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Resumo

A adoção de véıculos autônomos e de sistemas avançados de assistência ao condutor de-

pende diretamente da capacidade dos algoritmos embarcados de operar com segurança

em ambientes dinâmicos. Entre esses componentes, o reconhecimento automático de

semáforos desempenha um papel essencial para evitar colisões e garantir decisões ade-

quadas em vias urbanas. No entanto, modelos de Machine Learning, mesmo quando

apresentam alta acurácia, podem falhar ao enfrentar condições inesperadas, tornando ne-

cessária a existência de mecanismos capazes de avaliar não apenas a previsão, mas também

sua confiabilidade. Este trabalho investiga o uso da abordagem SafeML como ferramenta

de análise de confiança aplicada a classificadores de semáforos treinados sobre o dataset

LISA. Dois modelos — uma SVM (Support Vector Machine) e uma CNN (Convolutional

Neural Network) — são avaliados a fim de identificar padrões que indiquem quando uma

previsão pode ser considerada segura ou potencialmente arriscada. A análise realizada

permite discutir como desvios entre dados de treino e de aplicação podem influenciar o

comportamento dos modelos e em que medida abordagens estat́ısticas podem auxiliar na

interpretação desses cenários. Os resultados obtidos contribuem para avaliar a viabilidade

do uso dessa metodologia como apoio à análise de confiabilidade em sistemas de Visão

Computacional embarcados.

Palavras-chave: Confiabilidade, SafeML, Visão Computacional, Aprendizado de Máquina,

Véıculos Autônomos, Semáforos.



Abstract

The adoption of autonomous vehicles and advanced driver assistance systems depends

directly on the ability of onboard algorithms to operate safely in dynamic environments.

Among these components, automatic traffic-light recognition plays a key role in preven-

ting collisions and ensuring appropriate decision-making in urban scenarios. However,

machine learning models, even when achieving high accuracy, may fail when exposed to

unexpected conditions, reinforcing the need for mechanisms capable of assessing not only

the prediction itself but also its level of reliability. This work investigates the use of the

SafeML approach as a confidence analysis tool applied to traffic-light classifiers trained on

the LISA dataset. Two models — a Support Vector Machine (SVM) and a Convolutional

Neural Network (CNN) — are evaluated in order to identify patterns that indicate when a

prediction may be considered safe or potentially risky. The analysis enables discussion on

how deviations between training and application data can influence model behavior and

how statistical approaches may assist in interpreting such scenarios. The results obtained

contribute to evaluating the feasibility of using this methodology to support reliability

assessment in embedded computer vision systems.

Keywords: Reliability, SafeML, Computer Vision, Machine Learning, Autonomous Vehi-

cles, Traffic Lights.
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mapa de caracteŕısticas. Fonte: Jorgecardete (2024). . . . . . . . . . . . . 22
2.5 Max Pooling: redução da dimensão mantendo apenas os valores máximos.
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os pixels estatisticamente significativos (p < 0,05). . . . . . . . . . . . . . . 67



Lista de Tabelas

4.1 Distribuição das classes do LISA Traffic Light Dataset após a etapa de
curadoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Distribuição das classes do LISA Traffic Light Dataset segundo o peŕıodo
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5.9 Distância de Wasserstein média por canal (RGB) para amostras incorretas

— CNN (diurno) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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1 Introdução

O avanço das técnicas de Machine Learning tem impulsionado o desenvolvimento de sis-

temas capazes de interpretar cenários complexos e tomar decisões de forma autônoma.

Modelos de classificação, detecção e reconhecimento visual tornaram-se centrais em diver-

sas aplicações, incluindo véıculos autônomos, inspeção industrial e vigilância inteligente.

No entanto, apesar de seu alto desempenho em ambientes controlados, esses modelos

frequentemente carecem de mecanismos para indicar quando suas previsões podem estar

incorretas ou quando estão operando fora de seu domı́nio de treinamento. Essa limitação

torna a análise de confiança um componente essencial para aumentar a segurança e a

transparência desses sistemas, especialmente em aplicações cŕıticas.

A evolução de sistemas inteligentes aplicados ao trânsito tem desempenhado pa-

pel central na busca por maior segurança, eficiência e autonomia na mobilidade urbana.

Entre esses avanços, destacam-se os sistemas de Visão Computacional embarcados, capa-

zes de interpretar o ambiente ao redor do véıculo e apoiar processos decisórios cŕıticos.

Tarefas como detecção de obstáculos, reconhecimento de placas e identificação do estado

de semáforos tornaram-se componentes essenciais de véıculos autônomos e de sistemas

avançados de assistência ao condutor.

Apesar dos progressos obtidos por modelos de aprendizado de máquina, sua uti-

lização em cenários reais ainda apresenta desafios relevantes. É comum que classificado-

res tenham bom desempenho em ambientes controlados, mas sofram degradação quando

expostos a condições distintas das presentes nos dados de treinamento. Variações de ilu-

minação, mudanças climáticas, rúıdo no sensor ou alterações no contexto urbano podem

comprometer a robustez dos modelos e conduzir a erros potencialmente perigosos. Nesse

cenário, torna-se indispensável não apenas obter uma previsão, mas também estimar o

quão confiável é essa previsão.

Entre as abordagens que buscam enfrentar esse desafio, destaca-se o framework

SafeML, proposto por Aslansefat et al. (2020), que utiliza técnicas estat́ısticas para mo-

nitorar desvios entre distribuições de dados de treino e de aplicação, sinalizando situações
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de maior risco. Este trabalho aplica essa abordagem ao reconhecimento automático de

semáforos, avaliando como diferentes modelos de Visão Computacional se comportam do

ponto de vista de confiabilidade.

1.1 Descrição do Problema

Os acidentes de trânsito configuram-se como um dos principais problemas de saúde pública

em escala global. De acordo com a OMS, aproximadamente 1,19 milhão de pessoas

morrem anualmente em decorrência de acidentes de trânsito, além de dezenas de milhões

de feridos, muitos dos quais sofrem sequelas permanentes (World Health Organization,

2018). A gravidade desse cenário torna os sinistros viários uma das principais causas de

morte entre crianças, adolescentes e jovens adultos.

No contexto brasileiro, a situação apresenta números igualmente alarmantes. Se-

gundo dados do IPEA, entre os anos de 2010 e 2019 o Brasil registrou, em média, cerca

de 40 mil mortes por ano no trânsito, além de mais de 300 mil pessoas gravemente feridas

anualmente (Instituto de Pesquisa Econômica Aplicada, 2021). Esses dados evidenciam

não apenas as perdas humanas, mas também impactos sociais e econômicos significativos.

Diante desse cenário, véıculos autônomos e sistemas avançados de assistência ao

condutor surgem como alternativas promissoras para mitigar a ocorrência de acidentes,

ao reduzir a influência de fatores humanos como desatenção, fadiga e erro de julgamento.

Entretanto, a adoção dessas tecnologias também introduz novos desafios relacionados à

segurança dos sistemas computacionais responsáveis pela percepção e tomada de decisão.

Investigações recentes demonstram que falhas em sistemas de direção automati-

zada já resultaram em acidentes fatais. Uma apuração conduzida pela NHTSA (Admi-

nistração Nacional de Segurança no Tráfego Rodoviário dos EUA), conclúıda em 2024,

identificou ao menos 13 mortes associadas ao uso do sistema Autopilot da Tesla, desta-

cando uma lacuna cŕıtica de segurança relacionada ao uso indevido do sistema e à ausência

de monitoramento eficaz do condutor. Desde 2016, mais de 40 investigações especiais fo-

ram abertas envolvendo tecnologias similares, totalizando ao menos 23 mortes reportadas.

Como resposta, a Tesla realizou um recall de cerca de 2 milhões de véıculos, com o obje-

tivo de atualizar o software e reforçar os alertas de atenção ao motorista (The Guardian,
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2024).

Por outro lado, empresas do setor argumentam que sistemas autônomos podem

reduzir significativamente o número de acidentes quando comparados à condução humana.

A Waymo, subsidiária da Google, reportou ter percorrido mais de 127 milhões de milhas

em modo totalmente autônomo até 2025, afirmando reduções de até 90% em acidentes

com ferimentos graves e 82% no acionamento de airbags em relação à média de moto-

ristas humanos (Waymo LLC, 2025). Esses dados ilustram que, embora promissora, a

tecnologia ainda apresenta resultados contrastantes e depende fortemente de mecanismos

de segurança adicionais.

No Brasil, a adoção de sistemas automatizados também tem avançado. Estima-

se que cerca de 40% dos véıculos novos vendidos em 2025 já contem com algum ńıvel de

automação. Paralelamente, casos judiciais recentes evidenciam que falhas nesses sistemas

já têm gerado repercussões legais concretas, com decisões que responsabilizam montadoras

por acidentes envolvendo piloto automático. Além disso, juristas apontam a dificuldade

de apurar responsabilidades em tais incidentes, devido à falta de transparência e de acesso

aos dados internos dos algoritmos — o que caracteriza o problema da chamada “caixa-

preta” dos modelos de ML. (Senna Martins Advogados, 2025).

Nesse contexto, a ausência de mecanismos capazes de indicar quando uma decisão

automatizada pode não ser confiável representa um obstáculo relevante para a adoção se-

gura dessas tecnologias. Em particular, falhas no reconhecimento do estado de semáforos

podem resultar em decisões cŕıticas incorretas em ambientes urbanos, reforçando a neces-

sidade de abordagens que avaliem não apenas a acurácia, mas também a confiabilidade

das previsões.

1.2 Objetivos

O objetivo deste trabalho é analisar a confiabilidade de classificadores de aprendizado

de máquina aplicados ao reconhecimento automático de semáforos, considerando o con-

texto de segurança em véıculos autônomos e sistemas avançados de assistência ao con-

dutor. Para isso, busca-se analisar se as técnicas de análise estat́ıstica disponibilizadas

pelo framework SafeML são adequadas e eficazes para identificar ind́ıcios de classificações
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potencialmente não confiáveis, mesmo em modelos que apresentam bom desempenho em

métricas tradicionais de avaliação.

Como objetivos espećıficos, este trabalho propõe:

• treinar e avaliar dois modelos de classificação de semáforos, baseados em uma SVM

e em uma CNN, utilizando o conjunto de dados LISA Traffic Light Dataset ;

• analisar o comportamento desses modelos a partir da comparação entre amostras

corretamente e incorretamente classificadas;

• aplicar a abordagem SafeML para a análise de confiança das previsões, investigando

a presença de desvios estat́ısticos entre os dados de treino e os dados utilizados na

avaliação;

• explorar, por meio de análises quantitativas e visuais, padrões associados a situações

em que os modelos apresentam maior propensão ao erro;

• discutir a viabilidade do uso dessa abordagem como apoio à avaliação de confiabi-

lidade em sistemas de Visão Computacional embarcados.

1.3 Justificativa

A crescente adoção de técnicas de ML em sistemas cŕıticos, como véıculos autônomos

e sistemas avançados de assistência ao condutor, torna indispensável a discussão sobre

segurança e confiabilidade das decisões tomadas por esses modelos. Embora avanços

recentes tenham permitido alcançar elevados ńıveis de desempenho em tarefas de Visão

Computacional, casos reais de acidentes demonstram que métricas tradicionais, como

acurácia, não são suficientes para garantir comportamento seguro em ambientes reais e

dinâmicos.

Os dados recentes de investigações, recalls e disputas judiciais evidenciam que

falhas em sistemas automatizados já resultam em consequências humanas, econômicas

e legais. Ao mesmo tempo, a dificuldade de auditoria e explicação das decisões desses

sistemas reforça a necessidade de mecanismos independentes de monitoramento e avaliação

de risco, capazes de atuar como uma camada adicional de segurança.
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No contexto do reconhecimento automático de semáforos, erros de classificação

podem acarretar consequências graves, uma vez que esse componente está diretamente

associado à tomada de decisões em cruzamentos e vias urbanas. Dessa forma, torna-se

relevante investigar abordagens que permitam avaliar o grau de confiança associado às

classificações produzidas pelos modelos, contribuindo para uma compreensão mais ampla

de seus limites e potenciais riscos de uso.

A escolha do framework SafeML justifica-se por sua proposta de fornecer meca-

nismos estat́ısticos para a análise de confiabilidade de classificadores, sem a necessidade

de modificar o modelo original ou acessar informações internas de sua arquitetura. Essa

caracteŕıstica torna a abordagem especialmente atrativa em cenários práticos e juŕıdicos,

nos quais a transparência e a independência da análise são requisitos importantes.

Assim, este trabalho se justifica pela relevância social do tema, pela necessidade

técnica de avaliação de confiabilidade em aprendizado de máquina e pela possibilidade

de contribuir para o desenvolvimento de sistemas de Visão Computacional mais seguros,

auditáveis e responsáveis no contexto do tráfego urbano.

1.4 Organização do Trabalho

Este trabalho está organizado em seis caṕıtulos. No Caṕıtulo 1, é apresentada a in-

trodução, na qual são descritos o contexto do problema, os objetivos do estudo, sua

justificativa e a estrutura geral do trabalho.

O Caṕıtulo 2 apresenta a fundamentação teórica, abordando conceitos relaciona-

dos a véıculos autônomos, Machine Learning, reconhecimento de semáforos e confiabili-

dade em sistemas de Visão Computacional, além de introduzir os prinćıpios do framework

SafeML.

No Caṕıtulo 3 são discutidos os trabalhos relacionados, destacando abordagens

existentes para análise de confiabilidade e monitoramento de segurança em modelos de

aprendizado de máquina, bem como suas principais caracteŕısticas e limitações.

O Caṕıtulo 4 descreve a metodologia adotada, incluindo o conjunto de dados

utilizado, o pré-processamento das imagens, os modelos de classificação empregados e o

pipeline de análise baseado no SafeML.
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No Caṕıtulo 5 são apresentados e analisados os resultados experimentais obtidos,

contemplando o desempenho dos classificadores e a análise de confiabilidade por meio das

métricas e visualizações geradas.

Por fim, o Caṕıtulo 6 apresenta as conclusões do trabalho, destacando as princi-

pais contribuições, limitações do estudo e perspectivas para trabalhos futuros.
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2 Fundamentação Teórica

Este caṕıtulo apresenta os principais conceitos que embasam o desenvolvimento deste

trabalho, fornecendo a base necessária para compreender tanto a metodologia adotada

quanto a interpretação dos resultados obtidos.

2.1 Machine Learning e Visão Computacional

Para analisar a confiabilidade de sistemas inteligentes, é fundamental compreender pri-

meiro os componentes que constituem essa inteligência. Frequentemente confundida com

uma tecnologia única, a Inteligência Artificial é, na verdade, uma área ampla da Ciência

da Computação. O Departamento de Educação dos EUA define IA como um “termo

guarda-chuva” que abrange um conjunto crescente de capacidades de modelagem (Office

of Educational Technology, 2023). Conforme ilustrado na Figura 2.1, a IA se ramifica

em diversas subáreas, como robótica, processamento de linguagem natural e, especifica-

mente para este trabalho, duas especialidades centrais: o Machine Learning e a Visão

Computacional, conforme nomeadas na figura original.

O Machine Learning representa uma mudança de paradigma na forma como

criamos software. Na programação tradicional, um desenvolvedor escreve regras expĺıcitas

para o computador seguir. Porém, segundo Hurwitz e Kirsch (2018), o ML foca na

capacidade do sistema de aprender e adaptar um modelo baseando-se em dados, e não

em regras pré-codificadas. O algoritmo “ingere” exemplos — como dados históricos ou

imagens — para identificar padrões e criar um modelo capaz de prever resultados futuros.

Dentro deste universo, existem diferentes abordagens para ensinar o computador.

Hurwitz e Kirsch (2018) categorizam o ML em quatro subconjuntos principais:

1. Aprendizado Supervisionado: O método mais comum, onde o algoritmo é trei-

nado com dados que já contêm a “resposta correta” (dados rotulados). É como

ensinar uma criança mostrando a ela várias fotos e dizendo “isto é um gato” ou

“isto é um cachorro”, até que ela possa distinguir sozinha.
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Figura 2.1: Componentes, tipos e subáreas da IA. Fonte: Adaptado de Regona et al.
(2022) apud Office of Educational Technology (2023).

2. Aprendizado Não Supervisionado: Utilizado quando os dados não possuem

rótulos. O algoritmo explora os dados para encontrar estruturas ocultas ou agrupar

itens semelhantes (clusters) por conta própria.

3. Aprendizado por Reforço: Um modelo comportamental onde o sistema aprende

por tentativa e erro, recebendo “recompensas” por decisões corretas e penalidades

por erros, reforçando o comportamento desejado.

4. Deep Learning : Uma técnica avançada que utiliza redes neurais artificiais para

modelar padrões complexos em grandes volumes de dados.

Enquanto o ML atua como o cérebro que processa padrões, a Visão Computaci-

onal funciona como os olhos do sistema. No entanto, enxergar digitalmente é um desafio

matemático. Szeliski (2021) descreve como um “problema inverso”: o computador recebe

uma imagem 2D plana e precisa deduzir as propriedades do mundo real 3D, como forma,

distância e identidade dos objetos. O que para um humano é intuitivo — diferenciar uma

sombra de um objeto real — para a máquina exige algoritmos robustos para superar a

ambiguidade e a falta de informações de profundidade inerentes a uma fotografia.

A intersecção entre essas áreas ocorre porque a Visão Computacional moderna

depende do ML para funcionar com precisão. Como modelar matematicamente todas as
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variações de luz e forma do mundo é imposśıvel, utiliza-se o ML para treinar o computador

a reconhecer visualmente os objetos com base em probabilidades (SZELISKI, 2021). No

contexto deste TCC, essa união é o que permite a um véıculo autônomo analisar imagens

da via e classificar, com determinado grau de confiança, se um semáforo indica permissão

para avançar ou ordem de parada.

2.2 SVM

Dentre os diversos algoritmos de aprendizado supervisionado dispońıveis para classi-

ficação, o Support Vector Machines destaca-se por uma abordagem geométrica e intui-

tiva. Segundo Coutinho (2019), o objetivo fundamental do SVM é encontrar uma linha

de separação (ou fronteira) entre duas classes distintas de dados. Em um exemplo bidi-

mensional simples, como pontos vermelhos e azuis em uma folha de papel, o algoritmo

busca traçar a reta que melhor separa esses dois grupos.

No entanto, em problemas reais com múltiplas caracteŕısticas, essa “linha” torna-

se um conceito multidimensional chamado de hiperplano. Coutinho (2019) explica que

podem existir infinitas retas capazes de separar dois grupos de dados, mas o SVM não

escolhe uma aleatoriamente. Ele busca o hiperplano ótimo: aquele que maximiza a

distância perpendicular entre a fronteira de decisão e os pontos mais próximos de cada

classe. Essa distância de segurança é tecnicamente denominada margem.

Os pontos de dados que estão localizados exatamente na borda dessa margem são

os elementos mais cŕıticos para o algoritmo e recebem o nome de Vetores de Suporte

(Support Vector). Conforme detalham Szeliski (2021) e Coutinho (2019), são esses pontos

que “seguram” ou definem a posição do hiperplano. Se movermos os pontos que estão

distantes da fronteira, a linha de classificação não muda; porém, qualquer alteração nos

vetores de suporte redefine todo o modelo. A Figura 2.2 ilustra visualmente esses com-

ponentes, destacando como o hiperplano central é equidistante dos vetores de suporte de

ambas as classes.

Embora o conceito original do SVM tenha sido desenhado para separar duas

classes (classificação binária), problemas como o reconhecimento de semáforos envolvem

múltiplas categorias. Para lidar com isso, utiliza-se a estratégia conhecida como One-vs-



2.2 SVM 20

Figura 2.2: Estrutura geral do algoritmo SVM: vetores de suporte definindo o hiperplano
de separação. Fonte: Barbosa et al. (2021).

All (ou One-vs-Rest). De acordo com Coutinho (2019), essa técnica divide um problema

multiclasse em várias classificações binárias. Para classificar três cores de semáforo, o

algoritmo treina: “Vermelho contra o resto”, “Verde contra o resto”, e assim por diante.

Ao receber um novo dado, o sistema verifica qual desses classificadores apresenta a maior

confiança para decidir a classe final.

Na implementação prática deste trabalho, optou-se pelo uso do classificador linear

(LinearSVC do pacote scikit-learn). Isso significa que o modelo busca separar as classes

usando hiperplanos retos. Embora existam variações do SVM não-linear que transformam

o espaço para criar curvas complexas de separação — úteis quando os dados estão muito

misturados —, Coutinho (2019) ressalta que o modelo linear é frequentemente prefeŕıvel

pela simplicidade e menor custo computacional.

Em suma, a escolha do SVM Linear com a estratégia One-vs-All oferece uma base

robusta para a avaliação de confiança proposta neste TCC. Ele permite não apenas decidir

qual a cor do semáforo, mas, através da análise da margem (a distância dos dados em

relação ao hiperplano mostrada na Figura 2.2), inferir o quão segura é aquela classificação.
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2.3 CNN

Para compreender a tecnologia que permite a um véıculo autônomo “ver”, é necessário

primeiro entender a unidade fundamental de inteligência computacional: a Artificial Neu-

ral Network. Segundo Jorgecardete (2024), a base dessas redes é o neurônio artificial,

inspirado biologicamente. Quando organizados em camadas sequenciais (Input Layer,

Hidden Layer e Output Layer), eles formam o chamado Multi-Layer Perceptron, capaz de

aprender relações complexas entre dados (vide Figura 2.3).

Figura 2.3: Estrutura básica de um MLP. Fonte: Dustin (2025).

No entanto, aplicar MLPs diretamente em imagens apresenta um problema cŕıtico.

Dustin (2025) explica que uma MLP trata a entrada como uma lista plana de números.

Para processar uma imagem, a rede precisa “achatá-la” em um vetor único, destruindo a

estrutura espacial. A rede perde a noção de que um pixel é vizinho do outro, ignorando

formas e contornos. Para solucionar isso, utiliza-se a Convolutional Neural Network, que

preserva a estrutura tridimensional da imagem (largura, altura e cores) e processa os

dados em duas grandes etapas: a extração de caracteŕısticas e a classificação.

A extração de caracteŕısticas é realizada pela operação de Convolução. Ao

contrário da conexão total da MLP, a convolução utiliza filtros (ou kernels) — pequenas

matrizes de números — que deslizam sobre a imagem realizando operações matemáticas

locais (vide Figura 2.4). Alves (2018) compara esse processo a uma “lanterna” escaneando

a cena: cada filtro aprende a detectar um padrão visual espećıfico, como bordas verticais,

curvas ou texturas, gerando os chamados mapas de caracteŕısticas.

Para tornar o processamento mais eficiente, aplicam-se camadas de Pooling (Su-
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Figura 2.4: Operação de Convolução: um filtro desliza sobre a imagem para gerar um
mapa de caracteŕısticas. Fonte: Jorgecardete (2024).

bamostragem) entre as convoluções. O objetivo, segundo Jorgecardete (2024), é reduzir

a dimensão da imagem mantendo apenas as informações mais relevantes. O método mais

comum, o Max Pooling, seleciona apenas o valor mais alto dentro de uma pequena região

(vide Figura 2.5), descartando rúıdos e tornando a rede mais robusta a pequenas variações

de posição do objeto.

Após as camadas de convolução e pooling extráırem os padrões visuais, ocorre

a transição para a etapa de Classificação. Jorgecardete (2024) detalha que os mapas

de caracteŕısticas resultantes são submetidos a um processo de Flattening (achatamento),

transformando os dados 3D em um vetor linear. Diferente do ińıcio do processo, agora esse

achatamento é útil, pois alimenta camadas densas (Fully Connected) que interpretam esses

padrões de alto ńıvel para tomar uma decisão final, conforme a visão geral na Figura 2.6.

Adicionalmente, podem ser empregadas camadas de Dropout com o objetivo de reduzir o

sobreajuste (overfitting) durante o treinamento, desativando aleatoriamente neurônios ao

longo do processo de aprendizagem.

Na camada de sáıda, arquiteturas modernas frequentemente utilizam funções

como a Softmax para converter os valores numéricos produzidos pela rede em esco-

res normalizados, comumente interpretados como probabilidades associadas a cada classe

(JORGECARDETE, 2024). No contexto deste trabalho, isso permite que o sistema pro-

duza pontuações para rótulos acionáveis no trânsito, como go, stop ou warning, indicando

a preferência do modelo por cada classe.

Por fim, é crucial entender que a CNN não é programada com regras fixas, mas sim

treinada via Aprendizado Supervisionado. Segundo Szeliski (2021) e Jorgecardete (2024),
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Figura 2.5: Max Pooling: redução da dimensão mantendo apenas os valores máximos.
Fonte: Jorgecardete (2024).

a rede é exposta a milhares de imagens previamente rotuladas e realiza predições iniciais.

O erro associado a essas predições é calculado por uma função de perda (Loss Function)

e, por meio do algoritmo de Backpropagation (retropropagação), esse erro é propagado

de volta pela rede para ajustar iterativamente os pesos dos filtros e das camadas densas.

Esse ciclo iterativo permite que o modelo aprenda representações visuais cada vez mais

adequadas para a tarefa de classificação de semáforos.

2.4 Reconhecimento de Semáforos

O reconhecimento de semáforos desempenha um papel vital na segurança e eficiência dos

sistemas de transporte modernos. Enquanto humanos ocasionalmente falham em perceber

ou obedecer à sinalização — seja por distração, fadiga ou imprudência —, os Sistemas
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Figura 2.6: Visão completa de uma CNN: da extração de caracteŕısticas à classificação.
Fonte: Jorgecardete (2024).

Avançados de Assistência ao Condutor (ADAS) e os véıculos autônomos prometem mi-

tigar esses erros através de monitoramento cont́ınuo. Segundo Jensen et al. (2016), a

importância dessa tecnologia é sublinhada pelas estat́ısticas de acidentes: apenas nos

EUA, em 2012, centenas de pessoas morreram e milhares ficaram feridas em colisões

causadas especificamente pelo desrespeito ao sinal vermelho.

Idealmente, a comunicação entre a infraestrutura e o véıculo (I2V) via rádio seria

a solução definitiva para informar o estado do semáforo. No entanto, Philipsen et al. (2015)

argumentam que, devido ao alto custo de implementação dessa infraestrutura em larga

escala, a solução imediata e mais viável reside na Visão Computacional. O véıculo deve ser

capaz de ”ver”e interpretar a sinalização existente da mesma forma que um humano faz,

utilizando câmeras e algoritmos inteligentes para tomar decisões cŕıticas, como parar em

um cruzamento ou atravessar com segurança durante a ”zona de dilema”da luz amarela

(JENSEN et al., 2016).

Contudo, replicar a percepção humana via software apresenta desafios técnicos

formidáveis. O ambiente urbano é caótico e visualmente polúıdo. Jensen et al. (2016)

destacam que um sistema robusto precisa lidar com variações extremas de iluminação:

durante o dia, o sol pode causar reflexos ou ”fantasmas”na lente, lavando a cor da luz;

à noite, o alto contraste pode saturar o sensor da câmera ou gerar halos de luz que

distorcem a forma do semáforo. Além disso, existe o problema recorrente das falsas
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detecções, onde luzes de freio de outros carros, letreiros de neon ou reflexos em janelas

podem ser confundidos com um sinal de trânsito (PHILIPSEN et al., 2015).

Outro obstáculo significativo é a variabilidade geométrica e posicional. Conforme

ilustrado por Jensen et al. (2016), os semáforos não são padronizados globalmente: eles po-

dem estar dispostos verticalmente ou horizontalmente, suspensos por cabos (balançando

com o vento) ou fixos em postes laterais. Além das tradicionais luzes circulares, existem

setas direcionais, contadores regressivos e ı́cones espećıficos para pedestres ou bicicletas.

O sistema de visão computacional deve ser capaz de generalizar o aprendizado para re-

conhecer todas essas variantes, mesmo quando o objeto está parcialmente oculto por um

caminhão, uma árvore ou afetado por condições climáticas adversas como chuva e neblina

(JENSEN et al., 2016).

Para enfrentar essa complexidade, a literatura divide o problema em etapas se-

quenciais: detecção (encontrar o objeto na imagem), classificação (determinar se é verde,

amarelo ou vermelho) e rastreamento (acompanhar o objeto ao longo do tempo). En-

quanto abordagens antigas tentavam resolver isso com regras manuais baseadas em cor

e formato (métodos heuŕısticos), Philipsen et al. (2015) apontam que o estado da arte

migrou para abordagens baseadas em aprendizado de máquina (learning-based), que de-

monstraram ser ordens de magnitude superiores em precisão e recuperação (recall), espe-

cialmente quando treinadas com grandes volumes de dados.

É nesse contexto de aprendizado baseado em dados que surge a necessidade de

bancos de imagens robustos para treinamento e validação. Philipsen et al. (2015) intro-

duziram o LISA Traffic Light Dataset, desenvolvido pela Universidade da Califórnia em

San Diego, para suprir a carência de bases de dados públicas e desafiadoras. Diferente de

conjuntos de dados pequenos e controlados, o LISA contém mais de 112 mil anotações de

semáforos capturadas em cenários reais de condução urbana nos EUA.

O diferencial do dataset LISA, segundo Jensen et al. (2016), reside na sua diversi-

dade: as sequências de v́ıdeo capturam transições de iluminação, variando desde a manhã

clara até o crepúsculo e a noite completa. Ele inclui situações complexas com múltiplos

semáforos viśıveis simultaneamente, oclusões e distâncias variadas. Essa variabilidade o

torna uma ferramenta essencial para testar a confiabilidade de algoritmos, servindo como
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a base de dados escolhida para o desenvolvimento e avaliação dos modelos de IA propostos

neste trabalho.

2.5 Segurança e Confiabilidade em ML

A adoção de modelos de ML em sistemas cŕıticos exige uma mudança de paradigma na

engenharia de software. Diferente da programação tradicional, onde a lógica é codificada

explicitamente por humanos através de regras determińısticas, sistemas de ML induzem

seu comportamento a partir de dados (HURWITZ; KIRSCH, 2018). Isso implica que

a confiabilidade do sistema não depende apenas da ausência de bugs no código, mas

fundamentalmente da qualidade, veracidade e representatividade dos dados utilizados

no treinamento. Conforme alertam Hurwitz e Kirsch (2018), um modelo é apenas uma

“aproximação da realidade”; se os dados contiverem vieses ou não cobrirem cenários raros,

a “inteligência” do sistema pode falhar silenciosamente.

Do ponto de vista da engenharia de sistemas, Sculley et al. (2015) introduzem o

conceito de “Dı́vida Técnica Oculta” em ML. Eles argumentam que, embora desenvolver

um modelo inicial seja relativamente rápido, mantê-lo confiável ao longo do tempo é com-

plexo devido ao prinćıpio CACE (Changing Anything Changes Everything). Em sistemas

de ML, não existe isolamento estrito: uma simples alteração no sinal de entrada, como

a troca de um sensor ou uma mudança na iluminação do ambiente, pode alterar o com-

portamento de toda a rede de predição. Sculley et al. (2015) destacam que a maior parte

do código em um sistema real não é o algoritmo de ML em si, mas a vasta infraestrutura

de coleta, preparação e monitoramento de dados, onde a erosão de fronteiras pode criar

dependências frágeis e potencialmente perigosas.

Além da fragilidade sistêmica, existe o desafio estat́ıstico da validação. Koopman

e Wagner (2016) explicam que é inviável garantir a segurança de um véıculo autônomo

apenas através de testes extensivos de rodagem, pois eventos catastróficos são estatistica-

mente raros — os chamados “Cisnes Negros”. Um sistema pode funcionar corretamente

para milhões de situações comuns e ainda assim falhar em um cenário inédito que não

estava presente no conjunto de treinamento. Por esse motivo, a confiabilidade deve ser

considerada como um requisito de projeto, utilizando estratégias arquiteturais como o
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par Monitor/Atuador, no qual um sistema de segurança mais simples e determińıstico su-

pervisiona as decisões de um modelo de aprendizado complexo (KOOPMAN; WAGNER,

2016).

Esse cenário evidencia uma limitação fundamental das práticas tradicionais de

Engenharia de Software. Técnicas clássicas de verificação e validação realizadas em tempo

de projeto (design-time), como testes unitários, testes de integração e validação baseada

em requisitos, pressupõem sistemas com comportamento determińıstico e totalmente es-

pecificável. Em sistemas baseados em Machine Learning, cujo comportamento é induzido

a partir de dados e pode variar conforme o ambiente de operação, tais abordagens não

são suficientes para garantir ńıveis adequados de confiança, especialmente em aplicações

de segurança cŕıtica como véıculos autônomos. Dessa forma, torna-se necessária a adoção

de mecanismos complementares capazes de avaliar o comportamento do modelo durante

a execução, monitorando posśıveis desvios e situações de risco que não puderam ser ante-

cipadas na fase de desenvolvimento.

Para avaliar o desempenho de classificadores, métricas quantitativas são ampla-

mente utilizadas. Entretanto, métricas isoladas podem levar a interpretações equivocadas.

A literatura técnica (PHILIPSEN et al., 2015; JENSEN et al., 2016) destaca três conceitos

fundamentais para a avaliação de modelos de classificação:

• Acurácia (Accuracy): Métrica intuitiva que expressa a proporção total de clas-

sificações corretas realizadas pelo modelo. Embora amplamente utilizada, pode ser

enganosa em cenários com dados desbalanceados. Em um contexto urbano onde a

maioria dos semáforos esteja verde, um modelo que sempre indique esse estado pode

apresentar alta acurácia, apesar de ser inadequado e inseguro.

• Precisão (Precision): Indica o quão confiáveis são as decisões positivas do mo-

delo, ou seja, com que frequência uma detecção realizada corresponde de fato a um

evento real. Em sistemas veiculares, alta precisão reduz ações desnecessárias, como

frenagens indevidas.

• Revocação (Recall): Mede a capacidade do sistema de identificar todos os even-

tos relevantes presentes no ambiente. Em aplicações de segurança, essa métrica é
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particularmente cŕıtica, pois valores baixos indicam que situações perigosas podem

não ser detectadas.

A aplicação desses conceitos ao domı́nio do trânsito evidencia a assimetria do

risco. Conforme discutido por Jensen et al. (2016), em sistemas de assistência ao condu-

tor, os erros não possuem o mesmo impacto. A não detecção de um sinal vermelho pode

resultar em acidentes graves, enquanto uma detecção incorreta tende a gerar apenas uma

interrupção desnecessária da condução. Dessa forma, um sistema de ML confiável, no

contexto deste Trabalho de Conclusão de Curso, não é necessariamente aquele que apre-

senta a maior acurácia geral, mas sim aquele capaz de minimizar falhas cŕıticas, mantendo

desempenho estável mesmo diante das variações do ambiente real.

2.6 SafeML

Para garantir que os modelos operem dentro de parâmetros seguros, mesmo diante de

dados desconhecidos, este trabalho utiliza a abordagem SafeML. Proposta originalmente

por Aslansefat et al. (2020) e aprimorada em sua segunda versão (SafeML II) por As-

lansefat et al. (2021), essa técnica atua como um monitor de segurança em tempo de

execução (runtime safety monitor), detectando quando os dados de entrada divergem

estatisticamente dos dados conhecidos pelo modelo durante o treinamento.

Arquitetura e Funcionamento: Fases Offline e Online

A implementação do SafeML não se resume a uma métrica isolada, mas sim a um fra-

mework operacional dividido em duas fases distintas: a Fase de Treinamento (Offline) e

a Fase de Aplicação (Online), conforme ilustrado na estrutura geral da Figura 2.7.

Na Fase Offline, utiliza-se um dataset confiável e rotulado para treinar o classi-

ficador. Após o treinamento, o sistema não apenas salva os pesos do modelo, mas também

extrai o perfil estat́ıstico de cada classe correta. Segundo Aslansefat et al. (2021), isso

é feito armazenando a Função de Distribuição Cumulativa Emṕırica (ECDF) das carac-

teŕısticas extráıdas das imagens de treino, como valores de pixels ou ativações internas

do modelo, dependendo do classificador utilizado. Esses perfis estat́ısticos servem como a
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assinatura de referência do que é considerado um dado seguro e conhecido.

Na Fase Online, o sistema opera em tempo de execução recebendo imagens

não rotuladas. Um buffer temporal é utilizado para coletar uma pequena sequência de

amostras (por exemplo, 15 quadros consecutivos). O SafeML então calcula a ECDF

dessas novas amostras e mede a distância estat́ıstica em relação à assinatura de referência

armazenada durante a fase offline.

Distâncias Estat́ısticas e a Evolução com P-Value

Para quantificar a divergência entre os dados de treino e os dados observados em execução,

o framework SafeML emprega um conjunto de métricas de distância estat́ıstica. As prin-

cipais implementadas são:

1. Distância de Kolmogorov-Smirnov (KS): Calcula a maior distância vertical

absoluta entre duas funções de distribuição acumulada. É eficaz para detectar mu-

danças abruptas, mas apresenta menor sensibilidade às caudas da distribuição.

2. Distância de Kuiper (K): Variação da KS que considera conjuntamente os desvios

positivos e negativos, sendo mais senśıvel a alterações nos extremos dos dados.

3. Distância de Anderson-Darling (AD): Atribui maior peso às diferenças obser-

vadas nas caudas da distribuição, sendo particularmente útil para detectar eventos

raros e potencialmente cŕıticos em sistemas de segurança.

4. Distância de Cramer–VonMises (CVM): Calcula a soma das diferenças quadráticas

ao longo de toda a distribuição, oferecendo uma visão global da divergência entre

os conjuntos de dados.

5. Distância de Wasserstein (WD): Mede o esforço necessário para transformar

uma distribuição na outra. Conforme discutido por Aslansefat et al. (2021), a WD

é especialmente adequada para aplicações de visão computacional, pois captura a

geometria das alterações entre distribuições (vide Figura 2.8).

Embora o SafeML em sua versão inicial utilizasse essas métricas diretamente, o

método apresentava sensibilidade a variações irrelevantes dos dados. A principal inovação
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Figura 2.7: Fluxograma da abordagem SafeML: distinção entre a fase de treinamento (ex-
tração de parâmetros) e a fase de aplicação (monitoramento e decisão). Fonte: Aslansefat
et al. (2020).
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Figura 2.8: Comparação visual das distâncias estat́ısticas: (a) KS foca no desvio máximo;
(b) Kuiper considera desvios positivos e negativos; (c) Wasserstein mede a área entre as
curvas. Fonte: Aslansefat et al. (2021).
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do SafeML II foi a introdução de um processo de validação estat́ıstica baseado em p-

value, obtido por meio de técnicas de bootstrapping. O sistema realiza múltiplas reamos-

tragens para verificar se a distância observada é estatisticamente significativa. Distâncias

associadas a valores elevados de p-value são consideradas estatisticamente não significati-

vas e tratadas como rúıdo. Conforme ilustrado na Figura 2.9, essa filtragem permite que

o monitor ignore variações de fundo e concentre a análise nas caracteŕısticas estruturais

relevantes do semáforo.

Figura 2.9: Impacto do p-value: (Topo) Sem validação estat́ıstica, o sistema é senśıvel a
rúıdos no fundo. (Baixo) Com p-value, o foco se restringe às caracteŕısticas relevantes do
objeto. Fonte: Aslansefat et al. (2021).

Protocolo de Decisão e Human-in-the-Loop

O objetivo final do monitoramento estat́ıstico é apoiar a tomada de decisão segura. As-

lansefat et al. (2021) definem três cenários de resposta com base no ńıvel de confiança

estimado pelo monitor:

• Alta Confiança: Quando a distância estat́ıstica validada é baixa, o sistema aceita

automaticamente a decisão produzida pelo modelo de aprendizado.

• Incerteza Moderada: Quando a confiança encontra-se próxima ao limiar, o sis-

tema pode optar por coletar mais dados, aumentar o tamanho do buffer ou consultar
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sensores redundantes antes de tomar uma decisão definitiva.

• Baixa Confiança (Human-in-the-Loop): Quando a divergência estat́ıstica é

elevada, o cenário é considerado desconhecido ou potencialmente adversarial. Nesses

casos, o SafeML rejeita a decisão automática e aciona um protocolo Human-in-the-

Loop, solicitando a intervenção do condutor ou a transição do véıculo para um modo

seguro.

Essa abordagem foi originalmente validada no dataset GTSRB, no qual uma CNN

com elevada acurácia foi monitorada. Os resultados apresentados por Aslansefat et al.

(2021) indicam que o SafeML II, utilizando a Distância de Wasserstein combinada com

validação via p-value, é capaz de antecipar a degradação do desempenho do classificador de

forma mais eficaz do que métodos baseados exclusivamente na incerteza da sáıda Softmax,

indicando seu potencial como um mecanismo robusto de alerta para sistemas de direção

autônoma.
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3 Trabalhos Relacionados

A pesquisa em sistemas de percepção para véıculos autônomos evoluiu significativamente

na última década. A literatura, contudo, evidencia uma dicotomia clara: de um lado,

trabalhos voltados à maximização de métricas de desempenho, como acurácia e precisão,

no reconhecimento automático de semáforos; de outro, estudos que abordam a segurança

funcional e os desafios relacionados à confiabilidade em sistemas baseados exclusivamente

em Machine Learning. Esta seção analisa essas abordagens de forma comparativa e posi-

ciona a proposta do SafeML nesse contexto.

No domı́nio espećıfico do reconhecimento de semáforos, Jensen et al. (2016) apre-

sentam um levantamento abrangente que descreve a evolução das abordagens empregadas

na área. Trabalhos iniciais baseavam-se predominantemente em métodos heuŕısticos, uti-

lizando regras manuais associadas à cor e à geometria dos semáforos. Embora eficientes

sob condições controladas, tais abordagens mostraram-se frágeis diante de variações de

iluminação, oclusões e cenários urbanos complexos. Como consequência, a literatura pas-

sou a adotar métodos baseados em Machine Learning, incluindo classificadores SVM e,

mais recentemente, redes neurais convolucionais (CNNs). Os autores destacam, entre-

tanto, que a comparação entre soluções é dificultada pela utilização recorrente de bases

de dados privadas, o que motivou a criação do LISA Traffic Light Dataset como referência

pública para avaliação de desempenho.

Apesar dos avanços obtidos em termos de acurácia, a validação da segurança des-

ses sistemas permanece um desafio em aberto. Koopman e Wagner (2016) argumentam

que abordagens tradicionais baseadas exclusivamente em testes extensivos são inadequa-

das para sistemas autônomos, devido à raridade estat́ıstica de eventos cŕıticos. Nesse

contexto, os autores defendem que a confiabilidade deve ser tratada como um requisito

arquitetural, propondo mecanismos de monitoramento em tempo de execução capazes de

supervisionar modelos de Machine Learning durante sua operação.

É nesse cenário que se insere o framework SafeML. Em sua proposta original, As-

lansefat et al. (2020) introduzem um mecanismo de monitoramento estat́ıstico em tempo
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de execução, baseado em medidas de distância entre distribuições de dados, com o obje-

tivo de identificar desvios entre os dados de treinamento e os dados observados durante

a aplicação. A abordagem permite estimar a confiabilidade do classificador sem acesso

à sua lógica interna, tratando o modelo como uma caixa-preta. Posteriormente, o Sa-

feML II (ASLANSEFAT et al., 2021) aprimora essa estratégia ao incorporar validação

estat́ıstica por meio de p-value e técnicas de bootstrapping, reduzindo a sensibilidade a

rúıdos irrelevantes.

A versão aprimorada do SafeML foi validada por Aslansefat et al. (2021) no con-

texto de véıculos autônomos, utilizando o reconhecimento de placas de trânsito no dataset

GTSRB. Os resultados demonstram que a Distância de Wasserstein, quando combinada

com filtragem estat́ıstica via p-value, é capaz de antecipar a degradação do desempenho do

classificador com maior precisão do que métodos baseados apenas na incerteza da sáıda da

rede neural. Contudo, esse estudo concentra-se em objetos estáticos, cujas caracteŕısticas

visuais diferem substancialmente das encontradas em semáforos.

A análise da literatura revela, portanto, uma lacuna espećıfica. Enquanto tra-

balhos como o de Jensen et al. (2016) priorizam a maximização do desempenho no re-

conhecimento de semáforos, e estudos como o de Aslansefat et al. (2021) investigam

mecanismos de monitoramento de confiabilidade em objetos estáticos, há uma ausência

de investigações que apliquem a metodologia SafeML II ao reconhecimento de semáforos.

Esses objetos apresentam desafios particulares, como mudança dinâmica de estado, menor

área em pixels e alta variabilidade de iluminação. O presente trabalho busca preencher

essa lacuna ao aplicar e analisar o uso do SafeML II em classificadores de semáforos trei-

nados com o dataset LISA, deslocando o foco da simples maximização de métricas de

acurácia para a avaliação da confiabilidade em tempo de execução.

Além do monitoramento estat́ıstico, uma linha de pesquisa complementar busca

aumentar a confiança em sistemas de percepção por meio de técnicas de explicabilidade,

inseridas no escopo da Explainable Artificial Intelligence (XAI). Duas das abordagens

mais proeminentes na literatura são o LIME (Local Interpretable Model-agnostic Expla-

nations) e o SHAP (SHapley Additive exPlanations). O LIME, proposto por Ribeiro et

al., atua aproximando localmente o comportamento de um modelo complexo por meio de
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modelos lineares mais simples e interpretáveis, permitindo entender quais caracteŕısticas

de uma imagem espećıfica influenciaram a classificação (RIBEIRO; SINGH; GUESTRIN,

2016; LIMA, 2024). Já o SHAP, fundamentado na teoria dos jogos cooperativos, atribui

valores de importância a cada atributo de entrada, oferecendo uma medida unificada de

contribuição de caracteŕısticas (LUNDBERG; LEE, 2017; NAZAT; ABDALLAH, 2024).

Embora essas ferramentas ofereçam insights valiosos sobre o funcionamento in-

terno dos modelos, elas não operam como mecanismos ativos de detecção de anomalias

ou de monitoramento estat́ıstico em tempo real — papel desempenhado pelo SafeML II

nesta pesquisa. Além disso, estudos recentes apontam que métodos como LIME e SHAP

podem gerar explicações conflitantes entre si ou instáveis diante de pequenas perturbações

nos dados, não garantindo a faithfulness necessária para aplicações cŕıticas de segurança

(JIA et al., 2022; NAZAT; ABDALLAH, 2024). A simples visualização de quais pixels

foram ”ativados”não é suficiente para garantir que o modelo não falhará em um cenário

de trânsito inédito.

Para lidar com essa lacuna entre o desenvolvimento de modelos e a garantia

formal de segurança, metodologias baseadas em Safety Cases têm sido propostas. O

framework AMLAS (Assurance of Machine Learning for use in Autonomous Systems),

desenvolvido por Paterson et al. (2025), estabelece um processo sistemático para justificar

a segurança de componentes baseados em ML. Os autores ilustram essa metodologia com

um estudo de caso aplicado a um detector de placas de pare em véıculos autônomos.

Eles demonstram que, para garantir a segurança, não basta apenas treinar o modelo; é

necessário construir um argumento estruturado que vincule os dados de treinamento, os

processos de verificação e os monitores de tempo de execução aos requisitos de segurança

do sistema, assegurando que o véıculo opere dentro de parâmetros aceitáveis de risco.
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4 Metodologia

Este caṕıtulo apresenta a metodologia adotada neste Trabalho de Conclusão de Curso,

descrevendo o fluxo completo empregado para a análise de confiabilidade de classificadores

de semáforos. Inicialmente, são apresentados os recursos computacionais e as ferramentas

utilizadas para a implementação do pipeline experimental. Em seguida, detalha-se a

base de dados empregada, bem como os procedimentos de preparação e organização das

amostras.

Na sequência, são descritos os modelos utilizados, incluindo uma SVM linear e

uma rede neural convolucional (CNN), bem como o processo de treinamento e a avaliação

de desempenho básica. Por fim, apresenta-se a integração do monitor estat́ıstico SafeML

II ao pipeline proposto, detalhando como as medidas de distância são calculadas, ana-

lisadas e utilizadas para avaliar a confiabilidade das decisões dos modelos em tempo de

execução. Cada uma dessas etapas é aprofundada nas seções subsequentes deste caṕıtulo.

A Figura 4.1 ilustra, de forma consolidada, o diagrama que representa o fluxo completo

da metodologia adotada neste trabalho.

4.1 Tecnologias e Ferramentas

A implementação do pipeline experimental deste trabalho foi realizada integralmente em

Python 3.x1, linguagem amplamente utilizada em pesquisa cient́ıfica e desenvolvimento

de sistemas baseados em aprendizado de máquina. A escolha do Python se deve à sua

1⟨https://www.python.org⟩

Figura 4.1: Diagrama que ilustra o fluxo da metodologia proposta neste trabalho.

https://www.python.org
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vasta disponibilidade de bibliotecas consolidadas, facilidade de integração entre diferentes

etapas do fluxo experimental e forte adoção na comunidade acadêmica e industrial.

Para a manipulação de imagens e processamento dos recortes provenientes do

dataset LISA, foi utilizada a biblioteca Pillow (PIL)2, que oferece suporte eficiente

para leitura, conversão e salvamento de imagens. Operações numéricas e manipulação

de matrizes foram realizadas com o aux́ılio da biblioteca NumPy3, fundamental para o

tratamento de dados em aplicações de visão computacional e aprendizado de máquina.

Os modelos avaliados neste trabalho foram implementados com duas bibliote-

cas amplamente reconhecidas. Para o classificador baseado em Máquinas de Vetores de

Suporte, utilizou-se a biblioteca scikit-learn4, que fornece implementações robustas de

algoritmos clássicos de aprendizado supervisionado, além de ferramentas para avaliação

de desempenho. Para o classificador baseado em redes neurais, empregou-se o módulo

TensorFlow/Keras5, escolhido por sua flexibilidade, clareza na definição de modelos e

ampla utilização em aplicações de aprendizado profundo.

A análise de confiabilidade dos classificadores foi realizada por meio do framework

SafeML II6, seguindo a abordagem proposta por seus autores. Essa metodologia foi inte-

grada ao pipeline por meio de módulos responsáveis pelo cálculo de distâncias estat́ısticas,

geração de mapas de calor e avaliação de limiares de confiança. A escolha do SafeML II se

deve à sua capacidade de atuar como um monitor de segurança independente do modelo,

permitindo a análise de confiabilidade sem acesso à lógica interna do classificador.

Os artefatos gerados durante os experimentos, como modelos treinados e resulta-

dos intermediários, são armazenados de forma persistente para garantir reprodutibilidade.

Para serialização de modelos e organização da execução dos scripts, foram utilizadas bi-

bliotecas auxiliares como joblib7 e argparse8. A estrutura de diretórios e a padronização

dos caminhos do projeto são centralizadas em um arquivo de configuração, facilitando a

manutenção e execução do código.

2⟨https://pillow.readthedocs.io/en/stable/⟩
3⟨https://numpy.org⟩
4⟨https://scikit-learn.org⟩
5⟨https://www.tensorflow.org⟩
6⟨https://github.com/koroshAslansefat/SafeML⟩
7⟨https://joblib.readthedocs.io⟩
8⟨https://docs.python.org/3/library/argparse.html⟩

https://pillow.readthedocs.io/en/stable/
https://numpy.org
https://scikit-learn.org
https://www.tensorflow.org
https://github.com/koroshAslansefat/SafeML
https://joblib.readthedocs.io
https://docs.python.org/3/library/argparse.html
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O versionamento do código-fonte é realizado por meio da plataforma GitHub9,

permitindo o controle de versões, rastreamento de alterações e organização do desenvol-

vimento ao longo do trabalho. Essa prática contribui para a transparência e reprodutibi-

lidade dos experimentos apresentados neste Trabalho de Conclusão de Curso.

Todos os experimentos foram executados em ambiente local, utilizando um com-

putador com processador AMD Ryzen 7 7700 de 8 núcleos a 3.80 GHz, 16 GB de

RAM, unidade SSD de 932 GB (Kingston SNV2S1000G) e placa de v́ıdeo dedicadaNVI-

DIA GeForce RTX 3060 com 12 GB de memória. Essa configuração permitiu realizar

as etapas de treinamento, coleta e avaliação com desempenho satisfatório, embora o tempo

de execução tenha sido monitorado como um fator relevante, especialmente nas análises

com o framework SafeML II.

4.2 Base de Dados

Os experimentos deste trabalho utilizam o LISA Traffic Light Dataset, um conjunto de

dados público amplamente empregado em pesquisas sobre reconhecimento automático

de semáforos em ambientes urbanos. O dataset é composto por sequências de v́ıdeo

capturadas em condições reais de condução, abrangendo peŕıodos diurnos e noturnos,

com grande variabilidade de iluminação, distância, oclusões parciais e múltiplos semáforos

viśıveis simultaneamente (PHILIPSEN et al., 2015; JENSEN et al., 2016). As imagens

são acompanhadas de anotações manuais que indicam, quadro a quadro, a posição da

lâmpada ativa do semáforo por meio de caixas delimitadoras (bounding boxes), bem como

o respectivo estado do sinal.

O LISA Traffic Light Dataset contempla múltiplos estados de semáforos, inclu-

indo não apenas as classes tradicionais go, warning e stop, mas também variações dire-

cionais como goLeft, goForward, warningLeft e stopLeft. Essa granularidade possibilita

análises mais detalhadas sobre sinalização direcional, porém resulta em uma distribuição

fortemente desbalanceada entre as classes.

Neste trabalho, todas as imagens anotadas no dataset são inicialmente processa-

das por meio do recorte automático das regiões de interesse correspondentes aos semáforos,

9⟨https://github.com/SavioChermont/tcc-safeml⟩

https://github.com/SavioChermont/tcc-safeml
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conforme definido nas anotações originais. Esse procedimento é realizado pelo script sour-

ce/lisa dataset builder.py, responsável por ler os arquivos de anotação, extrair as regiões

delimitadas e associar cada recorte ao seu rótulo. Essa estratégia permite isolar a tarefa

de classificação do estado do semáforo, abstraindo o problema de detecção e concen-

trando a análise no comportamento dos classificadores e na confiabilidade estimada pelo

monitor estat́ıstico.

A organização dos dados segue a separação entre conjuntos de treinamento e

teste, respeitando a estrutura original do dataset. O conjunto de treinamento é composto

por amostras provenientes das sequências dayTrain e nightTrain, enquanto o conjunto

de teste utiliza imagens das sequências daySequence1, daySequence2, nightSequence1

e nightSequence2. Essa separação assegura que as imagens utilizadas para avaliação não

sejam vistas durante o processo de treinamento dos modelos.

A Tabela 4.1 apresenta a distribuição das classes após a etapa de curadoria.

Observa-se uma forte assimetria na quantidade de amostras entre as classes principais e

as classes direcionais, especialmente no conjunto de teste. Em particular, classes como

goForward e warningLeft apresentam número reduzido de exemplos, o que comprome-

teria a robustez estat́ıstica das análises de confiabilidade baseadas na comparação entre

distribuições.

Tabela 4.1: Distribuição das classes do LISA Traffic Light Dataset após a etapa de cura-
doria

Classe Treinamento Teste
go 22 946 23 777
goForward – 205
goLeft 1 236 1 240
stop 18 382 25 936
stopLeft 7 707 5 027
warning 1 258 1 411
warningLeft 297 53

Diante dessa distribuição desigual, optou-se por restringir os experimentos às três

classes principais — go, warning e stop. Essa decisão baseia-se na constatação de que as

classes direcionais apresentam número insuficiente de amostras, sobretudo no conjunto de

teste, inviabilizando uma análise estat́ıstica robusta. Além disso, as três classes seleciona-

das correspondem diretamente às decisões fundamentais de condução veicular — seguir,
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atenção e parar — que constituem o foco deste Trabalho de Conclusão de Curso.

Além da distribuição por classe, o dataset contempla imagens capturadas em dife-

rentes condições de iluminação, incluindo peŕıodos diurnos e noturnos. Essa distinção não

se apresenta de forma rigidamente separada, mas reflete variações naturais do cenário de

aquisição, uma vez que fatores como iluminação, contraste, reflexos e saturação luminosa

podem modificar significativamente a aparência das imagens. A Tabela 4.2 apresenta a

distribuição dessas imagens nos conjuntos de treinamento e teste, evidenciando a coe-

xistência de ambas as condições em diferentes proporções.

Tabela 4.2: Distribuição das classes do LISA Traffic Light Dataset segundo o peŕıodo de
captura (dia/noite)

Classe Treinamento Teste
Dia Noite Dia Noite

go 13 830 9 116 6 959 16 818
goLeft 851 385 553 687
goForward 0 0 205 0
stop 15 113 3 269 6 962 18 974
stopLeft 6 971 736 2 884 2 143
warning 755 503 404 1 007
warningLeft 290 7 53 0

Cabe destacar que, neste trabalho, optou-se por utilizar o dataset conforme a

divisão originalmente disponibilizada, a qual contém uma quantidade maior de imagens

no conjunto de teste em relação ao conjunto de treinamento, diferindo da prática mais

comum na área, que geralmente adota uma divisão aproximada de 80% para treinamento

e 20% para teste. Essa escolha metodológica é intencional e está alinhada aos objetivos

do estudo, uma vez que o foco principal não é maximizar o desempenho preditivo dos

modelos, mas avaliar a capacidade do SafeML II em identificar cenários nos quais os

classificadores operam fora de seu domı́nio de treinamento, mesmo quando apresentam

ńıveis elevados de acurácia. Dessa forma, a adoção dessa separação considerada at́ıpica

fornece um cenário apropriado para a análise da confiabilidade dos modelos em condições

adversas e de maior variabilidade visual, aspecto explorado nos caṕıtulos de resultados e

conclusão.
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4.3 Modelos de Classificação

Esta seção descreve as etapas comuns envolvidas na preparação dos dados e no fluxo de

treinamento dos classificadores utilizados neste trabalho. São apresentados os procedi-

mentos de carregamento, pré-processamento e organização das amostras, bem como as

estratégias adotadas para garantir consistência entre os experimentos. Esses passos cons-

tituem a base sobre a qual as abordagens espećıficas de cada modelo são posteriormente

detalhadas nas subseções seguintes.

O carregamento dos dados é realizado por meio da função load split, definida

no módulo data utils.py. Essa função percorre os diretórios correspondentes aos con-

juntos de treinamento ou teste, lendo as imagens previamente recortadas. Durante essa

etapa, são consideradas apenas as classes definidas na lista de permissões (whitelist), con-

figurada no arquivo config.py como {go, stop, warning}, garantindo consistência entre

os experimentos e foco nas classes principais analisadas neste trabalho.

Cada imagem é carregada no formato RGB, convertida para representação em

ponto flutuante e normalizada para o intervalo [0, 1]. As imagens possuem tamanho fixo

de 30×30 pixels, conforme definido na configuração global do projeto. Essa padronização

assegura que todos os exemplos de entrada possuam a mesma dimensionalidade, indepen-

dentemente do modelo utilizado.

No caso do classificador SVM, as imagens normalizadas são achatadas em vetores

unidimensionais de 2 700 posições (30×30×3), formando o conjunto de caracteŕısticas de

entrada do modelo. Para a CNN, as imagens são mantidas inicialmente em sua estrutura

bidimensional com canais de cor, sendo reorganizadas posteriormente no formato 30 ×

30× 3 durante a etapa espećıfica de treinamento da rede neural.

Com o objetivo de mitigar o desbalanceamento entre classes no conjunto de trei-

namento, é aplicado um limite máximo de amostras por classe, definido pela constante

MAX PER CLASS TRAIN. Neste trabalho, esse valor foi fixado em 3 000 exemplos por classe.

Dessa forma, classes majoritárias como go e stop têm seu volume reduzido, enquanto a

classe warning é utilizada em sua totalidade, uma vez que possui menor número de amos-

tras dispońıveis. O conjunto de teste, por sua vez, é carregado sem restrições, utilizando

todas as imagens dispońıveis para cada classe.
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Após o carregamento e pré-processamento, os dados de treinamento são arma-

zenados em arquivos de cache no formato .npz, contendo as amostras de entrada, os

rótulos correspondentes e a lista de classes consideradas. Esses arquivos são salvos em

diretórios espećıficos para cada modelo e utilizados tanto na etapa de treinamento quanto

nas análises posteriores de confiabilidade com o SafeML II. Essa estratégia evita o repro-

cessamento repetido do dataset e garante que as mesmas representações de dados sejam

utilizadas de forma consistente ao longo de todo o pipeline experimental.

4.3.1 SVM

Classificador SVM Linear

O classificador baseado em Máquinas de Vetores de Suporte (SVM) foi implementado

utilizando uma fronteira de decisão linear por meio da biblioteca scikit-learn. A opção

por um modelo linear é adequada ao contexto deste trabalho, pois as imagens são repre-

sentadas em um espaço de caracteŕısticas de alta dimensionalidade, no qual separações

lineares costumam apresentar bom desempenho com menor custo computacional.

A implementação é realizada por meio de um pipeline que combina uma etapa de

padronização das caracteŕısticas com o algoritmo de classificação. A padronização é feita

utilizando o StandardScaler, cuja função é ajustar a escala das variáveis de entrada para

que todas apresentem variância comparável. Essa etapa é importante porque o modelo é

senśıvel à escala das caracteŕısticas: valores muito grandes podem dominar o processo de

otimização, prejudicando a qualidade da fronteira de decisão.

O StandardScaler é configurado com a opção with mean=False, o que significa

que os dados não são centralizados em torno da média. Essa escolha é necessária porque

as imagens são representadas como vetores de pixels não negativos, normalizados no

intervalo [0, 1]. Subtrair a média desses vetores poderia alterar a interpretação direta dos

valores de intensidade dos pixels, além de não trazer benef́ıcios práticos para esse tipo de

representação. Assim, mantém-se a distribuição original dos dados, ao mesmo tempo em

que se controla sua escala.

Para a etapa de classificação, utiliza-se o algoritmo LinearSVC. Diferentemente

do SVC com kernel linear, o LinearSVC é otimizado especificamente para classificadores
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lineares em espaços de alta dimensionalidade, oferecendo maior eficiência computacional

e menor consumo de memória. Essa caracteŕıstica é especialmente relevante quando se

trabalha com vetores de entrada longos, como no caso das imagens achatadas utilizadas

neste trabalho.

Além disso, o LinearSVC lida automaticamente com o problema multiclasse por

meio da estratégia one-vs-rest, treinando um classificador binário para cada classe em

relação às demais. Essa abordagem é simples, eficiente e amplamente utilizada em

aplicações práticas de classificação.

Após o treinamento, o modelo é avaliado no conjunto de teste utilizando métricas

de desempenho padrão, permitindo verificar o comportamento do classificador antes da

aplicação das técnicas de análise de confiabilidade. O modelo treinado é então persistido

em disco, possibilitando sua reutilização nas etapas posteriores do pipeline experimental.

4.3.2 CNN

O segundo modelo avaliado neste trabalho é um classificador baseado em Rede Neural

Convolucional (CNN), implementado com o objetivo de explorar explicitamente a estru-

tura espacial das imagens de semáforos. Diferentemente do SVM, que opera sobre vetores

de caracteŕısticas achatados, a CNN processa as imagens preservando a organização bi-

dimensional dos pixels e seus canais de cor, caracteŕıstica particularmente relevante para

tarefas de visão computacional.

As imagens de entrada, inicialmente representadas como vetores unidimensionais,

são reorganizadas no formato 30 × 30 × 3 antes do treinamento da rede neural. Os

rótulos, originalmente representados como cadeias de caracteres, são convertidos para

ı́ndices numéricos e, em seguida, codificados no formato one-hot. Essa representação é

necessária para o treinamento supervisionado da rede, uma vez que a função de perda

utilizada assume uma codificação categórica das classes.

A arquitetura da CNN adotada neste trabalho é propositalmente simples, visando

reduzir o risco de sobreajuste e facilitar a análise de confiabilidade. O modelo é composto

por três camadas convolucionais empilhadas, intercaladas com camadas de subamostra-

gem (max pooling), permitindo a extração progressiva de caracteŕısticas visuais de baixo
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para alto ńıvel. Após a etapa convolucional, os mapas de caracteŕısticas são transforma-

dos em um vetor unidimensional e submetidos a uma camada de dropout, utilizada como

mecanismo de regularização para reduzir a dependência excessiva de neurônios espećıficos

durante o treinamento.

Na fase final, uma camada densa intermediária é empregada para combinar as

caracteŕısticas extráıdas, seguida por uma camada de sáıda com função de ativação soft-

max. Essa configuração permite que o modelo produza uma distribuição de probabilidades

sobre as classes consideradas, possibilitando a classificação do estado do semáforo em go,

stop ou warning.

O treinamento da CNN é realizado utilizando o otimizador Adam, escolhido por

sua eficiência e ampla adoção em aplicações de aprendizado profundo. A função de perda

empregada é a categorical cross-entropy, adequada para problemas de classificação mul-

ticlasse com rótulos categóricos. Os hiperparâmetros de treinamento foram definidos de

forma conservadora, priorizando a estabilidade do aprendizado e a redução do risco de

sobreajuste. Em particular, adotou-se um número limitado de épocas de treinamento

(15 épocas), evitando ajustes excessivos aos dados de treinamento, bem como um tama-

nho de lote intermediário (32 amostras), que favorece um compromisso entre estabilidade

na estimativa do gradiente e capacidade de generalização. Além disso, a arquitetura da

rede foi mantida relativamente simples, com três camadas convolucionais contendo um

número moderado de filtros (32, 64 e 128), seguidas de uma camada de dropout com taxa

de 0,5, utilizada como mecanismo de regularização. Essas escolhas refletem uma aborda-

gem conservadora ao evitar arquiteturas excessivamente profundas ou longos peŕıodos de

treinamento, especialmente considerando o tamanho reduzido do conjunto de treinamento

e o objetivo deste trabalho de analisar o comportamento e a confiabilidade dos modelos,

em vez de maximizar exclusivamente o desempenho preditivo.

Após o treinamento, o desempenho da rede é avaliado no conjunto de teste por

meio de métricas padrão de classificação, permitindo analisar o comportamento da CNN

antes da aplicação das técnicas de monitoramento de confiabilidade. O modelo treinado

é então persistido em disco para uso posterior.

Além do salvamento do modelo, os dados de treinamento são armazenados em
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formato compat́ıvel com as etapas de análise do SafeML II. Essa decisão garante que a

análise estat́ıstica de confiabilidade seja realizada sobre a mesma representação de dados

utilizada durante o treinamento da rede, assegurando consistência entre os modelos avali-

ados e permitindo uma comparação direta entre os resultados obtidos com a CNN e com

o classificador SVM.

4.4 Predição e Coleta de Dados com SafeML

Após o treinamento dos classificadores, a etapa seguinte do pipeline consiste na aplicação

do monitor estat́ıstico SafeML II para a análise de confiabilidade das predições realizadas

pelos modelos. Essa etapa tem como objetivo quantificar o grau de divergência entre os

dados utilizados no treinamento e as amostras observadas durante a fase de aplicação,

permitindo avaliar se o classificador está operando em um regime conhecido ou potenci-

almente inseguro.

A coleta das métricas de confiabilidade é realizada por meio do script source/-

safeml collect.py, que opera de forma independente do modelo avaliado. O script recebe

como parâmetro o tipo de classificador analisado (svm ou cnn) e utiliza automaticamente

os caminhos padrão definidos no arquivo config.py para localizar o modelo treinado e

o cache de dados de treinamento. Opcionalmente, podem ser aplicados filtros para res-

tringir a análise a imagens capturadas exclusivamente durante o dia ou durante a noite,

possibilitando investigações espećıficas sobre o impacto das condições de iluminação.

Inicialmente, carrega o conjunto de dados de treinamento previamente armaze-

nado em cache, contendo as amostras de entrada, os rótulos correspondentes e a lista de

classes consideradas. Esse cache utiliza exatamente a mesma representação dos dados

empregada no treinamento dos classificadores, garantindo consistência entre as etapas do

pipeline. Em seguida, o conjunto de teste é carregado e utilizado como entrada para o

modelo treinado, que realiza a predição do estado do semáforo para cada imagem.

Com base nos rótulos reais e nas predições do modelo, as amostras do conjunto de

teste são separadas, para cada classe, em dois subconjuntos distintos: amostras classifica-

das corretamente e amostras classificadas incorretamente. Essa separação é fundamental

para a análise proposta, pois permite comparar o comportamento estat́ıstico do modelo
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em situações nas quais a decisão foi correta e em situações nas quais ocorreu erro de

classificação.

Para viabilizar o cálculo das métricas estat́ısticas, é realizada uma amostragem

limitada dos dados, controlada por um parâmetro de configuração. Para cada classe, são

selecionadas até um número máximo de amostras do conjunto de treinamento, bem como

das amostras corretas e incorretas do conjunto de teste. Essa estratégia reduz o custo

computacional da análise e permite manter a comparação estat́ıstica equilibrada entre os

conjuntos.

A partir dessas amostras, o SafeML II calcula, para cada classe, a Distância

de Wasserstein (WD) entre a distribuição dos pixels do conjunto de treinamento e a

distribuição dos pixels das amostras classificadas incorretamente. Essa implementação

de WD foi incorporada diretamente da biblioteca do framework SafeML, com base na

formulação original proposta pelos autores. A implementação adaptada para Python está

localizada no módulo Wasserstein Dist PVal.py.

Em paralelo, é aplicado um procedimento de validação estat́ıstica baseado em

bootstrap e p-value, permitindo identificar quais diferenças são estatisticamente significa-

tivas. O valor de p é calculado através de 1.000 reamostragens dos dados, onde distâncias

maiores que a original são contadas para determinar a significância. Distâncias com p-

value maior que 0.05 são consideradas como rúıdo e descartadas da análise. Essa filtragem

ajuda a reduzir a influência de variações irrelevantes e foca apenas nas diferenças estatis-

ticamente significativas.

Além dos mapas de distância, o script gera estat́ısticas resumidas por canal de cor,

incluindo a média das distâncias estatisticamente significativas e o número de pixels que

apresentam divergência relevante. Essas estat́ısticas são calculadas tanto para amostras

classificadas incorretamente quanto para amostras classificadas corretamente, sendo estas

últimas utilizadas como uma referência de comportamento esperado do modelo.

Todos os resultados da coleta SafeML são organizados em uma estrutura de dados

que inclui contagens de amostras, estat́ısticas por classe e por canal, mapas de distância

e os caminhos das imagens utilizadas nas amostras incorretas. Essas informações são

armazenadas em arquivos persistentes no diretório de artefatos do projeto, possibilitando
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sua reutilização nas etapas subsequentes de análise visual e avaliação experimental de

limiares de confiança.

Essa etapa estabelece, portanto, a ponte entre as predições realizadas pelos classi-

ficadores e a análise de confiabilidade proposta neste trabalho, fornecendo tanto métricas

quantitativas quanto subśıdios visuais para a interpretação do comportamento dos mode-

los em cenários corretos e incorretos.

4.5 Análise dos Dados

Após a coleta das métricas estat́ısticas de confiabilidade por meio do SafeML II, torna-se

necessário interpretar esses dados de forma estruturada. Nesta etapa, a análise é condu-

zida sob duas perspectivas complementares: uma análise visual, baseada em mapas de

calor que evidenciam regiões cŕıticas das imagens, e uma análise experimental baseada em

limiares, que avalia o comportamento do monitor estat́ıstico em um cenário simplificado

de decisão.

4.5.1 Análise Visual por Mapas de Calor

A análise visual tem como objetivo fornecer uma interpretação intuitiva dos valores cal-

culados pelo SafeML II, auxiliando na compreensão de quais regiões da imagem mais

contribuem para a divergência estat́ıstica observada nos casos de erro de classificação.

Essa etapa é realizada pelo código source/safeml heatmaps.py, que opera exclusiva-

mente sobre os resultados previamente salvos durante a fase de coleta, sem recalcular

quaisquer métricas estat́ısticas.

O script lê o arquivo safeml results.npz, que contém, para cada classe, os ma-

pas bidimensionais da WD calculados pixel a pixel e por canal de cor (RGB). Dois tipos

de mapas são considerados: o mapa completo de distâncias, que representa a intensidade

relativa da divergência estat́ıstica em cada pixel, e o mapa filtrado por significância es-

tat́ıstica, no qual valores associados a pixels com p-value maior ou igual a 0,05 são zerados,

de acordo com o limiar adotado neste trabalho.

A partir desses dados, são geradas visualizações em forma de mapas de calor no
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formato 30 × 30, correspondentes à resolução das imagens utilizadas nos experimentos.

Os mapas são produzidos individualmente para cada canal de cor, bem como em uma

versão agregada, obtida pela média dos três canais, permitindo observar tanto padrões

cromáticos espećıficos quanto tendências espaciais globais.

É importante destacar que os mapas de calor utilizam uma escala de cores norma-

lizada para fins de visualização. Dessa forma, regiões exibidas em tons mais claros (como

amarelo ou branco) não indicam valores absolutos da Distância de Wasserstein próximos

de 1, mas sim os pixels que apresentam maior divergência estat́ıstica relativa em com-

paração aos demais pixels da mesma imagem. Os valores absolutos de WD permanecem

moderados, refletindo o fato de que, mesmo nos casos de erro, as imagens analisadas ainda

pertencem ao mesmo domı́nio visual do conjunto de treinamento.

Os mapas, que serão apresentados no próximo caṕıtulo deste trabalho, não têm

finalidade preditiva, mas desempenham um papel explicativo importante. Eles permitem

identificar regiões da imagem onde pequenas variações nos valores dos pixels resultam

em diferenças estat́ısticas mais pronunciadas em relação ao perfil aprendido durante o

treinamento, indicando potenciais fontes de incerteza para o classificador. Dessa forma, a

análise visual complementa as métricas numéricas ao fornecer subśıdios qualitativos para

a interpretação do comportamento do modelo sob condições adversas.

4.5.2 Avaliação Experimental por Definição de Limiar

Além da análise visual, é realizada uma avaliação experimental simplificada com base

na definição de limiares de aceitação para as métricas de confiabilidade calculadas pelo

SafeML II. Essa etapa tem caráter exploratório e visa simular, de forma controlada,

como um monitor estat́ıstico poderia ser utilizado para aceitar ou rejeitar decisões de um

classificador em tempo de execução.

Essa avaliação é conduzida pelo código source/safeml eval threshold.py. Di-

ferentemente da etapa de coleta, esse script não utiliza diretamente o modelo classificador

treinado. Em vez disso, ele opera exclusivamente sobre o conjunto de treinamento previ-

amente armazenado em cache e sobre amostras do conjunto de teste, focando apenas no

comportamento estat́ıstico dos dados.
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O procedimento consiste na seleção de pequenos buffers de imagens do conjunto

de teste, agrupados por classe, contendo um número fixo de amostras sequenciais. Para

cada classe, é calculada a média da WD estatisticamente significativa entre as distribuições

dos pixels do conjunto de treinamento e as distribuições dos pixels presentes no buffer.

Esse cálculo é realizado por canal de cor e posteriormente agregado em um único valor

representativo por classe.

Os valores obtidos são então comparados a limiares previamente definidos para

cada classe. Caso a distância média fique abaixo do limiar estabelecido, o buffer é con-

siderado estatisticamente consistente com os dados de treinamento, sendo aceito pelo

monitor. Caso contrário, o buffer é rejeitado, indicando um posśıvel cenário fora do

domı́nio conhecido pelo modelo.

Para reduzir o custo computacional, são aplicadas subamostragens tanto no número

de imagens do conjunto de treinamento quanto no número de pixels utilizados no cálculo,

sem comprometer o objetivo exploratório da análise. O script permite ainda a aplicação

de filtros para avaliar separadamente imagens capturadas durante o dia ou durante a noite,

possibilitando investigações espećıficas sobre o impacto das condições de iluminação.

Essa etapa não tem como objetivo medir desempenho preditivo, mas sim avaliar

a viabilidade prática do uso de métricas estat́ısticas como critério auxiliar de decisão.

Os resultados obtidos servem como base para discutir o potencial do SafeML II como

ferramenta de apoio à confiabilidade em sistemas de Visão Computacional embarcados.
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5 Resultados

5.1 Resultados do Treinamento dos Classificadores

Esta seção apresenta os resultados obtidos com o treinamento e a avaliação dos clas-

sificadores, considerando métricas tradicionais de desempenho. Conforme descrito no

Caṕıtulo 4, o conjunto de treinamento foi balanceado por meio da limitação do número

máximo de amostras por classe, enquanto o conjunto de teste foi utilizado em sua totali-

dade, sem qualquer restrição, refletindo de forma mais fiel a distribuição real dos dados.

As métricas apresentadas nas tabelas a seguir são amplamente utilizadas na ava-

liação de modelos de classificação. Além da acurácia, precisão e revocação — já explicadas

no Caṕıtulo 2 (Fundamentação Teórica) —, utilizamos uma métrica complementar cha-

mada F1-score.

O F1-score representa a média harmônica entre a precisão e a revocação, sendo

especialmente útil em cenários com classes desbalanceadas, pois oferece uma medida equi-

librada entre ambos os aspectos. Por fim, a coluna Quantidade indica o número de

amostras reais de cada classe no conjunto de teste, o que permite contextualizar a repre-

sentatividade estat́ıstica dos resultados.

5.1.1 Resultados da CNN

A CNN apresentou acurácia de 98,39% no conjunto de teste. A Tabela 5.1 apresenta o

desempenho do modelo por classe.

Tabela 5.1: Desempenho da CNN no conjunto de teste
Classe Precisão Revocação F1-score Quantidade
go 1.00 0.98 0.99 23 777
stop 0.99 0.99 0.99 25 936
warning 0.76 0.95 0.84 1 411
Acurácia geral 0.9839

Observa-se que as classes go e stop apresentaram valores elevados de precisão e

revocação, indicando que o modelo foi capaz de aprender de forma eficaz os padrões visuais
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associados a esses estados do semáforo. Em contraste, a classe warning apresentou alta

revocação e menor precisão, o que indica que o modelo tende a identificar a maioria dos

semáforos amarelos, porém ao custo de um maior número de falsas detecções.

Esse comportamento é particularmente relevante em um contexto de segurança,

pois indica que o modelo prefere errar por excesso — classificando imagens como warning

mesmo quando não são — em vez de deixar de detectar um semáforo amarelo existente.

5.1.2 Resultados do Classificador SVM Linear

O classificador SVM Linear alcançou acurácia de 98,11% no conjunto de teste. A Ta-

bela 5.2 apresenta o desempenho do modelo.

Tabela 5.2: Desempenho do SVM Linear no conjunto de teste
Classe Precisão Revocação F1-score Quantidade
go 0.98 0.99 0.99 23 777
stop 0.99 0.98 0.98 25 936
warning 0.83 0.88 0.85 1 411
Acurácia geral 0.9811

Assim como observado na CNN, o SVM apresentou desempenho elevado nas

classes go e stop. Para a classe warning, o modelo apresentou valores mais equilibrados

entre precisão e revocação, ainda que com desempenho inferior às classes majoritárias.

5.1.3 Análise Comparativa

A comparação entre os dois modelos mostra que tanto ambos atingiram ńıveis elevados

de desempenho segundo métricas tradicionais. A CNN apresenta ligeira vantagem em

termos de acurácia geral, enquanto o SVM Linear demonstra desempenho competitivo

considerando sua simplicidade estrutural.

Entretanto, a análise por classe evidencia que métricas globais, como a acurácia,

podem mascarar fragilidades relevantes. Em ambos os modelos, a classe warning apre-

senta desempenho inferior às demais, reforçando que avaliações baseadas apenas em acer-

tos globais não são suficientes para caracterizar a segurança do sistema. Essa limitação

motiva a análise de confiabilidade apresentada nas seções seguintes, por meio da aplicação

do monitor estat́ıstico SafeML II.
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5.2 Resultados da Coleta SafeML II para o SVM

Nesta seção são apresentados os resultados da aplicação do SafeML II ao classificador

SVM, considerando separadamente cenários diurnos e noturnos. A análise é conduzida

sobre as três classes utilizadas neste trabalho (go, stop e warning). Para cada classe, são

analisadas amostras corretamente e incorretamente classificadas, sendo selecionadas até

15 imagens por grupo, conforme a disponibilidade no conjunto de teste. Os resultados

são avaliados por meio da Distância de Wasserstein, com o objetivo de caracterizar o

comportamento estat́ıstico do classificador e definir limiares de aceitação espećıficos para

cada cenário.

O tempo médio necessário para a execução completa dessa etapa de coleta, in-

cluindo a seleção das amostras, o cálculo da Distância de Wasserstein pixel a pixel e a

aplicação do critério estat́ıstico de significância, foi de aproximadamente 12 minutos e 20

segundos por cenário (diurno ou noturno).

5.2.1 Resultados para Imagens Diurnas

Amostras Classificadas Incorretamente

A Tabela 5.3 apresenta os valores médios da Distância de Wasserstein, calculados separa-

damente para os canais RGB, considerando apenas pixels estatisticamente significativos.

Observa-se que, para todas as classes, os valores de WD são elevados, indicando forte

divergência estat́ıstica em relação ao conjunto de treinamento.

Tabela 5.3: Distância de Wasserstein média por canal (RGB) para amostras incorretas
— SVM (diurno)

Classe Canal R Canal G Canal B
go 0.334 0.319 0.334
stop 0.277 0.319 0.507
warning 0.459 0.478 0.573

Destaca-se a classe warning, que apresenta os maiores valores de WD em todos

os canais, sugerindo que erros nessa classe estão associados a mudanças estat́ısticas mais

intensas no padrão visual das imagens.
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Amostras Classificadas Corretamente

A Tabela 5.4 mostra os valores correspondentes às amostras corretamente classificadas.

Em comparação com os erros, os valores de WD são significativamente menores, indicando

maior proximidade estat́ıstica entre as imagens de teste e o conjunto de treinamento

quando o classificador acerta.

Tabela 5.4: Distância de Wasserstein média por canal (RGB) para amostras corretas —
SVM (diurno)

Classe Canal R Canal G Canal B
go 0.115 0.196 0.207
stop 0.125 0.086 0.078
warning 0.190 0.200 0.265

A separação clara entre os valores de WD obtidos para acertos e erros indica

que a métrica é senśıvel a mudanças relevantes no domı́nio das imagens diurnas, mesmo

quando a acurácia do classificador é elevada.

Definição do Limiar

Para cada classe, foi calculado um valor global de WD como a média aritmética dos três

canais RGB. A Tabela 5.5 apresenta esses valores globais para amostras corretamente e

incorretamente classificadas no cenário diurno. O limiar de aceitação foi definido como a

média entre os dois valores globais (acertos e erros) de cada classe.

Tabela 5.5: Média global (RGB) da WD para acertos e erros no cenário diurno (SVM)
Classe WD global (acertos) WD global (erros) Limiar
go 0.173 0.329 0.251
stop 0.097 0.368 0.233
warning 0.219 0.504 0.362

5.2.2 Resultados para Imagens Noturnas

Amostras Classificadas Incorretamente

A Tabela 5.6 apresenta os valores médios da WD significativa para as amostras incor-

retamente classificadas no cenário noturno. Os valores correspondem à média por canal

RGB, calculada a partir das amostras de erro coletadas para cada classe.
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Tabela 5.6: Distância de Wasserstein média por canal (RGB) para amostras incorretas
— SVM (noturno)

Classe Canal R Canal G Canal B
go 0.240 0.222 0.220
stop 0.342 0.224 0.204
warning 0.335 0.223 0.215

Observa-se que, para todas as classes, os valores de WD associados às amostras

incorretas são relativamente elevados, indicando uma divergência estat́ıstica significativa

entre essas imagens noturnas e a distribuição aprendida durante o treinamento. Esse efeito

é mais pronunciado nas classes stop e warning, refletindo a maior dificuldade do modelo

em lidar com variações de iluminação, reflexos e rúıdos presentes no peŕıodo noturno.

Amostras Classificadas Corretamente

A Tabela 5.7 apresenta os valores médios da Distância de Wasserstein significativa para

as amostras corretamente classificadas no cenário noturno.

Tabela 5.7: Distância de Wasserstein média por canal (RGB) para amostras corretas —
SVM (noturno)

Classe Canal R Canal G Canal B
go 0.152 0.197 0.219
stop 0.259 0.165 0.167
warning 0.174 0.161 0.106

Em comparação com as amostras incorretas, as amostras corretamente classifica-

das apresentam valores de WD consistentemente menores, indicando maior similaridade

estat́ıstica com os dados de treinamento. Ainda assim, nota-se que os valores globais

de WD no cenário noturno são, em média, superiores aos observados no cenário diurno,

evidenciando o impacto das condições de baixa iluminação mesmo quando a classificação

é correta.

Definição do Limiar

Para a definição do limiar de decisão no cenário noturno, foi calculada a média global da

Distância de Wasserstein para cada classe, obtida a partir da média dos três canais RGB.

Em seguida, o limiar foi definido como a média aritmética entre o valor global das amostras

corretamente classificadas e o valor global das amostras incorretamente classificadas.
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A Tabela 5.8 resume os valores utilizados no cálculo do limiar para cada classe.

Tabela 5.8: Média global RGB da Distância de Wasserstein e limiar definido — SVM
(noturno)

Classe WD global (acertos) WD global (erros) Limiar
go 0.189 0.227 0.208
stop 0.197 0.257 0.227
warning 0.147 0.258 0.203

Os resultados confirmam que, também no cenário noturno, existe uma separação

estat́ıstica clara entre amostras corretas e incorretas. A definição de limiares espećıficos

para esse contexto permite ao SafeML II sinalizar situações de maior incerteza de forma

mais precisa, reforçando a importância de considerar o peŕıodo do dia como um fator

relevante na análise de confiabilidade de sistemas de visão computacional embarcados.

5.3 Resultados da Coleta SafeML II para a CNN

Esta seção apresenta os resultados da análise de confiabilidade do classificador baseado

em CNN utilizando o SafeML II. A análise foi realizada separadamente para os cenários

diurno e noturno, considerando as três classes de interesse (go, stop e warning) e amostras

corretamente e incorretamente classificadas.

Assim como na análise do SVM, para cada classe foram selecionadas até 15 amos-

tras representativas de acertos e erros, permitindo a comparação das distâncias estat́ısticas

associadas a cada situação. Os valores apresentados correspondem à Distância de Was-

serstein significativa (com p < 0,05), calculada a partir da média dos canais RGB.

O tempo médio necessário para a execução completa dessa etapa de coleta, que

envolve a seleção das amostras, o cálculo da Distância de Wasserstein pixel a pixel e a

aplicação do critério estat́ıstico de significância, foi de aproximadamente 12 minutos e 40

segundos por cenário (diurno ou noturno) para o classificador CNN.
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5.3.1 Resultados no Cenário Diurno

Amostras Classificadas Incorretamente

A Tabela 5.9 apresenta os valores médios da Distância de Wasserstein por canal RGB

para as amostras incorretamente classificadas no cenário diurno.

Tabela 5.9: Distância de Wasserstein média por canal (RGB) para amostras incorretas
— CNN (diurno)

Classe Canal R Canal G Canal B
go 0.534 0.492 0.490
stop 0.211 0.230 0.348
warning – – –

Observa-se que, no cenário diurno, a classe go apresenta valores elevados de WD

nas amostras incorretas, indicando divergência significativa entre essas imagens e a dis-

tribuição aprendida durante o treinamento. Para a classe warning, não foram observadas

amostras incorretamente classificadas nesse cenário, o que impossibilita a definição direta

de um limiar diurno para essa classe.

Amostras Classificadas Corretamente

A Tabela 5.10 apresenta os valores médios da Distância de Wasserstein para as amostras

corretamente classificadas no cenário diurno.

Tabela 5.10: Distância de Wasserstein média por canal (RGB) para amostras corretas —
CNN (diurno)

Classe Canal R Canal G Canal B
go 0.123 0.178 0.185
stop 0.140 0.111 0.120
warning 0.215 0.224 0.250

Em todas as classes, os valores associados às amostras corretamente classificadas

são substancialmente inferiores aos observados nas amostras incorretas, evidenciando a

capacidade do SafeML II em diferenciar estatisticamente decisões confiáveis de situações

de erro.
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Definição do Limiar

A definição do limiar diurno foi realizada a partir da média global da Distância de Wassers-

tein, obtida pela média dos três canais RGB. O limiar é definido como a média aritmética

entre os valores globais das amostras corretas e incorretas.

A Tabela 5.11 resume os valores utilizados nesse processo. Para a classe warning,

como não houve erros no cenário diurno, adota-se o limiar definido a partir do cenário

noturno.

Tabela 5.11: Média global RGB da Distância de Wasserstein e limiar definido — CNN
(diurno)

Classe WD global (acertos) WD global (erros) Limiar
go 0.162 0.505 0.334
stop 0.124 0.263 0.194
warning – – 0.292 (limiar noturno)

5.3.2 Resultados no Cenário Noturno

Amostras Classificadas Incorretamente

A Tabela 5.12 apresenta os valores médios da Distância de Wasserstein para as amostras

incorretamente classificadas no cenário noturno.

Tabela 5.12: Distância de Wasserstein média por canal (RGB) para amostras incorretas
— CNN (noturno)

Classe Canal R Canal G Canal B
go 0.301 0.260 0.237
stop 0.464 0.359 0.279
warning 0.607 0.445 0.281

No cenário noturno, observa-se um aumento expressivo das distâncias estat́ısticas,

especialmente para a classe warning, indicando maior sensibilidade da CNN às variações

de iluminação e rúıdo presentes nesse contexto.

Análise das Amostras Classificadas Corretamente

A Tabela 5.13 apresenta os valores médios da Distância de Wasserstein para as amostras

corretamente classificadas no cenário noturno.
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Tabela 5.13: Distância de Wasserstein média por canal (RGB) para amostras corretas —
CNN (noturno)

Classe Canal R Canal G Canal B
go 0.164 0.203 0.224
stop 0.261 0.163 0.165
warning 0.159 0.140 0.119

Apesar das condições adversas, as amostras corretamente classificadas mantêm

valores de WD inferiores aos observados nas amostras incorretas, reforçando a consistência

do monitoramento estat́ıstico.

Definição do Limiar para o Cenário Noturno

A Tabela 5.14 apresenta os valores globais de WD e os limiares definidos para o cenário

noturno.

Tabela 5.14: Média global RGB da Distância de Wasserstein e limiar definido — CNN
(noturno)

Classe WD global (acertos) WD global (erros) Limiar
go 0.197 0.266 0.232
stop 0.196 0.367 0.281
warning 0.139 0.444 0.292

Os resultados indicam que a definição de limiares espećıficos para o cenário no-

turno é essencial, especialmente para classes mais senśıveis à iluminação, como warning. A

adoção desses limiares permite que o SafeML II sinalize de forma mais precisa situações de

maior incerteza, reforçando a importância da separação entre cenários diurnos e noturnos

na análise de confiabilidade.

5.4 Análise Visual via Heatmaps

Uma das vantagens da abordagem SafeML II é permitir uma análise visual das regiões

da imagem que mais contribuem para a divergência estat́ıstica entre os dados de treino e

as amostras classificadas incorretamente. Essa análise é realizada por meio de heatmaps

baseados na Distância de Wasserstein, calculada pixel a pixel, permitindo interpretar

quais partes do semáforo e do contexto visual influenciam a perda de confiabilidade do

classificador. Ressalta-se que a escala de cores utilizada nos mapas é normalizada para
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fins de visualização: valores próximos de 1 indicam regiões de maior divergência relativa

dentro da imagem, e não valores absolutos da Distância de Wasserstein.

Em cada visualização, são apresentados dois mapas para cada classe: (i) um mapa

considerando todas as distâncias calculadas e (ii) um mapa filtrado pelo critério estat́ıstico

de significância (p < 0,05), no qual apenas os pixels cuja divergência é estatisticamente

relevante são mantidos. Dessa forma, o segundo mapa evidencia exclusivamente as regiões

que representam mudanças estruturais relevantes em relação ao conjunto de treino.

5.4.1 Heatmaps para o SVM (Cenário Diurno)

A Figura 5.1 apresenta os heatmaps gerados para a classe stop no cenário diurno. Observa-

se que as maiores divergências estat́ısticas concentram-se na região da lâmpada vermelha

e em áreas adjacentes. Após a aplicação do filtro de significância (p < 0,05), essas

regiões permanecem bem definidas, indicando que a divergência observada não se deve a

rúıdo aleatório, mas a variações estruturais relevantes em relação ao padrão aprendido no

treinamento.

Figura 5.1: Heatmaps SafeML II para a classe stop no cenário diurno. À esquerda, mapa
considerando todas as distâncias de Wasserstein; à direita, mapa filtrado por significância
estat́ıstica (p < 0,05).

A Figura 5.2 apresenta os heatmaps correspondentes à classe warning. Nota-se

uma concentração ainda mais intensa da divergência estat́ıstica na região central da ima-

gem, associada à lâmpada amarela. Esse comportamento está alinhado com os resultados

quantitativos apresentados anteriormente, nos quais a classe warning demonstrou maior
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sensibilidade a variações de iluminação no cenário diurno. O filtro por p-valor elimina

regiões periféricas irrelevantes, reforçando que a principal fonte de incerteza está associ-

ada à própria área luminosa do semáforo.

Figura 5.2: Heatmaps SafeML II para a classe warning no cenário diurno. À esquerda,
WD considerando todos os pixels; à direita, apenas pixels estatisticamente significativos
(p < 0,05).

Por fim, a Figura 5.3 apresenta os heatmaps da classe go. Diferentemente das clas-

ses anteriores, observa-se uma distribuição mais espalhada das divergências, envolvendo

tanto a região da lâmpada verde quanto partes do fundo da imagem. Esse padrão indica

que, embora o classificador apresente bom desempenho geral para essa classe, variações

no contexto visual — como reflexos, céu ou estruturas metálicas — também influenciam

a confiabilidade estat́ıstica das predições incorretas.

Figura 5.3: Heatmaps SafeML II para a classe go no cenário diurno. À esquerda, mapa
completo de WD; à direita, mapa filtrado por significância estat́ıstica (p < 0,05).
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Figura 5.4: Heatmaps SafeML II para a classe warning no cenário noturno (SVM). À
esquerda: WD normalizada considerando todos os pixels. À direita: WD considerando
apenas pixels estatisticamente significativos (p < 0,05).

5.4.2 Heatmaps SafeML II — Classificador SVM (Cenário No-

turno)

A Figura 5.4 apresenta os mapas de calor obtidos para a classe warning no cenário noturno.

Observa-se que as regiões de maior intensidade de WD concentram-se principalmente na

área correspondente à luz amarela do semáforo, bem como em partes do entorno imedi-

ato. No mapa filtrado por significância estat́ıstica (p < 0,05), essas regiões permanecem

evidentes, indicando que a divergência observada está associada a alterações estruturais

relevantes nos padrões visuais noturnos.

A Figura 5.5 apresenta os resultados para a classe go. Nota-se que as maio-

res intensidades de WD estão concentradas na região inferior do semáforo, associada à

luz verde, além de áreas adjacentes. Em comparação com o cenário diurno, observa-se

uma maior influência do fundo e de reflexos luminosos, caracteŕıstica comum em imagens

noturnas, o que contribui para o aumento da divergência estat́ıstica observada.

Por fim, a Figura 5.6 apresenta os mapas correspondentes à classe stop. As regiões

de maior intensidade de WD concentram-se predominantemente na área da luz vermelha,

com destaque para o mapa filtrado por significância estat́ıstica, no qual essas regiões per-

manecem bem definidas. Esse comportamento indica que, no peŕıodo noturno, variações

na intensidade luminosa da luz vermelha exercem impacto significativo na divergência em
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Figura 5.5: Heatmaps SafeML II para a classe go no cenário noturno (SVM). À esquerda:
WD normalizada considerando todos os pixels. À direita: WD considerando apenas pixels
estatisticamente significativos (p < 0,05).

Figura 5.6: Heatmaps SafeML II para a classe stop no cenário noturno (SVM). À esquerda:
WD normalizada considerando todos os pixels. À direita: WD considerando apenas pixels
estatisticamente significativos (p < 0,05).
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relação aos dados de treinamento.

5.4.3 Análise Visual dos Heatmaps – CNN (Cenário Diurno)

A Figura 5.7 e a Figura 5.8 apresentam os mapas de calor da Distância de Wasserstein

(WD) obtidos para o classificador CNN no cenário diurno, considerando respectivamente

as classes go e stop.

De forma geral, observa-se que as regiões de maior intensidade deWD concentram-

se principalmente nas áreas centrais do recorte, correspondentes às regiões luminosas do

semáforo. Para a classe go, essas regiões estão associadas à luz verde e ao seu entorno

imediato, enquanto para a classe stop a maior divergência estat́ıstica aparece concentrada

na área superior do semáforo, onde se localiza a luz vermelha.

Nos mapas filtrados por significância estat́ıstica, essas mesmas regiões perma-

necem em evidência, indicando que a divergência observada não é resultado de rúıdo

aleatório, mas sim de diferenças estruturais relevantes entre as amostras de treino e os

casos classificados incorretamente. Esse comportamento sugere que, mesmo em condições

diurnas favoráveis, a CNN apresenta sensibilidade a variações de intensidade luminosa,

contraste e saturação nas regiões cŕıticas do semáforo.

Figura 5.7: Heatmaps de WD para a classe go no cenário diurno (CNN): mapa completo
(esquerda) e mapa filtrado por significância estat́ıstica p < 0,05 (direita).

Para a classe warning, o classificador CNN não apresentou erros de classificação

no conjunto de teste diurno. Como consequência, não foi posśıvel calcular os mapas de

WD associados a amostras classificadas incorretamente para essa classe nesse cenário.
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Figura 5.8: Heatmaps de WD para a classe stop no cenário diurno (CNN): mapa completo
(esquerda) e mapa filtrado por significância estat́ıstica p < 0,05 (direita).

Dessa forma, a análise SafeML para a classe warning na CNN, bem como a definição de

limiar de decisão, é realizada exclusivamente com base nos resultados obtidos no cenário

noturno, apresentados na subseção correspondente.

5.4.4 Cenário Noturno

A análise visual dos heatmaps no cenário noturno evidencia diferenças importantes no

comportamento do classificador CNN quando comparado ao cenário diurno. De modo

geral, observa-se uma distribuição mais espalhada das regiões com alta intensidade de

WD, refletindo a maior variabilidade visual causada pela iluminação artificial, reflexos e

rúıdos presentes nas imagens noturnas.

Para a classe go, ilustrada na Figura 5.9, as regiões de maior WD concentram-se

predominantemente na área correspondente à lâmpada ativa do semáforo, mas também

se estendem para regiões adjacentes. Esse comportamento indica que, à noite, peque-

nas variações de brilho e contraste no entorno do semáforo contribuem de forma mais

significativa para a divergência estat́ıstica em relação ao conjunto de treinamento.

No caso da classe stop, apresentada na Figura 5.10, observa-se um padrão seme-

lhante, porém com regiões de alta WDmais extensas e menos concentradas exclusivamente

na lâmpada do semáforo. Isso sugere que, durante a noite, elementos do contexto visual

— como iluminação pública e reflexos — passam a influenciar de forma mais acentuada

a distribuição dos pixels, aumentando a divergência estat́ıstica mesmo em áreas fora da
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Figura 5.9: Heatmaps SafeML II para a classe go no cenário noturno (CNN). À esquerda,
o mapa considerando todos os valores de WD; à direita, apenas os pixels estatisticamente
significativos (p < 0,05).

região central do semáforo.

Figura 5.10: Heatmaps SafeML II para a classe stop no cenário noturno (CNN). À es-
querda, o mapa considerando todos os valores de WD; à direita, apenas os pixels estatis-
ticamente significativos (p < 0,05).

Por fim, a classe warning, ilustrada na Figura 5.11, apresenta as regiões de alta

WD mais intensas e espacialmente mais amplas entre as três classes. Esse padrão visual

é consistente com os resultados quantitativos obtidos anteriormente e indica que a iden-

tificação da luz amarela à noite é particularmente senśıvel a variações de iluminação e

rúıdo visual. Tal comportamento justifica a adoção de um limiar espećıfico para o cenário

noturno nessa classe.
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Figura 5.11: Heatmaps SafeML II para a classe warning no cenário noturno (CNN).
À esquerda, o mapa considerando todos os valores de WD; à direita, apenas os pixels
estatisticamente significativos (p < 0,05).

5.5 Avaliação do Limiar

Nesta seção é realizada a avaliação experimental dos limiares definidos a partir da coleta

de dados do SafeML II. O objetivo é verificar se os valores de limiar estimados são capazes

de distinguir, de forma consistente, amostras potencialmente confiáveis de amostras que

apresentam maior divergência estat́ıstica em relação aos dados de treinamento.

A avaliação é conduzida a partir de um buffer composto por 30 imagens do

conjunto de teste, sendo 10 imagens sequenciais para cada classe considerada (go, stop e

warning). As imagens sequenciais representam o mesmo semáforo capturado em instantes

consecutivos, permitindo analisar a estabilidade da medida de divergência ao longo de uma

curta sequência temporal. Esse procedimento é aplicado de forma idêntica para os cenários

diurno e noturno, bem como para ambos os classificadores avaliados neste trabalho.

5.5.1 Avaliação do Limiar para o SVM

Para cada classe, é analisado o valor médio da Distância de Wasserstein, calculada apenas

sobre os pixels estatisticamente significativos, e sua comparação com o limiar previamente

estabelecido.

O tempo médio necessário para a execução completa da avaliação em um cenário

(diurno ou noturno) foi de aproximadamente 11 minutos e 30 segundos. Considerando

que o buffer é composto por três classes, esse tempo corresponde a cerca de 3 minutos e
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50 segundos por classe, ou aproximadamente 23 segundos por imagem dentro do buffer

de 10 imagens sequenciais.

Cenário Diurno

A Tabela 5.15 apresenta os resultados da avaliação do limiar no cenário diurno. Observa-se

que, para as três classes consideradas (go, stop e warning), os valores de WD média per-

maneceram abaixo dos respectivos limiares, resultando na aceitação de todas as amostras

avaliadas.

Tabela 5.15: Avaliação do limiar SafeML II para o classificador SVM no cenário diurno.
Classe WD média Limiar Aceita
go 0.2295 0.2510 Sim
stop 0.1763 0.2330 Sim
warning 0.2851 0.3620 Sim

Esses resultados indicam que, no cenário diurno, o limiar definido é suficien-

temente conservador para acomodar variações naturais das imagens sem comprometer a

aceitação de amostras corretamente classificadas, preservando a confiabilidade do sistema.

Cenário Noturno

A Tabela 5.16 apresenta os resultados obtidos para o cenário noturno. Diferentemente do

cenário diurno, observa-se que nem todas as amostras foram aceitas pelo critério de limiar.

As classes go e warning apresentaram valores de WD média superiores aos respectivos

limiares, resultando na rejeição das amostras, enquanto a classe stop permaneceu dentro

do limite estabelecido.

Tabela 5.16: Avaliação do limiar SafeML II para o classificador SVM no cenário noturno.
Classe WD média Limiar Aceita
go 0.2330 0.2080 Não
stop 0.1849 0.2270 Sim
warning 0.2543 0.2030 Não

Os resultados evidenciam que, no cenário noturno, as variações visuais associa-

das à iluminação artificial e ao aumento de rúıdo impactam diretamente a distribuição

dos valores de WD. Nesse contexto, o mecanismo de limiar atua de forma mais restri-
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tiva, identificando situações nas quais a divergência estat́ıstica em relação ao conjunto de

treinamento ultrapassa o limite considerado confiável.

5.5.2 Avaliação do Limiar para o Classificador CNN

Para a CNN, o tempo médio necessário para a execução completa da avaliação em um

cenário (diurno ou noturno) foi de aproximadamente 10 minutos e 18 segundos. Consi-

derando que o buffer é composto por três classes, esse tempo corresponde a cerca de 3

minutos e 26 segundos por classe, ou aproximadamente 21 segundos por imagem dentro

do buffer de 10 imagens sequenciais.

Cenário Diurno

A Tabela 5.17 apresenta os resultados da avaliação do limiar no cenário diurno para o

classificador CNN. Observa-se que, assim como no caso do SVM, todas as amostras ava-

liadas apresentaram valores de WD média inferiores aos respectivos limiares, resultando

na aceitação de todas as predições.

Tabela 5.17: Avaliação do limiar SafeML II para o classificador CNN no cenário diurno.
Classe WD média Limiar Aceita
go 0.2327 0.3340 Sim
stop 0.1791 0.1940 Sim
warning 0.2839 0.2920 Sim

Os resultados indicam que, no cenário diurno, o classificador CNN apresenta uma

separação clara entre as distribuições associadas aos acertos e os limiares definidos, com

margens de segurança consistentes, especialmente para a classe go. Esse comportamento

reflete a maior estabilidade visual das imagens diurnas, favorecendo a confiabilidade das

decisões do modelo.

Cenário Noturno

A Tabela 5.18 apresenta os resultados obtidos para o cenário noturno. Diferentemente do

observado para o SVM, todas as amostras avaliadas pela CNN foram aceitas pelo critério

de limiar, mesmo em um contexto visual mais desafiador.
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Tabela 5.18: Avaliação do limiar SafeML II para o classificador CNN no cenário noturno.
Classe WD média Limiar Aceita
go 0.2319 0.2320 Sim
stop 0.1845 0.2810 Sim
warning 0.2556 0.2920 Sim

Nota-se que, para a classe go, o valor da WD média ficou muito próximo do

limiar definido, indicando um caso limı́trofe de aceitação. Ainda assim, o critério foi capaz

de preservar a decisão do classificador, sugerindo que a CNN apresenta maior robustez

às variações visuais noturnas quando comparada ao SVM, especialmente em termos da

distribuição espacial das diferenças capturadas pela distância estat́ıstica.

5.5.3 Śıntese e Análise dos Resultados Obtidos

Os resultados apresentados ao longo deste caṕıtulo permitem uma análise integrada do

desempenho e da confiabilidade dos classificadores avaliados, considerando tanto métricas

tradicionais quanto a abordagem estat́ıstica proposta pelo SafeML II. De forma geral, os

experimentos evidenciam que elevados ı́ndices de acurácia não são, por si só, suficientes

para caracterizar o comportamento seguro de modelos de aprendizado de máquina em

cenários cŕıticos.

A avaliação do treinamento demonstrou que tanto o classificador SVM quanto a

CNN alcançam desempenho global elevado no reconhecimento de semáforos, com taxas

de acerto superiores a 98%. Entretanto, a análise por classe revelou diferenças relevantes,

especialmente para a classe warning, que apresentou maior sensibilidade a variações no

conjunto de dados. Esse comportamento reforça a limitação de métricas agregadas e

justifica a necessidade de mecanismos adicionais de avaliação de confiabilidade.

A coleta de dados com o SafeML II mostrou de forma consistente que amostras

incorretamente classificadas apresentam valores médios de Distância de Wasserstein sig-

nificativamente superiores aos observados em amostras corretamente classificadas. Esse

padrão foi identificado em ambos os classificadores e nos dois cenários avaliados, corrobo-

rando a hipótese de que a divergência estat́ıstica entre os dados de treino e de aplicação

está diretamente associada à perda de confiabilidade das previsões.

A separação entre cenários diurnos e noturnos revelou-se fundamental para a cor-
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reta interpretação dos resultados. Os experimentos indicaram que os valores de WD e os

limiares de aceitação variam de maneira significativa conforme as condições de iluminação.

No cenário noturno, observou-se maior variabilidade estat́ıstica, refletindo o impacto de

fatores como rúıdo visual, reflexos e menor contraste, o que reforça a inadequação de um

limiar único para todos os contextos de operação.

A análise visual por meio dos mapas de calor complementou os resultados quan-

titativos ao evidenciar regiões da imagem mais associadas à divergência estat́ıstica. Os

heatmaps indicaram que, embora os maiores desvios estejam concentrados nas regiões das

luzes do semáforo, áreas do entorno também contribuem para a perda de confiabilidade,

demonstrando que o contexto visual exerce influência relevante sobre o comportamento

dos classificadores.

Por fim, a avaliação dos limiares definidos a partir da coleta SafeML II mostrou

que o mecanismo de aceitação e rejeição de previsões responde de forma coerente aos ńıveis

de divergência observados. Nos testes realizados com buffers de imagens sequenciais, os

limiares permitiram distinguir situações de operação dentro do domı́nio de treinamento

daquelas associadas a maior incerteza estat́ıstica, tanto para o SVM quanto para a CNN.

Esses resultados indicam que a abordagem adotada fornece subśıdios relevantes para o

monitoramento da confiabilidade de classificadores em tempo de execução.
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6 Conclusão

O avanço do Machine Learning tem viabilizado a aplicação de sistemas inteligentes em

domı́nios cada vez mais cŕıticos, como véıculos autônomos e sistemas avançados de as-

sistência ao condutor. Entretanto, conforme discutido ao longo deste trabalho, altos

valores de acurácia não são suficientes para garantir comportamento seguro em ambien-

tes reais e dinâmicos. Nesse contexto, torna-se fundamental complementar os modelos

de classificação com mecanismos capazes de estimar a confiabilidade de suas decisões em

tempo de execução.

Este Trabalho de Conclusão de Curso teve como objetivo principal analisar a

confiabilidade de classificadores aplicados ao reconhecimento automático de semáforos,

avaliando a adequação do framework SafeML II como um mecanismo de monitoramento

estat́ıstico para esse domı́nio. Para isso, foram implementados e avaliados dois modelos

distintos — um classificador SVM e uma CNN — utilizando o conjunto de dados LISA

Traffic Light Dataset.

Os resultados obtidos demonstram que, embora ambos os modelos apresentem

desempenho elevado segundo métricas tradicionais de classificação, seus comportamentos

diferem significativamente quando analisados sob a ótica da confiabilidade. A aplicação

do SafeML II evidenciou que amostras classificadas incorretamente tendem a apresen-

tar maiores divergências estat́ısticas em relação ao conjunto de treino, mensuradas pela

Distância de Wasserstein, quando comparadas às amostras corretamente classificadas.

Esse comportamento foi consistente tanto para o SVM quanto para a CNN, validando a

capacidade do SafeML II de atuar como um indicador de risco independente do modelo

utilizado.

Outro achado importante foi a diferença no comportamento entre os classificado-

res na etapa de avaliação dos limiares. Enquanto a CNN apresentou um desempenho mais

robusto, com todas as imagens erroneamente classificadas sendo corretamente sinalizadas

como fora do domı́nio pelo SafeML II, o classificador SVM falhou em alguns casos, atribu-

indo baixa divergência estat́ıstica a amostras incorretas. Esse resultado sugere que, além
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da CNN possuir maior capacidade discriminativa nos dados, suas falhas tendem a ocorrer

em regiões do espaço de entrada mais afastadas do padrão de treinamento, o que facilita

sua detecção por métodos de monitoramento como o SafeML. Assim, pode-se inferir que

a CNN, neste contexto, não apenas obteve melhor desempenho tradicional, mas também

maior previsibilidade do ponto de vista de segurança e confiabilidade.

Um resultado relevante deste trabalho foi a constatação de que a separação en-

tre cenários diurnos e noturnos é essencial para a definição de limiares estat́ısticos mais

adequados. As diferenças de iluminação impactam diretamente a distribuição dos pixels

das imagens e, consequentemente, os valores da Distância de Wasserstein. A adoção de

limiares espećıficos por classe e por cenário mostrou-se mais coerente do que a utilização

de um único limiar global, contribuindo para decisões mais consistentes no monitoramento

de confiabilidade.

A análise visual por meio de mapas de calor complementou os resultados quanti-

tativos, permitindo identificar regiões da imagem que mais contribuem para a divergência

estat́ıstica observada nos casos de erro. Esses mapas reforçam o papel explicativo do

SafeML II, auxiliando na interpretação do comportamento dos classificadores e eviden-

ciando padrões associados a variações de iluminação, reflexos e baixa definição visual,

especialmente no cenário noturno.

Como limitações, destaca-se o custo computacional associado às etapas de coleta e

avaliação dos limiares, que, na configuração atual, inviabiliza a aplicação direta do SafeML

II em sistemas embarcados com restrições severas de tempo. Além disso, os experimentos

foram conduzidos em um único conjunto de dados e com imagens previamente recortadas,

não contemplando etapas como a detecção automática do semáforo em imagens de cena

completa.

Como perspectivas de trabalhos futuros, além das estratégias de otimização para

redução do tempo de execução do SafeML II e sua integração com pipelines de decisão em

tempo real, destaca-se a possibilidade de investigar o uso das próprias medidas estat́ısticas

empregadas pelo SafeML como mecanismo principal de discriminação entre classes. Os

resultados obtidos indicam que tais medidas são capazes de capturar diferenças relevantes

entre distribuições associadas às classes, sugerindo que uma abordagem baseada exclu-
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sivamente em critérios estat́ısticos — inspirada ou derivada do SafeML — poderia ser

explorada como um classificador em si, dispensando o uso de modelos tradicionais de Ma-

chine Learning, como SVMs ou redes neurais convolucionais. Essa linha de investigação

pode ser promissora para o desenvolvimento de arquiteturas mais simples, interpretáveis

e computacionalmente eficientes, com potencial para otimizar o desempenho e reduzir a

latência em aplicações de tempo real.

Por fim, este trabalho contribui para a discussão sobre segurança e confiabilidade

em sistemas inteligentes, demonstrando que a análise estat́ıstica de desvios de distribuição

não apenas complementa métricas tradicionais de desempenho, mas também se apresenta

como um caminho promissor para o desenvolvimento de soluções mais seguras, eficientes

e responsáveis no contexto de véıculos autônomos.
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2024. Dispońıvel em: ⟨https://www2.ed.gov/documents/ai-report/ai-report.pdf⟩.

PATERSON, C. et al. Safety assurance of machine learning for autonomous systems.
Reliability Engineering and System Safety, Elsevier, v. 254, p. 111311, 2025.

PHILIPSEN, M. P. et al. Traffic light detection: A learning algorithm and evaluations on
challenging dataset. In: 2015 IEEE 18th International Conference on Intelligent Trans-
portation Systems (ITSC). [S.l.]: IEEE, 2015. p. 2341–2345.

RIBEIRO, M. T.; SINGH, S.; GUESTRIN, C. ”why should i trust you?”: Explaining
the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining. [S.l.: s.n.], 2016. p. 1135–1144.

SCULLEY, D. et al. Hidden technical debt in machine learning systems. In: Advances in
neural information processing systems. [S.l.: s.n.], 2015. p. 2503–2511.

Senna Martins Advogados. Responsabilidade Civil em Acidentes com Véıculos Autônomos:
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