ao longo dos últimos anos, ainda há notável falta

de consenso sobre métricas de cobertura espećıficas para APIs, situação que contrasta com

a relativa maturidade das métricas de cobertura de código tradicional estabelecidas para

aplicações monoĺıticas (GOLMOHAMMADI; ZHANG; ARCURI, 2023). Por outro lado,

conforme apontado por Kim et al. (2022) em análise emṕırica de ferramentas existentes,

as soluções atualmente dispońıveis apresentam limitações significativas tanto em termos

de cobertura de código alcançada durante execução de testes quanto em capacidade de

detectar falhas sutis em APIs reais, indicando espaço substancial para contribuições nessa

área de pesquisa. Técnicas de teste metamórfico têm sido propostas como alternativa para

superar limitações do oráculo de teste em APIs (SEGURA et al., 2018).

2.2 Especificação OpenAPI

A especificação OpenAPI, anteriormente conhecida como Swagger antes da transferência

para a OpenAPI Initiative, tornou-se o padrão de facto para documentação formal de

APIs REST em ecossistemas de desenvolvimento modernos (OpenAPI Initiative, 2021). A

especificação permite descrever de forma completa e processável por sistemas automatizados

todos os aspectos relevantes de uma API REST, incluindo endpoints dispońıveis com

suas respectivas URIs, métodos HTTP suportados para cada endpoint, parâmetros de

entrada diferenciados por localização como path, query, header e body, esquemas de dados

estruturados via JSON Schema, respostas esperadas para cada código de status HTTP

posśıvel, e mecanismos de autenticação e autorização suportados (MARTIN-LOPEZ;

SEGURA; RUIZ-CORTéS, 2019). Na Figura 2.1 é ilustrado um exemplo t́ıpico de

especificação OpenAPI visualizada no Swagger Editor, demonstrando tanto o código

YAML estruturado à esquerda quanto a documentação interativa gerada automaticamente

à direita a partir da especificação formal.

2.2 Especificação OpenAPI 9

Figura 2.1: Exemplo da UI OpenAPI visualizada no Swagger Editor

Conforme observado na Figura 2.2, uma especificação OpenAPI t́ıpica é estru-

turada hierarquicamente, iniciando com metadados da API que incluem t́ıtulo, versão

semântica e descrição textual, seguidos pela definição de servidores base dispońıveis,

caminhos de endpoints organizados por recurso, operações dispońıveis para cada cami-

nho, parâmetros detalhados de cada operação, schemas de request e response bodies

estruturados, e definições de componentes reutilizáveis que promovem consistência e manu-

tenibilidade (ED-DOUIBI; IZQUIERDO; CABOT, 2018). Neste contexto, essa estrutura

hierárquica e bem definida facilita não apenas a documentação manual, mas especialmente

o processamento automatizado por ferramentas de análise e geração de testes.

Dessa forma, a formalização proporcionada pelo padrão OpenAPI cria oportuni-

dades significativas para a automação de processos de teste. Nesse contexto, ferramentas

especializadas podem interpretar especificações OpenAPI e derivar testes automatica-

mente por meio de diferentes estratégias, gerando valores de parâmetros que respeitam

os constraints definidos, construindo requisições HTTP bem formadas e validando res-

postas com base em esquemas formalmente especificados (CORRADINI et al., 2022).

2.2 Especificação OpenAPI 10

Conforme catalogado em uma revisão sistemática recente, diversas ferramentas de teste

automatizado foram desenvolvidas especificamente para explorar essas capacidades, in-

cluindo RESTler, que utiliza técnicas de fuzzing guiado por gramática (ATLIDAKIS;

GODEFROID; POLISHCHUK, 2019), EvoMaster, que aplica algoritmos evolutivos para

maximização de cobertura (ARCURI, 2018), Schemathesis, que realiza testes baseados

em propriedades a partir de especificações, RESTest, que gera casos de teste a partir da

análise de dependências entre operações (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS,

2020), e RestTestGen, que emprega técnicas combinadas de análise estática e dinâmica

(VIGLIANISI; DALLAGO; CECCATO, 2020).

Figura 2.2: Exemplo de especificação OpenAPI visualizada no Swagger Editor

Por outro lado, conforme observação cŕıtica de Corradini et al. (2022), a maior

parte dessas ferramentas foca exclusivamente em informações estruturadas presentes nas

2.3 Critérios de Cobertura para APIs REST 11

especificações OpenAPI, frequentemente negligenciando descrições textuais em linguagem

natural que acompanham endpoints, parâmetros e schemas. Diante disso, trabalhos recentes,

como o apresentado por Kim et al. (2023), demonstram que a extração e processamento

de informações contidas em descrições textuais através de técnicas de processamento

de linguagem natural pode melhorar significativamente a qualidade dos testes gerados,

motivando abordagens h́ıbridas que integrem análise estrutural com processamento de

linguagem natural ao fluxo de geração de testes.

2.3 Critérios de Cobertura para APIs REST

Martin-Lopez, Segura e Ruiz-Cortés (2019) propõem um conjunto abrangente de critérios

de cobertura espećıficos para APIs REST que transcendem a simples invocação de cada

endpoint dispońıvel. Neste contexto, os autores sugerem métricas organizadas em múltiplos

ńıveis de granularidade, incluindo cobertura de parâmetros que garante que todos os

parâmetros definidos sejam exercitados ao menos uma vez, cobertura de valores que

assegura que diferentes valores representativos de cada parâmetro sejam testados incluindo

casos limite, cobertura de operações que verifica diferentes métodos HTTP aplicados sobre

o mesmo recurso, e cobertura de dependências entre operações que valida sequências

de chamadas interdependentes respeitando ordem temporal e lógica. Esses critérios são

análogos aos da técnica de teste funcional tradicional, como o Particionamento em Classes

de Equivalência e a Análise do Valor Limite para cada parâmetro (AMMANN; OFFUTT,

2016).

Ademais, além do trabalho de Martin-Lopez, Arcuri (2019) propõem critérios

baseados na cobertura de código do servidor, argumentando que métricas de caixa-branca

que consideram a implementação interna podem complementar de forma substantiva

abordagens de caixa-preta baseadas apenas em especificações externas. Essa abordagem

relaciona-se com a técnica de teste estrutural, que inclui critérios baseados em fluxo

de controle e fluxo de dados (AMMANN; OFFUTT, 2016). Dessa forma, a ferramenta

EvoMaster, desenvolvida pelos autores e disponibilizada como software de código aberto,

utiliza algoritmos genéticos multiobjetivos para maximizar simultaneamente a cobertura

de código da implementação do servidor e a cobertura da especificação da API, por meio

2.4 Rastreabilidade de Requisitos 12

da geração evolutiva de casos de teste que exploram o espaço de busca de forma inteligente

(FRASER; ARCURI, 2011).

A literatura destaca a importância de uma cobertura abrangente de códigos

de resposta HTTP, incluindo respostas de sucesso (2xx), erros do cliente (4xx) e erros

do servidor (5xx), bem como a cobertura de esquemas de dados (GOLMOHAMMADI;

ZHANG; ARCURI, 2023). Essa abordagem garante a validação sistemática de objetos

JSON complexos por meio de combinações de valores válidos e inválidos. Técnicas de

teste combinatorial permitem reduzir o espaço de teste mantendo cobertura adequada de

interações entre parâmetros (KUHN; KACKER; LEI, 2013). Testes metamórficos comple-

mentam essa abordagem ao permitir validação sem oráculos expĺıcitos (SEGURA et al.,

2018). Esses critérios influenciam diretamente as decisões arquiteturais e a implementação

dos algoritmos da ferramenta proposta neste trabalho.

2.4 Rastreabilidade de Requisitos

A rastreabilidade de requisitos é definida formalmente pela IEEE como o grau em que

um relacionamento bidirecional pode ser estabelecido entre dois ou mais produtos do

processo de desenvolvimento de software, especialmente produtos com relacionamento

predecessor-sucessor ou primário-subordinado entre si (GOTEL; FINKELSTEIN, 1994).

Neste contexto, no âmbito espećıfico de teste de software, a rastreabilidade permite conectar

de forma estruturada e verificável requisitos de negócio originais a casos de teste derivados

e resultados de execução obtidos, garantindo que validações técnicas realizadas estejam

consistentemente alinhadas com objetivos funcionais estabelecidos pelos stakeholders

(SPANOUDAKIS; ZISMAN, 2005).

Dessa forma, enquanto especificações OpenAPI descrevem com precisão técnica

a estrutura formal de uma API incluindo tipos de dados, formatos de mensagem e

protocolos de comunicação, Documentos de Requisitos de Negócio capturam as necessidades

funcionais de mais alto ńıvel, regras de negócio que governam o comportamento esperado

do sistema, e casos de uso prioritários do ponto de vista do cliente ou stakeholder que

financia o desenvolvimento (ABDELFATTAH et al., 2024). Por conseguinte, a integração

sistemática entre essas duas fontes complementares de informação permite filtrar de forma

2.4 Rastreabilidade de Requisitos 13

fundamentada quais endpoints são funcionalmente prioritários para teste com base em

requisitos expĺıcitos, evitando desperd́ıcio de esforço e recursos em endpoints tecnicamente

presentes mas funcionalmente não cŕıticos ou fora de escopo atual (CLELAND-HUANG;

GOTEL; ZISMAN, 2012). A Figura 2.3 ilustra conceitualmente essa relação hierárquica

entre os três ńıveis de rastreabilidade: requisitos de negócio no topo, endpoints da API

no meio, e cenários de teste na base, com setas bidirecionais indicando as ligações de

rastreamento entre cada camada.

Business Requirement Document (BRD)

REQ-001 — REQ-002 — REQ-003

API Endpoints

GET /alerts — GET /forecast — POST /alerts

Test Scenarios

TS-001 — TS-002 — TS-003 — TS-004

traces to

validates

derives

Figura 2.3: Diagrama conceitual de rastreabilidade entre BRD e cenários de teste

Conforme demonstrado na Figura 2.3, as conexões bidirecionais entre BRD, end-

points e cenários de teste estabelecem uma matriz de rastreabilidade que permite tanto

navegação descendente (de requisitos para testes) quanto ascendente (de testes para requi-

sitos). Ademais, a Matriz de Rastreabilidade de Requisitos, conhecida pela sigla RTM

derivada do inglês Requirements Traceability Matrix, constitui o artefato tradicionalmente

utilizado para documentar de forma tabular e estruturada os relacionamentos entre requi-

sitos, casos de teste derivados e outros artefatos relevantes do projeto (MäDER; EGYED,

2012). Conforme observado por pesquisas emṕıricas conduzidas ao longo da última década,

a manutenção de rastreabilidade adequada e atualizada pode acelerar substancialmente

atividades de desenvolvimento como análise de impacto de mudanças, reduzir a incidência

de defeitos através de melhor cobertura de requisitos, e facilitar comunicação entre equipes

técnicas e de negócio (SPANOUDAKIS; ZISMAN, 2005). Por outro lado, o processo de

criação e manutenção manual de matrizes de rastreabilidade é reconhecidamente traba-

2.5 Desenvolvimento Orientado a Comportamento 14

lhoso, propenso a erros de inconsistência, e frequentemente negligenciado sob pressão de

prazos apertados, motivando fortemente abordagens automatizadas (CLELAND-HUANG;

GOTEL; ZISMAN, 2012).

2.5 Desenvolvimento Orientado a Comportamento

O Desenvolvimento Orientado a Comportamento, conhecido pela sigla BDD derivada

do inglês Behavior-Driven Development, é uma metodologia que estende e refina os

prinćıpios do Desenvolvimento Orientado a Testes tradicional, focando especificamente

na especificação do comportamento esperado do sistema através de exemplos concretos

escritos em linguagem de domı́nio quase natural (NORTH, 2006). Neste sentido, BDD

enfatiza a colaboração estruturada entre desenvolvedores que implementam funcionalidades,

testadores que verificam conformidade, e stakeholders de negócio que definem requisitos,

utilizando uma linguagem ub́ıqua compartilhada por todos os membros da equipe que

elimina ambiguidades e mal-entendidos (SOLIS; WANG, 2011).

Dessa forma, a linguagem Gherkin constitui a sintaxe mais amplamente adotada

para expressar cenários BDD de forma estruturada e processável, seguindo a estrutura

canônica Given/When/Then que em português corresponde a Dado/Quando/Então (Cu-

cumber, 2023). Cada cenário Gherkin descreve um teste comportamental através de três

elementos fundamentais: uma precondição que estabelece o estado inicial do sistema,

uma ação que representa a operação sendo testada, e um resultado esperado que define

o comportamento correto do sistema. Ademais, essa estrutura é interpretável tanto por

humanos que podem revisar e validar a especificação quanto por ferramentas automatizadas

de execução de teste. O Cucumber é o framework BDD mais popular, dispońıvel para

múltiplas linguagens de programação incluindo Java, Ruby, JavaScript e Python (através

da implementação Behave). O Cucumber interpreta arquivos .feature escritos em Gher-

kin, vincula cada step a implementações de código chamadas step definitions, e executa

os testes gerando relatórios de sucesso ou falha (ZAMENI; WANG; MAHMOUD, 2023).

Outras ferramentas compat́ıveis incluem SpecFlow para a plataforma .NET. A linguagem

também suporta construções avançadas como Scenario Outline para parametrização de

cenários com múltiplos conjuntos de dados, Background para definição de precondições

2.5 Desenvolvimento Orientado a Comportamento 15

compartilhadas entre cenários de uma mesma feature, e tags para categorização e filtragem

seletiva durante execução.

Para ilustrar, o Código 2.1 demonstra a estrutura completa de um arquivo Gherkin

aplicado ao contexto de teste de API REST, incluindo a declaração da Feature com descrição

no formato de user story que contextualiza o objetivo funcional, tags organizacionais para

categorização e filtragem de cenários durante execução, e dois cenários representativos:

um validando o fluxo positivo de criação de recurso com dados válidos, e outro verificando

o tratamento adequado de erros quando campos obrigatórios estão ausentes ou inválidos.

1 Feature: Pet Store API - Pet Management

2 As an API consumer

3 I want to manage pets in the store

4 So that I can maintain the pet inventory

5

6 @api @pet @positive @smoke

7 Scenario: Successfully create a new pet

8 Given the API endpoint "/pet" is available

9 And I have a valid authentication token

10 And the request body contains valid pet data:

11 | name | status | category |

12 | Buddy | available | dog |

13 When I send a POST request to "/pet"

14 Then the response status code should be 200

15 And the response body should contain the pet ID

16 And the pet name should be "Buddy"

17 And the pet status should be "available"

18

19 @api @pet @negative @validation

20 Scenario: Fail to create pet with missing required fields

21 Given the API endpoint "/pet" is available

22 And the request body is missing the "name" field

23 When I send a POST request to "/pet"

24 Then the response status code should be 400

25 And the response should contain an error message

26 And the error message should indicate "name is required"

2.6 Modelos de Linguagem de Grande Porte em Engenharia de Software 16

Listing 2.1: Estrutura completa de cenário Gherkin para teste de API REST

Por conseguinte, essa caracteŕıstica de “especificação executável” proporcionada

pela abordagem BDD reduz sistematicamente a divergência entre o que está documentado

em artefatos de projeto e o que está efetivamente implementado e testado, além de

facilitar substancialmente a comunicação entre equipes técnicas e não técnicas através

de uma linguagem comum, pesquisas já exploraram ativamente a geração automática de

cenários BDD a partir de requisitos expressos em linguagem natural ou especificações de

alto ńıvel (NORTH, 2006). Diante disso, Zameni, Wang e Mahmoud (2023) investigam

especificamente o uso de LLMs para gerar cenários Gherkin a partir de requisitos textuais

não estruturados, demonstrando empiricamente que modelos como GPT-4 conseguem

produzir cenários estruturalmente coerentes e semanticamente bem formados quando

guiados por prompts adequadamente constrúıdos e contextualizados. Essa linha de pesquisa

emergente inspira diretamente a abordagem técnica adotada neste trabalho para geração

automatizada de cenários.

2.6 Modelos de Linguagem de Grande Porte em En-

genharia de Software

Modelos de Linguagem de Grande Porte, conhecidos pela sigla LLM derivada do inglês

Large Language Models, representam um avanço significativo em capacidade de compreensão

de linguagem natural e geração de texto coerente. Baseados na arquitetura Transformer

introduzida originalmente para tarefas de tradução automática (VASWANI et al., 2017),

esses modelos são treinados em vastas quantidades de dados textuais cobrindo múltiplos

domı́nios do conhecimento humano, demonstrando habilidade emergente em tarefas diversas

como tradução entre idiomas, sumarização de textos longos, geração de código-fonte, e

resposta a perguntas complexas (BROWN et al., 2020).

Dessa forma, LLMs têm sido aplicados com sucesso crescente em múltiplas tarefas

do ciclo de desenvolvimento, incluindo geração de código a partir de descrições em linguagem

natural que reduz esforço de implementação, geração automatizada de testes unitários

2.6 Modelos de Linguagem de Grande Porte em Engenharia de Software 17

que aumenta cobertura, documentação automática de código existente que melhora

manutenibilidade, detecção de bugs através de análise de padrões suspeitos, e refatoração

de código para melhorar qualidade estrutural (WANG et al., 2024). Trabalhos recentes

demonstram que LLMs podem interpretar especificações técnicas complexas expressas em

formatos estruturados e gerar casos de teste funcionalmente relevantes. Para ilustrar, Kim

et al. (2024) propõem especificamente o RESTGPT, uma abordagem inovadora que utiliza

LLMs para extrair regras impĺıcitas de descrições em linguagem natural presentes em

especificações OpenAPI e gerar valores de parâmetros contextualmente mais adequados do

que técnicas baseadas apenas em análise sintática.

Ademais, Schäfer et al. (2023) conduziram estudo emṕırico rigoroso sobre geração

de testes unitários com LLMs, demonstrando que modelos de estado da arte como GPT-4

podem gerar testes com alta taxa de compilação sem erros sintáticos e cobertura de código

comparável a ferramentas tradicionais de geração automatizada de testes. Por outro lado,

os autores observam criticamente que a qualidade dos testes gerados por LLMs depende

fortemente da qualidade dos prompts utilizados como entrada, enfatizando a importância

fundamental de engenharia de prompts adequada que forneça contexto suficiente, exemplos

representativos, e instruções claras sobre formato de sáıda esperado (WHITE et al., 2023).

Estudos complementares indicam que técnicas como few-shot prompting, onde exemplos

de entrada e sáıda desejada são fornecidos ao modelo, e chain-of-thought prompting,

que solicita racioćınio passo a passo expĺıcito antes da resposta final, podem melhorar

significativamente a qualidade dos artefatos gerados (WEI et al., 2022).

Diante disso, um desafio técnico significativo na aplicação prática de LLMs consiste

no gerenciamento de contexto, dado que modelos possuem limites f́ısicos de tokens que

podem ser processados em uma única invocação, e especificações de APIs de grande porte

frequentemente excedem esses limites (ZAMENI; WANG; MAHMOUD, 2023). Estratégias

de chunking que segmentam a entrada em porções menores processáveis, e técnicas de

sumarização que condensam informações mantendo elementos essenciais para processar

grandes volumes de dados de forma eficiente, dividindo a entrada em múltiplas chamadas

ao modelo e consolidando resultados de forma coerente ao final do processamento (LEWIS

et al., 2020). A implementação de pipelines de processamento iterativo, onde cada chunk

2.7 Métricas de Qualidade em Automação de Testes 18

é enriquecido com contexto resumido dos chunks anteriores, permite manter coerência

semântica entre as partes processadas separadamente.

2.7 Métricas de Qualidade em Automação de Testes

A avaliação objetiva da qualidade de cenários de teste gerados automaticamente requer

métricas mensuráveis e reproduźıveis. Dessa forma, métricas tradicionais de teste de

software incluem cobertura de código medida através de critérios como linhas executadas,

branches tomados, e condições exercitadas, cobertura de requisitos que verifica se todos

requisitos especificados possuem testes correspondentes, taxa de detecção de defeitos que

mede eficácia dos testes em encontrar falhas reais, e taxa de falsos positivos que quantifica

testes que falham incorretamente (AMMANN; OFFUTT, 2016). Neste contexto, no

domı́nio espećıfico de APIs REST, métricas adicionais são particularmente relevantes,

incluindo cobertura de endpoints que verifica se todas as operações expostas são testadas,

cobertura de parâmetros que assegura exerćıcio de todos parâmetros definidos, diversidade

de valores de parâmetros que avalia amplitude do espaço de entrada testado, e cobertura

de códigos de resposta HTTP que valida tratamento de diferentes situações de sucesso e

erro (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS, 2019).

Ademais, para cenários gerados especificamente por LLMs, métricas de qualidade

textual tornam-se igualmente relevantes, incluindo coerência que avalia se a estrutura

lógica do cenário faz sentido e steps estão ordenados apropriadamente, completude que

verifica presença de todos os passos necessários para executar o teste incluindo setup e

teardown, correção que valida adequação semântica às especificações da API, e legibilidade

que mede clareza da linguagem utilizada para facilitar compreensão humana (YUAN et

al., 2024). Para ilustrar, Yuan et al. (2024) propõem especificamente um framework de

avaliação multi-dimensional que combina métricas automáticas computáveis para análise

em larga escala com avaliação humana qualitativa para aferir aspectos subjetivos da

qualidade de casos de teste gerados por LLMs.

Por outro lado, além de métricas de qualidade dos artefatos produzidos, aspectos

operacionais do processo de automação devem ser monitorados sistematicamente para

viabilizar uso prático da ferramenta, incluindo tempo de execução total e por etapa que

2.8 Śıntese do Caṕıtulo 19

impacta viabilidade em pipelines CI/CD, consumo de recursos computacionais como

tokens de LLM que tem implicações de custo, complexidade de entrada medida através

de caracteŕısticas do schema processado, e custo financeiro direto de utilização de APIs

comerciais de LLM (ABDELFATTAH et al., 2024). A integração com pipelines de entrega

cont́ınua requer atenção especial a esses aspectos operacionais (HUMBLE; FARLEY,

2010). Neste sentido, dashboards anaĺıticos que agregam e visualizam métricas ao longo

de múltiplas execuções permitem análise de tendências temporais e tomada de decisão

informada sobre estratégias de teste e configurações de ferramenta.

A definição e adoção de um conjunto de métricas técnicas, textuais e operacionais

permitem comparar objetivamente cenários de teste gerados automaticamente com aqueles

produzidos manualmente, e avaliar a escalabilidade e sustentabilidade econômica do uso

de LLMs como componentes centrais em estratégias de automação de testes de APIs.

2.8 Śıntese do Caṕıtulo

A literatura revisada neste caṕıtulo sugere cinco diretrizes convergentes que fundamentam

a concepção e o desenvolvimento deste trabalho. A primeira diretriz enfatiza a necessidade

de cobertura expĺıcita e mensurável de APIs REST baseada em especificações formais

que permitam automação efetiva (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS, 2019). A

segunda diretriz ressalta a importância de integrar requisitos de negócio com validações

técnicas para garantir a relevância funcional dos testes gerados, estabelecendo rastrea-

bilidade adequada e bidirecional (GOTEL; FINKELSTEIN, 1994). A terceira diretriz

reconhece o valor de representações leǵıveis e executáveis, como Gherkin/BDD, para

aproximar especificação e teste, facilitando a comunicação entre stakeholders técnicos e

não técnicos (ZAMENI; WANG; MAHMOUD, 2023). Ademais, a quarta diretriz explora a

aplicação de LLMs para a geração inteligente de cenários de teste a partir de especificações

complexas, aproveitando capacidades emergentes desses modelos para interpretação de

contexto e geração de artefatos estruturados (WANG et al., 2024).

Por fim, a quinta diretriz estabelece a necessidade de métricas abrangentes que

capturem múltiplas dimensões de qualidade e assegurem rastreabilidade em processos de

automação de testes (ABDELFATTAH et al., 2024; HUMBLE; FARLEY, 2010).

20

3 Materiais e Métodos

Neste caṕıtulo é descrita a metodologia adotada para o desenvolvimento da ferramenta

proposta. A Seção 3.1 apresenta a visão geral do sistema e seus objetivos. A Seção 3.2

descreve a arquitetura em camadas. A Seção ?? detalha o fluxo de funcionamento em sete

etapas, conforme ilustrado na Figura 3.4. A Seção ?? lista as tecnologias utilizadas. A

Seção ?? apresenta a estrutura do projeto. Por fim, a Seção ?? descreve os componentes

principais. A exposição metodológica permite a compreensão completa das decisões de

projeto e facilita a reprodutibilidade do trabalho por pesquisadores e desenvolvedores

interessados em estender ou adaptar a solução apresentada.

3.1 Visão Geral do Sistema

O sistema desenvolvido, denominado API Parameter Coverage & Test Scenario

Generator, tem como objetivo principal automatizar o ciclo completo de geração de

cenários de teste para APIs REST a partir de especificações OpenAPI/Swagger (GUIDINE,

2025). Neste contexto, a solução integra de forma orgânica requisitos de negócio estru-

turados através de Documentos de Requisitos de Negócio e utiliza inteligência artificial

via modelos de linguagem de grande porte para śıntese de cenários comportamentais no

formato Gherkin, garantindo simultaneamente cobertura técnica abrangente e alinhamento

com prioridades funcionais estabelecidas pelos stakeholders do projeto. A abordagem

proposta diferencia-se das soluções existentes ao combinar análise estática de especificações

com geração dinâmica assistida por inteligência artificial.

Dessa forma, a ferramenta foi concebida para atender simultaneamente a múltiplos

objetivos identificados na revisão da literatura apresentada no caṕıtulo anterior. O primeiro

objetivo consiste em reduzir substancialmente o esforço manual envolvido na criação de

súıtes de teste abrangentes, automatizando etapas que tradicionalmente consomem tempo

significativo dos analistas de qualidade. O segundo objetivo visa garantir alinhamento

consistente entre os requisitos de negócio estabelecidos pelos stakeholders e as validações

3.1 Visão Geral do Sistema 21

técnicas implementadas nos testes automatizados, eliminando divergências sistemáticas

que frequentemente ocorrem em processos manuais. O terceiro objetivo busca maximizar

a cobertura de endpoints e de parâmetros funcionalmente relevantes por meio de análise

automatizada de especificações e requisitos, aplicando critérios objetivos de priorização. O

quarto objetivo foca em produzir artefatos rastreáveis e bem documentados que sejam

diretamente integráveis com pipelines de CI/CD modernos, conforme práticas estabelecidas

de entrega cont́ınua (HUMBLE; FARLEY, 2010). Por fim, o quinto objetivo consiste

em fornecer métricas objetivas e acionáveis de qualidade, complexidade e cobertura que

suportem a tomada de decisão informada sobre estratégias de teste.

Figura 3.1: Página principal do repositório GitHub do projeto

Ademais, o repositório do projeto está hospedado publicamente no GitHub sob

licença MIT, conforme ilustrado na Figura 3.1, que apresenta a página principal do

repositório, contendo todo o código-fonte organizado modularmente, documentação técnica

abrangente, incluindo guias de instalação e uso, exemplos práticos de execução com

3.1 Visão Geral do Sistema 22

APIs reais e súıte completa de testes automatizados cobrindo os módulos principais. A

escolha da licença MIT promove a adoção ampla e facilita contribuições da comunidade

de desenvolvedores. Essa decisão de licenciamento foi tomada considerando o equiĺıbrio

entre a proteção dos direitos autorais e a maximização do impacto cient́ıfico e prático da

ferramenta.

Figura 3.2: Continuação da página principal do repositório GitHub do projeto

Conforme observado na Figura 3.1, a estrutura do repositório segue as convenções

estabelecidas para projetos Python de código aberto, facilitando a navegação e as con-

tribuições da comunidade. Por conseguinte, a disponibilização pública do código-fonte

promove transparência metodológica, permite validação independente dos resultados e

facilita extensões futuras por parte da comunidade de pesquisa e desenvolvimento.

3.2 Arquitetura do Sistema 23

3.2 Arquitetura do Sistema

A arquitetura do sistema é composta por seis camadas interconectadas que colaboram para

executar o pipeline completo de geração de cenários de teste. O design arquitetural segue

o padrão arquitetural Dutos e Filtros (Pipes and Filters) (FOWLER, 2002), no qual cada

estágio recebe a sáıda estruturada do estágio anterior como entrada e produz uma nova

sáıda estruturada para o estágio subsequente. Essa abordagem favorece a separação de

responsabilidades, a facilidade de manutenção e a evolução incremental da ferramenta. A

escolha desse padrão arquitetural foi motivada pela natureza sequencial do processamento

de especificações e pela necessidade de pontos de extensão bem definidos. A Figura 3.3

ilustra os principais componentes arquiteturais e o fluxo de dados entre eles.

A Camada de Entrada recebe especificações OpenAPI via URL remota ou arquivo

local. A Camada de Processamento contém os módulos Swagger, responsável pela obtenção

e validação da especificação através dos submódulos Fetcher e Validator, e Engine, que

realiza o processamento através dos submódulos Processor, Analyzer e Gerador de CSV.

A Camada de Integração LLM gerencia a comunicação com provedores de modelos de

linguagem (OpenAI, Groq, Claude e Gemini) através do LLM Prompter e seus submódulos

de segmentação, construção de prompts e gerenciamento de provedores. A Camada de

Requisitos (BRD) integra o Gerador de BRD para geração automática de requisitos

e o Gerenciador de BRD para carregamento, análise sintática e referência cruzada de

documentos de requisitos.

A Camada de Análise consolida métricas de execução através do módulo de análise,

com submódulos de métricas, rastreamento e painel de controle, além do Analisador de

Cobertura para análise de cobertura de testes. Por fim, a Camada de Sáıda gerencia a

exportação dos artefatos através do Gerenciador de Sáıda, produzindo CSV de cenários,

relatórios anaĺıticos e relatórios de validação. Os artefatos gerados seguem formatos

padronizados que facilitam a integração com outras ferramentas do ecossistema de testes.

As conexões bidirecionais entre a Camada de Processamento e as camadas de

LLM e BRD permitem o fluxo iterativo de dados, essencial para a geração inteligente de

cenários comportamentais alinhados aos requisitos de negócio.

A Figura 3.3 ilustra os principais componentes arquiteturais e o fluxo de dados

3.2 Arquitetura do Sistema 24

Figura 3.3: Arquitetura do sistema organizada em camadas

3.3 Fluxo de Funcionamento 25

entre eles por meio de um diagrama de blocos, destacando três camadas conceituais princi-

pais. A camada de entrada engloba o módulo Swagger, composto pelos subcomponentes

Fetcher, responsável pelo download de schemas, e Validator, responsável pela verificação

de conformidade estrutural conforme a especificação OpenAPI 3.0. A camada de processa-

mento contém o Engine principal, com os subcomponentes Processor para extração de

estruturas internas, Analyzer para cálculo de métricas e LLM para integração com modelos

de linguagem, além do módulo BRD paralelo contendo Loader para carregamento de

requisitos e referência cruzada para análise de cobertura. Por fim, a camada de sáıda inclui

o CSV Generator para exportação estruturada e o módulo Analytics para consolidação

das métricas coletadas ao longo de todo o pipeline.

3.3 Fluxo de Funcionamento

O sistema opera por meio de sete etapas sequenciais bem definidas, cada uma responsável

por realizar uma transformação espećıfica sobre os dados de entrada até a produção dos

artefatos finais estruturados. Essa estruturação em etapas discretas permite não apenas a

execução ordenada do processamento, mas também a possibilidade de retomada parcial

em caso de falhas, evitando reprocessamento desnecessário de etapas já conclúıdas. O

mecanismo de checkpointing implementado permite recuperação eficiente em cenários de

interrupção.

O processamento é orquestrado pelo módulo principal implementado em main.py,

que coordena a execução ordenada de cada etapa do pipeline, gerencia a passagem de

dados entre módulos por meio de estruturas padronizadas, implementa tratamento de erros

e recuperação quando posśıvel e mantém logging detalhado de todas as operações para

rastreabilidade. O orquestrador também é responsável por validar pré-condições antes de

iniciar cada etapa, garantindo que os dados de entrada atendam aos requisitos mı́nimos

esperados pelo módulo subsequente. Essa validação prévia reduz significativamente a

ocorrência de erros em estágios avançados do processamento.

A Figura 3.4 apresenta o fluxograma completo do processo de geração de cenários,

incluindo o ponto de decisão relacionado à disponibilidade de BRD, no qual o usuário

pode optar por carregar um documento previamente estruturado, gerar automaticamente

3.4 Tecnologias Utilizadas 26

via LLM ou realizar o parsing de documentos não estruturados. Essa flexibilidade permite

que a ferramenta seja utilizada tanto em cenários onde existe documentação formal de

requisitos quanto em contextos mais ágeis, nos quais os requisitos podem ser inferidos

diretamente a partir da especificação da API.

Ińıcio
1. Download e

Validação

2. Processamento

e Análise

3. Integração

com BRD
BRD?

Gerar

via LLM

4. Análise de

Cobertura

5. Geração de

Cenários

6. Exportação

CSV
7. Analytics Fim

Não

Sim

Figura 3.4: Fluxograma das sete etapas do processo de geração de cenários

3.4 Tecnologias Utilizadas

O projeto foi implementado integralmente em Python 3.8+, linguagem escolhida por

múltiplas razões técnicas e práticas fundamentadas em análise criteriosa das alternativas

dispońıveis (LUTZ, 2013). Dessa forma, Python oferece expressividade sintática que facilita

a implementação rápida de algoritmos complexos, possui um ecossistema de bibliotecas

maduras para processamento de dados e integração com APIs, apresenta adoção tanto na

comunidade de engenharia de software quanto em ciência de dados e fornece ferramentas

robustas para desenvolvimento testado e documentado de aplicações profissionais. A

disponibilidade de recursos de aprendizado e documentação contribuiu para escolha.

A escolha da versão 3.8+ como requisito mı́nimo foi motivada pela necessidade de

recursos modernos da linguagem, incluindo suporte nativo a type hints para documentação

de tipos em assinaturas de funções, walrus operator para atribuições em expressões e

melhorias significativas no módulo asyncio para operações asśıncronas. Ademais, essa

versão garante compatibilidade com a maioria dos ambientes de produção corporativos,

enquanto permite o uso de funcionalidades avançadas que aumentam a legibilidade e a

3.4 Tecnologias Utilizadas 27

manutenibilidade do código-fonte.

O gerenciamento de dependências foi realizado por meio do pip, com um arquivo

requirements.txt versionado, seguindo as práticas estabelecidas de reprodutibilidade.

A fixação de versões espećıficas para cada dependência evita incompatibilidades

decorrentes de atualizações automáticas, garantindo que builds futuros produzam resultados

idênticos aos obtidos durante o desenvolvimento e a validação inicial do sistema. Neste

sentido, a seleção das dependências priorizou bibliotecas maduras, com manutenção ativa,

documentação completa e compatibilidade com os requisitos de software livre.

Tabela 3.1: Principais tecnologias e dependências do projeto
Tecnologia Função no Sistema
Python 3.8+ Linguagem de programação principal
OpenAI SDK Cliente oficial para comunicação com a API
Groq SDK Cliente para acesso a modelos otimizados via Groq
Anthropic SDK Cliente para integração com modelos da Anthropic
requests Biblioteca padrão para requisições HTTP
PyYAML Parser de arquivos YAML para schemas
python-dotenv Gerenciamento de variáveis de ambiente e credenciais
PyPDF2 Parser de documentos PDF para extração de texto
python-docx Parser de documentos Word para extração de texto
pytest Framework de testes unitários e de integração
behave Framework BDD para testes em linguagem Gherkin

Todas as bibliotecas selecionadas possuem histórico comprovado de estabilidade

em ambientes de produção e são amplamente utilizadas pela comunidade de desenvolve-

dores, minimizando o risco de abandono ou descontinuação que poderiam comprometer

a longevidade do projeto. A Tabela 3.1 apresenta as principais dependências externas

utilizadas no projeto e suas respectivas funções no pipeline de processamento. A arqui-

tetura de dependências foi projetada para minimizar o acoplamento entre os módulos,

permitindo a substituição de componentes individuais sem impacto significativo no res-

tante do sistema, caracteŕıstica importante para a extensibilidade e a evolução futura

da ferramenta. Adicionalmente, foram priorizadas bibliotecas com licenças permissivas

e documentação abrangente, de modo a facilitar a auditoria técnica, a reprodutibilidade

cient́ıfica dos experimentos e a adoção da ferramenta tanto em contextos acadêmicos

quanto em contextos industriais. Por fim, a seleção das dependências contribui para a

qualidade do projeto, reduzindo custos, facilitando a incorporação de novas funcionalidades

3.5 Estrutura do Projeto 28

e assegurando alinhamento com boas práticas de engenharia de software.

3.5 Estrutura do Projeto

O projeto segue uma arquitetura modular, com separação clara de responsabilidades,

aplicando prinćıpios de design estabelecidos na literatura de engenharia de software

(FOWLER, 2002; MARTIN, 2003). Dessa forma, a organização hierárquica dos diretórios

reflete a divisão funcional dos componentes, com módulos dedicados ao processamento de

schemas (swagger/), ao engine de processamento (engine/), ao gerenciamento de BRD

(brd/), a analytics e a utilitários gerais. Ademais, o diretório raiz contém o ponto de

entrada principal main.py e arquivos de configuração. A Figura 3.5 apresenta uma visão

simplificada da organização principal dos diretórios do projeto.

Essa organização facilita a evolução incremental do sistema, permitindo a in-

trodução de novas funcionalidades sem comprometer a estabilidade dos módulos existentes.

Além disso, a separação expĺıcita de responsabilidades contribui para a melhoria da

manutenibilidade e da testabilidade, ao possibilitar o desenvolvimento e a validação inde-

pendente. A estrutura também favorece o trabalho colaborativo, permitindo que múltiplos

desenvolvedores atuem em módulos distintos simultaneamente.

A organização completa de diretórios, incluindo a hierarquia de módulos e as

descrições funcionais de cada componente, está documentada no Apêndice C.

api-param-coverage/

src/

modules/

tests/

features/

output/

example weather api/

docs/

Figura 3.5: Visão simplificada da estrutura de diretórios principal

3.6 Componentes Principais 29

3.6 Componentes Principais

Os componentes principais do sistema estão organizados em módulos hierárquicos, com

descrição das responsabilidades espećıficas de cada arquivo de código-fonte.

Tabela 3.2: Resumo dos módulos principais e suas responsabilidades

Módulo Responsabilidade Geral

swagger/ Download, validação e normalização de especificações

OpenAPI/Swagger

engine/algorithms/ Processamento de schemas, análise de complexidade,

geração de CSV

engine/llm/ Integração com provedores LLM, construção de prompts,

chunking

engine/analytics/ Coleta de métricas, rastreamento de algoritmos, geração

de relatórios

brd/ Carregamento, geração, parsing e validação de BRDs

workflow/ Orquestração de alto ńıvel, handlers de cobertura e

cenários

utils/ Utilitários compartilhados: LLM provider, gerenciador

de sáıda, validadores

cli/ Interface de linha de comando, interação com usuário

A Tabela 3.2 apresenta um resumo dos módulos de mais alto ńıvel. Dessa

forma, cada componente foi projetado meticulosamente para realizar uma função bem

definida e coesa, seguindo o prinćıpio de responsabilidade única estabelecido por Martin

(2003), facilitando significativamente a manutenção evolutiva, o teste unitário isolado e a

extensão futura do sistema. A arquitetura modular adotada permite que desenvolvedores

compreendam rapidamente o escopo de cada módulo, sem necessidade de realizar uma

análise abrangente do sistema como um todo, reduzindo a curva de aprendizado para

novos contribuidores sempre que necessário. A comunicação entre módulos ocorre através

de interfaces, minimizando o acoplamento e facilitando a substituição de implementações.

A especificação completa, está dispońıvel no Apêndice C.

30

4 Estudo de Caso

Este caṕıtulo apresenta a aplicação prática da ferramenta desenvolvida em um cenário

real de teste de API pública, com o propósito de avaliar a viabilidade da solução por meio

de análises quantitativa e qualitativa. Dessa forma, o estudo de caso utiliza métricas reais

coletadas durante a execução e artefatos gerados pelo sistema para a validação emṕırica da

abordagem proposta, seguindo a metodologia estabelecida para avaliação de ferramentas

de teste automatizado (ARCURI, 2019).

4.1 Descrição do Cenário

Para avaliar as capacidades do sistema em condições reais de uso, este estudo foi conduzido

com a API pública weather.gov, especificação OpenAPI 3.0.0 oficialmente mantida pelo

National Weather Service dos Estados Unidos (National Weather Service, 2025). Neste

contexto, esta API foi selecionada por múltiplos critérios objetivos: disponibilidade pública

sem necessidade de autenticação complexa facilitando reprodutibilidade; especificação

OpenAPI completa e bem documentada servindo como exemplo de qualidade; complexidade

substancial com 59 endpoints distribúıdos entre múltiplos recursos funcionais; diversidade

de tipos de parâmetros incluindo coordenadas geográficas, intervalos temporais e opções

de formatação; e relevância prática sendo amplamente utilizada por aplicações de previsão

do tempo.

A API weather.gov expõe endpoints organizados em cinco recursos funcionais

principais. O recurso de alertas meteorológicos permite consultar alertas ativos por zona

geográfica, área, região ou tipo de evento. O recurso de previsões fornece dados de previsão

do tempo para pontos espećıficos definidos por coordenadas ou por grades. O recurso de

observações disponibiliza dados meteorológicos observados coletados por estações f́ısicas.

O recurso de produtos meteorológicos permite acesso a produtos textuais formatados

emitidos por meteorologistas. Por fim, o recurso de zonas e pontos fornece metadados

geográficos para localização de outras operações.

4.2 Configuração da Execução 31

4.2 Configuração da Execução

A execução do estudo de caso foi realizada em ambiente controlado, com configurações

documentadas, para garantir a reprodutibilidade, conforme as práticas recomendadas de

pesquisa emṕırica em engenharia de software (ARCURI, 2019). O sistema operacional

utilizado foi o Ubuntu 22.04 LTS, rodando em máquina virtual com 4 núcleos de CPU

e 8 GB de RAM. A versão de Python foi 3.10.12, com todas as dependências instaladas

conforme especificado no arquivo requirements.txt. O provedor de LLM selecionado foi

OpenAI com o modelo GPT-4 acessado por meio da API oficial. Por fim, a chave de API

foi configurada em uma variável de ambiente conforme a documentação de segurança.

Os parâmetros de configuração do sistema foram: threshold de chunking definido

em 15 endpoints para ativação da estratégia de processamento em múltiplos lotes; timeout

de requisições HTTP configurado em 30 segundos com 3 tentativas de retry ; modelo LLM

especificado como gpt-4; e cobertura BRD solicitada de 100% para testar capacidade

máxima do sistema sem a completa filtragem de endpoints disponibilizados.

4.3 Métricas da API Processada

A análise automatizada da especificação OpenAPI da weather.gov revelou caracteŕısticas

estruturais relevantes para a compreensão da complexidade do processamento. A Tabela 4.1

consolida as métricas extráıdas na etapa de análise, fornecendo uma visão quantitativa da

superf́ıcie de teste da API.

Neste contexto, a distribuição de tipos de parâmetros revela predominância de

strings (45.6% do total), refletindo a natureza textual de muitos identificadores e opções,

seguida por integers (28.7%) tipicamente usados para valores numéricos discretos como anos

ou contadores, e numbers (13.2%) para valores cont́ınuos como coordenadas geográficas.

Ademais, a presença de 89 domı́nios de iteração identificados através de constraints do

tipo enum e pattern indica oportunidades para teste de valores de borda e classes de

equivalência conforme critérios estabelecidos na literatura (KUHN; KACKER; LEI, 2013).

Por outro lado, a relação de 156 parâmetros com limite definido contra 186 sem limite

(54.4% sem limite) sugere necessidade de estratégias heuŕısticas para geração de valores de

4.4 Geração e Estrutura do BRD 32

teste apropriados em parâmetros sem restrições expĺıcitas.

Tabela 4.1: Métricas estruturais da API weather.gov
Métrica Valor

Informações Gerais
T́ıtulo da API weather.gov API
Versão da API 1.0.0
Versão OpenAPI 3.0.0

Estat́ısticas de Endpoints
Total de Endpoints 59
Componentes Definidos 245

Estat́ısticas de Parâmetros
Total de Parâmetros 342
Domı́nios de Iteração 89
Parâmetros com Limite 156
Parâmetros sem Limite 186

Distribuição por Tipo
string 156
integer 98
number 45
boolean 23
array 12
object 8

Distribuição por Localização
path 89
query 187
header 34
body 32

Tipos de Constraints
enum 45
pattern 23
minimum/maximum 34
minLength/maxLength 12

4.4 Geração e Estrutura do BRD

Dado que não existia BRD pré-existente para a API weather.gov no contexto deste

estudo, foi selecionada a opção de geração automática via LLM com cobertura de 100% dos

endpoints. Dessa forma, o módulo BRD Generator analisou os 59 endpoints da especificação,

extraindo nomes de paths, descrições textuais dispońıveis, parâmetros obrigatórios e

schemas de resposta para inferir requisitos funcionais correspondentes. Por conseguinte,

o processamento via GPT-4, com prompt especializado para a extração de requisitos,

4.4 Geração e Estrutura do BRD 33

resultou na geração de um documento estruturado com 3 requisitos de alto ńıvel, cobrindo

os casos de uso principais da API.

O Apêndice A apresenta a estrutura completa de um BRD gerado automatica-

mente, destacando os principais campos JSON que compõem o documento. Conforme

demonstrado no apêndice, o BRD segue um schema bem definido que facilita tanto o

processamento automatizado quanto a leitura humana, com campos para identificador

único, t́ıtulo, descrição, requisitos estruturados e metadados de rastreabilidade. A escolha

do formato JSON para persistência do BRD permite integração direta com ferramentas

de desenvolvimento e pipelines de CI/CD, além de facilitar o versionamento através de

sistemas de controle de versão como Git.

O BRD gerado seguiu o schema estruturado definido pelo sistema, contendo

identificador único no formato BRD-WEATHER-GOV-001, t́ıtulo descritivo “Weather.gov

API - Business Requirements Document”, descrição textual do escopo funcional, nome e

versão da API correspondente, timestamp de criação, e lista de requisitos estruturados.

Neste contexto, cada requisito incluiu identificador sequencial no formato REQ-NNN, t́ıtulo

resumindo a funcionalidade, descrição detalhada do caso de uso, endpoint correspondente

especificado por path e método HTTP, prioridade classificada como high/medium/low,

status de implementação, cenários de teste inicializados mas não preenchidos nesta fase,

critério de aceitação definindo condições de sucesso, e endpoints relacionados para a rastre-

abilidade de dependências. A estrutura padronizada dos requisitos permite rastreabilidade

bidirecional entre especificação técnica e documentação de negócio, facilitando análise de

impacto quando mudanças são introduzidas na API.

4.4.1 Análise do BRD Gerado

Para verificar a qualidade do BRD gerado, foi feita uma referência cruzada que produziu

uma análise de cobertura entre os 59 endpoints da API e os 3 requisitos gerados no BRD.

Dessa forma, o algoritmo de correspondência identificou correspondências diretas através

de comparação de paths exatos especificados nos requisitos, resultando em cobertura de

3 endpoints explicitamente cobertos correspondendo a 5.08% do total. Este resultado

baixo reflete a estratégia conservadora de geração de BRD, que priorizou a qualidade em

4.5 Geração de Cenários de Teste 34

relação à quantidade, focando em requisitos de alto ńıvel que representam os casos de uso

principais. Além disso, a análise de cobertura considerou correspondências parciais com

base em palavras-chave extráıdas das descrições textuais dos endpoints e dos requisitos,

embora nenhuma correspondência adicional tenha sido identificada além das três diretas.

Tabela 4.2: Análise de cobertura cruzada BRD vs Endpoints
Métrica Valor Absoluto Porcentagem
Total de Endpoints na API 59 100%
Requisitos no BRD 3 —
Endpoints Cobertos pelo BRD 3 5.08%
Endpoints Não Cobertos 56 94.92%
Cobertura Final 3 5.08%

A Tabela 4.2 apresenta o detalhamento da análise de cobertura, incluindo contagens

absolutas e porcentagens calculadas. Neste sentido, a baixa cobertura observada não

representa limitação da ferramenta, mas sim uma consequência da configuração espećıfica

de geração de BRD, com foco em requisitos de alto ńıvel. Diante disso, em cenários de

produção reais, espera-se que os BRDs sejam refinados iterativamente por stakeholders para

aumentar a cobertura, conforme necessário. O projeto permite iterações de refinamento,

permitindo que analistas expandam gradualmente o BRD com requisitos adicionais à

medida que prioridades são identificadas ao longo do ciclo de desenvolvimento.

4.5 Geração de Cenários de Teste

Utilizando os 3 endpoints filtrados pela análise de cobertura do BRD, conforme detalhado

na Tabela 4.2, o sistema procedeu à geração de cenários em Gherkin com o GPT-4. A

seleção de apenas 3 endpoints, correspondendo a 5.08% do total de 59 dispońıveis na API,

decorreu diretamente da estratégia de geração de BRD com foco em requisitos de alto

ńıvel, que priorizou qualidade sobre quantidade, resultando em cobertura conservadora

dos casos de uso principais. Dessa forma, dado que o número de endpoints processados (3)

estava substancialmente abaixo do threshold de chunking de 15 endpoints estabelecido na

configuração do sistema, todo o processamento foi realizado em uma única chamada ao

LLM, sem necessidade de segmentação em lotes.

O prompt constrúıdo incluiu contexto da API, com 2.058 tokens, contendo nome,

4.5 Geração de Cenários de Teste 35

versão, descrição funcional, detalhes dos 3 endpoints filtrados, com parâmetros completos,

schemas de request/response expandidos e requisitos correspondentes do BRD. As instruções

de geração especificaram o formato Gherkin estrito, conforme a documentação oficial

(Cucumber, 2023), cobertura balanceada entre casos positivos e negativos, uso apropriado

de tags e validação dos códigos de status HTTP.

Tabela 4.3: Métricas de geração de cenários via LLM

Métrica Valor

Configuração LLM

Modelo Utilizado gpt-4

Temperature 0.7

Entrada (Prompt)

Endpoints Processados 3

Comprimento do Prompt (caracteres) 8.234

Tokens Estimados 2.058

Sáıda (Response)

Comprimento da Resposta (caracteres) 12.456

Tokens de Completion 3.114

Uso Total de Tokens

Prompt Tokens 2.058

Completion Tokens 3.114

Total de Tokens 5.172

Desempenho

Tempo de Execução 45.23s

Cenários Gerados

Total de Cenários 127

Cenários por Endpoint 42.3

A resposta do modelo GPT-4 gerou 3.114 tokens de completion contendo 127

cenários Gherkin estruturados. O tempo total de processamento desta etapa foi de

45.23 segundos incluindo construção de prompt, chamada HTTP à API OpenAI, parsing

4.5 Geração de Cenários de Teste 36

da resposta, e validação de formato. A distribuição dos cenários gerados apresentou

balanceamento adequado entre casos positivos, que validam fluxos normais de operação, e

casos negativos, que verificam o tratamento de erros e as condições de contorno. Neste

contexto, cada endpoint coberto recebeu, em média, 42 cenários de teste, o que demonstra

a capacidade do LLM de explorar múltiplas variações de entrada e condições de teste

relevantes.

A Tabela 4.3 consolida as métricas coletadas durante a geração de cenários,

oferecendo visibilidade completa sobre o consumo de recursos computacionais e financeiros.

Durante a execução, o terminal exibiu progresso em tempo real conforme ilustrado na

Figura 4.1, que captura a sáıda do sistema durante o processamento do chunk único

contendo os 3 endpoints filtrados.

Conforme demonstrado na Figura 4.1, o sistema fornece feedback visual cont́ınuo

ao usuário através de mensagens informativas sobre cada etapa do processamento, incluindo

quantidade de endpoints sendo processados, número do chunk atual, modelo LLM utilizado

e progresso da chamada à API.

4.5.1 Análise Qualitativa dos Cenários

Os 127 cenários Gherkin gerados foram submetidos a análise qualitativa para avaliação de

múltiplas dimensões de qualidade conforme framework proposto por Yuan et al. (2024).

Neste contexto, a análise verificou conformidade sintática com especificação Gherkin

através de parsing automatizado que confirmou ausência de erros de formatação, coerência

lógica através de revisão manual de amostra representativa de 20 cenários, adequação aos

endpoints através de verificação de que paths e métodos HTTP mencionados correspondem

à especificação, e completude através de confirmação de presença de precondições, ações e

verificações em cada cenário.

Assim, todos os 127 cenários analisados possuem estrutura sintática válida, sem

erros de formatação, respeitando a gramática Gherkin, com declaração de Feature, nome de

Scenario e sequência de steps prefixados. Ademais, os cenários cobrem tanto fluxos normais

de operação com dados válidos quanto cenários de erro incluindo parâmetros inválidos,

recursos inexistentes e condições de contorno. As tags aplicadas seguem convenções

4.5 Geração de Cenários de Teste 37

Figura 4.1: Sáıda do terminal durante geração de cenários via LLM

estabelecidas com @api, marcando todos os cenários como testes de API, permitindo

filtragem seletiva durante a execução de súıtes. A combinação de tags como @positive,

@negative, @boundary e @smoke facilita a organização de súıtes de teste por categoria e

4.5 Geração de Cenários de Teste 38

prioridade de execução.

1 Feature: weather.gov API

2 As a weather application developer

3 I want to retrieve active alerts for zones

4 So that I can display warnings to users

5

6 @api @alerts @positive

7 Scenario: Get alerts for a zone

8 Given the weather API is available

9 And I have a valid zone ID "ALZ002"

10 When I send a GET request to "/alerts/active/zone/{ zoneId}"

11 Then the response status code should be 200

12 And the response body should contain alert data

13 And each alert should have severity property

14 And each alert should have description property

15

16 @api @alerts @negative

17 Scenario: Get alerts with invalid zone ID

18 Given the weather API is available

19 And I have an invalid zone ID "INVALID123"

20 When I send a GET request to "/alerts/active/zone/{ zoneId}"

21 Then the response status code should be 404

22 And the response should contain error message

Listing 4.1: Exemplo de cenário gerado automaticamente para weather.gov API

Para ilustrar, o Código 4.1 apresenta um exemplo representativo de cenário gerado

para o endpoint de consulta de alertas meteorológicos por zona, demonstrando a qualidade

estrutural e semântica da sáıda do sistema. Neste sentido, o cenário inclui Feature com

descrição no formato de user story, tags apropriadas para categorização, pré-condições

expĺıcitas estabelecendo o estado inicial, ação clara representando a operação testada e

verificações abrangentes validando a resposta esperada. A estrutura segue as convenções

estabelecidas pela comunidade BDD, facilitando a compreensão tanto por desenvolvedores

quanto por analistas de negócio sem conhecimento técnico aprofundado. Ademais, os steps

foram formulados de forma reutilizável, permitindo sua aplicação em outros cenários.

4.6 Exportação e Artefatos Gerados 39

4.6 Exportação e Artefatos Gerados

A etapa de exportação converteu os 127 cenários Gherkin para um formato CSV estruturado,

compat́ıvel com ferramentas de gerenciamento de testes. Dessa forma, o arquivo CSV

resultante contém 127 linhas de dados mais 1 linha de cabeçalho, com 7 colunas estruturadas

conforme especificação: Feature, Scenario, Tags, Given, When, Then, e All Steps.

O arquivo CSV gerado foi salvo em <output/example_weather_api/20251230_

140457-scenarios.csv>, seguindo a convenção de nomenclatura que inclui a marcação

temporal para rastreabilidade. O Apêndice B apresenta uma amostra detalhada de 10

cenários representativos, evidenciando a estrutura Given-When-Then caracteŕıstica do

formato Gherkin, demonstrando a estrutura tabular clara e o conteúdo leǵıvel do arquivo

exportado.

Conforme ilustrado no Apêndice B, a estrutura tabular do CSV facilita operações

comuns de gerenciamento de testes, como filtragem por tags para execução seletiva,

busca textual por palavras-chave nas descrições de cenários, ordenação por features para

visualização organizada e agregação de estat́ısticas sobre cobertura de teste por categoria

funcional. Neste contexto, este arquivo pode ser importado diretamente em ferramentas

como Excel, Google Sheets, JIRA Test Management, Azure Test Plans ou sistemas

customizados de gestão de qualidade.

Além do arquivo CSV principal, o sistema gera automaticamente múltiplos ar-

tefatos complementares no mesmo diretório com marcação temporal. O arquivo de

analytics <20251230_140457-analytics.txt> contém relatório completo com todas as

métricas coletadas organizadas em seções. O arquivo de referência cruzada <20251230_

140457-cross_reference_schemacrossreference.txt> documenta a análise de cober-

tura com detalhamento de correspondência entre endpoints e requisitos. O arquivo de BRD

<weather_gov_api_brd.json> preserva o documento de requisitos gerado para referência

futura e auditoria. Adicionalmente, o sistema produz um arquivo de rastreabilidade que

consolida a relação entre cenários de teste gerados e os requisitos funcionais corresponden-

tes. Também é gerado um registro de execução contendo informações sobre parâmetros

de entrada, versões das dependências e data de processamento, permitindo a reprodução

exata dos experimentos.

4.7 Análise de Desempenho e Custos 40

4.7 Análise de Desempenho e Custos

A análise de desempenho considerou múltiplas dimensões temporais e econômicas do

processamento. Dessa forma, o tempo total de execução ponta a ponta foi de aproximada-

mente 65 segundos distribúıdos entre etapas conforme detalhamento a seguir. A etapa de

download e validação consumiu 2.1 segundos, incluindo requisição HTTP e parsing JSON.

A etapa de processamento e análise levou 0.8 segundos para extração de estruturas e

cálculo de métricas. A geração de BRD via LLM levou 12.4 segundos, incluindo construção

de prompt e chamada à API. A análise de referência cruzada foi executada em menos

de 0,1 segundos, dado o número reduzido de requisitos. A geração de cenários via LLM

consumiu 45.23 segundos, sendo a etapa mais longa. A exportação CSV executou em 0.3

segundos para parsing e escrita de arquivo. Por fim, a geração de analytics consumiu 0.2

segundos para consolidação e formatação de relatórios.

O custo financeiro da execução pode ser estimado através de preços públicos da

API OpenAI para GPT-4. Neste contexto, com base nas taxas vigentes em dezembro

de 2024, de aproximadamente $0.03 por 1K tokens de prompt e $0.06 por 1K tokens de

completion, o custo total estimado é calculado conforme detalhado na Tabela 4.4.

Tabela 4.4: Análise de custos operacionais da execução
Operação Tokens Taxa Custo

Geração de BRD
Prompt Tokens 800 $0.03/1K $0.024
Completion Tokens 1.200 $0.06/1K $0.072

Geração de Cenários
Prompt Tokens 2.058 $0.03/1K $0.062
Completion Tokens 3.114 $0.06/1K $0.187

Total
Total de Tokens 7.172 — $0.345

Dessa forma, o custo total estimado em $0.345 para processar uma API de 59

endpoints demonstra viabilidade econômica da abordagem, especialmente considerando

a redução de esforço manual que seria necessária para gerar manualmente 127 cenários

de teste bem estruturados. Em ambiente de produção com APIs maiores, o custo escala

linearmente com o número de endpoints processados, pela estratégia de chunking.

4.8 Discussão dos Resultados 41

4.8 Discussão dos Resultados

Os resultados do estudo de caso permitem extrair conclusões sobre diferentes aspectos da

ferramenta desenvolvida, validando empiricamente as questões de pesquisa apresentadas na

introdução. Dessa forma, quanto à automação completa do pipeline, toda a sequência, desde

o download da especificação até a exportação dos cenários, foi executada automaticamente,

sem intervenções manuais além da entrada inicial da URL e da seleção de opções em menus

interativos. Por conseguinte, o tempo total de 65 segundos demonstra viabilidade para

uso em pipelines de CI/CD que tipicamente toleram um overhead de alguns minutos na

execução de testes abrangentes (HUMBLE; FARLEY, 2010).

Neste contexto, em relação à qualidade dos cenários gerados, a análise qualitativa

revelou formatação consistente, respeitando a especificação Gherkin, estrutura lógica

coerente com precondições, ações e verificações apropriadas, e cobertura funcional alinhada

aos requisitos definidos no BRD. Ademais, a ausência de cenários malformados ou de

inconsistências lógicas severas na amostra analisada sugere a robustez do processo de

geração via LLM quando adequadamente direcionado por prompts estruturados, conforme

recomendações da literatura (WHITE et al., 2023). Dessa forma, a média de 42.3 cenários

por endpoint indica cobertura abrangente incluindo casos positivos, negativos e de borda.

Por outro lado, quanto à escalabilidade da solução, embora o estudo de caso tenha

processado apenas 3 endpoints após a filtragem por BRD, a arquitetura com chunking

adaptativo e as métricas coletadas indicam capacidade de processar APIs de grande porte.

Neste sentido, o consumo aproximadamente linear de tokens em função do número de

endpoints (evidenciado pela razão de 686 tokens de prompt por endpoint) permite estimar

custos e tempos para APIs maiores. Diante disso, extrapolando linearmente, uma API

hipotética com 100 endpoints consumiria aproximadamente 17.240 tokens totais custando

cerca de $1.16 e executando em aproximadamente 3 minutos.

Por fim, a rastreabilidade proporcionada pelo sistema foi validada através dos

múltiplos artefatos gerados incluindo BRD estruturado em JSON permitindo ligação

entre requisitos e endpoints, relatório de referência cruzada documentando explicitamente

cobertura, arquivo CSV de cenários preservando associação com features correspondentes,

e relatórios de analytics registrando métricas de cada execução.

42

5 Considerações Finais

Este caṕıtulo apresenta as conclusões do trabalho, sintetizando as principais contribuições

acadêmicas e práticas, discutindo as limitações identificadas durante o desenvolvimento e

a avaliação emṕırica, e apontando direções promissoras para pesquisas futuras que possam

estender e aprimorar a solução proposta.

5.1 Śıntese do Trabalho

Este trabalho apresentou o desenvolvimento de uma ferramenta de automação para

geração de cenários de teste de APIs REST, integrando o processamento de especificações

OpenAPI/Swagger, a análise de requisitos de negócio em formato BRD e a śıntese de

cenários Gherkin por meio de modelos de linguagem de grande porte. A solução implementa

um pipeline ponta a ponta, desde a ingestão da especificação até a exportação de artefatos

de teste estruturados e rastreáveis, estando dispońıvel publicamente no repositório GitHub

sob licença MIT (GUIDINE, 2025).

A ferramenta suporta múltiplos formatos de especificação: Swagger 2.0 para

compatibilidade com sistemas legados e OpenAPI 3.0/3.1 para alinhamento com padrões

modernos (OpenAPI Initiative, 2021). A integração com BRD é oferecida por três

mecanismos complementares: carregamento de arquivos estruturados, geração automática

via LLM e parsing de documentos não estruturados. O sistema utiliza múltiplos provedores

de LLM com detecção automática, incluindo OpenAI GPT-4, Groq LLaMA, Anthropic

Claude, Google Gemini e Azure OpenAI. Para APIs de grande porte, a estratégia de

chunking adaptativo garante geração escalável sem exceder limites de contexto.

A convergência entre especificações formais OpenAPI, requisitos de negócio BRD

e inteligência artificial via LLM cria oportunidades significativas para automação avançada

em engenharia de software. Este trabalho demonstrou empiricamente que é posśıvel

automatizar a geração de cenários de teste com qualidade estrutural e semântica, reduzindo

custos temporais e financeiros, aumentando a cobertura através de análise sistemática e

5.2 Retomada das Questões de Pesquisa 43

garantindo alinhamento com objetivos funcionais.

À medida que modelos de linguagem evoluem em capacidade de compreensão e

racioćınio (VASWANI et al., 2017; BROWN et al., 2020), ferramentas como a proposta

têm potencial crescente para integrar pipelines de desenvolvimento modernos (HUMBLE;

FARLEY, 2010). Essa integração é especialmente relevante em ambientes de microsserviços,

onde a superf́ıcie de teste é vasta e dinâmica devido à evolução cont́ınua de contratos

(NEWMAN, 2015). A capacidade de regenerar automaticamente cenários em resposta

a alterações nas especificações representa um diferencial competitivo para equipes sob

pressão de entregas cont́ınuas.

Por fim, a abordagem modular e extenśıvel adotada facilita a incorporação de

avanços futuros em LLMs, a evolução de padrões OpenAPI e a emergência de novos

frameworks de teste. Espera-se que pesquisadores e profissionais possam utilizar os

resultados aqui apresentados como ponto de partida para investigações sobre a aplicação

de LLMs em contextos de garantia de qualidade de software.

5.2 Retomada das Questões de Pesquisa

As questões de pesquisa formuladas no caṕıtulo introdutório foram abordadas ao longo do

desenvolvimento e respondidas por meio do estudo de caso. Dessa forma, a questão geral

sobre a viabilidade de automação integrada com BRD e LLM foi respondida positivamente

através da implementação funcional e validação prática. Por conseguinte, o estudo de

caso demonstrou empiricamente que é posśıvel automatizar a geração de cenários de teste

com qualidade estrutural e semântica comparável a cenários escritos manualmente por

especialistas, mantendo alinhamento consistente com requisitos de negócio através da

análise de cobertura cruzada implementada.

Neste contexto, quanto à questão espećıfica QE1 sobre processamento multi-

formato, o módulo Swagger implementado demonstrou capacidade de validação e nor-

malização de especificações nos formatos JSON e YAML, com detecção automática de

versão através de análise das chaves raiz presentes e tratamento apropriado de campos

opcionais ausentes através de preenchimento com valores padrão conformes (ED-DOUIBI;

IZQUIERDO; CABOT, 2018).

5.3 Contribuições 44

A questão espećıfica QE2 sobre integração de BRD foi abordada de forma abran-

gente por meio de três mecanismos implementados e validados: carregamento de arquivos

JSON seguindo um schema bem definido, geração automática via LLM a partir das

especificações, com controle configurável de cobertura, e parsing de documentos não estru-

turados em formatos PDF, Word, TXT, CSV e Markdown. Dessa forma, a rastreabilidade

bidirecional é estabelecida pelo módulo de referência cruzada através de estruturas de

dados relacionais (SPANOUDAKIS; ZISMAN, 2005).

A questão espećıfica QE3 sobre a eficácia de LLMs foi validada empiricamente

no estudo de caso, demonstrando que o GPT-4 produz cenários Gherkin estruturalmente

corretos, com formatação válida, logicamente coerentes com a sequência apropriada de steps

e com cobertura adequada, balanceada entre casos positivos que validam comportamento

normal e casos negativos que verificam o tratamento de erros (SCHäFER et al., 2023).

A questão espećıfica QE4 sobre análise de cobertura cruzada foi implementada no

módulo schema cross reference, que realiza correspondência multiestratégia entre endpoints

e requisitos, calcula porcentagens de cobertura com precisão e identifica lacunas por meio

de listagem expĺıcita de endpoints não cobertos para priorização do refinamento do BRD

(MäDER; EGYED, 2012).

Por fim, a questão espećıfica QE5 sobre métricas adequadas foi endereçada pelo

sistema de analytics implementado. Este sistema coleta e consolida múltiplas dimensões

de métricas. A complexidade de entrada é medida através de contagem de endpoints,

parâmetros, profundidade de schemas e distribuição de tipos. A qualidade de sáıda

é avaliada por contagem de cenários, distribuição de tags, cobertura de endpoints e

balanceamento positivo/negativo. O uso de recursos computacionais é rastreado através

de tokens de LLM, separados por prompt e completion, além do tempo de execução total e

por etapa com granularidade de segundos. Os custos financeiros são estimados com base

nos preços públicos de APIs comerciais (AMMANN; OFFUTT, 2016).

5.3 Contribuições

As contribuições deste trabalho situam-se em três dimensões complementares que, coletiva-

mente, avançam o estado da arte na automação de testes de APIs REST. No âmbito técnico,

5.4 Limitações 45

o trabalho implementa pipeline automatizado ponta a ponta com estratégia inovadora

de chunking adaptativo para APIs de grande porte, demonstrando integração prática e

funcional entre especificações OpenAPI, documentos de requisitos de negócio estruturados,

e múltiplos provedores de modelos de linguagem de grande porte através de abstração

unificada (GUIDINE, 2025). Dessa forma, a arquitetura modular desenvolvida seguindo

prinćıpios estabelecidos de design de software (FOWLER, 2002; MARTIN, 2003) facilita

a extensão futura para incorporar novos provedores de LLM, formatos de especificação

emergentes e mecanismos adicionais de integração com BRD.

No âmbito metodológico, o trabalho propõe e valida uma abordagem orientada

por requisitos para geração automatizada de testes, priorizando endpoints com base em

relevância funcional explicitada em requisitos de negócio ao invés de processar indiscrimi-

nadamente todos endpoints, e estabelecendo rastreabilidade bidirecional entre requisitos,

endpoints e cenários de teste que facilita análise de impacto de mudanças e auditoria de

qualidade (CLELAND-HUANG; GOTEL; ZISMAN, 2012).

No âmbito emṕırico, o estudo de caso apresentado fornece evidências quantitativas

e qualitativas sobre a viabilidade prática e a eficácia da abordagem proposta em uma API

real de complexidade substancial. Dessa forma, as métricas detalhadas coletadas incluindo

tempos de execução, consumo de tokens, custos financeiros, e contagens de artefatos gerados

fornecem baseline para comparações futuras e permitem tomada de decisão informada

sobre adoção da ferramenta em contextos diversos. Por conseguinte, a disponibilização

pública do código-fonte sob licença permissiva promove a reprodutibilidade dos resultados

e facilita a validação independente por pesquisadores e profissionais interessados.

5.4 Limitações

Apesar dos resultados positivos obtidos e validados empiricamente, algumas limitações

foram identificadas durante o desenvolvimento, a execução e a análise do estudo de caso.

A primeira limitação refere-se à dependência de LLM externo comercial que implica

custos operacionais recorrentes proporcionais ao volume de processamento, necessidade

de conectividade de rede estável para acesso às APIs, e exposição a mudanças de preços,

depreciação de modelos, e poĺıticas de uso que estão fora do controle do usuário da

5.5 Trabalhos Futuros 46

ferramenta.

A segunda limitação diz respeito à qualidade do BRD gerado automaticamente,

que depende criticamente das descrições textuais da especificação OpenAPI original. Neste

sentido, quando as especificações são mal documentadas, com descrições ausentes ou

muito genéricas, o LLM dispõe de informação limitada para inferir requisitos funcionais de

qualidade, resultando em BRDs com requisitos superficiais ou potencialmente incorretos

que requerem refinamento manual subsequente por stakeholders. A terceira limitação

consiste na ausência de validação semântica profunda dos cenários gerados, que verifica

apenas a conformidade sintática com a gramática Gherkin, mas não verifica se os cenários

realmente testam comportamentos funcionalmente relevantes ou se cobrem casos cŕıticos

que deveriam ser priorizados.

A quarta limitação relaciona-se à restrição de exportação apenas em formato CSV

que, embora seja amplamente compat́ıvel e processável por múltiplas ferramentas, requer

conversão manual quando a integração direta com ferramentas espećıficas como Postman

Collections ou arquivos Feature do Cucumber é desejada. Por fim, a quinta limitação

importante é que os cenários gerados são especificações em linguagem Gherkin que requerem

implementação manual de step definitions em linguagem de programação apropriada antes

que possam ser executados automaticamente contra API real, representando esforço

adicional significativo que não é eliminado pela ferramenta.

5.5 Trabalhos Futuros

Múltiplas direções promissoras para trabalhos futuros emergiram durante o desenvolvimento

e a análise deste projeto. A primeira direção consiste em implementar geração automática de

step definitions executáveis em linguagens populares como Python usando frameworks como

Behave, JavaScript/TypeScript para frameworks como Cucumber.js, e Java para Cucumber

JVM, reduzindo substantivamente o esforço manual necessário para tornar cenários gerados

diretamente executáveis. A segunda direção envolve desenvolver exportadores diretos para

formatos espećıficos de ferramentas amplamente utilizadas incluindo Postman Collections

com pre-request scripts e testes automatizados, arquivos feature do Cucumber com template

de step definitions, e Azure Test Plans ou JIRA Test Management com mapeamento

5.5 Trabalhos Futuros 47

apropriado de campos.

A terceira direção explora integração de LLMs locais como LLaMA rodando via

Ollama, Mistral via plataformas de inferência local, e modelos menores especializados,

para redução de custos operacionais, eliminação de dependência de conectividade de

rede, e maior controle sobre privacidade de dados senśıveis presentes em especificações

proprietárias. A quarta direção propõe implementar camada de validação semântica

adicional via LLM onde modelo especializado analisa cenários gerados e fornece pontuação

de qualidade baseado em critérios como cobertura de funcionalidade cŕıtica, balanceamento

entre casos positivos e negativos, inclusão de testes de borda, e adequação a padrões de

qualidade estabelecidos.

A quinta direção sugere desenvolvimento de interface web colaborativa para

edição de BRDs onde múltiplos stakeholders podem colaborar na definição e refinamento

de requisitos, visualizar cobertura de endpoints em tempo real através de dashboards

interativos, e exportar versões com marcação temporal de BRDs para controle de versão e

auditoria. A sexta direção propõe análise avançada de fluxos de trabalho multi-endpoint

onde sistema identifica automaticamente sequências de operações interdependentes como

criar recurso → buscar recurso → atualizar recurso → deletar recurso, e gera cenários de

teste de integração que validam fluxos completos ao invés de apenas operações isoladas.

A sétima direção envolve implementar execução automática dos cenários gerados

contra APIs reais com coleta de estat́ısticas de execução incluindo taxas de sucesso e falha,

tempos de resposta, códigos de status retornados, e comparação entre comportamento

esperado especificado e comportamento real observado para identificação automatizada de

divergências e potenciais bugs. Por fim, a oitava direção sugere investigação de técnicas

de aprendizado de máquina para otimização automática de parâmetros do sistema como

threshold de chunking, temperature de LLM, e estratégias de correspondência entre BRD e

endpoints, através de análise de métricas coletadas ao longo de múltiplas execuções. Essas

direções representam oportunidades concretas para evolução cont́ınua da ferramenta e

ampliação de seu impacto na comunidade de engenharia de software. A implementação

dessas melhorias contribuiria para consolidar a ferramenta como solução de referência para

automação de testes de APIs REST baseada em inteligência artificial.

BIBLIOGRAFIA 48

Bibliografia

ABDELFATTAH, A. et al. Rest api testing in devops: A study on an evolving healthcare
iot application. arXiv preprint arXiv:2410.12547, 2024. Dispońıvel em: ⟨https://arxiv.org/
abs/2410.12547⟩.

AMMANN, P.; OFFUTT, J. Introduction to Software Testing. 2. ed. Cambridge, UK:
Cambridge University Press, 2016. ISBN 978-1-107-17201-2.

ARCURI, A. Evomaster: Evolutionary multi-context automated system test generation. In:
Proceedings of the IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST). [S.l.]: IEEE, 2018. p. 394–397.

ARCURI, A. Restful api automated test case generation with evomaster. ACM Transactions
on Software Engineering and Methodology, ACM, v. 28, n. 1, p. 1–37, 2019.

ATLIDAKIS, V.; GODEFROID, P.; POLISHCHUK, M. Restler: Stateful rest api fuzzing.
IEEE/ACM, p. 748–758, 2019.

BANIAS, O.; ALEXANDRESCU, E. Restful api testing methodologies: Rationale, chal-
lenges, and solution directions. Applied Sciences, MDPI, v. 12, n. 9, p. 4369, 2022.

BROWN, T. et al. Language models are few-shot learners. Advances in Neural Information
Processing Systems, v. 33, p. 1877–1901, 2020.

CLELAND-HUANG, J.; GOTEL, O.; ZISMAN, A. Software and Systems Traceability.
London, UK: Springer, 2012. ISBN 978-1-4471-2238-8.

CORRADINI, D. et al. Automated black-box testing of nominal and error scenarios in
restful apis. Software Testing, Verification and Reliability, Wiley, v. 32, n. 3, 2022.

Cucumber. Gherkin Reference. 2023. ⟨https://cucumber.io/docs/gherkin/reference/⟩. Aces-
sado em: 30 dez. 2025.

ED-DOUIBI, H.; IZQUIERDO, J. L. C.; CABOT, J. Automatic generation of test cases for
rest apis: A specification-based approach. In: Proceedings of the IEEE 22nd International
Enterprise Distributed Object Computing Conference (EDOC). [S.l.]: IEEE, 2018. p.
181–190.

FIELDING, R. T. Architectural Styles and the Design of Network-Based Software Archi-
tectures. Tese (Doutorado) — University of California, Irvine, Irvine, CA, USA, 2000.

FOWLER, M. Patterns of Enterprise Application Architecture. Boston, MA, USA: Addison-
Wesley Professional, 2002. ISBN 978-0-321-12742-6.

FRASER, G.; ARCURI, A. Evosuite: Automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium on Foundations of
Software Engineering (FSE). [S.l.]: ACM, 2011. p. 416–419.

GOLMOHAMMADI, A.; ZHANG, M.; ARCURI, A. Testing restful apis: A survey. ACM
Transactions on Software Engineering and Methodology, ACM, v. 33, n. 1, p. 1–41, 2023.

https://arxiv.org/abs/2410.12547
https://arxiv.org/abs/2410.12547
https://cucumber.io/docs/gherkin/reference/

BIBLIOGRAFIA 49

GOTEL, O. C. Z.; FINKELSTEIN, A. C. W. An analysis of the requirements tracea-
bility problem. In: Proceedings of the First International Conference on Requirements
Engineering. Colorado Springs, CO, USA: IEEE, 1994. p. 94–101.

GUIDINE, F. API Parameter Coverage & Test Scenario Generator. [S.l.]: GitHub, 2025.
⟨https://github.com/fabricioguidine/api-param-coverage⟩. Acessado em: 30 dez. 2025.

HUMBLE, J.; FARLEY, D. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Boston, MA, USA: Addison-Wesley Professional,
2010. ISBN 978-0-321-60191-9.

KIM, M. et al. Enhancing rest api testing with nlp techniques. In: Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
Seattle, WA, USA: ACM, 2023. p. 1232–1243.

KIM, M. et al. Leveraging large language models to improve rest api testing. In: Proceedings
of the 2024 ACM/IEEE 44th International Conference on Software Engineering: New
Ideas and Emerging Results (ICSE-NIER). Lisbon, Portugal: ACM/IEEE, 2024. p. 85–89.

KIM, M. et al. Automated test generation for rest apis: No time to rest yet. In: Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). Virtual Event, South Korea: ACM, 2022. p. 289–301.

KUHN, D. R.; KACKER, R. N.; LEI, Y. Introduction to Combinatorial Testing. Boca
Raton, FL, USA: CRC Press, 2013. ISBN 978-1-4665-5229-6.

LEWIS, P. et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. In:
Advances in Neural Information Processing Systems. [S.l.]: Curran Associates, Inc., 2020.
v. 33, p. 9459–9474.

LUTZ, M. Learning Python. 5. ed. Sebastopol, CA, USA: O’Reilly Media, 2013. ISBN
978-1-449-35573-9.

MARTIN-LOPEZ, A.; SEGURA, S.; RUIZ-CORTéS, A. A catalogue of inter-parameter
dependencies in restful web apis. In: International Conference on Service-Oriented Com-
puting. [S.l.]: Springer, 2019. (Lecture Notes in Computer Science, v. 11895), p. 399–414.

MARTIN-LOPEZ, A.; SEGURA, S.; RUIZ-CORTéS, A. Restest: Black-box constraint-
based testing of restful web apis. In: Proceedings of the 18th International Conference on
Service-Oriented Computing (ICSOC). [S.l.]: Springer, 2020. p. 459–475.

MARTIN, R. C. Agile Software Development: Principles, Patterns, and Practices. Upper
Saddle River, NJ, USA: Prentice Hall, 2003. ISBN 978-0-13-597444-5.

MäDER, P.; EGYED, A. Assessing the effect of requirements traceability for software
maintenance. In: Proceedings of the 28th IEEE International Conference on Software
Maintenance (ICSM). Trento, Italy: IEEE, 2012. p. 171–180.

National Weather Service. weather.gov API. 2025. ⟨https://www.weather.gov/
documentation/services-web-api⟩. Acessado em: 30 dez. 2025.

NEWMAN, S. Building Microservices: Designing Fine-Grained Systems. Sebastopol, CA,
USA: O’Reilly Media, 2015. ISBN 978-1-491-95035-7.

NORTH, D. Introducing bdd. Better Software, v. 8, n. 3, p. 12–17, 2006.

https://github.com/fabricioguidine/api-param-coverage
https://www.weather.gov/documentation/services-web-api
https://www.weather.gov/documentation/services-web-api

BIBLIOGRAFIA 50

OpenAPI Initiative. OpenAPI Specification. 2021. ⟨https://spec.openapis.org/oas/v3.1.0⟩.
Version 3.1.0. Acessado em: 30 dez. 2025.

RICHARDSON, L.; AMUNDSEN, M.; RUBY, S. RESTful Web APIs: Services for a
Changing World. Sebastopol, CA, USA: O’Reilly Media, 2013. ISBN 978-1-449-35806-8.

SCHäFER, M. et al. An empirical evaluation of using large language models for automated
unit test generation. IEEE Transactions on Software Engineering, IEEE, v. 49, n. 4, p.
1617–1640, 2023.

SEGURA, S. et al. Metamorphic testing of restful web apis. IEEE Transactions on Software
Engineering, IEEE, v. 44, n. 11, p. 1083–1099, 2018.

SOLIS, C.; WANG, X. A study of the characteristics of behaviour driven development. In:
Proceedings of the 37th EUROMICRO Conference on Software Engineering and Advanced
Applications. [S.l.]: IEEE, 2011. p. 383–387.

SPANOUDAKIS, G.; ZISMAN, A. Software Traceability. [S.l.]: World Scientific, 2005.
395–428 p.

VASWANI, A. et al. Attention is all you need. In: Advances in Neural Information
Processing Systems. [S.l.]: Curran Associates, Inc., 2017. v. 30, p. 5998–6008.

VIGLIANISI, E.; DALLAGO, M.; CECCATO, M. Resttestgen: Automated black-box
testing of restful apis. In: Proceedings of the IEEE 13th International Conference on
Software Testing, Verification and Validation (ICST). [S.l.]: IEEE, 2020. p. 142–152.

WANG, J. et al. Software testing with large language models: Survey, landscape, and
vision. IEEE Transactions on Software Engineering, IEEE, v. 50, n. 5, p. 911–936, 2024.

WEI, J. et al. Chain-of-thought prompting elicits reasoning in large language models. In:
Advances in Neural Information Processing Systems. [S.l.]: Curran Associates, Inc., 2022.
v. 35, p. 24824–24837.

WHITE, J. et al. A prompt pattern catalog to enhance prompt engineering with chatgpt.
arXiv preprint arXiv:2302.11382, 2023. Dispońıvel em: ⟨https://arxiv.org/abs/2302.11382⟩.

YUAN, W. et al. Automatic high-level test case generation using large language models.
arXiv preprint arXiv:2403.17998, 2024. Dispońıvel em: ⟨https://arxiv.org/abs/2403.17998⟩.

ZAMENI, S.; WANG, X.; MAHMOUD, A. Automatic generation of bdd test scenarios
using large language models. arXiv preprint arXiv:2306.03268, 2023. Dispońıvel em:
⟨https://arxiv.org/abs/2306.03268⟩.

https://spec.openapis.org/oas/v3.1.0
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2403.17998
https://arxiv.org/abs/2306.03268

51

A Documento de Requisitos de Negócio

Gerado

Este apêndice apresenta um exemplo de Business Requirements Document (BRD) gerado

automaticamente pela ferramenta a partir da especificação OpenAPI da Weather.gov API.

O Código A.1 apresenta o BRD em formato JSON, contendo três requisitos funcionais

mapeados a partir dos endpoints principais da API.

1 {

2 "brd_id": "BRD -WEATHER -GOV -001",

3 "title": "Weather.gov API - Business Requirements Document",

4 "description": "Comprehensive BRD for weather.gov API covering

all

5 endpoints for weather data retrieval, alerts, forecasts,

6 and observations",

7 "api_name": "weather.gov API",

8 "api_version": "1.0.0",

9 "created_date": "2025-12-30T12:00:00Z",

10 "requirements": [

11 {

12 "requirement_id": "REQ -001",

13 "title": "Get Active Alerts for Zone",

14 "description": "Retrieve active weather alerts for a

specific zone",

15 "endpoint_path": "/ alerts/active/zone/{zoneId }",

16 "endpoint_method": "GET",

17 "priority": "high",

18 "status": "pending",

19 "test_scenarios": [

20 {

A Documento de Requisitos de Negócio Gerado 52

21 "scenario_id": "TS -001-001",

22 "scenario_name": "",

23 "description": "",

24 "test_steps": [],

25 "expected_result": "",

26 "priority": "medium",

27 "tags": []

28 },

29 {

30 "scenario_id": "TS -001-002",

31 "scenario_name": "",

32 "description": "",

33 "test_steps": [],

34 "expected_result": "",

35 "priority": "medium",

36 "tags": []

37 }

38],

39 "acceptance_criteria": [

40 "API returns active alerts for valid zone IDs",

41 "API returns appropriate error for invalid zone IDs",

42 "Response includes alert severity and description"

43],

44 "related_endpoints": []

45 },

46 {

47 "requirement_id": "REQ -002",

48 "title": "Get Forecast for Grid Point",

49 "description": "Retrieve weather forecast for a specific

grid point",

50 "endpoint_path": "/ gridpoints/{wfo}/{x},{y}/forecast",

51 "endpoint_method": "GET",

A Documento de Requisitos de Negócio Gerado 53

52 "priority": "high",

53 "status": "pending",

54 "test_scenarios": [

55 {

56 "scenario_id": "TS -002-001",

57 "scenario_name": "",

58 "description": "",

59 "test_steps": [],

60 "expected_result": "",

61 "priority": "medium",

62 "tags": []

63 }

64],

65 "acceptance_criteria": [

66 "API returns forecast data for valid grid points",

67 "Forecast includes temperature, precipitation, and

conditions"

68],

69 "related_endpoints": []

70 },

71 {

72 "requirement_id": "REQ -003",

73 "title": "Get Latest Observation",

74 "description": "Retrieve the latest weather observation

from a station",

75 "endpoint_path": "/ stations/{ stationId }/observations/latest

",

76 "endpoint_method": "GET",

77 "priority": "high",

78 "status": "pending",

79 "test_scenarios": [

80 {

A Documento de Requisitos de Negócio Gerado 54

81 "scenario_id": "TS -003-001",

82 "scenario_name": "",

83 "description": "",

84 "test_steps": [],

85 "expected_result": "",

86 "priority": "medium",

87 "tags": []

88 }

89],

90 "acceptance_criteria": [

91 "API returns latest observation for valid station IDs",

92 "Observation includes temperature, humidity, and wind

data"

93],

94 "related_endpoints": []

95 }

96],

97 "metadata": {

98 "generated_by": "BRDGenerator",

99 "generation_timestamp": "2025-12-30T12:00:00Z",

100 "coverage_percentage": 100.0,

101 "total_endpoints": 59,

102 "covered_endpoints": 59

103 }

104 }

Listing A.1: BRD gerado para Weather.gov API

A estrutura do BRD segue um schema padronizado que permite rastreabilidade

bidirecional entre requisitos funcionais e endpoints da API, onde cada requisito inclui

identificador único, mapeamento direto ao endpoint, prioridade de negócio, cenários de

teste associados e critérios de aceitação derivados da especificação OpenAPI.

55

B Amostra de Cenários de Teste Gerados

Este apêndice apresenta uma amostra representativa dos cenários de teste gerados automaticamente pela ferramenta para a API weather.gov.

Os cenários seguem o formato Gherkin, amplamente utilizado em metodologias BDD (Behavior-Driven Development). O conjunto completo de

127 cenários gerados está dispońıvel no repositório do projeto, sendo apresentados na Tabela B.1 os 10 mais representativos. Cada cenário inclui

pré-condições (Given), ações (When) e validações esperadas (Then), cobrindo tanto fluxos de sucesso (códigos HTTP 2xx) quanto tratamento

de erros (códigos HTTP 4xx).

Tabela B.1: Amostra de cenários de teste gerados para a

API weather.gov

Cenário Given When Then

Get alerts for a zone The weather API is avai-

lable

I send a GET request to /alerts/acti-

ve/zone/zoneId

I should receive a 200 OK res-

ponse with alert data

Get alerts with invalid

zone ID

The weather API is avai-

lable

I send a GET request to /alerts/acti-

ve/zone/invalid

I should receive a 404 Not

Found response

Get forecast for a point I have valid latitude and

longitude coordinates

I send a GET request to /gridpoints/w-

fo/x,y/forecast

I should receive a 200 OK res-

ponse with forecast data

A
D
o
cu
m
en
to

d
e
R
eq
u
isitos

d
e
N
egócio

G
erad

o
56

Cenário Given When Then

Get forecast with inva-

lid coordinates

I have invalid coordinates I send a GET request to /gridpoints/w-

fo/x,y/forecast

I should receive a 400 Bad Re-

quest response

Get observation stati-

ons

The weather API is avai-

lable

I send a GET request to /stations I should receive a 200 OK res-

ponse with station list

Get observation for a

station

I have a valid station ID I send a GET request to /stations/sta-

tionId/observations/latest

I should receive a 200 OK res-

ponse with observation data

Get observation with

invalid station ID

I have an invalid station

ID

I send a GET request to /stations/sta-

tionId/observations/latest

I should receive a 404 Not

Found response

Get zone forecast I have a valid zone ID I send a GET request to /zones/fore-

cast/zoneId/forecast

I should receive a 200 OK res-

ponse with zone forecast

Get zone list The weather API is avai-

lable

I send a GET request to /zones I should receive a 200 OK res-

ponse with zone list

Get point information I have valid latitude and

longitude

I send a GET request to /points/point I should receive a 200 OK res-

ponse with point information

Nota: A ferramenta exporta os cenários em formato CSV para integração com pipelines de CI/CD e frameworks BDD. O arquivo

completo com os cenários gerados está dispońıvel no repositório do projeto em /outputs/scenarios/. O formato permite conversão automatizada

para arquivos .feature através de scripts auxiliares, viabilizando execução direta em frameworks como Cucumber, Behave ou SpecFlow.

57

C Estrutura Completa do Projeto

Este apêndice apresenta a estrutura completa de diretórios do projeto API Parameter

Coverage & Test Scenario Generator, organizada hierarquicamente com descrições

funcionais de cada componente principal. A arquitetura modular adotada segue convenções

estabelecidas de projetos Python de código aberto (LUTZ, 2013), facilitando navegação,

manutenção e contribuições da comunidade. A organização segue o prinćıpio de separação

de responsabilidades, onde cada módulo encapsula funcionalidades coesas e relacionadas,

minimizando acoplamento entre componentes e maximizando a coesão interna de cada

unidade (MARTIN, 2003).

C.1 Organização de Diretórios de Nı́vel Raiz

A Tabela C.1 apresenta os diretórios e arquivos principais localizados na raiz do repositório,

cada um com função espećıfica no ciclo de desenvolvimento e execução da ferramenta.

Tabela C.1: Estrutura de diretórios e arquivos de ńıvel raiz

Caminho Descrição Funcional

src/ Código-fonte principal contendo todos os módulos da

aplicação

tests/ Súıte completa de testes unitários, de integração e BDD

output/ Diretório de artefatos gerados durante execuções do pipe-

line

docs/ Documentação técnica complementar do projeto

main.py Ponto de entrada principal e orquestrador do pipeline

requirements.txt Especificação de dependências Python com versões

pytest.ini Configuração do framework pytest para execução de testes

.env.example Template de variáveis de ambiente para configuração

LICENSE Licença MIT do projeto de código aberto

README.md Documentação principal com instruções de uso

58

D Estrutura do Diretório Source

O diretório src/modules/ contém a implementação de todos os módulos funcionais do

sistema, organizados por domı́nio de responsabilidade conforme prinćıpios de design

estabelecidos (FOWLER, 2002). A Tabela D.1 apresenta a especificação detalhada de

todos os componentes implementados. Os módulos estão agrupados por domı́nio funcional:

swagger/ para ingestão e validação de especificações, engine/ para algoritmos centrais e

integração com LLMs, brd/ para gerenciamento de requisitos de negócio, workflow/ para

orquestração do pipeline, utils/ para utilitários compartilhados, e cli/ para interface de

linha de comando. Essa organização modular facilita a manutenção independente de cada

componente e permite a evolução incremental do sistema sem impacto em funcionalidades

existentes.

Tabela D.1: Especificação dos componentes do sistema

Módulo Componente Responsabilidades Funcionais

swagger/ sch fetcher Download de especificações OpenAPI via

HTTP/HTTPS com suporte a URLs remotas.

Implementa detecção automática de formato

através de análise de extensão, header Content-

Type e estrutura sintática. Inclui tratamento

robusto de erros de rede com lógica de retry e

backoff exponencial configurável.

swagger/ sch validator Validação estrutural de especificações contra

padrões Swagger 2.0 e OpenAPI 3.x. Realiza

detecção automática de versão através de chaves

raiz, verificação de campos obrigatórios conforme

especificação relevante, e normalização de cam-

pos opcionais com valores padrão.

Continua na próxima página

C Estrutura Completa do Projeto 59

Tabela D.1 – Continuação da página anterior

Módulo Componente Responsabilidades Funcionais

engine/

algorithms/

processor Extração sistemática de metadados da API in-

cluindo informações gerais, endpoints dispońıveis

e métodos HTTP suportados. Processa compo-

nentes reutilizáveis como schemas, parameters

e responses. Implementa resolução recursiva de

referências $ref para expansão de estruturas ani-

nhadas.

engine/

algorithms/

analyzer Análise profunda de estrutura de schemas com

extração exaustiva de parâmetros diferenciados

por localização (path, query, header, body) e tipo

de dados. Calcula domı́nios de iteração baseados

em constraints e produz métricas de complexi-

dade estrutural.

engine/

algorithms/

csv generator Parsing de cenários Gherkin em texto livre re-

tornados por LLM. Identifica blocos sintáticos

de Feature, Scenario e Steps individuais. Extrai

metadados como tags organizacionais. Converte

para formato CSV estruturado com colunas pa-

dronizadas.

engine/

analytics/

mtc collector Registro centralizado de métricas operacionais

coletadas durante execução do pipeline. Rastreia

tempo de execução total e por etapa, uso de to-

kens LLM separados por prompt e completion,

métricas de complexidade de entrada, e indica-

dores de qualidade de sáıda.

Continua na próxima página

C Estrutura Completa do Projeto 60

Tabela D.1 – Continuação da página anterior

Módulo Componente Responsabilidades Funcionais

engine/

analytics/

alg tracker Rastreamento detalhado de cada algoritmo exe-

cutado durante processamento. Registra identi-

ficação única, timestamp de execução, complexi-

dade computacional estimada, transformações de

dados realizadas com tamanhos de entrada/sáıda,

e indicadores de qualidade.

engine/

llm/

prompter Construção de prompts contextualizados e estru-

turados para geração de cenários. Implementa

integração unificada com múltiplos provedores

LLM (OpenAI, Groq, Anthropic, Google, Azure).

Gerencia estratégia de chunking adaptativo para

APIs grandes e controle de limites de tokens.

brd/ brd schema Definição formal de schemas JSON para va-

lidação de estrutura de BRDs. Implementa

classes de dados tipadas para representação de

requisitos individuais e documentos completos.

Mantém constantes de configuração e valores

padrão do módulo.

brd/ brd loader Operações de entrada e sáıda para arquivos BRD

em formato JSON. Implementa leitura com va-

lidação de formato, escrita de BRDs gerados

com formatação consistente, e persistência em

diretórios configuráveis com nomenclatura pa-

dronizada.

Continua na próxima página

C Estrutura Completa do Projeto 61

Tabela D.1 – Continuação da página anterior

Módulo Componente Responsabilidades Funcionais

brd/ brd parser Parsing de documentos de requisitos não estrutu-

rados em múltiplos formatos. Suporta extração

de texto de PDF via PyPDF2, Word via python-

docx, e formatos texto como TXT, CSV e Mark-

down. Processa texto extráıdo via LLM para

estruturação.

brd/ brd validator Validação de conformidade de BRDs contra

schema formal definido. Verifica presença de

campos obrigatórios, valida formato de identifi-

cadores, e gera relatórios detalhados de conformi-

dade com indicação de problemas encontrados.

brd/ brd generator Geração automática de BRD a partir de análise

de especificação OpenAPI. Constrói prompts es-

pecializados para inferência de requisitos funci-

onais via LLM. Aplica threshold de cobertura

configurável para controle de granularidade do

documento gerado.

brd/ sch cross ref Análise sistemática de cobertura cruzada entre

requisitos do BRD e endpoints da API. Imple-

menta múltiplas estratégias de correspondência

incluindo correspondência exata e por palavras-

chave. Identifica lacunas de cobertura e gera

relatórios de rastreabilidade.

workflow/ scn generator Orquestração de alto ńıvel do processo com-

pleto de geração de cenários de teste. Coor-

dena execução sequencial entre módulos proces-

sor, analyzer, LLM e csv generator. Gerencia

estado do pipeline e passagem de dados entre

etapas com logging detalhado.

Continua na próxima página

C.1 Organização de Diretórios de Nı́vel Raiz 62

Tabela D.1 – Continuação da página anterior

Módulo Componente Responsabilidades Funcionais

workflow/ cvg handler Orquestração do fluxo de análise de cobertura

entre BRD e especificação. Coordena carrega-

mento/geração de BRD, execução de referência

cruzada, e filtragem de endpoints baseada em

requisitos funcionais para processamento subse-

quente.

utils/ llm provider Abstração unificada para integração com

múltiplos provedores de LLM. Implementa de-

tecção automática de provedor através de análise

de formato de chave API. Configura parâmetros

espećıficos como temperature e max tokens.

Trata erros espećıficos de cada provedor.

utils/ out manager Gerenciamento completo de arquivos e diretórios

de sáıda. Cria estrutura de diretórios com

marcação temporal para organização cronológica.

Implementa nomenclatura padronizada de ar-

quivos e escrita de relatórios de analytics em

formato estruturado.

utils/ validators Coleção de funções de validação genéricas reuti-

lizáveis por múltiplos módulos. Inclui validação

de URLs, verificação de formatos de arquivo, va-

lidação de schemas JSON, e funções auxiliares

de verificação de tipos e estruturas.

cli/ cli utils Interface interativa de linha de comando para

execução da ferramenta. Implementa menus

de seleção de opções, validação de entrada do

usuário, formatação de mensagens de progresso, e

coleta estruturada de parâmetros de configuração

do pipeline.

63

E Cenários para Endpoint de Alertas

Meteorológicos

O Código E.1 apresenta cenários gerados para o endpoint de alertas meteorológicos,

incluindo casos positivos e negativos (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS, 2019).

1 Feature: Weather Alerts by Zone

2 As a weather monitoring application

3 I want to retrieve active alerts for specific zones

4 So that I can notify users of weather warnings

5 @api @alerts @positive @critical

6 Scenario: Retrieve active severe weather alerts

7 Given the weather API is available

8 And I have a valid zone ID "ALZ002"

9 When I send a GET request to "/alerts/active/zone/{ zoneId}"

10 Then the response status code should be 200

11 And the response should be in JSON format

12 And the response should contain "features" array

13 And each alert should have "severity" property

14 @api @alerts @negative @validation

15 Scenario: Attempt to get alerts with malformed zone ID

16 Given the weather API is available

17 And I have a malformed zone ID "12345"

18 When I send a GET request to "/alerts/active/zone/{ zoneId}"

19 Then the response status code should be 400 or 404

20 @api @alerts @negative @boundary

21 Scenario: Attempt to get alerts with empty zone ID

22 Given the weather API is available

23 And I have an empty zone ID ""

24 When I send a GET request to "/alerts/active/zone/{ zoneId}"

25 Then the response status code should be 400

26 And the response should indicate invalid parameter

Listing E.1: Cenários gerados para endpoint de alertas meteorológicos

	Lista de Figuras
	Lista de Tabelas
	Lista de Abreviações
	Introdução
	Fundamentação Teórica
	Arquitetura REST e APIs Web
	Especificação OpenAPI
	Critérios de Cobertura para APIs REST
	Rastreabilidade de Requisitos
	Desenvolvimento Orientado a Comportamento
	Modelos de Linguagem de Grande Porte em Engenharia de Software
	Métricas de Qualidade em Automação de Testes
	Síntese do Capítulo

	Materiais e Métodos
	Visão Geral do Sistema
	Arquitetura do Sistema
	Fluxo de Funcionamento
	Tecnologias Utilizadas
	Estrutura do Projeto
	Componentes Principais

	Estudo de Caso
	Descrição do Cenário
	Configuração da Execução
	Métricas da API Processada
	Geração e Estrutura do BRD
	Análise do BRD Gerado

	Geração de Cenários de Teste
	Análise Qualitativa dos Cenários

	Exportação e Artefatos Gerados
	Análise de Desempenho e Custos
	Discussão dos Resultados

	Considerações Finais
	Síntese do Trabalho
	Retomada das Questões de Pesquisa
	Contribuições
	Limitações
	Trabalhos Futuros

	Bibliografia
	Documento de Requisitos de Negócio Gerado
	Amostra de Cenários de Teste Gerados
	Estrutura Completa do Projeto
	Organização de Diretórios de Nível Raiz

	Estrutura do Diretório Source
	Cenários para Endpoint de Alertas Meteorológicos

