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Resumo

A prática da corrida tem se popularizado entre pessoas que buscam qualidade de vida

e saúde, especialmente entre corredores amadores. No entanto, a ausência de acom-

panhamento profissional pode aumentar o risco de lesões e dificultar a evolução. Este

trabalho propõe o desenvolvimento de um sistema de apoio inteligente voltado a corre-

dores amadores, utilizando técnicas de aprendizado de máquina aplicadas à análise de

dados fisiológicos e de desempenho. O projeto constitui uma continuação do trabalho

desenvolvido por Pedro Henrique Almeida Cardoso Reis em sua monografia “Uso de Ma-

chine Learning no Esporte: Apoio Inteligente para Corredores não Profissionais” (REIS,

2025), aproveitando e estendendo parte de sua infraestrutura, incluindo uma das interfaces

desenvolvidas anteriormente. Neste trabalho, foram analisados dados coletados de dois

voluntários que utilizam dispositivos vest́ıveis comerciais, como smartwatches, ou aplica-

tivos de corrida, com o objetivo de ajustar os modelos preditivos utilizados no trabalho

precedente, oferecendo assim, percepções relevantes personalizadas ao corredor, auxiliando

na otimização do treino e na prevenção de sobrecargas. Os resultados demonstraram o

potencial do aprendizado de máquina para a análise de dados de corrida, destacando o al-

goritmo de Gradient Boosting como o de melhor desempenho entre os modelos avaliados.

Observou-se uma pequena diferença de desempenho em relação aos resultados obtidos no

estudo precedente, mantendo-se, entretanto, um padrão semelhante, no qual modelos de

ensemble apresentaram desempenho superior, enquanto algoritmos como Support Vector

Regression (SVR) e K-Nearest Neighbors (KNN) apresentaram desempenho inferior. Es-

ses resultados reforçam a viabilidade do uso de técnicas de aprendizado de máquina como

ferramentas acesśıveis e eficazes para o apoio a corredores não profissionais.

Palavras-chave: aprendizado de máquina, corredores amadores, e-health, análise de

dados, desempenho esportivo.



Abstract

Running has become increasingly popular among people seeking quality of life and he-

alth, especially among amateur runners. However, the lack of professional guidance can

increase the risk of injuries and hinder performance improvement. This work proposes

the development of an intelligent support system aimed at amateur runners, using ma-

chine learning techniques applied to the analysis of physiological and performance data.

The project is a continuation of the work developed by Pedro Henrique Almeida Car-

doso Reis in his monograph “Use of Machine Learning in Sports: Intelligent Support for

Non-Professional Runners” (REIS, 2025), reusing and extending part of its infrastructure,

including one of the previously developed interfaces. In this study, data collected from

two volunteers who use commercial wearable devices, such as smartwatches, and running

applications were analyzed in order to build predictive models capable of providing per-

sonalized and relevant insights to runners, supporting training optimization and injury

prevention. The results demonstrated the potential of machine learning for the analysis

of running data, with the Gradient Boosting algorithm achieving the best performance

among the evaluated models. A small difference in performance was observed in compa-

rison with the results of the previous study, while maintaining a similar pattern in which

ensemble models outperformed others, whereas algorithms such as Support Vector Regres-

sion (SVR) and K-Nearest Neighbors (KNN) showed inferior performance. These results

reinforce the feasibility of using machine learning techniques as accessible and effective

tools to support non-professional runners.

Keywords: machine learning; amateur runners; e-health; data analysis; sports perfor-

mance..
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Conteúdo
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4.4 Estat́ısticas das variáveis - Strava . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Exemplo das primeiras linhas do dataframe final do Samsung Health —
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1 Introdução

1.1 Apresentação do tema

Este trabalho dá continuidade à pesquisa iniciada por Pedro Henrique Almeida Cardoso

Reis em sua monografia “Uso de Machine Learning no Esporte: Apoio Inteligente para

Corredores não Profissionais” (REIS, 2025), que teve como foco principal o desenvolvi-

mento de um sistema preditivo baseado em dados de um único corredor. A proposta atual

amplia essa abordagem ao incorporar novos dados, promovendo uma base de dados mais

diversa e representativa. Com isso, busca-se aumentar a robustez dos modelos preditivos

desenvolvidos, permitindo maior generalização e adequação a contextos práticos do coti-

diano esportivo. O uso de tecnologias inteligentes no contexto esportivo vem crescendo

rapidamente, sobretudo com o avanço de dispositivos vest́ıveis e aplicativos. Corredores

amadores, cada vez mais engajados em melhorar seu desempenho e bem-estar, represen-

tam um público que pode se beneficiar fortemente de ferramentas baseadas em análise

de dados. Este projeto propõe o desenvolvimento de um sistema de apoio inteligente que

utiliza dados coletados de forma prática, com foco em fornecer previsões e orientações

personalizadas com base no histórico de desempenho dos usuários.

Segundo relatório da plataforma Strava, a corrida foi o esporte mais praticado

no mundo em 2024, e o Brasil aparece como o segundo páıs com o maior número de

corredores, com mais de 19 milhões de praticantes. Além disso, houve um crescimento de

29% no número de corridas de rua oficiais realizadas no páıs entre 2023 e 2024, totalizando

2.827 eventos (STRAVA, 2024). Esse aumento não se restringe a atletas profissionais. A

corrida de rua tornou-se um fenômeno cultural e acesśıvel, atraindo pessoas em busca de

saúde, lazer e qualidade de vida.

Com o avanço de dispositivos vest́ıveis (smartwatches, sensores, aplicativos), cor-

redores amadores passaram a ter acesso a métricas como frequência card́ıaca, velocidade,

distância percorrida, temperatura corporal e gasto calórico. No entanto, a interpretação

desses dados ainda é limitada para quem não dispõe de acompanhamento técnico. Sis-
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temas embarcados com técnicas de aprendizagem de máquina podem transformar esses

dados em informações úteis, oferecendo insights personalizados sobre desempenho, pre-

venção de lesões e padrões de comportamento durante treinos e provas.

Apesar da ampla disponibilidade de dados, corredores amadores enfrentam difi-

culdades para compreender a relevância e a funcionalidade das variáveis coletadas. Di-

ferentemente de atletas profissionais, corredores amadores raramente contam com treina-

dores ou equipes médicas para interpretar métricas e ajustar treinos. Há potencial para

identificar padrões de comportamento e desempenho (como variações de ritmo, sinais

de fadiga ou risco de lesão), mas isso exige ferramentas inteligentes capazes de analisar

grandes volumes de dados (OLIVEIRA; SANTOS, 2022). Assim, o problema central é a

lacuna entre a coleta de dados e sua utilização efetiva para apoiar corredores amadores.

O desenvolvimento de um sistema embarcado com técnicas de aprendizagem de máquina

busca preencher essa lacuna, oferecendo monitoramento inteligente e recomendações per-

sonalizadas que transformem dados brutos em informações acionáveis para melhorar o

desempenho, a segurança e a motivação.

1.2 Justificativa/Motivação

A corrida é uma prática f́ısica acesśıvel, que pode ser realizada gratuitamente em espaços

públicos como ruas e parques, o que contribui para sua crescente popularidade entre pes-

soas que buscam melhorar a saúde e a qualidade de vida. Além dos benef́ıcios fisiológicos e

psicológicos já amplamente reconhecidos, sua simplicidade e baixo custo inicial favorecem

a adesão de praticantes iniciantes. No entanto, o acompanhamento profissional — impor-

tante para prevenir lesões e orientar o progresso adequado — normalmente envolve custos

financeiros que nem todos os corredores amadores estão dispostos ou aptos a assumir.

Com o avanço dos dispositivos vest́ıveis e dos aplicativos de monitoramento,

tornou-se posśıvel coletar uma ampla variedade de dados relevantes durante os treinos,

como frequência card́ıaca, ritmo, distância e tempo. No entanto, esses dados, por si só,

têm utilidade limitada sem uma análise contextualizada. Dessa forma, propõe-se, neste

trabalho, o desenvolvimento de um sistema que utilize técnicas de aprendizado de máquina

para interpretar esses dados de forma inteligente, auxiliando o corredor em sua evolução
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e na prevenção de lesões. O sistema busca ser acesśıvel e de fácil utilização, promovendo

a democratização do uso da tecnologia no treinamento esportivo, especialmente entre

praticantes não profissionais.

Este trabalho se justifica pela necessidade de um sistema que utilize aprendizado

de máquina para analisar esses dados e fornecer orientações personalizadas aos corredores

amadores, contribuindo para a prevenção de lesões e para a otimização dos treinos. Assim,

a tecnologia pode tornar o esporte mais seguro e eficiente para quem não dispõe de suporte

profissional, contribuindo para a saúde e o bem-estar dessa população.

1.3 Objetivos

1.3.1 Objetivos Gerais

Ampliar a base de dados para ajustar modelos de aprendizado de máquina embarcados em

dispositivos vest́ıveis ou aplicativos em dispositivos móveis para oferecer suporte à prática

de corrida entre corredores amadores, visando maior eficácia, com melhor desempenho em

termos de acurácia e robustez na generalização dos resultados.

1.3.2 Objetivos Espećıficos

• Realizar um levantamento bibliográfico sobre a aplicação do aprendizado de máquina

no esporte, especialmente na corrida.

• Definir um protocolo de coleta individual de dados com voluntários.

• Realizar o pré-processamento, o tratamento e a organização dos dados.

• Aplicar e avaliar diferentes modelos de machine learning embarcados.

• Validar os modelos por meio de métricas estat́ısticas e de testes práticos.

1.4 Organização do trabalho

Este Trabalho de Conclusão de Curso está organizado da seguinte forma: O Caṕıtulo 1

apresenta o tema do trabalho, bem como as motivações que justificam sua realização e
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os objetivos gerais e espećıficos propostos. No Caṕıtulo 2, são apresentados os prin-

cipais conceitos teóricos que sustentam o desenvolvimento do estudo. O Caṕıtulo 3

aborda a revisão da literatura, reunindo trabalhos e pesquisas relacionados ao tema. No

Caṕıtulo 4 é descrito o desenvolvimento do trabalho, incluindo a metodologia adotada, as

análises realizadas e os resultados obtidos. Por fim, o Caṕıtulo 5 apresenta as conclusões

alcançadas e sugestões para trabalhos futuros.
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2 Fundamentação Teórica

Nesta fundamentação teórica, são discutidos três pilares centrais para a compreensão

e desenvolvimento deste estudo e analisadas suas inter-relações, buscando compreender

como a combinação dessas áreas pode contribuir para a melhoria do desempenho e da

segurança na corrida amadora. A Seção 2.1 aborda o conceito de e-Health, a Seção 2.2

discute o perfil dos corredores amadores, e a Seção 2.3 apresenta técnicas de aprendizado

de máquina.

1. e-Health e Monitoramento Esportivo: O conceito de e-health (saúde digital) envolve

o uso de tecnologia para promover a saúde. No contexto esportivo, dispositivos

como smartwatches permitem o acompanhamento cont́ınuo de variáveis fisiológicas

e de desempenho.

2. Corredores Amadores e Treinamento Personalizado: Diferentemente de atletas pro-

fissionais, corredores amadores nem sempre contam com orientação especializada.

Soluções tecnológicas podem suprir parte dessa lacuna, oferecendo insights sobre

sua prática esportiva.

3. Aprendizado de Máquina (Machine Learning): As técnicas de aprendizado de máquina,

como regressão, árvores de decisão e florestas aleatórias, são capazes de identificar

padrões ocultos em grandes volumes de dados e produzir previsões úteis, como es-

timativa do tempo de corrida, risco de fadiga ou sugestões de ritmo.

2.1 e-Health e Monitoramento Esportivo

O uso de tecnologias digitais aplicadas à saúde, frequentemente referido como e-Health,

representa uma transformação significativa na forma como os serviços de promoção, pre-

venção e acompanhamento de condições de saúde são prestados. Segundo Oh et al. (2005),

e-Health engloba “o uso de tecnologias de informação e comunicação em apoio à saúde

e aos sistemas de saúde”. No contexto esportivo, esse conceito tem sido ampliado para
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incluir dispositivos portáteis capazes de coletar dados fisiológicos e de desempenho em

tempo real, como frequência card́ıaca, velocidade, distância percorrida e variabilidade do

ritmo.

Com a popularização de wearables — em especial smartwatches e sensores vest́ıveis

— tornou-se posśıvel o monitoramento cont́ınuo de variáveis que, até pouco tempo atrás,

eram restritas a laboratórios esportivos ou avaliações cĺınicas especializadas. Esses dispo-

sitivos não apenas registram dados, mas também fornecem feedback imediato ao usuário,

abrindo espaço para que indiv́ıduos comuns possam acompanhar sua saúde e seu desem-

penho de forma autônoma. Segundo Patel, Asch e Volpp (2012), o principal benef́ıcio do

monitoramento digital é a capacidade de transformar sinais fisiológicos em informações

acionáveis, potencializando comportamentos saudáveis e estratégias de treinamento mais

eficazes.

Além disso, pesquisas mostram que a utilização de tecnologias de e-Health no es-

porte pode melhorar a adesão ao treinamento e facilitar a autoavaliação de desempenho,

fatores que são particularmente relevantes para praticantes sem acompanhamento profis-

sional constante (WANG; XU, 2020) . Isso ocorre porque a visualização e interpretação

de dados em plataformas conectadas permitem ao usuário entender melhor seus padrões

de resposta ao esforço e adaptar seus hábitos de forma informada.

2.2 Corredores Amadores e Treinamento Personali-

zado

Os corredores amadores compõem um grupo diverso de praticantes que buscam, na cor-

rida — muitas vezes de rua — benef́ıcios relacionados à saúde, bem-estar e realização pes-

soal, sem necessariamente receber remuneração ou ter v́ınculo profissional com o esporte

(ANTONIO; LAUX, 2022). Estudos indicam que a corrida amadora vem crescendo sig-

nificativamente em popularidade, com muitos indiv́ıduos treinando de maneira autônoma

e com frequência e volume variados (STUDY, 2020; NETTO, 2017). Essa heterogenei-

dade de perfis reflete também diferenças nas necessidades de orientação e de suporte ao

treinamento, visto que muitos corredores não contam com acompanhamento profissional
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constante, o que pode influenciar tanto o desempenho quanto a prevenção de lesões (AL.,

2021; AL., 2025).

A literatura aponta que intervenções de treinamento personalizado, conduzidas

por educadores f́ısicos ou por meio de aplicações digitais com adaptação automática das

sessões, podem melhorar os resultados dos corredores amadores ao ajustar os est́ımulos

de treino às caracteŕısticas individuais e ao ńıvel de condicionamento de cada praticante

(AL., 2021; AL., 2020a). Por exemplo, estudos sobre aplicativos de corrida revelam que

mecanismos de personalização baseados em dados de biofeedback 1 e métricas de GPS

são capazes de adaptar automaticamente os planos de treino às demandas fisiológicas do

corredor, incrementando a motivação e a percepção de um treino individualizado (AL.,

2020a; AL., 2020b).

Além disso, pesquisas demonstram que a prescrição adequada do treinamento,

incluindo variáveis como volume, intensidade e recuperação, está associada à melhoria do

desempenho de corredores recreacionais e à redução de riscos associados ao overtraining

ou à progressão inadequada da carga de exerćıcio (AL., 2021; STUDY, 2020).

Dessa forma, a personalização do treinamento emerge como um elemento central

para atender às necessidades espećıficas de corredores amadores, especialmente diante da

variabilidade de objetivos, ńıveis de experiência e respostas fisiológicas que este grupo

apresenta. Ao integrar abordagens tradicionais de assessoria esportiva com recursos tec-

nológicos de monitoramento e de feedback, é posśıvel oferecer um suporte mais eficaz e

alinhado às metas individuais de cada corredor.

2.3 Aprendizado de Máquina (Machine Learning)

Machine Learning (ML) é uma subárea da inteligência artificial que permite que siste-

mas aprendam padrões e realizem previsões com base em dados, sem necessidade de pro-

gramação expĺıcita para cada tarefa (MITCHELL, 1997). Os algoritmos de ML podem ser

divididos em três categorias principais: aprendizado supervisionado, não supervisionado

e por reforço (GOODFELLOW; BENGIO; COURVILLE, 2016).

1Biofeedback é uma técnica que utiliza dispositivos eletrônicos para monitorar e fornecer, em tempo
real, informações sobre processos fisiológicos do indiv́ıduo — como frequência card́ıaca, atividade muscular
ou respiração — permitindo maior consciência corporal e autorregulação dessas funções.
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No aprendizado supervisionado, modelos são treinados com dados rotulados, per-

mitindo que façam previsões sobre novas amostras. Técnicas como regressão linear,

árvores de decisão e redes neurais artificiais são exemplos comuns. Já o aprendizado

não supervisionado busca estruturar ou agrupar dados não rotulados, utilizando métodos

como clustering e redução de dimensionalidade (HASTIE; TIBSHIRANI; FRIEDMAN,

2009). O aprendizado por reforço, por sua vez, baseia-se na interação do agente com o

ambiente, otimizando suas ações para maximizar uma função de recompensa (SUTTON;

BARTO, 2018).

Recentemente, a aplicação de ML em saúde e esportes tem recebido destaque.

Sistemas de e-health incorporam ML para o monitoramento cont́ınuo de indicadores fi-

siológicos, a análise de desempenho e a prevenção de lesões (TOPOL, 2019). Em parti-

cular, o monitoramento esportivo de corredores amadores pode se beneficiar da análise

preditiva, utilizando dados como frequência card́ıaca, distância percorrida, cadência e

condições ambientais para estimar tempos futuros de corrida e otimizar planos de treino

(BUCHHEIT; LAURSEN, 2013).

Além disso, modelos de ML podem ser integrados ao treinamento personalizado,

considerando a variabilidade individual de cada atleta. Por exemplo, algoritmos de re-

gressão e redes neurais podem correlacionar parâmetros fisiológicos com desempenho,

permitindo ajustes dinâmicos nos treinos (BACA; KORNFEIND, 2011). Essa aborda-

gem promove uma estratégia de treinamento mais eficiente e segura, especialmente para

corredores amadores que buscam melhorar seus tempos sem aumentar o risco de lesões.

2.3.1 Algoritmos de Machine Learning Utilizados

Nesta seção são apresentados os algoritmos de Machine Learning empregados neste traba-

lho para a tarefa de regressão, cujo objetivo é estimar o tempo necessário para percorrer

uma determinada distância de corrida a partir de dados históricos. A Figura 2.1 ilustra,

de forma conceitual, os diferentes mecanismos de busca adotados pelos seis algoritmos de

aprendizado de máquina utilizados neste trabalho

• Gradient Boosting : Método de ensemble que constrói modelos de forma sequen-

cial, em que cada novo modelo busca corrigir os erros cometidos pelos modelos
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anteriores. A técnica baseia-se na minimização de uma função de perda por meio

de descida do gradiente e apresenta alto desempenho em tarefas de regressão, sendo

amplamente adotada em aplicações práticas (FRIEDMAN, 2001).

• Linear Regression : A Regressão Linear é um dos modelos mais simples e am-

plamente utilizados em problemas de regressão. Seu objetivo é modelar a relação

entre variáveis independentes e uma variável dependente por meio de uma com-

binação linear dos atributos de entrada. Apesar de sua simplicidade, esse modelo

serve como uma importante linha de base (baseline) para comparação com modelos

mais complexos (MONTGOMERY; PECK; VINING, 2012).

• Decision Tree: As Árvores de Decisão são modelos que realizam predições por

meio de divisões recursivas dos dados, criando uma estrutura hierárquica baseada

em regras. Esse tipo de modelo é capaz de capturar relações não lineares entre as

variáveis e apresenta interpretabilidade fácil, embora possa apresentar tendência ao

sobreajuste quando não adequadamente regularizado (BREIMAN et al., 1984).

• Random Forest : Método de ensemble baseado na combinação de múltiplas Árvores

de Decisão treinadas a partir de subconjuntos aleatórios dos dados e das variáveis.

A agregação de predições reduz a variância do modelo e melhora sua capacidade de

generalização, sendo amplamente utilizada em problemas de regressão e classificação

(BREIMAN, 2001).

• KNN:O algoritmoK-Nearest Neighbors é um método baseado em instâncias que re-

aliza predições a partir da média dos valores associados aos k vizinhos mais próximos

no espaço de atributos. Sua simplicidade e a ausência de fase expĺıcita de treina-

mento tornam o KNN uma abordagem eficaz em determinados contextos, embora

seu desempenho dependa fortemente da escolha de k e da escala dos dados (COVER;

HART, 1967).

• SVR: A Support Vector Regression é uma adaptação do algoritmo de Support Vec-

tor Machines para problemas de regressão. O SVR busca encontrar uma função que

minimize o erro dentro de uma margem definida, sendo capaz de modelar relações li-

neares e não lineares por meio do uso de funções kernel. Esse método é conhecido por



2.3 Aprendizado de Máquina (Machine Learning) 19

sua robustez em conjuntos de dados de média dimensão (SMOLA; SCHÖLKOPF,

2004).

Figura 2.1: Ilustração conceitual dos mecanismos de busca dos algoritmos de aprendizado
de máquina utilizados.

2.3.2 Grid Search

A seleção adequada de hiperparâmetros é um fator determinante para o desempenho de

modelos de aprendizado de máquina, influenciando diretamente a capacidade de gene-

ralização. Nesse contexto, a técnica conhecida como Grid Search tem sido amplamente

utilizada para otimizar esses valores de forma sistemática.

O Grid Search consiste em uma busca exaustiva por meio da avaliação de todas as

combinações posśıveis de um conjunto previamente definido de hiperparâmetros. Ao final

do processo, a combinação com o melhor desempenho é selecionada como a configuração

ideal (BERGSTRA; BENGIO, 2012).

Para garantir uma estimativa mais confiável do desempenho e reduzir o risco

de overfitting2, o processo de otimização pode ser conduzido em conjunto com a técnica

2Overfitting ocorre quando um modelo aprende padrões espećıficos do conjunto de treinamento, em
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de validação cruzada (cross-validation), na qual o conjunto de dados é particionado em

múltiplos subconjuntos (folds), permitindo que o modelo seja treinado e avaliado em

diferentes divisões dos dados. Essa abordagem fornece uma avaliação mais robusta da

capacidade de generalização do modelo (KOHAVI, 1995).

Essa técnica é amplamente empregada em problemas de regressão devido à sua

facilidade de implementação e à garantia de uma avaliação completa do espaço de busca

definido (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).

No presente trabalho, oGrid Search foi utilizado para otimizar os hiperparâmetros

dos modelos de aprendizado de máquina empregados na predição do tempo de corrida,

contribuindo para a obtenção de modelos mais precisos e robustos.

2.3.3 Avaliação e Métricas

Para avaliar o desempenho dos modelos de Machine Learning, foram utilizadas métricas

amplamente empregadas em problemas de regressão. Essas métricas permitem quantificar

o erro das predições e comparar o desempenho entre diferentes algoritmos.

A seguir, apresenta-se um resumo de cada métrica, acompanhado de sua respec-

tiva equação. Onde yi representa o valor observado, ŷi o valor estimado pelo modelo, ȳ a

média dos valores observados e n o número total de observações.

• Mean Absolute Percentage Error (MAPE): Mede o erro percentual médio

entre os valores reais e previstos. Essa métrica facilita a interpretação dos resultados

em termos relativos, embora possa apresentar limitações quando os valores reais se

aproximam de zero (HYNDMAN; KOEHLER, 2006).

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (2.1)

• Mean Absolute Error (MAE): Mede a média dos erros absolutos entre os va-

lores reais e os valores previstos pelo modelo. Trata-se de uma métrica de fácil

interpretação, pois expressa o erro médio na mesma unidade da variável-alvo (WILL-

MOTT; MATSUURA, 2005).

vez de generalizar para novos dados.
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MAE =
1

n

n∑
i=1

|yi − ŷi| (2.2)

• Root Mean Squared Error (RMSE): O RMSE corresponde à raiz quadrada

da média dos erros quadráticos. Essa métrica penaliza erros maiores de forma mais

severa, sendo útil para identificar modelos que apresentam grandes desvios em suas

predições (CHAI; DRAXLER, 2014).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (2.3)

• Coeficiente de Determinação (R²): O coeficiente de determinação R² indica

a proporção da variância da variável dependente explicada pelo modelo. Valores

mais próximos de 1 indicam melhor ajuste, enquanto valores próximos de 0 indicam

baixo poder explicativo (NAGELKERKE, 1991).

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
(2.4)
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3 Revisão Bibliográfica

Em Davidson et al. (2020), estudos que utilizam dados de smartwatch combinados com

métodos de machine learning demonstraram que modelos como Gradient Boosting, Re-

gression Trees podem estimar parâmetros de carga interna e esforço percebido (que são

relacionados à performance de corrida) com MAPE baixo e correlação significativa com

variáveis fisiológicas. Isto mostra a aplicabilidade de modelos de regressão e métricas de

erro para avaliar padrões de esforço em atividades f́ısicas monitoradas por wearables.

Em Nugroho (2025), pesquisas recentes em big data esportivo apresentam pi-

pelines que coletam dados de smartwatches via API do Strava e aplicam modelos de

machine learning, obtendo resultados com R² muito altos e MAPE baixo, demonstrando

o potencial desses dados e algoritmos para predizer o desempenho de atletas.

Em Pirscoveanu e Oliveira (2023), foi demonstrado o potencial do uso de técnicas

de aprendizado de máquina na análise de dados de corridas ao ar livre. Investigou-se a

predição do esforço percebido instantâneo (Rate of Perceived Exertion – RPE) durante

a corrida, utilizando variáveis biomecânicas e fisiológicas obtidas por acelerometria de

smartwatches. Os autores aplicaram modelos de regressão, incluindo regressão linear,

Support Vector Regression e regressão por processos Gaussianos, avaliando o desempenho

dos modelos por meio Raiz do Erro Quadrático Médio (RMSE). Os resultados indica-

ram que modelos não lineares apresentaram melhor desempenho, especialmente quando

informações espećıficas do indiv́ıduo eram incorporadas ao treinamento.

O artigo Hong e Sun (2024) apresenta um estudo comparativo de modelos de

aprendizado de máquina para estimar o consumo cont́ınuo de oxigênio (VO) com base em

dados de exerćıcio f́ısico obtidos por meio de teste de esteira (treadmill). Os autores trei-

naram e avaliaram modelos como Regressão Linear, Gradient Boosting e outras técnicas

baseadas em árvores, utilizando métricas de desempenho amplamente reconhecidas, como

R², MAE, RMSE e MAPE, para avaliar a precisão das previsões e a qualidade do ajuste

dos modelos. A análise foi realizada com validação cruzada, garantindo que os resultados

fossem robustos e generalizáveis a novos conjuntos de dados. Os resultados indicaram
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que os modelos de Gradient Boosting apresentaram melhor desempenho, obtendo altos

valores de R² e baixos erros absolutos, superando a regressão linear e outras abordagens

tradicionais. O estudo destaca a eficácia de técnicas de ensemble em dados fisiológicos

complexos, sugerindo que esses algoritmos podem ser aplicados ao monitoramento do

desempenho f́ısico e à otimização dos treinos de corrida.

Em relação a fatores que influenciam o desempenho em corridas, pode-se ci-

tar o estudo Beis et al. (2023), que analisou 668.509 corredores da Maratona de Berlim

(1999–2019) para investigar como fatores climáticos influenciam o desempenho. Os prin-

cipais fatores analisados foram temperatura, umidade, vento, precipitação, cobertura de

nuvens e horas de sol. Os resultados mostraram que temperaturas mais altas e baixa umi-

dade tendem a reduzir a velocidade média dos corredores, com efeito mais pronunciado

nos homens. Outros fatores climáticos tiveram menor impacto. No geral, as condições

climáticas explicaram cerca de 10% da variação no desempenho, indicando que outros

fatores (preparo f́ısico, estratégia, nutrição) são mais determinantes. O estudo também

usou machine learning para identificar padrões complexos entre clima e desempenho. Os

modelos confirmaram que temperatura e umidade são os fatores mais importantes, mas

reforçaram que o clima, sozinho, não é suficiente para prever com precisão o tempo de

corrida. Em resumo, o clima influencia a performance, mas precisa ser analisado junto

com outros fatores, e técnicas de machine learning ajudam a compreender melhor essas

relações complexas.

Em Weisz et al. (2024) investigou-se o uso de Machine Learning (ML) para pre-

ver a recuperação diária de atletas de endurance3. Foram coletados dados diários de 43

atletas ao longo de 12 semanas, incluindo o volume e a intensidade de treino, a duração e

a qualidade do sono, a variabilidade da frequência card́ıaca (HRV) e a dieta. Os resulta-

dos mostraram que os modelos de ML superaram as abordagens tradicionais, capturando

relações não lineares entre as variáveis. Entre os preditores, as variáveis de sono se desta-

caram como fatores importantes, especialmente quando combinadas com outras métricas,

indicando que a qualidade e a duração do sono influenciam significativamente a recu-

3Atletas de endurance são aqueles especializados em modalidades esportivas que exigem a manutenção
de esforço f́ısico prolongado, caracterizadas por elevada demanda de resistência cardiovascular, muscular
e metabólica, como corrida de longa distância, ciclismo e triatlo.



3 Revisão Bibliográfica 24

peração. Além disso, o estudo ressaltou que a importância das features varia entre os

atletas, o que evidencia que modelos personalizados são mais eficazes para entender como

o sono e o treino afetam a recuperação. Embora o estudo não tenha medido diretamente

o desempenho em corrida, ele mostra que uma boa recuperação, influenciada pelo sono e

pelo treino, é fundamental para o desempenho em provas de endurance e que ML pode

ajudar a quantificar e prever esses efeitos de forma individualizada.

Em Smith e Others (2025), 917 corredores, que participaram da Maratona de

Boston em 2022, foram avaliados para compreender como o volume e a frequência de

treino nos meses que antecedem a prova estão relacionados ao desempenho final (tempo

de corrida) dos atletas. Os resultados mostraram que um maior volume semanal de corrida

e mais sessões de treino de qualidade estavam associados a melhores tempos na maratona.
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4 Materiais e Métodos

Neste caṕıtulo, é apresentado, de forma detalhada, o processo metodológico adotado para

o desenvolvimento e a implementação de uma ferramenta com suporte a modelos de Ma-

chine Learning, cujo objetivo é receber dados de corrida, treinar modelos preditivos e

fornecer ao usuário uma estimativa do tempo necessário para percorrer uma determi-

nada distância. O sistema foi concebido para auxiliar corredores amadores na análise de

desempenho e no planejamento de seus treinos.

O desenvolvimento do trabalho foi dividido em quatro etapas, ilustradas na Fi-

gura 4.1. Na etapa de Coleta de Dados, as métricas de corrida foram obtidas a partir

de duas fontes distintas. Os dados do primeiro voluntário foram coletados por meio de

um smartwatch, utilizando o aplicativo Samsung Health, enquanto os do segundo vo-

luntário foram obtidos por meio da exportação das atividades registradas na plataforma

Strava. Essas fontes forneceram informações relevantes sobre o desempenho dos atletas,

como distância percorrida, tempo de atividade, ritmo médio e outras métricas associadas

à corrida.

Na etapa de Pré-processamento dos Dados, foram realizadas a limpeza, a

organização e a normalização das informações coletadas, com o objetivo de garantir a

consistência e a qualidade do conjunto de dados.

Em seguida, na etapa de Treinamento dos modelos de Machine Learning ,

os dados processados foram utilizados para treinar os modelos de Machine Learning,

possibilitando a identificação de padrões e a construção de modelos preditivos capazes de

estimar o tempo necessário para a realização de uma corrida em uma distância definida

pelo usuário.

Por fim, na etapa de Predição de treinos, a interface desenvolvida apresenta ao

usuário as predições geradas pelo sistema, permitindo uma interação simples e intuitiva.

Dessa forma, o sistema auxilia corredores amadores na compreensão de seu desempenho

e no aprimoramento de seus treinos. Nas seções subsequentes, cada uma dessas etapas é

descrita em detalhes, apresentando os procedimentos adotados e as decisões metodológicas
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envolvidas em sua implementação.

Figura 4.1: Fluxograma das etapas do desenvolvimento do sistema

4.1 Coleta de Dados

A etapa de Coleta de Dados consistiu no desenvolvimento de uma interface computacio-

nal simples e intuitiva, cujo objetivo é permitir a inserção dos dados de corrida utilizados

pela ferramenta, como pode ser vista na Figura 4.2. Essa interface possibilita ao usuário

realizar o envio de um arquivo compactado no formato .zip, contendo os registros de ati-

vidades f́ısicas exportados a partir das plataformas Samsung Health e Strava. Tanto a

exportação de dados do Samsung Health, realizada a partir de um smartwatch utilizado

pelo voluntário 1, quanto a exportação de dados da plataforma Strava, referente ao vo-

luntário 2, apresentam uma estrutura composta por múltiplos subarquivos no formato

.csv. Esses subarquivos contêm informações relevantes no contexto da corrida, incluindo

métricas como distância percorrida, tempo de atividade, ritmo médio, entre outros dados

associados ao desempenho do atleta. Após o envio do arquivo .zip pela interface, o sistema

realiza automaticamente a extração e a identificação dos subarquivos .csv correspondentes

às atividades de corrida. Em seguida, os dados são lidos e organizados de acordo com

sua origem, respeitando as particularidades estruturais de cada plataforma. Esse processo

permite a unificação das informações provenientes de diferentes fontes, viabilizando sua

posterior utilização nas etapas de processamento dos dados e treinamento dos modelos de

Machine Learning. Dessa forma, a interface desenvolvida atua como um ponto central de

entrada dos dados, garantindo flexibilidade quanto à origem das informações e facilitando

a coleta de métricas essenciais para a construção do sistema de predição de desempenho

em corrida.
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Figura 4.2: Interface para envio dos dados exportados

4.2 Pré-processamento dos Dados

O pré-processamento dos dados teve como objetivo transformar os registros brutos pro-

venientes das plataformas Samsung Health e Strava em um conjunto de dados consis-

tente, padronizado e adequado para a etapa de modelagem preditiva. Embora os modelos

tenham sido treinados separadamente para cada plataforma, adotou-se uma estratégia

comum de padronização e limpeza dos dados, assegurando consistência metodológica e

comparabilidade entre os conjuntos utilizados.

Inicialmente, os arquivos .csv exportados de ambas as plataformas foram carrega-

dos e submetidos a procedimentos de limpeza básica, incluindo a remoção de colunas re-

dundantes, a eliminação de caracteres inválidos e a padronização dos nomes das variáveis.

Em seguida, os registros foram filtrados para considerar exclusivamente as atividades de

corrida, assegurando a coerência com o objetivo do estudo.

As informações temporais referentes ao ińıcio das atividades foram convertidas

para o formato datetime, possibilitando a manipulação correta de datas e horários. A

partir desses dados, foram extráıdas, separadamente, a data e a hora de ińıcio de cada

corrida, utilizadas tanto para a organização cronológica dos registros quanto para a inte-

gração com dados externos.

Para ambas as fontes, foram selecionadas métricas relevantes ao contexto da

corrida, tais como distância percorrida, duração da atividade, velocidade máxima e tempo
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em movimento, altitude mı́nima e máxima, inclinação mı́nima e máxima. A partir dessas

variáveis, foram criadas novas métricas derivadas, incluindo o pace médio da corrida,

calculado em minutos por quilômetro, e o volume acumulado de treino nos últimos sete

dias, obtido por meio de uma janela temporal.

No que se refere às condições ambientais, os dados meteorológicos foram inte-

grados de forma padronizada em ambas as plataformas. Sempre que as informações

climáticas não estavam dispońıveis ou apresentavam valores incompletos nos arquivos ori-

ginais, foi realizada uma complementação automática por meio da consulta à API Open-

Meteo (Open-Meteo, 2024), utilizando a data, o horário aproximado de ińıcio da atividade

e as coordenadas geográficas associadas à corrida. Os dados foram obtidos em resolução

horária, sendo selecionado o registro mais próximo ao horário de ińıcio da atividade para

representar as condições ambientais enfrentadas pelo atleta.

No caso espećıfico dos dados provenientes do Samsung Health, foi posśıvel in-

corporar informações adicionais sobre o estado fisiológico do voluntário. Registros de

sono foram processados e agregados por data, considerando métricas como a duração do

sono, a pontuação geral, a recuperação f́ısica e a recuperação mental. Esses dados foram

posteriormente integrados aos registros de corrida, permitindo a análise da influência do

descanso no desempenho esportivo.

Após a integração das diferentes fontes de dados, foram realizados procedimentos

adicionais de limpeza e transformação, incluindo a padronização dos formatos numéricos,

a conversão de durações para segundos e a remoção de registros inconsistentes, como

atividades com distância ou duração iguais ou inferiores a zero. Os valores ausentes foram

tratados por meio da substituição pela média das variáveis numéricas correspondentes.

A Tabela 4.1 apresenta as variáveis do Samsung Health que receberam imputação pela

média e o número de registros afetados, enquanto a Tabela 4.2 apresenta a mesma análise

para os dados do Strava.

Por fim, os conjuntos de dados foram ordenados cronologicamente e exportados

em arquivos .csv, tornando-os aptos para utilização na etapa de treinamento e avaliação

dos modelos de Machine Learning empregados no sistema proposto.
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Tabela 4.1: Variáveis do Samsung Health que receberam imputação pela média
Variável Quantidade de registros imputados
com.samsung.health.exercise.mean speed 1
com.samsung.health.exercise.mean heart rate 25
sleep duration 35
sleep score 35
mental recovery 35
com.samsung.health.exercise.mean cadence 9
com.samsung.health.exercise.min altitude 32
com.samsung.health.exercise.incline distance 37
com.samsung.health.exercise.max altitude 32
com.samsung.health.exercise.max cadence 9
com.samsung.health.exercise.decline distance 39
com.samsung.health.exercise.vo2 max 41
com.samsung.health.exercise.altitude loss 54
com.samsung.health.exercise.altitude gain 25

Tabela 4.2: Variáveis do Strava que receberam imputação pela média
Variável Quantidade de registros imputados
Max Speed 10
Elevation Gain 10
Elevation Loss 29
Elevation High 23
Elevation Low 23
Max Grade 10

4.2.1 Descrição dos dados

Foram utilizados dois conjuntos de dados sobre atividades f́ısicas. O conjunto do Samsung

Health possui 171 registros, com maior detalhamento por atividade, incluindo métricas

de desempenho f́ısico, fisiológicas e de recuperação, como distância, velocidade média,

duração, frequência card́ıaca, sono, cadência, altitudes, ganho e perda de elevação, VO2

máximo, além de condições climáticas, volume semanal e pace.

Os dados analisados, gerados pelo Samsung Health, foram obtidos por meio da

exportação de um conjunto de arquivos CSV e integrados com informações de clima,

sono e exerćıcios. Esses arquivos fazem parte do arquivo ZIP exportado diretamente da

ferramenta, contendo registros temporais de atividades f́ısicas, métricas de sono e variáveis

ambientais. A junção desses arquivos permitiu a construção de um único dataframe

completo para análise, com informações sincronizadas entre os exerćıcios, os padrões de

sono e as condições climáticas do dia da atividade.
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Para cada variável, obtivemos as estat́ısticas descritivas, conforme apresentadas

na Tabela 4.3.

Tabela 4.3: Estat́ısticas das variáveis - Samsung Health
Variável Média Desvio Padrão Mı́nimo 25% Mediana 75% Máximo
com.samsung.health.exercise.distance(m) 6530.083 3416.395 30.546 5044.930 6243.085 8012.149 21272.14
com.samsung.health.exercise.mean speed(m/s) 2.655226 0.403683 0.950165 2.508171 2.726691 2.864020 4.175581
com.samsung.health.exercise.duration(ms) 2425401 1149885 22799 1884795 2359326 2964090 7025916
com.samsung.health.exercise.mean heart rate(bpm) 147.9959 15.66953 74 147.9959 147.9959 153.25 198
sleep duration(min) 447.2529 76.96145 83 447.2529 447.2529 471.75 599
temperature x(°C) 19.78568 3.680149 11 17.2235 19.78568 21.89238 33
humidity x(%) 84.50883 11.27012 43 79 84.50883 93 100
wind speed x(km/h) 7.557555 3.637482 0 5 7.557555 10 26
sleep score 75.70115 8.164561 46 75.70115 75.70115 79 95
mental recovery 78.10345 13.80143 33 78.10345 78.10345 87.25 98
volume 7d(m) 9299356 13272060 14874 379575 4463041 13836290 59650050
pace(min/km) 6.610230 1.693846 4.004726 5.809954 6.112957 6.648494 17.66081
com.samsung.health.exercise.mean cadence(passos/min) 161.2215 18.67999 92.10859 160.0600 166.4930 172.4851 178.6522
com.samsung.health.exercise.min altitude(m) 654.0145 232.0068 -51.67231 639.5683 724.4432 833.7413 882.657
com.samsung.health.exercise.incline distance(m) 813.1951 481.6260 0 541.9790 796.5 939.8853 2750
com.samsung.health.exercise.max altitude(m) 679.9748 235.5944 -42.59346 663.5278 761.0121 862.2840 909.081
com.samsung.health.exercise.max cadence(passos/min) 179.7459 9.567645 107.119 176.6257 180 183.2234 223.475
com.samsung.health.exercise.decline distance(m) 604.4001 327.6993 0 403.8015 604.4001 742.5 2222
com.samsung.health.exercise.vo2 max(ml/kg/min) 45.92159 1.557766 39.8 45.92159 45.92159 45.9525 50.02
com.samsung.health.exercise.altitude loss(m) 90.54082 25.55804 17.038536 90.54082 90.54082 90.54082 280.4245
com.samsung.health.exercise.altitude gain(m) 86.71312 71.29491 0 63.89252 86.71312 90.05163 860.779

Com base no cálculo das principais medidas estat́ısticas (média, desvio padrão,

mı́nimo, percentis 25%, mediana, percentil 75% e máximo) para cada variável, observamos

que:

• Distâncias e duração apresentam larga variabilidade, com média de aproxima-

damente 6,5 km percorridos por atividade e duração média próxima de 40 minutos

(convertida em milissegundos).

• Velocidade média gira em torno de 2,6 m/s, compat́ıvel com ritmos de corrida

leves a moderados.

• Frequência card́ıaca média está próxima de 148 bpm, indicando intensidade

moderada das atividades registradas.

• Variáveis climáticas indicam que as atividades ocorreram em faixas médias de tem-

peratura de cerca de 20°C e de umidade em torno de 85%, com ventos leves a

moderados.

• Indicadores de sono e recuperação sugerem que, em média, os participantes dor-

miram cerca de 447 minutos ( 7h27min), com scores de sono e de recuperação

mental elevados, acima de 75.
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• Medidas de altitude, inclinação e cadência indicam variações de terreno e de

ritmo de movimento entre os registros.

• A métrica volume 7d apresenta grande amplitude, indicando variação no volume

de treino semanal.

Essas estat́ısticas foram obtidas com base em dados limpos e pré-processados,

garantindo que registros inválidos foram removidos e que valores ausentes foram devida-

mente imputados.

Já o conjunto do Strava apresenta 236 registros, com foco em métricas gerais

de treino, como tempo de movimento, distância, velocidade máxima, ganho e perda de

elevação, altitudes, inclinação, clima, volume semanal e pace. Dessa forma, os dados

do Samsung Health fornecem informações mais detalhadas por registro, enquanto os do

Strava apresentam maior número de registros, porém com menos variáveis por atividade.

Para cada variável, obtivemos a estat́ıstica descritiva, conforme mostrada na Ta-

bela 4.4.

Tabela 4.4: Estat́ısticas das variáveis - Strava
Variável Média Desvio Padrão Mı́nimo 25% Mediana 75% Máximo
Moving Time (s) 2832.81 2487.37 94.00 1510.00 2066.00 3036.00 17127.00
Distance.1 (m) 7388.41 6594.24 202.10 3931.00 5188.20 8000.00 42897.90
Max Speed (m/s) 3.6558 0.8061 1.511 3.147 3.629 3.995 8.490
Elevation Gain (m) 47.059 46.388 0.0 9.7 35.0 67.8 284.4
Elevation Loss (m) 223.531 221.680 0.0 112.0 204.0 268.0 2366.0
Max Grade (%) 7.155 8.054 0.0 3.5 5.8 7.155 49.1
temperature x (°C) 21.474 3.908 10.236 19.007 21.474 23.807 32.207
humidity x (%) 74.368 13.409 33.0 66.0 74.368 84.0 100.0
wind speed x (km/h) 6.455 3.741 0.509 3.827 5.805 7.594 24.575
volume 7d (m) 16888.93 14409.41 431.8 5363.4 11654.5 24707.2 69341.2
pace (mim/km) 6.613 1.128 3.016 5.813 6.358 7.300 11.051

Com base nos valores obtidos, observamos que:

• O tempo em movimento (Moving Time) varia bastante, desde atividades

rápidas de poucos minutos (ex.: 94 s ou 1,5 min) até longos treinos que ultrapassam

17.000 s ( 4,7 h).

• A distância percorrida (Distance.1) também apresenta grande variabilidade,

de menos de 1 km a mais de 40 km. Isso indica que o conjunto de dados abrange

tanto treinos curtos quanto corridas de longa duração.
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• A velocidade máxima (Max Speed) varia de aproximadamente 1,5 m/s a mais

de 8 m/s, refletindo diferentes intensidades de esforço.

• O pace médio das atividades indica que grande parte das corridas apresenta ritmo

entre 5 e 8 min/km, o que é compat́ıvel com corredores não profissionais.

• O ganho e perda de elevação (Elevation Gain / Loss) variam significati-

vamente, de trechos planos (0 m) a percursos com mais de 2.000 m de variação

altimétrica acumulada.

• O gradiente máximo (Max Grade) das atividades varia de 0% (plano) a quase

50%, indicando que algumas corridas ocorreram em subidas mais ı́ngremes.

• A temperatura média durante as atividades está entre 10–28 °C.

• A umidade relativa varia de 33% a 100% e a velocidade do vento de 0 a 25

m/s, indicando uma diversidade de condições meteorológicas.

• A coluna volume 7d registra o total de metros percorridos na semana, com valores

que variam de menos de 1 km a mais de 55 km, evidenciando diferentes cargas de

treino.

Há atividades curtas e longas, planas e com elevação acentuada, o que permite

análises de desempenho em diferentes contextos. A variação de todas as métricas sugere

que o conjunto de dados é adequado para estudos de desempenho, modelagem preditiva

de tempo/distância e análise de esforço f́ısico.

As Tabelas 4.5 e 4.6 apresentam exemplos das primeiras linhas do dataframe

final obtido a partir dos dados coletados pelo Samsung Health, após o processo de pré-

processamento, e utilizado no treinamento dos modelos de Machine Learning. De forma

complementar, as Tabelas 4.7 e 4.8 apresentam as primeiras linhas do dataframe final,

constrúıdo com dados provenientes do Strava, após as etapas de tratamento e preparação

dos dados para o treinamento dos modelos. Essas tabelas permitem visualizar a estru-

tura dos dados processados e evidenciam a diversidade de métricas dispońıveis em cada

plataforma.
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Tabela 4.5: Exemplo das primeiras linhas do dataframe final do Samsung Health —
variáveis de corrida, fisiologia e percurso
Distance Mean Speed Duration Mean HR Pace Mean Cad. Min Alt Max Alt Alt Gain Alt Loss Incline Dist Decline Dist VO2 Max

(m) (m/s) (ms) (bpm) (min/km) (spm) (m) (m) (m) (m) (m) (m) (ml/kg/min)

5000.0 2.083 2400000 147.72 8.00 160.29 654.89 680.67 86.04 89.19 807.13 599.82 45.92
5444.71 2.539 2144710 76.00 6.57 158.55 845.69 872.81 86.04 58.63 695.71 354.35 45.92
5071.89 3.244 1563261 175.00 5.14 170.91 -18.90 -14.07 0.00 89.19 6.74 599.82 43.84
6544.71 2.605 2511967 158.00 6.40 163.59 836.16 862.26 66.00 115.00 1128.76 542.53 44.35
3013.41 1.806 1668829 119.00 9.23 131.37 797.89 822.28 25.26 89.19 359.47 225.63 39.80
5366.08 2.743 1956220 153.00 6.08 166.21 19.94 24.17 0.00 89.19 6.92 599.82 40.31
5389.26 2.636 2044755 152.00 6.32 161.89 -8.45 -3.88 23.91 89.19 807.13 1.76 40.39
7106.96 2.827 2514204 162.00 5.90 164.86 837.12 862.36 860.78 89.19 1086.74 421.01 40.90
3970.26 3.151 1260000 147.72 5.29 160.29 654.89 680.67 86.04 72.15 807.13 599.82 45.92

Tabela 4.6: Exemplo das primeiras linhas do dataframe final do Samsung Health —
variáveis de sono, clima e carga

Sleep Dur Sleep Score Mental Recov Temp Humidity Wind Volume 7d Max Cadence
(min) (score) (score) (°C) (%) (km/h) (m) (spm)

552.0 62.0 43.0 22.56 75.0 15.14 7231478 179.71
506.0 82.0 75.0 23.00 66.0 7.90 5444707 172.71
506.0 84.0 72.0 20.71 56.0 13.01 5071894 180.91
567.0 84.0 87.0 19.00 81.0 8.00 6544712 174.57
492.0 80.0 92.0 22.00 80.0 3.00 3013412 170.12
380.0 71.0 71.0 21.86 89.0 6.92 8379495 172.68
412.0 84.0 86.0 29.00 60.0 18.00 13768758 170.64
417.0 65.0 81.0 26.00 66.0 8.00 7106958 173.32
483.0 82.0 89.0 23.00 72.0 11.00 397026 179.71

Tabela 4.7: Exemplo das primeiras linhas do dataframe final do Strava — variáveis de
corrida e percurso

Moving Time Distance Max Speed Elev. Gain Elev. Loss Elev. High Elev. Low Max Grade
(s) (m) (m/s) (m) (m) (m) (m) (%)

2514.0 6627.9 3.37 39.3 236.0 868.0 860.5 8.1
17127.0 42897.9 7.091 231.6 2366.0 44.2 -3.5 49.1
938.0 2042.8 2.695 9.7 34.0 862.9 853.2 3.5
1953.0 4044.6 2.98 20.1 197.0 867.9 860.5 4.3
1943.0 3931.0 3.286 41.1 229.0 870.5 844.1 12.4
1986.0 4059.6 2.987 35.0 146.0 865.9 844.1 6.5
1596.0 3544.6 4.394 21.1 89.0 751.0 737.0 8.3
2269.0 4466.2 2.747 12.4 114.0 860.8 848.2 3.4
2364.0 4966.8 2.852 30.9 170.0 866.2 853.8 7.5
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Tabela 4.8: Exemplo das primeiras linhas do dataframe final do Strava — variáveis am-
bientais e derivadas

Temperature Humidity Wind Speed Volume 7d Pace
(°C) (%) (km/h) (m) (min/km)

18.26 57.0 11.79 15124.3 6.32
14.46 95.0 2.74 55013.6 6.65
21.96 63.0 13.91 2042.8 7.65
23.66 62.0 10.44 6087.4 8.05
23.21 61.0 14.59 7975.6 8.24
19.56 62.0 2.52 4059.6 8.15
22.76 66.0 13.90 7604.2 7.50
18.26 88.0 3.22 8010.8 8.47
21.56 68.0 10.31 9433.0 7.93

4.2.2 Matriz de Correlação

A matriz de correlação é uma ferramenta estat́ıstica que permite avaliar a relação linear

entre pares de variáveis em um conjunto de dados. Cada elemento da matriz representa o

coeficiente de correlação, que varia entre -1 e 1, indicando a força e a direção da relação.

Valores próximos de 1 ou -1 indicam correlações fortes, positivas ou negativas, respectiva-

mente, enquanto valores próximos de zero indicam pouca ou nenhuma associação linear

entre as variáveis analisadas. Essa matriz é amplamente utilizada para identificar padrões,

relações e posśıveis redundâncias entre caracteŕısticas, facilitando a interpretação e seleção

de variáveis em estudos cient́ıficos.

A Figura 4.3 apresenta a matriz de correlação contendo as dez variáveis com maior

relevância dentre aquelas coletadas pelo Samsung Health. Ressalta-se que os nomes das

variáveis foram ajustados para melhorar a legibilidade da visualização, sem comprometer

o entendimento ou o significado original das informações apresentadas.

Primeiramente, destaca-se a forte correlação positiva (r = 0,98) entre a variável

distância do exerćıcio e a duração do exerćıcio. Esse resultado é coerente, pois atividades

f́ısicas de maior duração tendem a cobrir maiores distâncias, especialmente em modali-

dades cont́ınuas, como a corrida. Da mesma forma, a velocidade média apresenta uma

correlação positiva moderada (r = 0,58) com a cadência média, indicando que um aumento

no número de passos ou ciclos por minuto está associado a um aumento na velocidade

média da atividade.
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Figura 4.3: Matriz de correlação - Samsung

Outra relação importante está entre as variáveis de distância inclinada e distância

declinada (r = 0,78), o que sugere que os percursos analisados apresentam variações de

terreno que incluem tanto subidas quanto descidas, comportamento comum em rotas reais

de treino e competição.

Em relação ao ritmo da atividade (pace), verifica-se correlação negativa significa-

tiva com a velocidade média (r = -0,74) e com a cadência média (r = -0,42). Tal relação

é esperada, pois o pace representa o tempo necessário para percorrer uma distância fixa,

sendo inversamente proporcional à velocidade. Assim, uma velocidade maior implica um

ritmo menor (tempo menor para a mesma distância), o que explica a correlação negativa

observada.

A variável ganho de altitude está positivamente correlacionada com a distância

inclinada (r = 0,48), o que confirma a lógica de que as subidas contribuem diretamente

para o aumento do ganho de altitude durante o exerćıcio.

Por outro lado, variáveis como recuperação mental e temperatura apresentaram

baixas correlações com as demais caracteŕısticas, indicando que seus efeitos diretos sobre
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as métricas de exerćıcio avaliadas são pouco expressivos no conjunto de dados analisado.

Na literatura, a recuperação mental é um aspecto relacionado ao bem-estar geral e pode

influenciar indiretamente o desempenho, mas essa relação não se mostrou forte nos dados

aqui apresentados. A influência da temperatura, por sua vez, pode variar conforme a

faixa térmica e o ńıvel de adaptação dos praticantes, o que justifica a baixa correlação

observada.

Em resumo, as correlações identificadas na matriz refletem de forma consistente os

aspectos fisiológicos e mecânicos conhecidos no exerćıcio f́ısico, evidenciando as relações

esperadas entre distância, duração, velocidade, ritmo e variações de terreno. Aspectos

psicofisiológicos e ambientais, como a recuperação mental e a temperatura, apresentaram

menor associação direta, indicando a necessidade de análises complementares para uma

melhor compreensão de seus impactos.

De forma análoga, a Figura 4.4 apresenta a matriz de correlação contendo as dez

variáveis com maior relevância provenientes do Strava, na qual se observa, inicialmente,

uma correlação extremamente forte entre Moving Time e Distance (r = 0,99), o que

é consistente com a literatura sobre esportes de endurance, uma vez que a distância

percorrida é diretamente determinada pelo tempo em movimento, especialmente quando

a variabilidade de velocidade média entre sessões é limitada.

As variáveis relacionadas à altimetria (Elevation Loss e Elevation Gain) apresen-

taram correlações fortes a moderadas com Moving Time (r = 0,85) e Distance (r = 0,83 e

r = 0,41, respectivamente). Esses resultados são coerentes com estudos que demonstram

que percursos mais longos tendem a acumular maior ganho e perda de elevação, particu-

larmente em ambientes não urbanos ou com topografia variável. A correlação moderada

entre Elevation Gain e Elevation Loss (r = 0,53) sugere que, embora relacionadas, essas

variáveis não são perfeitamente simétricas, o que pode refletir diferenças no ponto inicial

e final do percurso, bem como limitações inerentes à precisão da altimetria baseada em

GPS.

O volume acumulado de treinamento em sete dias (volume 7d) apresentou cor-

relação moderada a forte com Distance (r = 0,63) e Moving Time (r = 0,61), indicando

que o aumento do volume está associado a sessões mais longas e maior tempo total de



4.2 Pré-processamento dos Dados 37

Figura 4.4: Matriz de correlação - Strava

exposição ao exerćıcio. Esse achado está alinhado com conceitos discutidos na literatura

sobre carga e sua relação com desempenho.

A variável Max Speed demonstrou correlações fracas a moderadas com Distance

(r = 0,39), Elevation Loss (r = 0,44) e Elevation Gain (r = 0,37). Esses valores suge-

rem que a velocidade máxima atingida durante uma sessão é parcialmente influenciada

pelo comprimento e pela topografia do percurso, especialmente pela presença de trechos

descendentes, porém permanece amplamente dependente de fatores contextuais, como

caracteŕısticas técnicas do terreno e intenção do atleta. A literatura indica que a veloci-

dade máxima não constitui um indicador robusto da intensidade global em esportes de

endurance, reforçando a interpretação desses resultados.

A inclinação máxima (Max Grade) apresentou correlação praticamente nula com o

volume semanal (volume 7d), evidenciando que essa variável representa uma caracteŕıstica

pontual do percurso, independente da carga acumulada de treinamento. Tal comporta-

mento é esperado, uma vez que a inclinação máxima reflete um evento espećıfico e não a

exposição total ao esforço.
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Em relação às condições ambientais, a temperatura (temperature x) apresentou

correlações negativas fracas a moderadas com Distance, Moving Time e volume 7d (r entre

-0,28 e -0,31). Esses resultados estão em consonância com evidências de que temperaturas

mais elevadas estão associadas à redução do volume e da duração do exerćıcio, em função

do aumento do estresse térmico e cardiovascular.

Em śıntese, a matriz de correlação revela um conjunto de relações amplamente

coerentes com a literatura sobre carga externa, fisiologia do exerćıcio e análise de treina-

mento, reforçando a validade das variáveis analisadas.

Mesmo após a análise das correlações entre as features, optou-se por manter

todas as variáveis detalhadas no treinamento do modelo, considerando que cada uma

pode contribuir de forma complementar para a predição do desempenho, além de evitar

a perda de informações.

4.3 Treinamento dos modelos de Machine Learning

A etapa de treinamento dos modelos de Machine Learning teve como objetivo construir e

avaliar modelos capazes de prever o tempo de duração de uma corrida a partir de métricas

de desempenho e de contexto previamente pré-processadas. Para isso, foi definido como

variável-alvo (target) o tempo total de duração da atividade, enquanto as demais variáveis

compuseram o conjunto de atributos de entrada do modelo.

Como os dados foram coletados a partir de duas fontes distintas, Samsung Health

e Strava, foram realizados dois treinamentos separados, utilizando dataframes espećıficos

para cada plataforma. Dessa forma, cada conjunto de modelos foi ajustado e avaliado

individualmente, considerando as caracteŕısticas e métricas dispońıveis em cada fonte de

dados.

Inicialmente, o conjunto de dados foi dividido em variáveis independentes e

variável dependente. Em seguida, os dados foram particionados em conjuntos de trei-

namento e teste, utilizando a proporção de 80% para treinamento e 20% para teste, com

o uso de uma semente aleatória fixa, garantindo a reprodutibilidade dos experimentos. Os

conjuntos resultantes foram armazenados em arquivos separados, possibilitando análises

posteriores e validações adicionais.
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Com o objetivo de avaliar diferentes abordagens de modelagem, foram seleci-

onados seis algoritmos de regressão amplamente utilizados em problemas de predição

cont́ınua: Regressão Linear, Support Vector Regression (SVR),K-Nearest Neighbors (KNN),

Árvore de Decisão, Random Forest e Gradient Boosting. Para cada modelo, foi constrúıda

uma pipeline contendo uma etapa de padronização dos dados por meio do StandardSca-

ler, seguida pelo algoritmo de regressão propriamente dito. Essa abordagem garante que

os atributos de entrada estejam na mesma escala, o que é especialmente relevante para

modelos senśıveis à magnitude dos dados.

O processo de treinamento foi realizado com o aux́ılio da técnica de Grid Search

associada à validação cruzada (cross-validation) com cinco folds (k = 5). Para cada

algoritmo, foram definidos conjuntos de hiperparâmetros, a serem testados, permitindo a

identificação da configuração que minimiza o erro de previsão.

A Tabela 4.9 apresenta os hiperparâmetros iniciais considerados pelo Grid Search

para cada modelo avaliado, sendo utilizado o mesmo espaço de busca tanto para os dados

provenientes do Samsung Health quanto para a plataforma Strava.

Tabela 4.9: Espaço de busca dos hiperparâmetros definido para o Grid Search
Modelo Parâmetros iniciais avaliados
SVR C ∈ {0.1, 1, 10}; ϵ ∈ {0.01, 0.1}; kernel ∈ {rbf, linear}
Random Forest n estimators ∈ {100, 200}; max depth ∈ {None, 10, 20};

min samples split ∈ {2, 5}; min samples leaf ∈ {1, 2}
KNN n neighbors ∈ {3, 5, 7}; weights ∈ {uniform, distance}
Linear Regression Não aplicável (modelo sem hiperparâmetros ajustáveis)
Gradient Boosting n estimators ∈ {100, 200}; learning rate ∈ {0.05, 0.1};

max depth ∈ {3, 5}
Decision Tree max depth ∈ {None, 5, 10}; min samples split ∈ {2, 5}

As Tabelas 4.10 e 4.11 apresentam os melhores hiperparâmetros selecionados pela

técnica de Grid Search para os modelos treinados com dados provenientes do Samsung

Health e do Strava, respectivamente. Observa-se que, embora alguns modelos tenham

apresentado configurações semelhantes, como o SVR e o Gradient Boosting, outros algorit-

mos, como Random Forest e Decision Tree, apresentaram diferenças nos hiperparâmetros

ótimos em função da fonte de dados utilizada (Tabelas 4.10 e 4.11).
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Tabela 4.10: Melhores hiperparâmetros obtidos pelo Grid Search para os dados do Sam-
sung Health

Modelo Hiperparâmetros selecionados
SVR C = 10, ϵ = 0.01, kernel = linear
Random Forest n estimators = 200; max depth = None;

min samples split = 2; min samples leaf =
1

KNN n neighbors = 3; weights = distance
Linear Regression Não possui hiperparâmetros ajustáveis
Gradient Boosting n estimators = 200; learning rate = 0.05;

max depth = 3
Decision Tree max depth = None; min samples split = 2

Tabela 4.11: Melhores hiperparâmetros obtidos pelo Grid Search para os dados do Strava
Modelo Hiperparâmetros selecionados
SVR C = 10, ϵ = 0.01, kernel = linear
Random Forest n estimators = 200; max depth = 10;

min samples split = 2; min samples leaf =
1

KNN n neighbors = 3; weights = distance
Linear Regression Não possui hiperparâmetros ajustáveis
Gradient Boosting n estimators = 200; learning rate = 0.05;

max depth = 3
Decision Tree max depth = 10; min samples split = 2

Após a identificação do melhor conjunto de hiperparâmetros para cada modelo, o

desempenho foi avaliado no conjunto de teste previamente separado. As predições geradas

foram comparadas aos valores reais de duração das corridas, sendo calculadas métricas

quantitativas de desempenho, incluindo o Erro Médio Absoluto (MAE), a Raiz do Erro

Quadrático Médio (RMSE), o coeficiente de determinação (R²) e o Erro Percentual Médio

Absoluto (MAPE). Essas métricas permitiram uma análise abrangente da precisão e da

capacidade de generalização dos modelos treinados.

Os modelos treinados, juntamente com seus respectivos hiperparâmetros otimi-

zados, foram então serializados e armazenados em arquivos, possibilitando sua posterior

reutilização na interface desenvolvida para realização de predições em tempo de execução.

Adicionalmente, foi realizada uma análise dos erros absolutos das predições no conjunto

de teste, identificando os casos com maior discrepância entre os valores reais e previstos,

contribuindo para uma avaliação qualitativa do comportamento dos modelos.

Ao final desse processo, os resultados obtidos por cada algoritmo foram organiza-
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dos em formato tabular, permitindo a comparação direta entre os modelos e subsidiando

a escolha daquele mais adequado para integração ao sistema proposto.

4.3.1 Avaliação dos Modelos

A Tabela 4.12 apresenta o desempenho dos modelos de Machine Learning empregados

na previsão do tempo de corrida a partir de dados do Samsung Health. De modo geral,

observa-se que os modelos baseados em árvores e métodos de ensemble apresentaram

desempenho superior em relação aos modelos lineares e baseados em distância, indicando

a presença de relações não lineares e interações complexas entre as variáveis explicativas

e o tempo de corrida.

Tabela 4.12: Desempenho dos modelos de Machine Learning na previsão de tempo de
corrida - Samsung Health

Modelo MAE RMSE R2 MAPE (%)
Gradient Boosting 2.62 5.86 0.93 6.37
Random Forest 3.34 6.61 0.92 8.50
Decision Tree 4.03 7.34 0.90 10.57
Linear Regression 3.05 7.87 0.88 32.40
KNN 9.16 15.86 0.51 21.59
SVR 15.78 22.94 -0.02 69.31

O modelo Gradient Boosting obteve o melhor desempenho global, apresentando

o menor MAE (2,62), o menor RMSE (5,86), elevado coeficiente de determinação (R² =

0,93) e baixo MAPE (6,37%). Esses resultados indicam alta precisão preditiva e excelente

capacidade de explicação da variabilidade do tempo de corrida. A superioridade desse mo-

delo é consistente com a literatura, que aponta o Gradient Boosting como particularmente

eficaz em cenários com dados tabulares heterogêneos e relações não lineares, comuns em

dados fisiológicos e de treinamento esportivo.

O Random Forest apresentou desempenho semelhante, embora ligeiramente in-

ferior ao Gradient Boosting, com MAE de 3,34, RMSE de 6,61 e R² de 0,92. O bom

desempenho desse modelo pode ser atribúıdo à sua capacidade de reduzir variância por

meio da agregação de múltiplas árvores de decisão, tornando-o robusto a rúıdos e outliers.

Ainda assim, o Random Forest tende a apresentar menor capacidade de ajuste fino em

comparação ao Gradient Boosting, o que pode explicar a diferença observada nas métricas
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de erro.

O modelo de Decision Tree isolado apresentou desempenho inferior aos métodos

de ensemble, comMAE de 4,03 e R² de 0,90. Embora ainda apresente resultados razoáveis,

esse comportamento é esperado, uma vez que árvores individuais são mais suscet́ıveis a

overfitting e possuem menor capacidade de generalização, conforme amplamente discutido

na literatura de aprendizado de máquina.

A Regressão Linear apresentou desempenho intermediário, com MAE de 3,05 e

R² de 0,88. Apesar de um erro absoluto relativamente baixo, o valor elevado de MAPE

(32,40%) sugere limitações na modelagem de variações proporcionais no tempo de cor-

rida, especialmente em valores mais baixos. Esse resultado indica que a relação entre as

variáveis independentes e o tempo de corrida não é estritamente linear, o que reduz a

adequação desse modelo para o problema em questão.

Os modelos KNN e SVR apresentaram desempenho substancialmente inferior.

O KNN obteve MAE de 9,16 e R² de 0,51, indicando baixa capacidade explicativa e

elevada sensibilidade à escolha de métricas de distância e à escala das variáveis. Já o

SVR apresentou o pior desempenho entre os modelos avaliados, com MAE de 15,78,

RMSE de 22,94 e R² negativo (-0,02), sugerindo que o modelo foi incapaz de capturar

padrões relevantes nos dados, performando pior do que uma predição baseada na média.

Esses resultados podem estar associados à necessidade de maior ajuste de hiperparâmetros

e à sensibilidade do SVR à dimensionalidade e à distribuição das variáveis.

Tabela 4.13: Desempenho dos modelos de Machine Learning na previsão de tempo de
corrida - Strava

Modelo MAE RMSE R2 MAPE (%)
Gradient Boosting 1.65 2.49 0.99 6.14
Linear Regression 3.61 5.19 0.98 10.52
Random Forest 3.04 6.37 0.98 7.50
Decision Tree 3.73 5.26 0.98 11.10
SVR 8.94 16.23 0.85 24.84
KNN 10.26 14.80 0.87 33.73

A Tabela 4.13 apresenta o desempenho dos modelos de Machine Learning na

previsão do tempo de corrida a partir dos dados do Strava. De forma geral, observa-se de-

sempenho superior em comparação aos modelos treinados com dados do Samsung Health,

sugerindo maior consistência e qualidade das variáveis dispońıveis nessa plataforma. O
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modelo Gradient Boosting apresentou desempenho substancialmente superior aos demais,

com MAE de 1,65, RMSE de 2,49, R² igual a 0.99 e MAPE de 6,14%. Esses resultados

indicam capacidade de explicação da variabilidade do tempo de corrida e elevada pre-

cisão preditiva. Tal desempenho reforça a adequação de métodos de boosting para dados

esportivos tabulares, nos quais interações complexas entre variáveis como distância, alti-

metria, tempo em movimento e condições ambientais desempenham papel determinante

no desempenho do atleta.

A Regressão Linear apresentou desempenho consistente, com R² de 0,98 e MAE

de 3,61, indicando que grande parte da variabilidade do tempo de corrida pode ser ex-

plicada por relações aproximadamente lineares nos dados do Strava. Ainda assim, o erro

percentual (MAPE de 10,52%) foi superior ao observado no Gradient Boosting, suge-

rindo limitações na captura de efeitos não lineares e interações entre variáveis, conforme

amplamente discutido na literatura de modelagem preditiva.

O Random Forest e o Decision Tree apresentaram desempenhos semelhantes,

ambos com R² de 0,98. O Random Forest obteve MAE inferior (3,04) e MAPE mais baixo

(7,50%) em comparação à árvore de decisão isolada, confirmando a vantagem dos métodos

de ensemble na redução da variância e melhoria da generalização. A Decision Tree, por

sua vez, apresentou desempenho razoável, porém com maior erro médio, refletindo sua

maior suscetibilidade a ajustes excessivos aos dados de treinamento.

Os modelos SVR e KNN apresentaram desempenho inferior em relação aos de-

mais, com MAE elevados (8,94 e 10,26, respectivamente) e valores de R² entre 0,85 e

0,87. Esses resultados indicam menor capacidade de generalização e sensibilidade à es-

colha de hiperparâmetros, bem como à escala e distribuição das variáveis. Apesar de

apresentarem valores de R² relativamente altos, os erros absolutos e percentuais elevados

sugerem limitações práticas desses modelos para aplicações preditivas precisas no contexto

analisado.

De maneira geral, os resultados obtidos com os dados do Strava evidenciam que

modelos baseados em árvores e métodos de ensemble, especialmente o Gradient Boosting,

são os mais adequados para a previsão do tempo de corrida. Além disso, o desempenho

significativamente superior em relação aos dados do Samsung Health sugere que o Strava
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fornece variáveis mais diretamente relacionadas ao desempenho, como métricas detalha-

das de altimetria e tempo em movimento, o que potencializa a capacidade preditiva dos

modelos.

As Tabelas 4.14 e 4.15 mostram os tempos estimados pelos diferentes modelos

de Machine Learning para distâncias entre 5 km e 30 km, permitindo avaliar não apenas

o desempenho médio dos modelos, mas também sua coerência fisiológica, consistência ao

longo das distâncias e capacidade de extrapolação. De modo geral, observa-se que os

modelos treinados com dados do Strava apresentam estimativas mais plauśıveis e pro-

gressivas com o aumento da distância, especialmente nos modelos baseados em árvores e

métodos de ensemble. Em contraste, os modelos ajustados com dados do Samsung Health

exibem maior variabilidade e, em alguns casos, estimativas fisiologicamente implauśıveis,

sobretudo em distâncias mais longas.

Tabela 4.14: Tempo estimado pelos modelos para 5 km, 8 km e 10 km

Modelo
5 km 8 km 10 km

Strava Sams. Strava Sams. Strava Sams.

Gradient Boosting 26m17s 33m09s 42m19s 50m03s 54m47s 58m25s
Random Forest 28m45s 32m27s 44m33s 49m55s 59m43s 55m55s
Linear Regression 43m45s 53m39s 1h02m 71m23s 1h14m10s 1h23m12s
Decision Tree 28m07s 30m25s 46m35s 49m54s 1h02m17s 50m17s
KNN 33m13s 19m30s 33m14s 19m31s 33m15s 19m31s
SVR 25m27s 38m53s 32m19s 38m54s 36m53s 38m54s

Tabela 4.15: Tempo estimado pelos modelos para 15 km, 20 km e 30 km

Modelo
15 km 20 km 30 km

Strava Sams. Strava Sams. Strava Sams.

Gradient Boosting 1h20m54s 1h24m19s 1h48m25s 1h27m21s 3h28m56s 1h27m21s
Random Forest 1h28m45s 1h22m21s 2h06m18s 1h24m02s 3h05m03s 1h24m02s
Linear Regression 1h44m35s 1h52m46s 2h15m00s 2h22m19s 3h15m50s 3h21m26s
Decision Tree 1h25m39s 1h20m24s 1h42m06s 1h20m24s 3h12m19s 1h20m24s
KNN 33m16s 19m31s 33m18s 19m31s 33m21s 19m32s
SVR 48m18s 38m56s 59m44s 38m57s 1h22m34s 39m00s

Como pode ser observado nas Tabelas 4.14 e 4.15, o Gradient Boosting de-

monstrou comportamento consistente para as distâncias de 5 km a 20 km em ambas as

plataformas, com aumento progressivo do tempo estimado conforme a distância cresce,

respeitando padrões esperados de desempenho em corrida. Para os dados do Strava, os
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tempos estimados mantêm uma relação aproximadamente linear com a distância, refle-

tindo boa capacidade de generalização. No entanto, para 30 km, observa-se uma superes-

timação relevante no Strava e uma subestimação acentuada no Samsung Health, sugerindo

limitações do modelo na extrapolação para distâncias menos representadas no conjunto

de treinamento.

Os modelos Random Forest e Decision Tree apresentaram estimativas razoáveis

para distâncias curtas e intermediárias (5–15 km), especialmente com dados do Strava.

Entretanto, para distâncias mais longas, observa-se aumento da variabilidade e, em alguns

casos, subestimação do tempo de corrida nos dados do Samsung Health, indicando posśıvel

overfitting ou sensibilidade excessiva a padrões locais presentes nos dados de treino.

A Regressão Linear apresentou comportamento monotônico e previśıvel em todas

as distâncias, com aumento cont́ınuo do tempo estimado à medida que a distância cresce.

Embora esse padrão seja desejável do ponto de vista fisiológico, os tempos estimados

tendem a ser sistematicamente mais elevados do que os observados nos modelos não

lineares, sugerindo que a suposição de linearidade não captura adequadamente variações

de ritmo, fadiga e influência do terreno, especialmente em distâncias menores.

Os modelos KNN e SVR apresentaram estimativas inconsistentes ao longo de

todas as distâncias analisadas. Em particular, o KNN manteve praticamente o mesmo

tempo estimado independentemente da distância, tanto para o Strava quanto para o

Samsung Health, o que é fisiologicamente inviável e indica falha clara na capacidade de

generalização. Esse comportamento sugere que o modelo está excessivamente dependente

de vizinhos próximos no espaço de caracteŕısticas, sem capturar a relação estrutural entre

distância e tempo.

O SVR também apresentou subestimações severas, sobretudo para distâncias lon-

gas (20 km e 30 km), com tempos incompat́ıveis com o desempenho humano esperado.

Esses resultados reforçam as limitações desse modelo no contexto analisado, possivel-

mente associadas à sensibilidade à escolha de hiperparâmetros, além da dificuldade em

extrapolar para regiões fora da distribuição original dos dados.

Um aspecto fundamental para a interpretação dos resultados dos modelos refere-

se ao intervalo de distâncias presente nos conjuntos de dados. Os dados do Samsung
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Health contemplam atividades com distâncias máximas de até 21.272,14 m, enquanto os

dados do Strava incluem atividades significativamente mais longas, alcançando 42.897,9

m. Essa diferença estrutural tem implicações diretas na capacidade de aprendizado e

extrapolação dos modelos.

Nos modelos treinados com dados do Samsung Health, as estimativas para distâncias

superiores ao limite observado no conjunto de treinamento (por exemplo, 30 km) configu-

ram extrapolações fora do domı́nio dos dados, o que explica as previsões inconsistentes e

fisiologicamente implauśıveis observadas em vários algoritmos, especialmente nos modelos

baseados em vizinhança (KNN) e margens (SVR). Esses modelos dependem fortemente

da distribuição original dos dados e tendem a falhar quando aplicados a valores não pre-

viamente observados.

Por outro lado, os modelos treinados com dados do Strava apresentaram maior es-

tabilidade nas estimativas para distâncias longas, uma vez que o conjunto de treinamento

já inclui corridas de longa duração, permitindo que os algoritmos aprendam padrões asso-

ciados à fadiga acumulada e à redução progressiva do ritmo. Isso explica a maior coerência

e precisão observadas nas previsões para 20 km e 30 km nessa base de dados.

4.4 Predição de treinos

A etapa de predição de treinos corresponde à fase em que os modelos de Machine Learning

previamente treinados são integrados a uma interface computacional e utilizados para

gerar predições a partir das informações fornecidas pelo usuário. Essa etapa tem como

objetivo disponibilizar, de forma clara e acesśıvel, as estimativas de tempo de corrida

para uma distância definida pelo usuário, com base nos dados históricos utilizados no

treinamento.

Após a etapa de coleta, processamento dos dados e treinamento, os modelos são

posteriormente carregados pela aplicação no momento das predições. Dessa forma, o sis-

tema é capaz de utilizar simultaneamente diferentes algoritmos de regressão previamente

ajustados.

Para a geração das previsões, o usuário informa, na interface gráfica, a distância

desejada para a corrida, conforme ilustrado na Figura 4.5. Esse valor é recebido pelo
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backend e convertido para metros, de modo a manter compatibilidade com o formato dos

dados utilizados durante o treinamento dos modelos. A partir disso, constrói-se uma es-

trutura de entrada padronizada, compat́ıvel com as variáveis do conjunto de treinamento,

garantindo que todas as predições sejam realizadas de forma consistente entre os diferentes

modelos.

Cada modelo carregado realiza, de forma independente, a predição do tempo

estimado para percorrer a distância informada. As sáıdas dos modelos correspondem à

duração prevista da atividade e são convertidas para o formato horas, minutos e segundos

(h:min:s), facilitando a interpretação pelo usuário final. A ferramenta exibe os resultados

gerados por todos os modelos de Machine Learning utilizados.

A apresentação simultânea das estimativas permite ao usuário comparar os re-

sultados obtidos por diferentes abordagens de regressão, evidenciando posśıveis variações

entre os modelos. Essa estratégia contribui para maior transparência e reforça seu caráter

de apoio à tomada de decisão, permitindo que corredores amadores tenham uma visão

mais ampla das posśıveis previsões de desempenho.
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Figura 4.5: Interfaces para predição
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5 Considerações Finais e Trabalhos Futuros

Este estudo teve como objetivo avaliar a aplicabilidade de modelos de Machine Learning

na previsão do tempo de corrida a partir de dados provenientes de plataformas de mo-

nitoramento esportivo, especificamente do Samsung Health e do Strava. Os resultados

obtidos demonstram que a combinação de algoritmos adequados e dados de qualidade é

determinante para a obtenção de previsões precisas e fisiologicamente plauśıveis.

De forma consistente, os modelos baseados em métodos de ensemble, especial-

mente o Gradient Boosting, apresentaram o melhor desempenho preditivo em ambas as

bases de dados, com erros menores e maior capacidade de explicar a variabilidade do

tempo de corrida. Esses resultados reforçam achados da literatura que apontam a supe-

rioridade de abordagens não lineares para modelar fenômenos complexos associados ao

desempenho esportivo.

A comparação entre as plataformas evidenciou que os modelos treinados com

dados do Strava apresentaram maior estabilidade, maior coerência fisiológica e maior ca-

pacidade de generalização, sobretudo para distâncias longas. Tal comportamento está

diretamente relacionado à maior abrangência do conjunto de dados, que inclui corridas

de até aproximadamente 43 km. Em contraste, os dados do Samsung Health, limitados a

distâncias de até cerca de 21 km, mostraram-se adequados para previsões em distâncias

curtas e intermediárias, mas insuficientes para extrapolações confiáveis em esforços pro-

longados.

A análise detalhada das estimativas de tempo ao longo de diferentes distâncias de-

monstrou que métricas tradicionais de avaliação, como MAE, RMSE e R², embora essenci-

ais, não são suficientes para validar modelos no contexto esportivo. A coerência fisiológica

das previsões e o respeito às relações esperadas entre distância e tempo mostraram-se

critérios fundamentais para a avaliação da utilidade prática dos modelos.

Além disso, modelos como KNN e SVR apresentaram limitações significativas,

produzindo estimativas inconsistentes e implauśıveis, o que evidencia que nem todos os

algoritmos amplamente utilizados emMachine Learning são adequados para problemas de
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previsão de desempenho esportivo, especialmente quando há necessidade de extrapolação.

Apesar dos resultados promissores, este trabalho apresenta algumas limitações

que devem ser consideradas. Primeiramente, observa-se uma limitação relacionada à ho-

mogeneidade dos dados, especialmente no conjunto do Samsung Health, no qual algumas

variáveis foram preenchidas por médias ou apresentaram baixa variabilidade. Esse pro-

cesso pode reduzir a capacidade dos modelos de capturar diferenças reais entre os treinos e

limitar sua sensibilidade a fatores fisiológicos e ambientais que influenciam o desempenho.

Além disso, os modelos foram treinados a partir de dados históricos de um con-

junto restrito de usuários, o que limita a generalização dos resultados para populações

mais amplas e cenários distintos.

Por fim, a capacidade de extrapolação dos modelos é inerentemente limitada ao

domı́nio dos dados de treinamento. Em particular, a ausência de corridas longas no

conjunto do Samsung Health compromete a confiabilidade das previsões para distâncias

maiores, enquanto mesmo o Strava, embora mais abrangente, não garante cobertura uni-

forme de todos os tipos de prova e perfis de corredores.

Em śıntese, apesar das limitações encontradas, os resultados deste trabalho in-

dicam que a previsão do tempo de corrida por meio de Machine Learning é viável e

promissora, desde que sejam considerados cuidadosamente o tipo de modelo, a qualidade

dos dados e os limites do domı́nio de treinamento.

Entre as perspectivas para trabalhos futuros, inicialmente, recomenda-se ampliar

e diversificar o conjunto de dados, incluindo um maior número de atletas, diferentes

ńıveis de desempenho e uma distribuição mais equilibrada de distâncias, especialmente

para corridas longas, no caso do Samsung Health.

Outra possibilidade consiste na segmentação dos modelos por faixa de distância

(por exemplo, curta, média e longa), reduzindo a necessidade de extrapolações e, poten-

cialmente, aumentando a precisão das previsões. De forma complementar, uma maior

exploração de variáveis fisiológicas, como a frequência card́ıaca média, a variabilidade da

frequência card́ıaca e indicadores de recuperação, pode contribuir para uma modelagem

mais robusta do desempenho.

Trabalhos futuros também podem explorar modelos temporais e sequenciais,
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como redes neurais recorrentes ou modelos baseados em séries temporais, capazes de in-

corporar a evolução do treinamento ao longo do tempo e os efeitos cumulativos da carga.

Adicionalmente, recomenda-se investigar o uso de algoritmos fundamentados em medidas

de distância estat́ıstica, como abordagens do tipo SafeML4, com o objetivo de quantifi-

car a incerteza das previsões, por exemplo por meio da estimativa do desvio padrão das

respostas dos modelos de Machine Learning em relação à distribuição dos dados de trei-

namento. Esse tipo de análise pode fornecer indicadores de confiabilidade das previsões,

contribuindo para decisões mais seguras em cenários de extrapolação.

Outra possibilidade consiste em apresentar um modelo conceitual entidade- rela-

cionamento que descreva as estruturas de dados manipuladas pela aplicação desenvolvida,

oferecendo uma visão clara da organização, relacionamento e integridade dos dados, o que

pode apoiar futuras evoluções do sistema.

Além disso, técnicas avançadas de validação, como a validação cruzada estratifi-

cada por distância ou por atleta, podem fornecer avaliações mais realistas da capacidade

de generalização dos modelos.

Por fim, a aplicação prática dos modelos em sistemas de treino de recomendação

ou em ferramentas de apoio à tomada de decisão para atletas e treinadores representa

um caminho promissor, ampliando o impacto prático da pesquisa e contribuindo para o

desenvolvimento de soluções inteligentes no contexto do esporte e da saúde.

4O termo “SafeML” é usado aqui de forma genérica para se referir a abordagens que estimam a confia-
bilidade das previsões com base na distância estat́ıstica dos dados em relação ao conjunto de treinamento,
sem necessariamente se referir a uma implementação espećıfica.
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