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Resumo

A adocao de veiculos autonomos e de sistemas avancados de assisténcia ao condutor de-
pende diretamente da capacidade dos algoritmos embarcados de operar com seguranca
em ambientes dinamicos. Entre esses componentes, o reconhecimento automatico de
semaforos desempenha um papel essencial para evitar colisoes e garantir decisoes ade-
quadas em vias urbanas. No entanto, modelos de Machine Learning, mesmo quando
apresentam alta acuracia, podem falhar ao enfrentar condigoes inesperadas, tornando ne-
cessdria a existéncia de mecanismos capazes de avaliar nao apenas a previsao, mas também
sua confiabilidade. Este trabalho investiga o uso da abordagem SafeML como ferramenta
de analise de confianca aplicada a classificadores de seméaforos treinados sobre o dataset
LISA. Dois modelos — uma SVM (Support Vector Machine) e uma CNN (Convolutional
Neural Network) — sao avaliados a fim de identificar padroes que indiquem quando uma
previsao pode ser considerada segura ou potencialmente arriscada. A andlise realizada
permite discutir como desvios entre dados de treino e de aplicacao podem influenciar o
comportamento dos modelos e em que medida abordagens estatisticas podem auxiliar na
interpretacao desses cendrios. Os resultados obtidos contribuem para avaliar a viabilidade
do uso dessa metodologia como apoio a anélise de confiabilidade em sistemas de Visao

Computacional embarcados.

Palavras-chave: Confiabilidade, SafeML, Visao Computacional, Aprendizado de Maquina,

Veiculos Autonomos, Semaéaforos.



Abstract

The adoption of autonomous vehicles and advanced driver assistance systems depends
directly on the ability of onboard algorithms to operate safely in dynamic environments.
Among these components, automatic traffic-light recognition plays a key role in preven-
ting collisions and ensuring appropriate decision-making in urban scenarios. However,
machine learning models, even when achieving high accuracy, may fail when exposed to
unexpected conditions, reinforcing the need for mechanisms capable of assessing not only
the prediction itself but also its level of reliability. This work investigates the use of the
SafeML approach as a confidence analysis tool applied to traffic-light classifiers trained on
the LISA dataset. Two models — a Support Vector Machine (SVM) and a Convolutional
Neural Network (CNN) — are evaluated in order to identify patterns that indicate when a
prediction may be considered safe or potentially risky. The analysis enables discussion on
how deviations between training and application data can influence model behavior and
how statistical approaches may assist in interpreting such scenarios. The results obtained
contribute to evaluating the feasibility of using this methodology to support reliability

assessment in embedded computer vision systems.

Keywords: Reliability, SafeML, Computer Vision, Machine Learning, Autonomous Vehi-
cles, Traffic Lights.
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1 Introducao

O avanco das técnicas de Machine Learning tem impulsionado o desenvolvimento de sis-
temas capazes de interpretar cendarios complexos e tomar decisoes de forma autonoma.
Modelos de classificacao, deteccao e reconhecimento visual tornaram-se centrais em diver-
sas aplicacoes, incluindo veiculos autonomos, inspecao industrial e vigilancia inteligente.
No entanto, apesar de seu alto desempenho em ambientes controlados, esses modelos
frequentemente carecem de mecanismos para indicar quando suas previsoes podem estar
incorretas ou quando estao operando fora de seu dominio de treinamento. Essa limitacao
torna a analise de confianca um componente essencial para aumentar a segurancga e a
transparéncia desses sistemas, especialmente em aplicagoes criticas.

A evolucao de sistemas inteligentes aplicados ao transito tem desempenhado pa-
pel central na busca por maior seguranca, eficiéncia e autonomia na mobilidade urbana.
Entre esses avangos, destacam-se os sistemas de Visao Computacional embarcados, capa-
zes de interpretar o ambiente ao redor do veiculo e apoiar processos decisérios criticos.
Tarefas como deteccao de obstaculos, reconhecimento de placas e identificacao do estado
de semaforos tornaram-se componentes essenciais de veiculos autonomos e de sistemas
avancados de assisténcia ao condutor.

Apesar dos progressos obtidos por modelos de aprendizado de méaquina, sua uti-
lizacao em cendrios reais ainda apresenta desafios relevantes. E comum que classificado-
res tenham bom desempenho em ambientes controlados, mas sofram degradagao quando
expostos a condigoes distintas das presentes nos dados de treinamento. Variacoes de ilu-
minag¢ao, mudancas climaticas, ruido no sensor ou alteracoes no contexto urbano podem
comprometer a robustez dos modelos e conduzir a erros potencialmente perigosos. Nesse
cenario, torna-se indispensavel nao apenas obter uma previsao, mas também estimar o
quao confidvel é essa previsao.

Entre as abordagens que buscam enfrentar esse desafio, destaca-se o framework
SafeML, proposto por Aslansefat et al. (2020), que utiliza técnicas estatisticas para mo-

nitorar desvios entre distribuicoes de dados de treino e de aplicacao, sinalizando situacgoes
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de maior risco. Este trabalho aplica essa abordagem ao reconhecimento automatico de
semaforos, avaliando como diferentes modelos de Visao Computacional se comportam do

ponto de vista de confiabilidade.

1.1 Descricao do Problema

Os acidentes de transito configuram-se como um dos principais problemas de satide ptblica
em escala global. De acordo com a OMS, aproximadamente 1,19 milhdao de pessoas
morrem anualmente em decorréncia de acidentes de transito, além de dezenas de milhoes
de feridos, muitos dos quais sofrem sequelas permanentes (World Health Organization,
2018). A gravidade desse cendrio torna os sinistros vidrios uma das principais causas de
morte entre criancas, adolescentes e jovens adultos.

No contexto brasileiro, a situacao apresenta nimeros igualmente alarmantes. Se-
gundo dados do IPEA, entre os anos de 2010 e 2019 o Brasil registrou, em média, cerca
de 40 mil mortes por ano no transito, além de mais de 300 mil pessoas gravemente feridas
anualmente (Instituto de Pesquisa Econdmica Aplicada, 2021). Esses dados evidenciam
nao apenas as perdas humanas, mas também impactos sociais e economicos significativos.

Diante desse cenério, veiculos autonomos e sistemas avancados de assisténcia ao
condutor surgem como alternativas promissoras para mitigar a ocorréncia de acidentes,
ao reduzir a influéncia de fatores humanos como desatencao, fadiga e erro de julgamento.
Entretanto, a adogao dessas tecnologias também introduz novos desafios relacionados a
seguranca dos sistemas computacionais responsaveis pela percepcao e tomada de decisao.

Investigagoes recentes demonstram que falhas em sistemas de direcao automati-
zada j& resultaram em acidentes fatais. Uma apuragao conduzida pela NHTSA (Admi-
nistracdo Nacional de Seguranga no Trafego Rodoviario dos EUA), concluida em 2024,
identificou ao menos 13 mortes associadas ao uso do sistema Autopilot da Tesla, desta-
cando uma lacuna critica de segurancga relacionada ao uso indevido do sistema e a auséncia
de monitoramento eficaz do condutor. Desde 2016, mais de 40 investigagoes especiais fo-
ram abertas envolvendo tecnologias similares, totalizando ao menos 23 mortes reportadas.
Como resposta, a Tesla realizou um recall de cerca de 2 milhoes de veiculos, com o obje-

tivo de atualizar o software e reforgar os alertas de atengao ao motorista (The Guardian,
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2024).

Por outro lado, empresas do setor argumentam que sistemas autéonomos podem
reduzir significativamente o nimero de acidentes quando comparados a condugao humana.
A Waymo, subsidiaria da Google, reportou ter percorrido mais de 127 milhoes de milhas
em modo totalmente autonomo até 2025, afirmando reducoes de até 90% em acidentes
com ferimentos graves e 82% no acionamento de airbags em relacao a média de moto-
ristas humanos (Waymo LLC, 2025). Esses dados ilustram que, embora promissora, a
tecnologia ainda apresenta resultados contrastantes e depende fortemente de mecanismos
de seguranca adicionais.

No Brasil, a adogao de sistemas automatizados também tem avancado. Estima-
se que cerca de 40% dos veiculos novos vendidos em 2025 j& contem com algum nivel de
automacao. Paralelamente, casos judiciais recentes evidenciam que falhas nesses sistemas
ja tem gerado repercussoes legais concretas, com decisoes que responsabilizam montadoras
por acidentes envolvendo piloto automatico. Além disso, juristas apontam a dificuldade
de apurar responsabilidades em tais incidentes, devido a falta de transparéncia e de acesso
aos dados internos dos algoritmos — o que caracteriza o problema da chamada “caixa-
preta” dos modelos de ML. (Senna Martins Advogados, 2025).

Nesse contexto, a auséncia de mecanismos capazes de indicar quando uma decisao
automatizada pode nao ser confidvel representa um obstaculo relevante para a adocao se-
gura dessas tecnologias. Em particular, falhas no reconhecimento do estado de semaforos
podem resultar em decisoes criticas incorretas em ambientes urbanos, reforcando a neces-
sidade de abordagens que avaliem nao apenas a acuracia, mas também a confiabilidade

das previsoes.

1.2 Objetivos

O objetivo deste trabalho é analisar a confiabilidade de classificadores de aprendizado
de méaquina aplicados ao reconhecimento automatico de seméaforos, considerando o con-
texto de seguranca em veiculos autonomos e sistemas avancados de assisténcia ao con-
dutor. Para isso, busca-se analisar se as técnicas de andlise estatistica disponibilizadas

pelo framework SafeML sao adequadas e eficazes para identificar indicios de classificagoes
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potencialmente nao confidveis, mesmo em modelos que apresentam bom desempenho em
métricas tradicionais de avaliagao.

Como objetivos especificos, este trabalho propoe:

e treinar e avaliar dois modelos de classificacao de seméaforos, baseados em uma SVM

e em uma CNN, utilizando o conjunto de dados LISA Traffic Light Dataset;

e analisar o comportamento desses modelos a partir da comparacao entre amostras

corretamente e incorretamente classificadas;

e aplicar a abordagem SafeML para a andlise de confianca das previsoes, investigando
a presenca de desvios estatisticos entre os dados de treino e os dados utilizados na

avaliagao;

e explorar, por meio de analises quantitativas e visuais, padroes associados a situagoes

em que os modelos apresentam maior propensao ao erro;

e discutir a viabilidade do uso dessa abordagem como apoio a avaliacao de confiabi-

lidade em sistemas de Visao Computacional embarcados.

1.3 Justificativa

A crescente adogao de técnicas de ML em sistemas criticos, como veiculos autonomos
e sistemas avancados de assisténcia ao condutor, torna indispensavel a discussao sobre
seguranca e confiabilidade das decisoes tomadas por esses modelos. Embora avancos
recentes tenham permitido alcancar elevados niveis de desempenho em tarefas de Visao
Computacional, casos reais de acidentes demonstram que métricas tradicionais, como
acuracia, nao sao suficientes para garantir comportamento seguro em ambientes reais e
dinamicos.

Os dados recentes de investigagoes, recalls e disputas judiciais evidenciam que
falhas em sistemas automatizados ja resultam em consequéncias humanas, economicas
e legais. Ao mesmo tempo, a dificuldade de auditoria e explicagdo das decisoes desses
sistemas reforca a necessidade de mecanismos independentes de monitoramento e avaliacao

de risco, capazes de atuar como uma camada adicional de seguranca.
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No contexto do reconhecimento automaéatico de semaforos, erros de classificacao
podem acarretar consequéncias graves, uma vez que esse componente esta diretamente
associado a tomada de decisdes em cruzamentos e vias urbanas. Dessa forma, torna-se
relevante investigar abordagens que permitam avaliar o grau de confianca associado as
classificacoes produzidas pelos modelos, contribuindo para uma compreensao mais ampla
de seus limites e potenciais riscos de uso.

A escolha do framework SafeML justifica-se por sua proposta de fornecer meca-
nismos estatisticos para a andlise de confiabilidade de classificadores, sem a necessidade
de modificar o modelo original ou acessar informacgoes internas de sua arquitetura. Essa
caracteristica torna a abordagem especialmente atrativa em cendrios praticos e juridicos,
nos quais a transparéncia e a independéncia da andlise sao requisitos importantes.

Assim, este trabalho se justifica pela relevancia social do tema, pela necessidade
técnica de avaliacao de confiabilidade em aprendizado de méaquina e pela possibilidade
de contribuir para o desenvolvimento de sistemas de Visao Computacional mais seguros,

auditaveis e responsaveis no contexto do trafego urbano.

1.4 Organizacao do Trabalho

Este trabalho esta organizado em seis capitulos. No Capitulo 1, é apresentada a in-
troducao, na qual sao descritos o contexto do problema, os objetivos do estudo, sua
justificativa e a estrutura geral do trabalho.

O Capitulo 2 apresenta a fundamentacao tedrica, abordando conceitos relaciona-
dos a veiculos autonomos, Machine Learning, reconhecimento de semaforos e confiabili-
dade em sistemas de Visao Computacional, além de introduzir os principios do framework
SafeML.

No Capitulo 3 sao discutidos os trabalhos relacionados, destacando abordagens
existentes para analise de confiabilidade e monitoramento de seguranca em modelos de
aprendizado de maquina, bem como suas principais caracteristicas e limitagoes.

O Capitulo 4 descreve a metodologia adotada, incluindo o conjunto de dados
utilizado, o pré-processamento das imagens, os modelos de classificacao empregados e o

pipeline de analise baseado no SafeML.
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No Capitulo 5 sao apresentados e analisados os resultados experimentais obtidos,
contemplando o desempenho dos classificadores e a andlise de confiabilidade por meio das

métricas e visualizagoes geradas.

Por fim, o Capitulo 6 apresenta as conclusoes do trabalho, destacando as princi-

pais contribuicoes, limitacoes do estudo e perspectivas para trabalhos futuros.
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2 Fundamentacao Teodrica

Este capitulo apresenta os principais conceitos que embasam o desenvolvimento deste
trabalho, fornecendo a base necessaria para compreender tanto a metodologia adotada

quanto a interpretacao dos resultados obtidos.

2.1 Machine Learning e Visao Computacional

Para analisar a confiabilidade de sistemas inteligentes, é fundamental compreender pri-
meiro os componentes que constituem essa inteligéncia. Frequentemente confundida com
uma tecnologia tnica, a Inteligéncia Artificial é, na verdade, uma area ampla da Ciéncia
da Computacao. O Departamento de Educacao dos EUA define IA como um “termo
guarda-chuva” que abrange um conjunto crescente de capacidades de modelagem (Office
of Educational Technology, 2023). Conforme ilustrado na Figura 2.1, a IA se ramifica
em diversas subdreas, como robdtica, processamento de linguagem natural e, especifica-
mente para este trabalho, duas especialidades centrais: o Machine Learning e a Visao
Computacional, conforme nomeadas na figura original.

O Machine Learning representa uma mudanca de paradigma na forma como
criamos software. Na programacao tradicional, um desenvolvedor escreve regras explicitas
para o computador seguir. Porém, segundo Hurwitz e Kirsch (2018), o ML foca na
capacidade do sistema de aprender e adaptar um modelo baseando-se em dados, e nao
em regras pré-codificadas. O algoritmo “ingere” exemplos — como dados histéricos ou
imagens — para identificar padroes e criar um modelo capaz de prever resultados futuros.

Dentro deste universo, existem diferentes abordagens para ensinar o computador.

Hurwitz e Kirsch (2018) categorizam o ML em quatro subconjuntos principais:

1. Aprendizado Supervisionado: O método mais comum, onde o algoritmo ¢é trei-
nado com dados que ja contém a “resposta correta” (dados rotulados). E como
ensinar uma crianga mostrando a ela varias fotos e dizendo “isto é um gato” ou

“isto é um cachorro”, até que ela possa distinguir sozinha.
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Figura 2.1: Componentes, tipos e subareas da IA. Fonte: Adaptado de Regona et al.
(2022) apud Office of Educational Technology (2023).

2. Aprendizado Nao Supervisionado: Utilizado quando os dados nao possuem
rotulos. O algoritmo explora os dados para encontrar estruturas ocultas ou agrupar

itens semelhantes (clusters) por conta prépria.

3. Aprendizado por Reforgo: Um modelo comportamental onde o sistema aprende
por tentativa e erro, recebendo “recompensas” por decisoes corretas e penalidades

por erros, reforcando o comportamento desejado.

4. Deep Learning: Uma técnica avancada que utiliza redes neurais artificiais para

modelar padroes complexos em grandes volumes de dados.

Enquanto o ML atua como o cérebro que processa padroes, a Visao Computaci-
onal funciona como os olhos do sistema. No entanto, enxergar digitalmente é um desafio
matematico. Szeliski (2021) descreve como um “problema inverso”: o computador recebe
uma imagem 2D plana e precisa deduzir as propriedades do mundo real 3D, como forma,
distancia e identidade dos objetos. O que para um humano é intuitivo — diferenciar uma
sombra de um objeto real — para a maquina exige algoritmos robustos para superar a
ambiguidade e a falta de informacoes de profundidade inerentes a uma fotografia.

A interseccao entre essas areas ocorre porque a Visao Computacional moderna

depende do ML para funcionar com precisao. Como modelar matematicamente todas as
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variacoes de luz e forma do mundo ¢é impossivel, utiliza-se o ML para treinar o computador
a reconhecer visualmente os objetos com base em probabilidades (SZELISKI, 2021). No
contexto deste TCC, essa uniao é o que permite a um veiculo autonomo analisar imagens
da via e classificar, com determinado grau de confianga, se um semaforo indica permissao

para avancar ou ordem de parada.

2.2 SVM

Dentre os diversos algoritmos de aprendizado supervisionado disponiveis para classi-
ficacao, o Support Vector Machines destaca-se por uma abordagem geométrica e intui-
tiva. Segundo Coutinho (2019), o objetivo fundamental do SVM é encontrar uma linha
de separacao (ou fronteira) entre duas classes distintas de dados. Em um exemplo bidi-
mensional simples, como pontos vermelhos e azuis em uma folha de papel, o algoritmo
busca tracar a reta que melhor separa esses dois grupos.

No entanto, em problemas reais com miultiplas caracteristicas, essa “linha” torna-
se um conceito multidimensional chamado de hiperplano. Coutinho (2019) explica que
podem existir infinitas retas capazes de separar dois grupos de dados, mas o SVM nao
escolhe uma aleatoriamente. Ele busca o hiperplano 6timo: aquele que maximiza a
distancia perpendicular entre a fronteira de decisao e os pontos mais préximos de cada
classe. Essa distancia de seguranca é tecnicamente denominada margem.

Os pontos de dados que estao localizados exatamente na borda dessa margem sao
os elementos mais criticos para o algoritmo e recebem o nome de Vetores de Suporte
(Support Vector). Conforme detalham Szeliski (2021) e Coutinho (2019), sdo esses pontos
que “seguram” ou definem a posicao do hiperplano. Se movermos os pontos que estao
distantes da fronteira, a linha de classificacao nao muda; porém, qualquer alteracao nos
vetores de suporte redefine todo o modelo. A Figura 2.2 ilustra visualmente esses com-
ponentes, destacando como o hiperplano central é equidistante dos vetores de suporte de
ambas as classes.

Embora o conceito original do SVM tenha sido desenhado para separar duas
classes (classificagao bindria), problemas como o reconhecimento de seméforos envolvem

multiplas categorias. Para lidar com isso, utiliza-se a estratégia conhecida como One-vs-
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Figura 2.2: Estrutura geral do algoritmo SVM: vetores de suporte definindo o hiperplano
de separagao. Fonte: Barbosa et al. (2021).

All (ou One-vs-Rest). De acordo com Coutinho (2019), essa técnica divide um problema
multiclasse em varias classificacoes binarias. Para classificar trés cores de semaforo, o
algoritmo treina: “Vermelho contra o resto”, “Verde contra o resto”, e assim por diante.
Ao receber um novo dado, o sistema verifica qual desses classificadores apresenta a maior
confianca para decidir a classe final.

Na implementacao pratica deste trabalho, optou-se pelo uso do classificador linear
(LinearSVC do pacote scikit-learn). Isso significa que o modelo busca separar as classes
usando hiperplanos retos. Embora existam variagoes do SVM nao-linear que transformam
0 espago para criar curvas complexas de separagao — tuteis quando os dados estao muito
misturados —, Coutinho (2019) ressalta que o modelo linear é frequentemente preferivel
pela simplicidade e menor custo computacional.

Em suma, a escolha do SVM Linear com a estratégia One-vs-All oferece uma base
robusta para a avaliacao de confianca proposta neste TCC. Ele permite nao apenas decidir
qual a cor do seméaforo, mas, através da andlise da margem (a distancia dos dados em

relagao ao hiperplano mostrada na Figura 2.2), inferir o quao segura é aquela classificacao.
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2.3 CNN

Para compreender a tecnologia que permite a um veiculo autonomo “ver”, é necessério
primeiro entender a unidade fundamental de inteligéncia computacional: a Artificial Neu-
ral Network. Segundo Jorgecardete (2024), a base dessas redes é o neurénio artificial,
inspirado biologicamente. Quando organizados em camadas sequenciais (Input Layer,
Hidden Layer e Output Layer), eles formam o chamado Multi-Layer Perceptron, capaz de

aprender relagdes complexas entre dados (vide Figura 2.3).

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Figura 2.3: Estrutura bésica de um MLP. Fonte: Dustin (2025).

No entanto, aplicar MLPs diretamente em imagens apresenta um problema critico.
Dustin (2025) explica que uma MLP trata a entrada como uma lista plana de nimeros.
Para processar uma imagem, a rede precisa “achata-la” em um vetor tnico, destruindo a
estrutura espacial. A rede perde a nogao de que um pixel é vizinho do outro, ignorando
formas e contornos. Para solucionar isso, utiliza-se a Convolutional Neural Network, que
preserva a estrutura tridimensional da imagem (largura, altura e cores) e processa os
dados em duas grandes etapas: a extracao de caracteristicas e a classificacao.

A extracao de caracteristicas é realizada pela operacao de Convolucao. Ao
contrério da conexao total da MLP, a convolugao utiliza filtros (ou kernels) — pequenas
matrizes de nimeros — que deslizam sobre a imagem realizando operagoes matematicas
locais (vide Figura 2.4). Alves (2018) compara esse processo a uma “lanterna” escaneando
a cena: cada filtro aprende a detectar um padrao visual especifico, como bordas verticais,
curvas ou texturas, gerando os chamados mapas de caracteristicas.

Para tornar o processamento mais eficiente, aplicam-se camadas de Pooling (Su-
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Figura 2.4: Operagao de Convolucao: um filtro desliza sobre a imagem para gerar um
mapa de caracteristicas. Fonte: Jorgecardete (2024).

bamostragem) entre as convolugoes. O objetivo, segundo Jorgecardete (2024), é reduzir
a dimensao da imagem mantendo apenas as informacoes mais relevantes. O método mais
comum, o Max Pooling, seleciona apenas o valor mais alto dentro de uma pequena regiao
(vide Figura 2.5), descartando ruidos e tornando a rede mais robusta a pequenas variacoes
de posicao do objeto.

Apoés as camadas de convolucao e pooling extrairem os padroes visuais, ocorre
a transicdo para a etapa de Classificacdo. Jorgecardete (2024) detalha que os mapas
de caracteristicas resultantes sdo submetidos a um processo de Flattening (achatamento),
transformando os dados 3D em um vetor linear. Diferente do inicio do processo, agora esse
achatamento é 0til, pois alimenta camadas densas (Fully Connected) que interpretam esses
padroes de alto nivel para tomar uma decisao final, conforme a visao geral na Figura 2.6.
Adicionalmente, podem ser empregadas camadas de Dropout com o objetivo de reduzir o
sobreajuste (overfitting) durante o treinamento, desativando aleatoriamente neur6nios ao
longo do processo de aprendizagem.

Na camada de saida, arquiteturas modernas frequentemente utilizam funcoes
como a Softmax para converter os valores numéricos produzidos pela rede em esco-
res normalizados, comumente interpretados como probabilidades associadas a cada classe
(JORGECARDETE, 2024). No contexto deste trabalho, isso permite que o sistema pro-
duza pontuagoes para rotulos aciondveis no transito, como go, stop ou warning, indicando
a preferéncia do modelo por cada classe.

Por fim, é crucial entender que a CNN nao é programada com regras fixas, mas sim

treinada via Aprendizado Supervisionado. Segundo Szeliski (2021) e Jorgecardete (2024),
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Figura 2.5: Max Pooling: redugao da dimensao mantendo apenas os valores maximos.
Fonte: Jorgecardete (2024).

a rede é exposta a milhares de imagens previamente rotuladas e realiza predigoes iniciais.
O erro associado a essas predigoes é calculado por uma funcao de perda (Loss Function)
e, por meio do algoritmo de Backpropagation (retropropagagao), esse erro é propagado
de volta pela rede para ajustar iterativamente os pesos dos filtros e das camadas densas.
Esse ciclo iterativo permite que o modelo aprenda representagoes visuais cada vez mais

adequadas para a tarefa de classificacao de semaforos.

2.4 Reconhecimento de Semaforos

O reconhecimento de seméaforos desempenha um papel vital na seguranca e eficiéncia dos
sistemas de transporte modernos. Enquanto humanos ocasionalmente falham em perceber

ou obedecer a sinalizacao — seja por distracao, fadiga ou imprudeéncia —, os Sistemas
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Figura 2.6: Visao completa de uma CNN: da extracao de caracteristicas a classificacao.
Fonte: Jorgecardete (2024).

Avangados de Assisténcia ao Condutor (ADAS) e os veiculos autéonomos prometem mi-
tigar esses erros através de monitoramento continuo. Segundo Jensen et al. (2016), a
importancia dessa tecnologia é sublinhada pelas estatisticas de acidentes: apenas nos
EUA, em 2012, centenas de pessoas morreram e milhares ficaram feridas em colisoes
causadas especificamente pelo desrespeito ao sinal vermelho.

Idealmente, a comunicagao entre a infraestrutura e o veiculo (12V) via radio seria
a solugao definitiva para informar o estado do seméforo. No entanto, Philipsen et al. (2015)
argumentam que, devido ao alto custo de implementacao dessa infraestrutura em larga
escala, a solucao imediata e mais viavel reside na Visao Computacional. O veiculo deve ser
capaz de ”ver”’e interpretar a sinalizacao existente da mesma forma que um humano faz,
utilizando cameras e algoritmos inteligentes para tomar decisoes criticas, como parar em
um cruzamento ou atravessar com seguranca durante a “zona de dilema”da luz amarela
(JENSEN et al., 2016).

Contudo, replicar a percepcao humana via software apresenta desafios técnicos
formiddveis. O ambiente urbano é cadtico e visualmente poluido. Jensen et al. (2016)
destacam que um sistema robusto precisa lidar com variacoes extremas de iluminacao:
durante o dia, o sol pode causar reflexos ou ”fantasmas”na lente, lavando a cor da luz;
a noite, o alto contraste pode saturar o sensor da camera ou gerar halos de luz que

distorcem a forma do semaforo. Além disso, existe o problema recorrente das falsas
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detecgoes, onde luzes de freio de outros carros, letreiros de neon ou reflexos em janelas
podem ser confundidos com um sinal de transito (PHILIPSEN et al., 2015).

Outro obstaculo significativo é a variabilidade geométrica e posicional. Conforme
ilustrado por Jensen et al. (2016), os seméforos nao sao padronizados globalmente: eles po-
dem estar dispostos verticalmente ou horizontalmente, suspensos por cabos (balangando
com o vento) ou fixos em postes laterais. Além das tradicionais luzes circulares, existem
setas direcionais, contadores regressivos e icones especificos para pedestres ou bicicletas.
O sistema de visao computacional deve ser capaz de generalizar o aprendizado para re-
conhecer todas essas variantes, mesmo quando o objeto esta parcialmente oculto por um
caminhao, uma arvore ou afetado por condigoes climaticas adversas como chuva e neblina
(JENSEN et al., 2016).

Para enfrentar essa complexidade, a literatura divide o problema em etapas se-
quenciais: detecgao (encontrar o objeto na imagem), classificagdo (determinar se é verde,
amarelo ou vermelho) e rastreamento (acompanhar o objeto ao longo do tempo). En-
quanto abordagens antigas tentavam resolver isso com regras manuais baseadas em cor
e formato (métodos heuristicos), Philipsen et al. (2015) apontam que o estado da arte
migrou para abordagens baseadas em aprendizado de méquina (learning-based), que de-
monstraram ser ordens de magnitude superiores em precisao e recuperagao (recall), espe-
cialmente quando treinadas com grandes volumes de dados.

E nesse contexto de aprendizado baseado em dados que surge a necessidade de
bancos de imagens robustos para treinamento e validagao. Philipsen et al. (2015) intro-
duziram o LISA Traffic Light Dataset, desenvolvido pela Universidade da Califérnia em
San Diego, para suprir a caréncia de bases de dados publicas e desafiadoras. Diferente de
conjuntos de dados pequenos e controlados, o LISA contém mais de 112 mil anotagoes de
semaforos capturadas em cendrios reais de condugao urbana nos EUA.

O diferencial do dataset LISA, segundo Jensen et al. (2016), reside na sua diversi-
dade: as sequéncias de video capturam transicoes de iluminagao, variando desde a manha
clara até o crepusculo e a noite completa. Ele inclui situacoes complexas com multiplos
semaforos visiveis simultaneamente, oclusoes e distancias variadas. Essa variabilidade o

torna uma ferramenta essencial para testar a confiabilidade de algoritmos, servindo como
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a base de dados escolhida para o desenvolvimento e avaliacao dos modelos de TA propostos

neste trabalho.

2.5 Seguranca e Confiabilidade em ML

A adogao de modelos de ML em sistemas criticos exige uma mudancga de paradigma na
engenharia de software. Diferente da programacao tradicional, onde a légica é codificada
explicitamente por humanos através de regras deterministicas, sistemas de ML induzem
seu comportamento a partir de dados (HURWITZ; KIRSCH, 2018). Isso implica que
a confiabilidade do sistema nao depende apenas da auséncia de bugs no codigo, mas
fundamentalmente da qualidade, veracidade e representatividade dos dados utilizados
no treinamento. Conforme alertam Hurwitz e Kirsch (2018), um modelo é apenas uma
“aproximacao da realidade”; se os dados contiverem vieses ou nao cobrirem cendarios raros,
a “inteligéncia” do sistema pode falhar silenciosamente.

Do ponto de vista da engenharia de sistemas, Sculley et al. (2015) introduzem o
conceito de “Divida Técnica Oculta” em ML. Eles argumentam que, embora desenvolver
um modelo inicial seja relativamente rapido, mante-lo confidvel ao longo do tempo é com-
plexo devido ao principio CACE (Changing Anything Changes Everything). Em sistemas
de ML, nao existe isolamento estrito: uma simples alteracao no sinal de entrada, como
a troca de um sensor ou uma mudanca na iluminacao do ambiente, pode alterar o com-
portamento de toda a rede de predigao. Sculley et al. (2015) destacam que a maior parte
do c6digo em um sistema real nao é o algoritmo de ML em si, mas a vasta infraestrutura
de coleta, preparacao e monitoramento de dados, onde a erosao de fronteiras pode criar
dependéncias frageis e potencialmente perigosas.

Além da fragilidade sistémica, existe o desafio estatistico da validagdo. Koopman
e Wagner (2016) explicam que é invidvel garantir a seguranca de um veiculo auténomo
apenas através de testes extensivos de rodagem, pois eventos catastroficos sao estatistica-
mente raros — os chamados “Cisnes Negros”. Um sistema pode funcionar corretamente
para milhdes de situagoes comuns e ainda assim falhar em um cendrio inédito que nao
estava presente no conjunto de treinamento. Por esse motivo, a confiabilidade deve ser

considerada como um requisito de projeto, utilizando estratégias arquiteturais como o
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par Monitor/Atuador, no qual um sistema de seguranga mais simples e deterministico su-
pervisiona as decisoes de um modelo de aprendizado complexo (KOOPMAN; WAGNER,
2016).

Esse cenario evidencia uma limitacao fundamental das praticas tradicionais de
Engenharia de Software. Técnicas classicas de verificacao e validagao realizadas em tempo
de projeto (design-time), como testes unitarios, testes de integracao e validacao baseada
em requisitos, pressupoem sistemas com comportamento deterministico e totalmente es-
pecificavel. Em sistemas baseados em Machine Learning, cujo comportamento é induzido
a partir de dados e pode variar conforme o ambiente de operacao, tais abordagens nao
sao suficientes para garantir niveis adequados de confianga, especialmente em aplicacoes
de seguranca critica como veiculos autonomos. Dessa forma, torna-se necessaria a adogao
de mecanismos complementares capazes de avaliar o comportamento do modelo durante
a execucao, monitorando possiveis desvios e situagoes de risco que nao puderam ser ante-
cipadas na fase de desenvolvimento.

Para avaliar o desempenho de classificadores, métricas quantitativas sao ampla-
mente utilizadas. Entretanto, métricas isoladas podem levar a interpretacoes equivocadas.
A literatura técnica (PHILIPSEN et al., 2015; JENSEN et al., 2016) destaca trés conceitos

fundamentais para a avaliacao de modelos de classificacao:

e Acuricia (Accuracy): Métrica intuitiva que expressa a proporgao total de clas-
sificagoes corretas realizadas pelo modelo. Embora amplamente utilizada, pode ser
enganosa em cenarios com dados desbalanceados. Em um contexto urbano onde a
maioria dos semaforos esteja verde, um modelo que sempre indique esse estado pode

apresentar alta acuracia, apesar de ser inadequado e inseguro.

e Precisao (Precision): Indica o quao confidveis sdo as decisoes positivas do mo-
delo, ou seja, com que frequéncia uma deteccao realizada corresponde de fato a um
evento real. Em sistemas veiculares, alta precisao reduz acoes desnecessarias, como

frenagens indevidas.

e Revocagao (Recall): Mede a capacidade do sistema de identificar todos os even-

tos relevantes presentes no ambiente. Em aplicacoes de seguranca, essa métrica é
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particularmente critica, pois valores baixos indicam que situacoes perigosas podem

nao ser detectadas.

A aplicagao desses conceitos ao dominio do transito evidencia a assimetria do
risco. Conforme discutido por Jensen et al. (2016), em sistemas de assisténcia ao condu-
tor, os erros nao possuem o mesmo impacto. A nao deteccao de um sinal vermelho pode
resultar em acidentes graves, enquanto uma deteccao incorreta tende a gerar apenas uma
interrupcao desnecessaria da conducao. Dessa forma, um sistema de ML confiavel, no
contexto deste Trabalho de Conclusao de Curso, nao é necessariamente aquele que apre-
senta a maior acuracia geral, mas sim aquele capaz de minimizar falhas criticas, mantendo

desempenho estavel mesmo diante das variagoes do ambiente real.

2.6 SafeML

Para garantir que os modelos operem dentro de parametros seguros, mesmo diante de
dados desconhecidos, este trabalho utiliza a abordagem SafeML. Proposta originalmente
por Aslansefat et al. (2020) e aprimorada em sua segunda versao (SafeML II) por As-
lansefat et al. (2021), essa técnica atua como um monitor de seguranga em tempo de
execucao (runtime safety monitor), detectando quando os dados de entrada divergem

estatisticamente dos dados conhecidos pelo modelo durante o treinamento.

Arquitetura e Funcionamento: Fases Offline e Online

A implementacao do SafeML nao se resume a uma métrica isolada, mas sim a um fra-
mework operacional dividido em duas fases distintas: a Fase de Treinamento (Offline) e
a Fase de Aplicagao (Online), conforme ilustrado na estrutura geral da Figura 2.7.

Na Fase Offline, utiliza-se um dataset confiavel e rotulado para treinar o classi-
ficador. Apds o treinamento, o sistema nao apenas salva os pesos do modelo, mas também
extrai o perfil estatistico de cada classe correta. Segundo Aslansefat et al. (2021), isso
é feito armazenando a Fungao de Distribuicdo Cumulativa Empirica (ECDF) das carac-
teristicas extraidas das imagens de treino, como valores de pixels ou ativagoes internas

do modelo, dependendo do classificador utilizado. Esses perfis estatisticos servem como a
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assinatura de referéncia do que é considerado um dado seguro e conhecido.

Na Fase Online, o sistema opera em tempo de execucao recebendo imagens
nao rotuladas. Um buffer temporal é utilizado para coletar uma pequena sequéncia de
amostras (por exemplo, 15 quadros consecutivos). O SafeML entao calcula a ECDF
dessas novas amostras e mede a distancia estatistica em relagao a assinatura de referéncia

armazenada durante a fase offline.

Distancias Estatisticas e a Evolugao com P-Value

Para quantificar a divergéncia entre os dados de treino e os dados observados em execucao,
o framework SafeML emprega um conjunto de métricas de distancia estatistica. As prin-

cipais implementadas sao:

1. Distancia de Kolmogorov-Smirnov (KS): Calcula a maior distancia vertical
absoluta entre duas funcoes de distribuicao acumulada. E eficaz para detectar mu-

dancas abruptas, mas apresenta menor sensibilidade as caudas da distribuicao.

2. Distancia de Kuiper (K): Variagdo da KS que considera conjuntamente os desvios

positivos e negativos, sendo mais sensivel a alteracoes nos extremos dos dados.

3. Distancia de Anderson-Darling (AD): Atribui maior peso as diferengas obser-
vadas nas caudas da distribuicao, sendo particularmente ttil para detectar eventos

raros e potencialmente criticos em sistemas de seguranca.

4. Distancia de Cramer—Von Mises (CVM): Calcula a soma das diferengas quadréticas
ao longo de toda a distribuicao, oferecendo uma visao global da divergéncia entre

os conjuntos de dados.

5. Distancia de Wasserstein (WD): Mede o esfor¢o necessario para transformar
uma distribuigao na outra. Conforme discutido por Aslansefat et al. (2021), a WD
¢é especialmente adequada para aplicacoes de visao computacional, pois captura a

geometria das alteragoes entre distribuigoes (vide Figura 2.8).

Embora o SafeML em sua versao inicial utilizasse essas métricas diretamente, o

método apresentava sensibilidade a variagoes irrelevantes dos dados. A principal inovacao
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Figura 2.7: Fluxograma da abordagem SafeML: distingao entre a fase de treinamento (ex-

tragao de parametros) e a fase de aplicagdo (monitoramento e decisao). Fonte: Aslansefat
et al. (2020).
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Figura 2.8: Comparagao visual das distancias estatisticas: (a) KS foca no desvio méximo;
(b) Kuiper considera desvios positivos e negativos; (¢) Wasserstein mede a drea entre as
curvas. Fonte: Aslansefat et al. (2021).
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do SafeML II foi a introdugao de um processo de validacao estatistica baseado em p-
value, obtido por meio de técnicas de bootstrapping. O sistema realiza multiplas reamos-
tragens para verificar se a distancia observada ¢ estatisticamente significativa. Distancias
associadas a valores elevados de p-value sao consideradas estatisticamente nao significati-
vas e tratadas como ruido. Conforme ilustrado na Figura 2.9, essa filtragem permite que
o monitor ignore variacoes de fundo e concentre a andlise nas caracteristicas estruturais

relevantes do seméforo.

SafeML Without
PValua
Consideration

SafeML Il With
P\alua
Consideration

Figura 2.9: Impacto do p-value: (Topo) Sem validacao estatistica, o sistema é sensivel a
ruidos no fundo. (Baixo) Com p-value, o foco se restringe as caracteristicas relevantes do
objeto. Fonte: Aslansefat et al. (2021).

Protocolo de Decisao e Human-in-the-Loop

O objetivo final do monitoramento estatistico é apoiar a tomada de decisao segura. As-
lansefat et al. (2021) definem trés cendrios de resposta com base no nivel de confianca

estimado pelo monitor:

e Alta Confianca: Quando a distancia estatistica validada é baixa, o sistema aceita

automaticamente a decisao produzida pelo modelo de aprendizado.

e Incerteza Moderada: Quando a confianga encontra-se préxima ao limiar, o sis-

tema pode optar por coletar mais dados, aumentar o tamanho do buffer ou consultar
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sensores redundantes antes de tomar uma decisdao definitiva.

e Baixa Confianca (Human-in-the-Loop): Quando a divergéncia estatistica é
elevada, o cenario é considerado desconhecido ou potencialmente adversarial. Nesses
casos, o SafeML rejeita a decisao automatica e aciona um protocolo Human-in-the-
Loop, solicitando a intervencao do condutor ou a transi¢cao do veiculo para um modo

seguro.

Essa abordagem foi originalmente validada no dataset GTSRB, no qual uma CNN
com elevada acurécia foi monitorada. Os resultados apresentados por Aslansefat et al.
(2021) indicam que o SafeML II, utilizando a Distancia de Wasserstein combinada com
validacao via p-value, é capaz de antecipar a degradacgao do desempenho do classificador de
forma mais eficaz do que métodos baseados exclusivamente na incerteza da saida Softmax,
indicando seu potencial como um mecanismo robusto de alerta para sistemas de direcao

autonoma.
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3 Trabalhos Relacionados

A pesquisa em sistemas de percepc¢ao para veiculos autonomos evoluiu significativamente
na ultima década. A literatura, contudo, evidencia uma dicotomia clara: de um lado,
trabalhos voltados a maximizacao de métricas de desempenho, como acurécia e precisao,
no reconhecimento automatico de semaforos; de outro, estudos que abordam a seguranca
funcional e os desafios relacionados a confiabilidade em sistemas baseados exclusivamente
em Machine Learning. Esta secao analisa essas abordagens de forma comparativa e posi-
ciona a proposta do SafeML nesse contexto.

No dominio especifico do reconhecimento de seméforos, Jensen et al. (2016) apre-
sentam um levantamento abrangente que descreve a evolucao das abordagens empregadas
na area. Trabalhos iniciais baseavam-se predominantemente em métodos heuristicos, uti-
lizando regras manuais associadas a cor e a geometria dos semaforos. Embora eficientes
sob condigoes controladas, tais abordagens mostraram-se frageis diante de variagoes de
iluminacao, oclusoes e cenarios urbanos complexos. Como consequéncia, a literatura pas-
sou a adotar métodos baseados em Machine Learning, incluindo classificadores SVM e,
mais recentemente, redes neurais convolucionais (CNNs). Os autores destacam, entre-
tanto, que a comparacao entre solucoes é dificultada pela utilizacao recorrente de bases
de dados privadas, o que motivou a criacao do LISA Traffic Light Dataset como referéncia
publica para avaliacao de desempenho.

Apesar dos avancos obtidos em termos de acuricia, a validacao da seguranca des-
ses sistemas permanece um desafio em aberto. Koopman e Wagner (2016) argumentam
que abordagens tradicionais baseadas exclusivamente em testes extensivos sao inadequa-
das para sistemas autonomos, devido a raridade estatistica de eventos criticos. Nesse
contexto, os autores defendem que a confiabilidade deve ser tratada como um requisito
arquitetural, propondo mecanismos de monitoramento em tempo de execucao capazes de
supervisionar modelos de Machine Learning durante sua operacao.

E nesse cenario que se insere o framework SafeML. Em sua proposta original, As-

lansefat et al. (2020) introduzem um mecanismo de monitoramento estatistico em tempo
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de execucao, baseado em medidas de distancia entre distribuicoes de dados, com o obje-
tivo de identificar desvios entre os dados de treinamento e os dados observados durante
a aplicacao. A abordagem permite estimar a confiabilidade do classificador sem acesso
a sua logica interna, tratando o modelo como uma caiza-preta. Posteriormente, o Sa-
feML II (ASLANSEFAT et al., 2021) aprimora essa estratégia ao incorporar validagao
estatistica por meio de p-value e técnicas de bootstrapping, reduzindo a sensibilidade a
ruidos irrelevantes.

A versao aprimorada do SafeML foi validada por Aslansefat et al. (2021) no con-
texto de veiculos autonomos, utilizando o reconhecimento de placas de transito no dataset
GTSRB. Os resultados demonstram que a Distancia de Wasserstein, quando combinada
com filtragem estatistica via p-value, é capaz de antecipar a degradacao do desempenho do
classificador com maior precisao do que métodos baseados apenas na incerteza da saida da
rede neural. Contudo, esse estudo concentra-se em objetos estaticos, cujas caracteristicas
visuais diferem substancialmente das encontradas em seméforos.

A andlise da literatura revela, portanto, uma lacuna especifica. Enquanto tra-
balhos como o de Jensen et al. (2016) priorizam a maximizagao do desempenho no re-
conhecimento de semaforos, e estudos como o de Aslansefat et al. (2021) investigam
mecanismos de monitoramento de confiabilidade em objetos estaticos, ha uma auséncia
de investigacoes que apliquem a metodologia SafeML IT ao reconhecimento de seméaforos.
Esses objetos apresentam desafios particulares, como mudanca dinamica de estado, menor
area em pixels e alta variabilidade de iluminacao. O presente trabalho busca preencher
essa lacuna ao aplicar e analisar o uso do SafeML II em classificadores de semaforos trei-
nados com o dataset LISA, deslocando o foco da simples maximizacao de métricas de
acuracia para a avaliacao da confiabilidade em tempo de execucao.

Além do monitoramento estatistico, uma linha de pesquisa complementar busca
aumentar a confianga em sistemas de percepcao por meio de técnicas de explicabilidade,
inseridas no escopo da FEzplainable Artificial Intelligence (XAI). Duas das abordagens
mais proeminentes na literatura sao o LIME (Local Interpretable Model-agnostic Expla-
nations) e o SHAP (SHapley Additive exPlanations). O LIME, proposto por Ribeiro et

al., atua aproximando localmente o comportamento de um modelo complexo por meio de
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modelos lineares mais simples e interpretaveis, permitindo entender quais caracteristicas
de uma imagem especifica influenciaram a classificagao (RIBEIRO; SINGH; GUESTRIN,
2016; LIMA, 2024). Ja o SHAP, fundamentado na teoria dos jogos cooperativos, atribui
valores de importancia a cada atributo de entrada, oferecendo uma medida unificada de
contribuigao de caracteristicas (LUNDBERG; LEE, 2017; NAZAT; ABDALLAH, 2024).

Embora essas ferramentas oferecam insights valiosos sobre o funcionamento in-
terno dos modelos, elas nao operam como mecanismos ativos de deteccao de anomalias
ou de monitoramento estatistico em tempo real — papel desempenhado pelo SafeML II
nesta pesquisa. Além disso, estudos recentes apontam que métodos como LIME e SHAP
podem gerar explicagoes conflitantes entre si ou instaveis diante de pequenas perturbacoes
nos dados, nao garantindo a faithfulness necessaria para aplicagoes criticas de seguranca
(JIA et al., 2022; NAZAT; ABDALLAH, 2024). A simples visualizacao de quais pixels
foram ”ativados”nao é suficiente para garantir que o modelo nao falhara em um cenério
de transito inédito.

Para lidar com essa lacuna entre o desenvolvimento de modelos e a garantia
formal de seguranca, metodologias baseadas em Safety Cases tém sido propostas. O
framework AMLAS (Assurance of Machine Learning for use in Autonomous Systems),
desenvolvido por Paterson et al. (2025), estabelece um processo sistematico para justificar
a seguranca de componentes baseados em ML. Os autores ilustram essa metodologia com
um estudo de caso aplicado a um detector de placas de pare em veiculos autonomos.
Eles demonstram que, para garantir a seguranca, nao basta apenas treinar o modelo; é
necessario construir um argumento estruturado que vincule os dados de treinamento, os
processos de verificagao e os monitores de tempo de execugao aos requisitos de seguranga

do sistema, assegurando que o veiculo opere dentro de parametros aceitaveis de risco.
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4 Metodologia

Este capitulo apresenta a metodologia adotada neste Trabalho de Conclusao de Curso,
descrevendo o fluxo completo empregado para a andlise de confiabilidade de classificadores
de semaforos. Inicialmente, sao apresentados os recursos computacionais e as ferramentas
utilizadas para a implementacao do pipeline experimental. Em seguida, detalha-se a
base de dados empregada, bem como os procedimentos de preparagao e organizagao das
amostras.

Na sequéncia, sao descritos os modelos utilizados, incluindo uma SVM linear e
uma rede neural convolucional (CNN), bem como o processo de treinamento e a avaliagao
de desempenho basica. Por fim, apresenta-se a integracao do monitor estatistico SafeML
IT ao pipeline proposto, detalhando como as medidas de distancia sao calculadas, ana-
lisadas e utilizadas para avaliar a confiabilidade das decisoes dos modelos em tempo de
execucao. Cada uma dessas etapas é aprofundada nas segoes subsequentes deste capitulo.
A Figura 4.1 ilustra, de forma consolidada, o diagrama que representa o fluxo completo

da metodologia adotada neste trabalho.

4.1 Tecnologias e Ferramentas

A implementacao do pipeline experimental deste trabalho foi realizada integralmente em
Python 3.x!, linguagem amplamente utilizada em pesquisa cientifica e desenvolvimento

de sistemas baseados em aprendizado de maquina. A escolha do Python se deve a sua

L{https://www.python.org)

COLETAR SAFEML
15 Acertos

CLASSIFICAR
IMAGENS DE

ANALISAR DADOS
E DEFINIR LIMIAR

Figura 4.1: Diagrama que ilustra o fluxo da metodologia proposta neste trabalho.
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vasta disponibilidade de bibliotecas consolidadas, facilidade de integracao entre diferentes
etapas do fluxo experimental e forte ado¢ao na comunidade académica e industrial.

Para a manipulagao de imagens e processamento dos recortes provenientes do
dataset LISA, foi utilizada a biblioteca Pillow (PIL)? que oferece suporte eficiente
para leitura, conversao e salvamento de imagens. Operagoes numéricas e manipulagao
de matrizes foram realizadas com o auxilio da biblioteca NumPy?, fundamental para o
tratamento de dados em aplicacoes de visao computacional e aprendizado de maquina.

Os modelos avaliados neste trabalho foram implementados com duas bibliote-
cas amplamente reconhecidas. Para o classificador baseado em Maquinas de Vetores de
Suporte, utilizou-se a biblioteca scikit-learn*, que fornece implementacoes robustas de
algoritmos classicos de aprendizado supervisionado, além de ferramentas para avaliacao
de desempenho. Para o classificador baseado em redes neurais, empregou-se o modulo
TensorFlow/Keras®, escolhido por sua flexibilidade, clareza na definicio de modelos e
ampla utilizacao em aplicacoes de aprendizado profundo.

A anélise de confiabilidade dos classificadores foi realizada por meio do framework
SafeML II°, seguindo a abordagem proposta por seus autores. Essa metodologia foi inte-
grada ao pipeline por meio de médulos responséaveis pelo calculo de distancias estatisticas,
geracao de mapas de calor e avaliacao de limiares de confianca. A escolha do SafeML II se
deve a sua capacidade de atuar como um monitor de seguranca independente do modelo,
permitindo a andlise de confiabilidade sem acesso a légica interna do classificador.

Os artefatos gerados durante os experimentos, como modelos treinados e resulta-
dos intermediarios, sao armazenados de forma persistente para garantir reprodutibilidade.
Para serializagao de modelos e organizacao da execugao dos scripts, foram utilizadas bi-
bliotecas auxiliares como joblib” e argparse®. A estrutura de diretérios e a padronizacao
dos caminhos do projeto sao centralizadas em um arquivo de configuracao, facilitando a

manutencao e execucao do cddigo.

2 (https:/ /pillow.readthedocs.io/en /stable/)
3 (https://numpy.org)
4({https://scikit-learn.org)
5 (https:/ /www.tensorflow.org)
6(https://github.com /koroshAslansefat/SafeML)
" (https://joblib.readthedocs.io)

(

8 (https://docs.python.org/3/library /argparse.html)
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O versionamento do cédigo-fonte é realizado por meio da plataforma GitHub?,
permitindo o controle de versoes, rastreamento de alteragoes e organizacao do desenvol-
vimento ao longo do trabalho. Essa pratica contribui para a transparéncia e reprodutibi-
lidade dos experimentos apresentados neste Trabalho de Conclusao de Curso.

Todos os experimentos foram executados em ambiente local, utilizando um com-
putador com processador AMD Ryzen 7 7700 de 8 nicleos a 3.80 GHz, 16 GB de
RAM, unidade SSD de 932 GB (Kingston SNV2S1000G) e placa de video dedicada N'VI-
DIA GeForce RTX 3060 com 12 GB de memoria. Essa configuracao permitiu realizar
as etapas de treinamento, coleta e avaliacao com desempenho satisfatério, embora o tempo
de execucao tenha sido monitorado como um fator relevante, especialmente nas andlises

com o framework SafeML II.

4.2 Base de Dados

Os experimentos deste trabalho utilizam o LISA Traffic Light Dataset, um conjunto de
dados publico amplamente empregado em pesquisas sobre reconhecimento automatico
de semaforos em ambientes urbanos. O dataset é composto por sequéncias de video
capturadas em condigoes reais de conducgao, abrangendo periodos diurnos e noturnos,
com grande variabilidade de iluminacao, distancia, oclusoes parciais e multiplos semaforos
visiveis simultaneamente (PHILIPSEN et al., 2015; JENSEN et al., 2016). As imagens
sao acompanhadas de anotagoes manuais que indicam, quadro a quadro, a posicao da
lampada ativa do seméforo por meio de caixas delimitadoras (bounding bozes), bem como
o respectivo estado do sinal.

O LISA Traffic Light Dataset contempla multiplos estados de seméaforos, inclu-
indo nao apenas as classes tradicionais go, warning e stop, mas também variagoes dire-
cionais como goLeft, goForward, warningLeft e stopLeft. Essa granularidade possibilita
analises mais detalhadas sobre sinalizagao direcional, porém resulta em uma distribuicao
fortemente desbalanceada entre as classes.

Neste trabalho, todas as imagens anotadas no dataset sao inicialmente processa-

das por meio do recorte automatico das regioes de interesse correspondentes aos semaforos,

9(https://github.com/SavioChermont /tcc-safeml)
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conforme definido nas anotagoes originais. Esse procedimento é realizado pelo script sour-
ce/lisa_dataset_builder.py, responsével por ler os arquivos de anotagao, extrair as regioes
delimitadas e associar cada recorte ao seu rétulo. Essa estratégia permite isolar a tarefa
de classificagao do estado do semaforo, abstraindo o problema de detec¢ao e concen-
trando a analise no comportamento dos classificadores e na confiabilidade estimada pelo
monitor estatistico.

A organizacao dos dados segue a separacao entre conjuntos de treinamento e
teste, respeitando a estrutura original do dataset. O conjunto de treinamento é composto
por amostras provenientes das sequéncias dayTrain e nightTrain, enquanto o conjunto
de teste utiliza imagens das sequéncias daySequencel, daySequence2, nightSequencel
e nightSequence?2. Essa separacao assegura que as imagens utilizadas para avaliagao nao
sejam vistas durante o processo de treinamento dos modelos.

A Tabela 4.1 apresenta a distribuicao das classes apds a etapa de curadoria.
Observa-se uma forte assimetria na quantidade de amostras entre as classes principais e
as classes direcionais, especialmente no conjunto de teste. Em particular, classes como
goForward e warningLeft apresentam numero reduzido de exemplos, o que comprome-
teria a robustez estatistica das andlises de confiabilidade baseadas na comparacao entre
distribuicoes.

Tabela 4.1: Distribuicao das classes do LISA Traffic Light Dataset apds a etapa de cura-
doria

Classe Treinamento Teste
go 22946 23777
goForward - 205
goLeft 1236 1240
stop 18 382 25936
stopLeft 7707 5027
warning 1258 1411
warningLeft 297 53

Diante dessa distribuicao desigual, optou-se por restringir os experimentos as trés
classes principais — go, warning e stop. Essa decisao baseia-se na constatacao de que as
classes direcionais apresentam nimero insuficiente de amostras, sobretudo no conjunto de
teste, inviabilizando uma anélise estatistica robusta. Além disso, as trés classes seleciona-

das correspondem diretamente as decisoes fundamentais de condugao veicular — seguir,
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atencao e parar — que constituem o foco deste Trabalho de Conclusao de Curso.

Além da distribuicao por classe, o dataset contempla imagens capturadas em dife-
rentes condigoes de iluminacao, incluindo periodos diurnos e noturnos. Essa distin¢ao nao
se apresenta de forma rigidamente separada, mas reflete variacoes naturais do cendrio de
aquisicao, uma vez que fatores como iluminacao, contraste, reflexos e saturacao luminosa
podem modificar significativamente a aparéncia das imagens. A Tabela 4.2 apresenta a
distribuicao dessas imagens nos conjuntos de treinamento e teste, evidenciando a coe-
xisténcia de ambas as condi¢oes em diferentes proporgoes.

Tabela 4.2: Distribuicao das classes do LISA Traffic Light Dataset segundo o periodo de
captura (dia/noite)

Classe Treinamento Teste
Dia Noite Dia Noite
go 13830 9116 6959 16818
goLeft 851 385 553 687
goForward 0 0 205 0
stop 15113 3269 6962 18974
stopLeft 6971 736 2884 2143
warning 755 503 404 1007
warningLeft 290 7 53 0

Cabe destacar que, neste trabalho, optou-se por utilizar o dataset conforme a
divisao originalmente disponibilizada, a qual contém uma quantidade maior de imagens
no conjunto de teste em relagao ao conjunto de treinamento, diferindo da pratica mais
comum na area, que geralmente adota uma divisao aproximada de 80% para treinamento
e 20% para teste. Essa escolha metodolégica é intencional e esté alinhada aos objetivos
do estudo, uma vez que o foco principal nao é maximizar o desempenho preditivo dos
modelos, mas avaliar a capacidade do SafeML II em identificar cenarios nos quais os
classificadores operam fora de seu dominio de treinamento, mesmo quando apresentam
niveis elevados de acuracia. Dessa forma, a adocao dessa separacao considerada atipica
fornece um cendrio apropriado para a analise da confiabilidade dos modelos em condicoes
adversas e de maior variabilidade visual, aspecto explorado nos capitulos de resultados e

conclusao.
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4.3 Modelos de Classificacao

Esta secao descreve as etapas comuns envolvidas na preparagao dos dados e no fluxo de
treinamento dos classificadores utilizados neste trabalho. Sao apresentados os procedi-
mentos de carregamento, pré-processamento e organizacao das amostras, bem como as
estratégias adotadas para garantir consisténcia entre os experimentos. Esses passos cons-
tituem a base sobre a qual as abordagens especificas de cada modelo sao posteriormente
detalhadas nas subsecoes seguintes.

O carregamento dos dados ¢é realizado por meio da funcao load_split, definida
no moédulo data utils.py. Essa fungao percorre os diretérios correspondentes aos con-
juntos de treinamento ou teste, lendo as imagens previamente recortadas. Durante essa
etapa, sao consideradas apenas as classes definidas na lista de permissoes (whitelist), con-
figurada no arquivo config.py como {go, stop, warning}, garantindo consisténcia entre
os experimentos e foco nas classes principais analisadas neste trabalho.

Cada imagem ¢é carregada no formato RGB, convertida para representacao em
ponto flutuante e normalizada para o intervalo [0, 1]. As imagens possuem tamanho fixo
de 30 x 30 pixels, conforme definido na configuracao global do projeto. Essa padronizacao
assegura que todos os exemplos de entrada possuam a mesma dimensionalidade, indepen-
dentemente do modelo utilizado.

No caso do classificador SVM, as imagens normalizadas sao achatadas em vetores
unidimensionais de 2 700 posigdes (30 x 30 x 3), formando o conjunto de caracteristicas de
entrada do modelo. Para a CNN, as imagens sao mantidas inicialmente em sua estrutura
bidimensional com canais de cor, sendo reorganizadas posteriormente no formato 30 x
30 x 3 durante a etapa especifica de treinamento da rede neural.

Com o objetivo de mitigar o desbalanceamento entre classes no conjunto de trei-
namento, é aplicado um limite maximo de amostras por classe, definido pela constante
MAX_PER_CLASS_TRAIN. Neste trabalho, esse valor foi fixado em 3 000 exemplos por classe.
Dessa forma, classes majoritarias como go e stop tém seu volume reduzido, enquanto a
classe warning é utilizada em sua totalidade, uma vez que possui menor niimero de amos-
tras disponiveis. O conjunto de teste, por sua vez, é carregado sem restrigoes, utilizando

todas as imagens disponiveis para cada classe.
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Apés o carregamento e pré-processamento, os dados de treinamento sao arma-
zenados em arquivos de cache no formato .npz, contendo as amostras de entrada, os
rotulos correspondentes e a lista de classes consideradas. Esses arquivos sao salvos em
diretérios especificos para cada modelo e utilizados tanto na etapa de treinamento quanto
nas andlises posteriores de confiabilidade com o SafeML II. Essa estratégia evita o repro-
cessamento repetido do dataset e garante que as mesmas representagoes de dados sejam

utilizadas de forma consistente ao longo de todo o pipeline experimental.

4.3.1 SVM
Classificador SVM Linear

O classificador baseado em Méquinas de Vetores de Suporte (SVM) foi implementado
utilizando uma fronteira de decisao linear por meio da biblioteca scikit-learn. A opc¢ao
por um modelo linear é adequada ao contexto deste trabalho, pois as imagens sao repre-
sentadas em um espaco de caracteristicas de alta dimensionalidade, no qual separagoes
lineares costumam apresentar bom desempenho com menor custo computacional.

A implementacao é realizada por meio de um pipeline que combina uma etapa de
padronizacao das caracteristicas com o algoritmo de classificacao. A padronizacao é feita
utilizando o StandardScaler, cuja funcao é ajustar a escala das variaveis de entrada para
que todas apresentem variancia comparavel. Essa etapa é importante porque o modelo é
sensivel a escala das caracteristicas: valores muito grandes podem dominar o processo de
otimizacao, prejudicando a qualidade da fronteira de decisao.

O StandardScaler ¢ configurado com a opgao with-mean=False, o que significa
que os dados nao sao centralizados em torno da média. Essa escolha é necessaria porque
as imagens sao representadas como vetores de pixels nao negativos, normalizados no
intervalo [0, 1]. Subtrair a média desses vetores poderia alterar a interpretacao direta dos
valores de intensidade dos pixels, além de nao trazer beneficios praticos para esse tipo de
representacao. Assim, mantém-se a distribuicao original dos dados, ao mesmo tempo em
que se controla sua escala.

Para a etapa de classificagao, utiliza-se o algoritmo LinearSVC. Diferentemente

do SVC com kernel linear, o LinearSVC ¢ otimizado especificamente para classificadores
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lineares em espagos de alta dimensionalidade, oferecendo maior eficiéncia computacional
e menor consumo de memoria. Essa caracteristica é especialmente relevante quando se
trabalha com vetores de entrada longos, como no caso das imagens achatadas utilizadas
neste trabalho.

Além disso, o LinearSVC lida automaticamente com o problema multiclasse por
meio da estratégia one-vs-rest, treinando um classificador binario para cada classe em
relacao as demais. Essa abordagem é simples, eficiente e amplamente utilizada em
aplicacoes praticas de classificagao.

Apods o treinamento, o modelo é avaliado no conjunto de teste utilizando métricas
de desempenho padrao, permitindo verificar o comportamento do classificador antes da
aplicacao das técnicas de analise de confiabilidade. O modelo treinado é entao persistido

em disco, possibilitando sua reutilizagao nas etapas posteriores do pipeline experimental.

4.3.2 CNN

O segundo modelo avaliado neste trabalho é um classificador baseado em Rede Neural
Convolucional (CNN), implementado com o objetivo de explorar explicitamente a estru-
tura espacial das imagens de semaforos. Diferentemente do SVM, que opera sobre vetores
de caracteristicas achatados, a CNN processa as imagens preservando a organizagao bi-
dimensional dos pixels e seus canais de cor, caracteristica particularmente relevante para
tarefas de visao computacional.

As imagens de entrada, inicialmente representadas como vetores unidimensionais,
sao reorganizadas no formato 30 x 30 x 3 antes do treinamento da rede neural. Os
rétulos, originalmente representados como cadeias de caracteres, sao convertidos para
indices numéricos e, em seguida, codificados no formato one-hot. Essa representacao é
necessaria para o treinamento supervisionado da rede, uma vez que a funcao de perda
utilizada assume uma codificagao categdrica das classes.

A arquitetura da CNN adotada neste trabalho é propositalmente simples, visando
reduzir o risco de sobreajuste e facilitar a analise de confiabilidade. O modelo é composto
por trés camadas convolucionais empilhadas, intercaladas com camadas de subamostra-

gem (maz pooling), permitindo a extracdo progressiva de caracteristicas visuais de baixo
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para alto nivel. Apds a etapa convolucional, os mapas de caracteristicas sao transforma-
dos em um vetor unidimensional e submetidos a uma camada de dropout, utilizada como
mecanismo de regularizacao para reduzir a dependéncia excessiva de neuronios especificos
durante o treinamento.

Na fase final, uma camada densa intermediaria é empregada para combinar as
caracteristicas extraidas, seguida por uma camada de saida com func¢ao de ativagao soft-
mazx. Essa configuracao permite que o modelo produza uma distribuicao de probabilidades
sobre as classes consideradas, possibilitando a classificacao do estado do semaforo em go,
stop ou warning.

O treinamento da CNN ¢é realizado utilizando o otimizador Adam, escolhido por
sua eficiéncia e ampla adogao em aplicacoes de aprendizado profundo. A funcao de perda
empregada é a categorical cross-entropy, adequada para problemas de classificacao mul-
ticlasse com rétulos categéricos. Os hiperparametros de treinamento foram definidos de
forma conservadora, priorizando a estabilidade do aprendizado e a reducao do risco de
sobreajuste. Em particular, adotou-se um nimero limitado de épocas de treinamento
(15 épocas), evitando ajustes excessivos aos dados de treinamento, bem como um tama-
nho de lote intermedidrio (32 amostras), que favorece um compromisso entre estabilidade
na estimativa do gradiente e capacidade de generalizacao. Além disso, a arquitetura da
rede foi mantida relativamente simples, com trés camadas convolucionais contendo um
nimero moderado de filtros (32, 64 e 128), seguidas de uma camada de dropout com taxa
de 0,5, utilizada como mecanismo de regularizacao. Essas escolhas refletem uma aborda-
gem conservadora ao evitar arquiteturas excessivamente profundas ou longos periodos de
treinamento, especialmente considerando o tamanho reduzido do conjunto de treinamento
e o objetivo deste trabalho de analisar o comportamento e a confiabilidade dos modelos,
em vez de maximizar exclusivamente o desempenho preditivo.

Apds o treinamento, o desempenho da rede é avaliado no conjunto de teste por
meio de métricas padrao de classificacao, permitindo analisar o comportamento da CNN
antes da aplicacao das técnicas de monitoramento de confiabilidade. O modelo treinado
é entao persistido em disco para uso posterior.

Além do salvamento do modelo, os dados de treinamento sao armazenados em



4.4 Predicao e Coleta de Dados com SafeML 46

formato compativel com as etapas de andlise do SafeML II. Essa decisao garante que a
analise estatistica de confiabilidade seja realizada sobre a mesma representagao de dados
utilizada durante o treinamento da rede, assegurando consisténcia entre os modelos avali-
ados e permitindo uma comparacao direta entre os resultados obtidos com a CNN e com

o classificador SVM.

4.4 Predigcao e Coleta de Dados com SafeML

Apos o treinamento dos classificadores, a etapa seguinte do pipeline consiste na aplicacao
do monitor estatistico SafeML II para a andlise de confiabilidade das predicoes realizadas
pelos modelos. Essa etapa tem como objetivo quantificar o grau de divergéncia entre os
dados utilizados no treinamento e as amostras observadas durante a fase de aplicacao,
permitindo avaliar se o classificador esta operando em um regime conhecido ou potenci-
almente inseguro.

A coleta das métricas de confiabilidade é realizada por meio do script source/-
safeml_collect.py, que opera de forma independente do modelo avaliado. O script recebe
como parametro o tipo de classificador analisado (svm ou cnn) e utiliza automaticamente
os caminhos padrao definidos no arquivo config.py para localizar o modelo treinado e
o cache de dados de treinamento. Opcionalmente, podem ser aplicados filtros para res-
tringir a analise a imagens capturadas exclusivamente durante o dia ou durante a noite,
possibilitando investigagoes especificas sobre o impacto das condigoes de iluminagao.

Inicialmente, carrega o conjunto de dados de treinamento previamente armaze-
nado em cache, contendo as amostras de entrada, os rotulos correspondentes e a lista de
classes consideradas. Esse cache utiliza exatamente a mesma representacao dos dados
empregada no treinamento dos classificadores, garantindo consisténcia entre as etapas do
pipeline. Em seguida, o conjunto de teste é carregado e utilizado como entrada para o
modelo treinado, que realiza a predicao do estado do seméaforo para cada imagem.

Com base nos rétulos reais e nas predigoes do modelo, as amostras do conjunto de
teste sao separadas, para cada classe, em dois subconjuntos distintos: amostras classifica-
das corretamente e amostras classificadas incorretamente. Essa separagao é fundamental

para a analise proposta, pois permite comparar o comportamento estatistico do modelo
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em situagoes nas quais a decisao foi correta e em situagoes nas quais ocorreu erro de
classificagao.

Para viabilizar o cédlculo das métricas estatisticas, é realizada uma amostragem
limitada dos dados, controlada por um parametro de configuracao. Para cada classe, sao
selecionadas até um ntimero méximo de amostras do conjunto de treinamento, bem como
das amostras corretas e incorretas do conjunto de teste. Essa estratégia reduz o custo
computacional da andlise e permite manter a comparacao estatistica equilibrada entre os
conjuntos.

A partir dessas amostras, o SafeML II calcula, para cada classe, a Distancia
de Wasserstein (WD) entre a distribuigdo dos pixels do conjunto de treinamento e a
distribuicao dos pixels das amostras classificadas incorretamente. Essa implementacao
de WD foi incorporada diretamente da biblioteca do framework SafeML, com base na
formulacao original proposta pelos autores. A implementacao adaptada para Python esté
localizada no médulo Wasserstein Dist_PVal.py.

Em paralelo, é aplicado um procedimento de validacao estatistica baseado em
bootstrap e p-value, permitindo identificar quais diferencas sao estatisticamente significa-
tivas. O valor de p ¢é calculado através de 1.000 reamostragens dos dados, onde distancias
maiores que a original sao contadas para determinar a significancia. Distancias com p-
value maior que 0.05 sao consideradas como ruido e descartadas da analise. Essa filtragem
ajuda a reduzir a influéncia de variagoes irrelevantes e foca apenas nas diferencas estatis-
ticamente significativas.

Além dos mapas de distancia, o script gera estatisticas resumidas por canal de cor,
incluindo a média das distancias estatisticamente significativas e o niimero de pizels que
apresentam divergéncia relevante. Essas estatisticas sao calculadas tanto para amostras
classificadas incorretamente quanto para amostras classificadas corretamente, sendo estas
ultimas utilizadas como uma referéncia de comportamento esperado do modelo.

Todos os resultados da coleta SafeML sao organizados em uma estrutura de dados
que inclui contagens de amostras, estatisticas por classe e por canal, mapas de distancia
e os caminhos das imagens utilizadas nas amostras incorretas. KEssas informacoes sao

armazenadas em arquivos persistentes no diretorio de artefatos do projeto, possibilitando
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sua reutilizacao nas etapas subsequentes de andlise visual e avaliacao experimental de
limiares de confianca.

Essa etapa estabelece, portanto, a ponte entre as predicoes realizadas pelos classi-
ficadores e a andlise de confiabilidade proposta neste trabalho, fornecendo tanto métricas
quantitativas quanto subsidios visuais para a interpretagao do comportamento dos mode-

los em cenarios corretos e incorretos.

4.5 Analise dos Dados

Apés a coleta das métricas estatisticas de confiabilidade por meio do SafeML II, torna-se
necessario interpretar esses dados de forma estruturada. Nesta etapa, a analise é condu-
zida sob duas perspectivas complementares: uma analise visual, baseada em mapas de
calor que evidenciam regioes criticas das imagens, e uma anélise experimental baseada em
limiares, que avalia o comportamento do monitor estatistico em um cenario simplificado

de decisao.

4.5.1 Analise Visual por Mapas de Calor

A analise visual tem como objetivo fornecer uma interpretacao intuitiva dos valores cal-
culados pelo SafeML II, auxiliando na compreensao de quais regioes da imagem mais
contribuem para a divergéncia estatistica observada nos casos de erro de classificacao.
Essa etapa é realizada pelo cédigo source/safeml heatmaps.py, que opera exclusiva-
mente sobre os resultados previamente salvos durante a fase de coleta, sem recalcular
quaisquer métricas estatisticas.

O script 1é o arquivo safeml results.npz, que contém, para cada classe, os ma-
pas bidimensionais da WD calculados pixel a pixel e por canal de cor (RGB). Dois tipos
de mapas sao considerados: o mapa completo de distancias, que representa a intensidade
relativa da divergéncia estatistica em cada pizel, e o mapa filtrado por significancia es-
tatistica, no qual valores associados a pizels com p-value maior ou igual a 0,05 sao zerados,
de acordo com o limiar adotado neste trabalho.

A partir desses dados, sao geradas visualizacoes em forma de mapas de calor no
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formato 30 x 30, correspondentes a resolucao das imagens utilizadas nos experimentos.
Os mapas sao produzidos individualmente para cada canal de cor, bem como em uma
versao agregada, obtida pela média dos trés canais, permitindo observar tanto padroes
cromaticos especificos quanto tendéncias espaciais globais.

E importante destacar que os mapas de calor utilizam uma escala de cores norma-
lizada para fins de visualizagdo. Dessa forma, regides exibidas em tons mais claros (como
amarelo ou branco) nao indicam valores absolutos da Distancia de Wasserstein préximos
de 1, mas sim os pixels que apresentam maior divergéncia estatistica relativa em com-
paracao aos demais pixels da mesma imagem. Os valores absolutos de WD permanecem
moderados, refletindo o fato de que, mesmo nos casos de erro, as imagens analisadas ainda
pertencem ao mesmo dominio visual do conjunto de treinamento.

Os mapas, que serao apresentados no proximo capitulo deste trabalho, nao tém
finalidade preditiva, mas desempenham um papel explicativo importante. Eles permitem
identificar regioes da imagem onde pequenas variacoes nos valores dos pixels resultam
em diferencas estatisticas mais pronunciadas em relacao ao perfil aprendido durante o
treinamento, indicando potenciais fontes de incerteza para o classificador. Dessa forma, a
analise visual complementa as métricas numéricas ao fornecer subsidios qualitativos para

a interpretacao do comportamento do modelo sob condigoes adversas.

4.5.2 Avaliacao Experimental por Definicao de Limiar

Além da anadlise visual, é realizada uma avaliacdo experimental simplificada com base
na definicao de limiares de aceitacao para as métricas de confiabilidade calculadas pelo
SafeML II. Essa etapa tem carater exploratério e visa simular, de forma controlada,
como um monitor estatistico poderia ser utilizado para aceitar ou rejeitar decisoes de um
classificador em tempo de execucao.

Essa avaliacao é conduzida pelo c6digo source/safeml_eval _threshold.py. Di-
ferentemente da etapa de coleta, esse script nao utiliza diretamente o modelo classificador
treinado. Em vez disso, ele opera exclusivamente sobre o conjunto de treinamento previ-
amente armazenado em cache e sobre amostras do conjunto de teste, focando apenas no

comportamento estatistico dos dados.
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O procedimento consiste na selecao de pequenos buffers de imagens do conjunto
de teste, agrupados por classe, contendo um nimero fixo de amostras sequenciais. Para
cada classe, é calculada a média da WD estatisticamente significativa entre as distribuigoes
dos pizels do conjunto de treinamento e as distribuicoes dos pixels presentes no buffer.
Esse calculo é realizado por canal de cor e posteriormente agregado em um tnico valor
representativo por classe.

Os valores obtidos sao entao comparados a limiares previamente definidos para
cada classe. Caso a distancia média fique abaixo do limiar estabelecido, o buffer é con-
siderado estatisticamente consistente com os dados de treinamento, sendo aceito pelo
monitor. Caso contrario, o buffer é rejeitado, indicando um possivel cenario fora do
dominio conhecido pelo modelo.

Para reduzir o custo computacional, sao aplicadas subamostragens tanto no niimero
de imagens do conjunto de treinamento quanto no nimero de pixels utilizados no calculo,
sem comprometer o objetivo exploratério da analise. O script permite ainda a aplicacao
de filtros para avaliar separadamente imagens capturadas durante o dia ou durante a noite,
possibilitando investigacoes especificas sobre o impacto das condigoes de iluminacao.

Essa etapa nao tem como objetivo medir desempenho preditivo, mas sim avaliar
a viabilidade pratica do uso de métricas estatisticas como critério auxiliar de decisao.
Os resultados obtidos servem como base para discutir o potencial do SafeML II como

ferramenta de apoio a confiabilidade em sistemas de Visao Computacional embarcados.
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5 Resultados

5.1 Resultados do Treinamento dos Classificadores

Esta segao apresenta os resultados obtidos com o treinamento e a avaliagao dos clas-
sificadores, considerando métricas tradicionais de desempenho. Conforme descrito no
Capitulo 4, o conjunto de treinamento foi balanceado por meio da limitacao do nimero
maximo de amostras por classe, enquanto o conjunto de teste foi utilizado em sua totali-
dade, sem qualquer restricao, refletindo de forma mais fiel a distribuicao real dos dados.

As métricas apresentadas nas tabelas a seguir sao amplamente utilizadas na ava-
liacao de modelos de classificagao. Além da acuracia, precisao e revocagao — ja explicadas
no Capitulo 2 (Fundamentagao Tedrica) —, utilizamos uma métrica complementar cha-
mada F'1-score.

O F1-score representa a média harmonica entre a precisao e a revocacao, sendo
especialmente util em cenarios com classes desbalanceadas, pois oferece uma medida equi-
librada entre ambos os aspectos. Por fim, a coluna Quantidade indica o nimero de
amostras reais de cada classe no conjunto de teste, o que permite contextualizar a repre-

sentatividade estatistica dos resultados.

5.1.1 Resultados da CNN

A CNN apresentou acuracia de 98,39% no conjunto de teste. A Tabela 5.1 apresenta o

desempenho do modelo por classe.

Tabela 5.1: Desempenho da CNN no conjunto de teste

Classe Precisao Revocagao F1l-score Quantidade
go 1.00 0.98 0.99 23777
stop 0.99 0.99 0.99 25936
warning 0.76 0.95 0.84 1411
Acuricia geral 0.9839

Observa-se que as classes go e stop apresentaram valores elevados de precisao e

revocagao, indicando que o modelo foi capaz de aprender de forma eficaz os padroes visuais
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associados a esses estados do semaforo. Em contraste, a classe warning apresentou alta
revocacao e menor precisao, o que indica que o modelo tende a identificar a maioria dos
semaforos amarelos, porém ao custo de um maior nimero de falsas detecgoes.

Esse comportamento é particularmente relevante em um contexto de seguranca,
pois indica que o modelo prefere errar por excesso — classificando imagens como warning

mesmo quando nao sao — em vez de deixar de detectar um semaforo amarelo existente.

5.1.2 Resultados do Classificador SVM Linear

O classificador SVM Linear alcangou acuracia de 98,11% no conjunto de teste. A Ta-

bela 5.2 apresenta o desempenho do modelo.

Tabela 5.2: Desempenho do SVM Linear no conjunto de teste

Classe Precisao Revocagao Fl-score Quantidade
go 0.98 0.99 0.99 23777
stop 0.99 0.98 0.98 25936
warning 0.83 0.88 0.85 1411
Acuracia geral 0.9811

Assim como observado na CNN, o SVM apresentou desempenho elevado nas
classes go e stop. Para a classe warning, o modelo apresentou valores mais equilibrados

entre precisao e revocacao, ainda que com desempenho inferior as classes majoritarias.

5.1.3 Analise Comparativa

A comparacao entre os dois modelos mostra que tanto ambos atingiram niveis elevados
de desempenho segundo métricas tradicionais. A CNN apresenta ligeira vantagem em
termos de acuracia geral, enquanto o SVM Linear demonstra desempenho competitivo
considerando sua simplicidade estrutural.

Entretanto, a andlise por classe evidencia que métricas globais, como a acuracia,
podem mascarar fragilidades relevantes. Em ambos os modelos, a classe warning apre-
senta desempenho inferior as demais, reforcando que avaliagoes baseadas apenas em acer-
tos globais nao sao suficientes para caracterizar a seguranca do sistema. Essa limitagao
motiva a analise de confiabilidade apresentada nas segoes seguintes, por meio da aplicagao

do monitor estatistico SafeML II.
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5.2 Resultados da Coleta SafeML II para o SVM

Nesta secao sao apresentados os resultados da aplicagao do SafeML II ao classificador
SVM, considerando separadamente cenarios diurnos e noturnos. A analise é conduzida
sobre as trés classes utilizadas neste trabalho (go, stop e warning). Para cada classe, sao
analisadas amostras corretamente e incorretamente classificadas, sendo selecionadas até
15 imagens por grupo, conforme a disponibilidade no conjunto de teste. Os resultados
sao avaliados por meio da Distancia de Wasserstein, com o objetivo de caracterizar o
comportamento estatistico do classificador e definir limiares de aceitacao especificos para
cada cenario.

O tempo médio necessario para a execugao completa dessa etapa de coleta, in-
cluindo a selecao das amostras, o calculo da Distancia de Wasserstein pixel a pixel e a
aplicacao do critério estatistico de significancia, foi de aproximadamente 12 minutos e 20

segundos por cenério (diurno ou noturno).

5.2.1 Resultados para Imagens Diurnas
Amostras Classificadas Incorretamente

A Tabela 5.3 apresenta os valores médios da Distancia de Wasserstein, calculados separa-
damente para os canais RGB, considerando apenas pixels estatisticamente significativos.
Observa-se que, para todas as classes, os valores de WD sao elevados, indicando forte
divergéncia estatistica em relacao ao conjunto de treinamento.

Tabela 5.3: Distancia de Wasserstein média por canal (RGB) para amostras incorretas

— SVM (diurno)

Classe Canal R Canal G Canal B

go 0.334 0.319 0.334
stop 0.277 0.319 0.507
warning 0.459 0.478 0.573

Destaca-se a classe warning, que apresenta os maiores valores de WD em todos
os canais, sugerindo que erros nessa classe estao associados a mudancas estatisticas mais

intensas no padrao visual das imagens.
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Amostras Classificadas Corretamente

A Tabela 5.4 mostra os valores correspondentes as amostras corretamente classificadas.
Em comparacao com os erros, os valores de WD sao significativamente menores, indicando
maior proximidade estatistica entre as imagens de teste e o conjunto de treinamento
quando o classificador acerta.

Tabela 5.4: Distancia de Wasserstein média por canal (RGB) para amostras corretas —
SVM (diurno)

Classe Canal R Canal G Canal B

go 0.115 0.196 0.207
stop 0.125 0.086 0.078
warning 0.190 0.200 0.265

A separacgao clara entre os valores de WD obtidos para acertos e erros indica
que a métrica ¢é sensivel a mudancas relevantes no dominio das imagens diurnas, mesmo

quando a acuracia do classificador é elevada.

Definicao do Limiar

Para cada classe, foi calculado um valor global de WD como a média aritmética dos trés
canais RGB. A Tabela 5.5 apresenta esses valores globais para amostras corretamente e
incorretamente classificadas no cenario diurno. O limiar de aceitacao foi definido como a

média entre os dois valores globais (acertos e erros) de cada classe.

Tabela 5.5: Média global (RGB) da WD para acertos e erros no cendrio diurno (SVM)
Classe WD global (acertos) WD global (erros) Limiar

go 0.173 0.329 0.251
stop 0.097 0.368 0.233
warning 0.219 0.504 0.362

5.2.2 Resultados para Imagens Noturnas
Amostras Classificadas Incorretamente

A Tabela 5.6 apresenta os valores médios da WD significativa para as amostras incor-
retamente classificadas no cenério noturno. Os valores correspondem a média por canal

RGB, calculada a partir das amostras de erro coletadas para cada classe.
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Tabela 5.6: Distancia de Wasserstein média por canal (RGB) para amostras incorretas
— SVM (noturno)

Classe Canal R Canal G Canal B

go 0.240 0.222 0.220
stop 0.342 0.224 0.204
warning 0.335 0.223 0.215

Observa-se que, para todas as classes, os valores de WD associados as amostras
incorretas sao relativamente elevados, indicando uma divergéncia estatistica significativa
entre essas imagens noturnas e a distribuicao aprendida durante o treinamento. Esse efeito
é mais pronunciado nas classes stop e warning, refletindo a maior dificuldade do modelo

em lidar com variacoes de iluminacao, reflexos e ruidos presentes no periodo noturno.

Amostras Classificadas Corretamente

A Tabela 5.7 apresenta os valores médios da Distancia de Wasserstein significativa para

as amostras corretamente classificadas no cenario noturno.

Tabela 5.7: Distancia de Wasserstein média por canal (RGB) para amostras corretas —
SVM (noturno)

Classe Canal R Canal G Canal B

go 0.152 0.197 0.219
stop 0.259 0.165 0.167
warning 0.174 0.161 0.106

Em comparagao com as amostras incorretas, as amostras corretamente classifica-
das apresentam valores de WD consistentemente menores, indicando maior similaridade
estatistica com os dados de treinamento. Ainda assim, nota-se que os valores globais
de WD no cenario noturno sao, em média, superiores aos observados no cenario diurno,
evidenciando o impacto das condigoes de baixa iluminacao mesmo quando a classificacao

é correta.

Definicao do Limiar

Para a definicao do limiar de decisao no cenario noturno, foi calculada a média global da
Distancia de Wasserstein para cada classe, obtida a partir da média dos trés canais RGB.
Em seguida, o limiar foi definido como a média aritmética entre o valor global das amostras

corretamente classificadas e o valor global das amostras incorretamente classificadas.
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A Tabela 5.8 resume os valores utilizados no célculo do limiar para cada classe.

Tabela 5.8: Média global RGB da Distancia de Wasserstein e limiar definido — SVM

(noturno)
Classe WD global (acertos) WD global (erros) Limiar
go 0.189 0.227 0.208
stop 0.197 0.257 0.227
warning 0.147 0.258 0.203

Os resultados confirmam que, também no cenario noturno, existe uma separacao
estatistica clara entre amostras corretas e incorretas. A definicdo de limiares especificos
para esse contexto permite ao SafeML II sinalizar situacoes de maior incerteza de forma
mais precisa, reforcando a importancia de considerar o periodo do dia como um fator

relevante na analise de confiabilidade de sistemas de visao computacional embarcados.

5.3 Resultados da Coleta SafeML II para a CNN

Esta secao apresenta os resultados da andlise de confiabilidade do classificador baseado
em CNN utilizando o SafeML II. A anélise foi realizada separadamente para os cenarios
diurno e noturno, considerando as trés classes de interesse (go, stop e warning) e amostras
corretamente e incorretamente classificadas.

Assim como na andlise do SVM, para cada classe foram selecionadas até 15 amos-
tras representativas de acertos e erros, permitindo a comparacao das distancias estatisticas
associadas a cada situacao. Os valores apresentados correspondem a Distancia de Was-
serstein significativa (com p < 0,05), calculada a partir da média dos canais RGB.

O tempo médio necessario para a execucao completa dessa etapa de coleta, que
envolve a selecao das amostras, o célculo da Distancia de Wasserstein pixel a pixel e a
aplicacao do critério estatistico de significancia, foi de aproximadamente 12 minutos e 40

segundos por cendrio (diurno ou noturno) para o classificador CNN.
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5.3.1 Resultados no Cenario Diurno
Amostras Classificadas Incorretamente

A Tabela 5.9 apresenta os valores médios da Distancia de Wasserstein por canal RGB

para as amostras incorretamente classificadas no cenério diurno.

Tabela 5.9: Distancia de Wasserstein média por canal (RGB) para amostras incorretas
— CNN (diurno)

Classe Canal R Canal G Canal B

go 0.534 0.492 0.490
stop 0.211 0.230 0.348
warning - - _

Observa-se que, no cenario diurno, a classe go apresenta valores elevados de WD
nas amostras incorretas, indicando divergéncia significativa entre essas imagens e a dis-
tribuicao aprendida durante o treinamento. Para a classe warning, nao foram observadas
amostras incorretamente classificadas nesse cenario, o que impossibilita a definicao direta

de um limiar diurno para essa classe.

Amostras Classificadas Corretamente

A Tabela 5.10 apresenta os valores médios da Distancia de Wasserstein para as amostras

corretamente classificadas no cenério diurno.

Tabela 5.10: Distancia de Wasserstein média por canal (RGB) para amostras corretas —
CNN (diurno)

Classe Canal R Canal G Canal B

g0 0.123 0.178 0.185
stop 0.140 0.111 0.120
warning  0.215 0.224 0.250

Em todas as classes, os valores associados as amostras corretamente classificadas
sao substancialmente inferiores aos observados nas amostras incorretas, evidenciando a
capacidade do SafeML II em diferenciar estatisticamente decisoes confidaveis de situacoes

de erro.
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Definicao do Limiar

A definigao do limiar diurno foi realizada a partir da média global da Distancia de Wassers-
tein, obtida pela média dos trés canais RGB. O limiar é definido como a média aritmética
entre os valores globais das amostras corretas e incorretas.

A Tabela 5.11 resume os valores utilizados nesse processo. Para a classe warning,
como nao houve erros no cenario diurno, adota-se o limiar definido a partir do cenario

noturno.

Tabela 5.11: Média global RGB da Distancia de Wasserstein e limiar definido — CNN

(diurno)
Classe WD global (acertos) WD global (erros) Limiar
go 0.162 0.505 0.334
stop 0.124 0.263 0.194
warning - - 0.292 (limiar noturno)

5.3.2 Resultados no Cenario Noturno
Amostras Classificadas Incorretamente

A Tabela 5.12 apresenta os valores médios da Distancia de Wasserstein para as amostras

incorretamente classificadas no cendrio noturno.

Tabela 5.12: Distancia de Wasserstein média por canal (RGB) para amostras incorretas
— CNN (noturno)

Classe Canal R Canal G Canal B

go 0.301 0.260 0.237
stop 0.464 0.359 0.279
warning 0.607 0.445 0.281

No cenario noturno, observa-se um aumento expressivo das distancias estatisticas,
especialmente para a classe warning, indicando maior sensibilidade da CNN as variacoes

de iluminacao e ruido presentes nesse contexto.

Analise das Amostras Classificadas Corretamente

A Tabela 5.13 apresenta os valores médios da Distancia de Wasserstein para as amostras

corretamente classificadas no cenério noturno.
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Tabela 5.13: Distancia de Wasserstein média por canal (RGB) para amostras corretas —
CNN (noturno)

Classe Canal R Canal G Canal B

go 0.164 0.203 0.224
stop 0.261 0.163 0.165
warning 0.159 0.140 0.119

Apesar das condicoes adversas, as amostras corretamente classificadas mantém
valores de WD inferiores aos observados nas amostras incorretas, reforcando a consisténcia

do monitoramento estatistico.

Definicao do Limiar para o Cenario Noturno

A Tabela 5.14 apresenta os valores globais de WD e os limiares definidos para o cenario

noturno.

Tabela 5.14: Média global RGB da Distancia de Wasserstein e limiar definido — CNN

(noturno)
Classe WD global (acertos) WD global (erros) Limiar
go 0.197 0.266 0.232
stop 0.196 0.367 0.281
warning 0.139 0.444 0.292

Os resultados indicam que a definicao de limiares especificos para o cenario no-
turno € essencial, especialmente para classes mais sensiveis a iluminacao, como warning. A
adocao desses limiares permite que o SafeML II sinalize de forma mais precisa situagoes de
maior incerteza, reforcando a importancia da separagao entre cendrios diurnos e noturnos

na analise de confiabilidade.

5.4 Analise Visual via Heatmaps

Uma das vantagens da abordagem SafeML II é permitir uma andlise visual das regioes
da imagem que mais contribuem para a divergéncia estatistica entre os dados de treino e
as amostras classificadas incorretamente. Essa analise é realizada por meio de heatmaps
baseados na Distancia de Wasserstein, calculada pixel a pixel, permitindo interpretar
quais partes do semaforo e do contexto visual influenciam a perda de confiabilidade do

classificador. Ressalta-se que a escala de cores utilizada nos mapas é normalizada para
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fins de visualizagao: valores proximos de 1 indicam regides de maior divergéncia relativa
dentro da imagem, e nao valores absolutos da Distancia de Wasserstein.

Em cada visualizacao, sdo apresentados dois mapas para cada classe: (i) um mapa
considerando todas as distancias calculadas e (ii) um mapa filtrado pelo critério estatistico
de significancia (p < 0,05), no qual apenas os pixels cuja divergéncia é estatisticamente
relevante sao mantidos. Dessa forma, o segundo mapa evidencia exclusivamente as regioes

que representam mudancas estruturais relevantes em relagao ao conjunto de treino.

5.4.1 Heatmaps para o SVM (Cenario Diurno)

A Figura 5.1 apresenta os heatmaps gerados para a classe stop no cenario diurno. Observa-
se que as maiores divergéncias estatisticas concentram-se na regiao da lampada vermelha
e em dreas adjacentes. Apds a aplicagao do filtro de significancia (p < 0,05), essas
regides permanecem bem definidas, indicando que a divergéncia observada nao se deve a
ruido aleatério, mas a variacoes estruturais relevantes em relacao ao padrao aprendido no
treinamento.

top - WD (tod top - WD < 0.05
stop (todos) Lo stop (p ) 10

Figura 5.1: Heatmaps SafeML II para a classe stop no cenario diurno. A esquerda, mapa
considerando todas as distancias de Wasserstein; a direita, mapa filtrado por significancia
estatistica (p < 0,05).

A Figura 5.2 apresenta os heatmaps correspondentes a classe warning. Nota-se
uma concentracao ainda mais intensa da divergéncia estatistica na regiao central da ima-
gem, associada a lampada amarela. Esse comportamento esta alinhado com os resultados

quantitativos apresentados anteriormente, nos quais a classe warning demonstrou maior
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sensibilidade a variagoes de iluminagao no cenario diurno. O filtro por p-valor elimina
regioes periféricas irrelevantes, reforcando que a principal fonte de incerteza esta associ-

ada a propria area luminosa do semaforo.

warning - WD (todos) warning - WD (p < 0.05)

Figura 5.2: Heatmaps SafeML II para a classe warning no cenério diurno. A esquerda,
WD considerando todos os pixels; a direita, apenas pixels estatisticamente significativos
(p < 0,05).

Por fim, a Figura 5.3 apresenta os heatmaps da classe go. Diferentemente das clas-
ses anteriores, observa-se uma distribuicao mais espalhada das divergéncias, envolvendo
tanto a regiao da lampada verde quanto partes do fundo da imagem. Esse padrao indica
que, embora o classificador apresente bom desempenho geral para essa classe, variacoes
no contexto visual — como reflexos, céu ou estruturas metdalicas — também influenciam

a confiabilidade estatistica das predigoes incorretas.

- WD (tod - WD (p < 0.05
go (todos) 10 go (p ) 10

0.0

Figura 5.3: Heatmaps SafeML II para a classe go no cenario diurno. A esquerda, mapa
completo de WD; & direita, mapa filtrado por significancia estatistica (p < 0,05).
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warning - WD (todos) 1o warning - WD (p < 0.05) 10
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Figura 5.4: Heatmaps SafeML II para a classe warning no cendrio noturno (SVM). A
esquerda: WD normalizada considerando todos os pixels. A direita: WD considerando
apenas pixels estatisticamente significativos (p < 0,05).

5.4.2 Heatmaps SafeML II — Classificador SVM (Cenéario No-

turno)

A Figura 5.4 apresenta os mapas de calor obtidos para a classe warning no cenario noturno.
Observa-se que as regioes de maior intensidade de WD concentram-se principalmente na
area correspondente a luz amarela do semaforo, bem como em partes do entorno imedi-
ato. No mapa filtrado por significancia estatistica (p < 0,05), essas regides permanecem
evidentes, indicando que a divergéncia observada estd associada a alteracoes estruturais
relevantes nos padroes visuais noturnos.

A Figura 5.5 apresenta os resultados para a classe go. Nota-se que as maio-
res intensidades de WD estao concentradas na regiao inferior do semaforo, associada a
luz verde, além de areas adjacentes. Em comparacao com o cenario diurno, observa-se
uma maior influéncia do fundo e de reflexos luminosos, caracteristica comum em imagens
noturnas, o que contribui para o aumento da divergéncia estatistica observada.

Por fim, a Figura 5.6 apresenta os mapas correspondentes a classe stop. As regioes
de maior intensidade de WD concentram-se predominantemente na area da luz vermelha,
com destaque para o mapa filtrado por significancia estatistica, no qual essas regioes per-
manecem bem definidas. Esse comportamento indica que, no periodo noturno, variagoes

na intensidade luminosa da luz vermelha exercem impacto significativo na divergéncia em
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Figura 5.5: Heatmaps SafeML II para a classe go no cenario noturno (SVM). A esquerda:
WD normalizada considerando todos os pixels. A direita: WD considerando apenas pixels
estatisticamente significativos (p < 0,05).

stop - WD (todos) stop - WD (p < 0.05)
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Figura 5.6: Heatmaps SafeML II para a classe stop no cenério noturno (SVM). A esquerda:
WD normalizada considerando todos os pixels. A direita: WD considerando apenas pixels
estatisticamente significativos (p < 0,05).
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relagao aos dados de treinamento.

5.4.3 Andlise Visual dos Heatmaps — CNN (Cenario Diurno)

A Figura 5.7 e a Figura 5.8 apresentam os mapas de calor da Distancia de Wasserstein
(WD) obtidos para o classificador CNN no cendrio diurno, considerando respectivamente
as classes go e stop.

De forma geral, observa-se que as regioes de maior intensidade de WD concentram-
se principalmente nas areas centrais do recorte, correspondentes as regioes luminosas do
semaforo. Para a classe go, essas regioes estao associadas a luz verde e ao seu entorno
imediato, enquanto para a classe stop a maior divergéncia estatistica aparece concentrada
na area superior do semaforo, onde se localiza a luz vermelha.

Nos mapas filtrados por significancia estatistica, essas mesmas regioes perma-
necem em evidéncia, indicando que a divergéncia observada nao é resultado de ruido
aleatorio, mas sim de diferencas estruturais relevantes entre as amostras de treino e os
casos classificados incorretamente. Esse comportamento sugere que, mesmo em condi¢oes
diurnas favoraveis, a CNN apresenta sensibilidade a variacoes de intensidade luminosa,

contraste e saturacao nas regioes criticas do semaforo.

go - WD (todos) go - WD (p < 0.05)
1.0 — 1.0
0.9
L 0.8 r08
- 0.7
0.6
0.6
0.5
0.4
0.4
0.3 02
0.2

Figura 5.7: Heatmaps de WD para a classe go no cenério diurno (CNN): mapa completo
(esquerda) e mapa filtrado por significancia estatistica p < 0,05 (direita).

Para a classe warning, o classificador CNN nao apresentou erros de classificagao
no conjunto de teste diurno. Como consequéncia, nao foi possivel calcular os mapas de

WD associados a amostras classificadas incorretamente para essa classe nesse cenario.
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stop - WD (todos) stop - WD (p < 0.05)

Figura 5.8: Heatmaps de WD para a classe stop no cendario diurno (CNN): mapa completo
(esquerda) e mapa filtrado por significancia estatistica p < 0,05 (direita).

Dessa forma, a andlise SafeML para a classe warning na CNN, bem como a definicao de
limiar de decisao, é realizada exclusivamente com base nos resultados obtidos no cenario

noturno, apresentados na subsecao correspondente.

5.4.4 Cenario Noturno

A analise visual dos heatmaps no cenario noturno evidencia diferencas importantes no
comportamento do classificador CNN quando comparado ao cenario diurno. De modo
geral, observa-se uma distribuicao mais espalhada das regioes com alta intensidade de
WD, refletindo a maior variabilidade visual causada pela iluminacao artificial, reflexos e
ruidos presentes nas imagens noturnas.

Para a classe go, ilustrada na Figura 5.9, as regioes de maior WD concentram-se
predominantemente na area correspondente a lampada ativa do seméaforo, mas também
se estendem para regioes adjacentes. Esse comportamento indica que, a noite, peque-
nas variagoes de brilho e contraste no entorno do semaforo contribuem de forma mais
significativa para a divergéncia estatistica em relacao ao conjunto de treinamento.

No caso da classe stop, apresentada na Figura 5.10, observa-se um padrao seme-
lhante, porém com regioes de alta WD mais extensas e menos concentradas exclusivamente
na lampada do semaforo. Isso sugere que, durante a noite, elementos do contexto visual
— como iluminacao publica e reflexos — passam a influenciar de forma mais acentuada

a distribuicao dos pixels, aumentando a divergéncia estatistica mesmo em areas fora da
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Figura 5.9: Heatmaps SafeML II para a classe go no cendrio noturno (CNN). A esquerda,
o mapa considerando todos os valores de WD; a direita, apenas os pixels estatisticamente
significativos (p < 0,05).

regiao central do semaforo.
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Figura 5.10: Heatmaps SafeML II para a classe stop no cendrio noturno (CNN). A es-
querda, o mapa considerando todos os valores de WD; a direita, apenas os pixels estatis-
ticamente significativos (p < 0,05).

Por fim, a classe warning, ilustrada na Figura 5.11, apresenta as regices de alta
WD mais intensas e espacialmente mais amplas entre as trés classes. Esse padrao visual
¢é consistente com os resultados quantitativos obtidos anteriormente e indica que a iden-
tificagao da luz amarela a noite é particularmente sensivel a variagoes de iluminacao e
ruido visual. Tal comportamento justifica a ado¢ao de um limiar especifico para o cenario

noturno nessa classe.
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Figura 5.11: Heatmaps SafeML II para a classe warning no cendrio noturno (CNN).
A esquerda, o mapa considerando todos os valores de WD; a direita, apenas os pixels
estatisticamente significativos (p < 0,05).

5.5 Avaliacao do Limiar

Nesta secao é realizada a avaliacao experimental dos limiares definidos a partir da coleta
de dados do SafeML II. O objetivo é verificar se os valores de limiar estimados sao capazes
de distinguir, de forma consistente, amostras potencialmente confidveis de amostras que
apresentam maior divergéncia estatistica em relacao aos dados de treinamento.

A avaliagao é conduzida a partir de um buffer composto por 30 imagens do
conjunto de teste, sendo 10 imagens sequenciais para cada classe considerada (go, stop e
warning). As imagens sequenciais representam o mesmo semaforo capturado em instantes
consecutivos, permitindo analisar a estabilidade da medida de divergéncia ao longo de uma
curta sequéncia temporal. Esse procedimento é aplicado de forma idéntica para os cenarios

diurno e noturno, bem como para ambos os classificadores avaliados neste trabalho.

5.5.1 Avaliagao do Limiar para o SVM

Para cada classe, é analisado o valor médio da Distancia de Wasserstein, calculada apenas
sobre os pixels estatisticamente significativos, e sua comparacao com o limiar previamente
estabelecido.

O tempo médio necessario para a execucao completa da avaliacdo em um cenério
(diurno ou noturno) foi de aproximadamente 11 minutos e 30 segundos. Considerando

que o buffer é composto por trés classes, esse tempo corresponde a cerca de 3 minutos e
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50 segundos por classe, ou aproximadamente 23 segundos por imagem dentro do buffer

de 10 imagens sequenciais.

Cenario Diurno

A Tabela 5.15 apresenta os resultados da avaliagao do limiar no cenério diurno. Observa-se
que, para as trés classes consideradas (go, stop e warning), os valores de WD média per-
maneceram abaixo dos respectivos limiares, resultando na aceitacao de todas as amostras

avaliadas.

Tabela 5.15: Avaliagao do limiar SafeML II para o classificador SVM no cendrio diurno.
Classe WD média Limiar Aceita
0 0.2295 0.2510  Sim
stop 0.1763 0.2330 Sim
warning 0.2851 0.3620 Sim

Esses resultados indicam que, no cenario diurno, o limiar definido é suficien-
temente conservador para acomodar variagoes naturais das imagens sem comprometer a

aceitacao de amostras corretamente classificadas, preservando a confiabilidade do sistema.

Cenario Noturno

A Tabela 5.16 apresenta os resultados obtidos para o cenario noturno. Diferentemente do
cenario diurno, observa-se que nem todas as amostras foram aceitas pelo critério de limiar.
As classes go e warning apresentaram valores de WD média superiores aos respectivos
limiares, resultando na rejeicao das amostras, enquanto a classe stop permaneceu dentro

do limite estabelecido.

Tabela 5.16: Avaliacao do limiar SafeML II para o classificador SVM no cendrio noturno.
Classe WD média Limiar Aceita
go 0.2330 0.2080 Nao
stop 0.1849 0.2270 Sim
warning 0.2543 0.2030 Nao

Os resultados evidenciam que, no cenario noturno, as variacoes visuais associa-
das a iluminacao artificial e ao aumento de ruido impactam diretamente a distribuicao

dos valores de WD. Nesse contexto, o mecanismo de limiar atua de forma mais restri-
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tiva, identificando situagoes nas quais a divergéncia estatistica em relagao ao conjunto de

treinamento ultrapassa o limite considerado confidvel.

5.5.2 Avaliagcao do Limiar para o Classificador CNN

Para a CNN, o tempo médio necessario para a execucao completa da avaliacao em um
cendrio (diurno ou noturno) foi de aproximadamente 10 minutos e 18 segundos. Consi-
derando que o buffer é composto por trés classes, esse tempo corresponde a cerca de 3
minutos e 26 segundos por classe, ou aproximadamente 21 segundos por imagem dentro

do buffer de 10 imagens sequenciais.

Cenario Diurno

A Tabela 5.17 apresenta os resultados da avaliacao do limiar no cenario diurno para o
classificador CNN. Observa-se que, assim como no caso do SVM, todas as amostras ava-
liadas apresentaram valores de WD média inferiores aos respectivos limiares, resultando
na aceitacao de todas as predigoes.

Tabela 5.17: Avaliagao do limiar SafeML II para o classificador CNN no cendrio diurno.
Classe WD média Limiar Aceita

go 0.2327 0.3340 Sim
stop 0.1791 0.1940 Sim
warning 0.2839 0.2920 Sim

Os resultados indicam que, no cenario diurno, o classificador CNN apresenta uma
separacao clara entre as distribuicoes associadas aos acertos e os limiares definidos, com
margens de seguranca consistentes, especialmente para a classe go. Esse comportamento
reflete a maior estabilidade visual das imagens diurnas, favorecendo a confiabilidade das

decisoes do modelo.

Cenario Noturno

A Tabela 5.18 apresenta os resultados obtidos para o cenéario noturno. Diferentemente do
observado para o SVM, todas as amostras avaliadas pela CNN foram aceitas pelo critério

de limiar, mesmo em um contexto visual mais desafiador.
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Tabela 5.18: Avaliacao do limiar SafeML II para o classificador CNN no cendrio noturno.
Classe WD média Limiar Aceita
go 0.2319 0.2320 Sim
stop 0.1845 0.2810 Sim
warning 0.2556 0.2920 Sim

Nota-se que, para a classe go, o valor da WD média ficou muito préximo do
limiar definido, indicando um caso limitrofe de aceitagao. Ainda assim, o critério foi capaz
de preservar a decisao do classificador, sugerindo que a CNN apresenta maior robustez
as variacoes visuais noturnas quando comparada ao SVM, especialmente em termos da

distribuicao espacial das diferencas capturadas pela distancia estatistica.

5.5.3 Sintese e Analise dos Resultados Obtidos

Os resultados apresentados ao longo deste capitulo permitem uma anélise integrada do
desempenho e da confiabilidade dos classificadores avaliados, considerando tanto métricas
tradicionais quanto a abordagem estatistica proposta pelo SafeML II. De forma geral, os
experimentos evidenciam que elevados indices de acuracia nao sao, por si s, suficientes
para caracterizar o comportamento seguro de modelos de aprendizado de maquina em
cenarios criticos.

A avaliacao do treinamento demonstrou que tanto o classificador SVM quanto a
CNN alcancam desempenho global elevado no reconhecimento de semaforos, com taxas
de acerto superiores a 98%. Entretanto, a andlise por classe revelou diferencas relevantes,
especialmente para a classe warning, que apresentou maior sensibilidade a variagoes no
conjunto de dados. Esse comportamento reforca a limitacao de métricas agregadas e
justifica a necessidade de mecanismos adicionais de avaliacao de confiabilidade.

A coleta de dados com o SafeML II mostrou de forma consistente que amostras
incorretamente classificadas apresentam valores médios de Distancia de Wasserstein sig-
nificativamente superiores aos observados em amostras corretamente classificadas. Esse
padrao foi identificado em ambos os classificadores e nos dois cenarios avaliados, corrobo-
rando a hipdtese de que a divergéncia estatistica entre os dados de treino e de aplicagao
estd diretamente associada a perda de confiabilidade das previsoes.

A separacgao entre cendrios diurnos e noturnos revelou-se fundamental para a cor-
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reta interpretagao dos resultados. Os experimentos indicaram que os valores de WD e os
limiares de aceitacao variam de maneira significativa conforme as condigoes de iluminacao.
No cendario noturno, observou-se maior variabilidade estatistica, refletindo o impacto de
fatores como ruido visual, reflexos e menor contraste, o que reforga a inadequacao de um
limiar tinico para todos os contextos de operacao.

A analise visual por meio dos mapas de calor complementou os resultados quan-
titativos ao evidenciar regioes da imagem mais associadas a divergéncia estatistica. Os
heatmaps indicaram que, embora os maiores desvios estejam concentrados nas regioes das
luzes do semaforo, areas do entorno também contribuem para a perda de confiabilidade,
demonstrando que o contexto visual exerce influéncia relevante sobre o comportamento
dos classificadores.

Por fim, a avaliacao dos limiares definidos a partir da coleta SafeML II mostrou
que o mecanismo de aceitagao e rejeicao de previsoes responde de forma coerente aos niveis
de divergéncia observados. Nos testes realizados com buffers de imagens sequenciais, os
limiares permitiram distinguir situagoes de operagao dentro do dominio de treinamento
daquelas associadas a maior incerteza estatistica, tanto para o SVM quanto para a CNN.
Esses resultados indicam que a abordagem adotada fornece subsidios relevantes para o

monitoramento da confiabilidade de classificadores em tempo de execucao.
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6 Conclusao

O avanco do Machine Learning tem viabilizado a aplicagao de sistemas inteligentes em
dominios cada vez mais criticos, como veiculos autonomos e sistemas avancados de as-
sisténcia ao condutor. FEntretanto, conforme discutido ao longo deste trabalho, altos
valores de acuracia nao sao suficientes para garantir comportamento seguro em ambien-
tes reais e dinamicos. Nesse contexto, torna-se fundamental complementar os modelos
de classificacao com mecanismos capazes de estimar a confiabilidade de suas decisoes em
tempo de execucao.

Este Trabalho de Conclusao de Curso teve como objetivo principal analisar a
confiabilidade de classificadores aplicados ao reconhecimento automatico de seméforos,
avaliando a adequacao do framework SafeML II como um mecanismo de monitoramento
estatistico para esse dominio. Para isso, foram implementados e avaliados dois modelos
distintos — um classificador SVM e uma CNN — utilizando o conjunto de dados LISA
Traffic Light Dataset.

Os resultados obtidos demonstram que, embora ambos os modelos apresentem
desempenho elevado segundo métricas tradicionais de classificacao, seus comportamentos
diferem significativamente quando analisados sob a ética da confiabilidade. A aplicacao
do SafeML II evidenciou que amostras classificadas incorretamente tendem a apresen-
tar maiores divergéncias estatisticas em relacao ao conjunto de treino, mensuradas pela
Distancia de Wasserstein, quando comparadas as amostras corretamente classificadas.
Esse comportamento foi consistente tanto para o SVM quanto para a CNN, validando a
capacidade do SafeML II de atuar como um indicador de risco independente do modelo
utilizado.

Outro achado importante foi a diferenca no comportamento entre os classificado-
res na etapa de avaliacao dos limiares. Enquanto a CNN apresentou um desempenho mais
robusto, com todas as imagens erroneamente classificadas sendo corretamente sinalizadas
como fora do dominio pelo SafeML II, o classificador SVM falhou em alguns casos, atribu-

indo baixa divergéncia estatistica a amostras incorretas. Esse resultado sugere que, além
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da CNN possuir maior capacidade discriminativa nos dados, suas falhas tendem a ocorrer
em regioes do espaco de entrada mais afastadas do padrao de treinamento, o que facilita
sua deteccao por métodos de monitoramento como o SafeML. Assim, pode-se inferir que
a CNN, neste contexto, nao apenas obteve melhor desempenho tradicional, mas também
maior previsibilidade do ponto de vista de seguranca e confiabilidade.

Um resultado relevante deste trabalho foi a constatacao de que a separacao en-
tre cenarios diurnos e noturnos é essencial para a definicao de limiares estatisticos mais
adequados. As diferencas de iluminacao impactam diretamente a distribuicao dos pixels
das imagens e, consequentemente, os valores da Distancia de Wasserstein. A adocao de
limiares especificos por classe e por cenario mostrou-se mais coerente do que a utilizacao
de um tnico limiar global, contribuindo para decisoes mais consistentes no monitoramento
de confiabilidade.

A andlise visual por meio de mapas de calor complementou os resultados quanti-
tativos, permitindo identificar regides da imagem que mais contribuem para a divergéncia
estatistica observada nos casos de erro. Esses mapas reforcam o papel explicativo do
SafeML II, auxiliando na interpretacao do comportamento dos classificadores e eviden-
ciando padroes associados a variagoes de iluminacao, reflexos e baixa definicao visual,
especialmente no cendrio noturno.

Como limitacoes, destaca-se o custo computacional associado as etapas de coleta e
avaliagao dos limiares, que, na configuragao atual, inviabiliza a aplicagao direta do SafeML
IT em sistemas embarcados com restricoes severas de tempo. Além disso, os experimentos
foram conduzidos em um tnico conjunto de dados e com imagens previamente recortadas,
nao contemplando etapas como a detecgao automatica do semaforo em imagens de cena
completa.

Como perspectivas de trabalhos futuros, além das estratégias de otimizagao para
reducao do tempo de execucao do SafeML II e sua integracao com pipelines de decisao em
tempo real, destaca-se a possibilidade de investigar o uso das proprias medidas estatisticas
empregadas pelo SafeML como mecanismo principal de discriminacao entre classes. Os
resultados obtidos indicam que tais medidas sao capazes de capturar diferencas relevantes

entre distribuicoes associadas as classes, sugerindo que uma abordagem baseada exclu-
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sivamente em critérios estatisticos — inspirada ou derivada do SafeML — poderia ser
explorada como um classificador em si, dispensando o uso de modelos tradicionais de Ma-
chine Learning, como SVMs ou redes neurais convolucionais. Essa linha de investigagao
pode ser promissora para o desenvolvimento de arquiteturas mais simples, interpretaveis
e computacionalmente eficientes, com potencial para otimizar o desempenho e reduzir a
laténcia em aplicagoes de tempo real.

Por fim, este trabalho contribui para a discussao sobre seguranca e confiabilidade
em sistemas inteligentes, demonstrando que a analise estatistica de desvios de distribuicao
nao apenas complementa métricas tradicionais de desempenho, mas também se apresenta
como um caminho promissor para o desenvolvimento de solugdes mais seguras, eficientes

e responsaveis no contexto de veiculos autonomos.
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