
Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Bacharelado em Ciência da Computação

AutoMLOps: Arquitetura de Software
Autoadaptativa para Internet das Coisas

(IoT)

Eduarda Araujo Carvalho

JUIZ DE FORA

JANEIRO, 2026

AutoMLOps: Arquitetura de Software
Autoadaptativa para Internet das Coisas

(IoT)

Eduarda Araujo Carvalho

Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Departamento de Ciência da Computação

Bacharelado em Ciência da Computação

Orientador: José Maria Nazar David

Coorientador: Regina Maria Maciel Braga Vilella

JUIZ DE FORA

JANEIRO, 2026

AUTOMLOPS: ARQUITETURA DE SOFTWARE

AUTOADAPTATIVA PARA INTERNET DAS COISAS (IOT)

Eduarda Araujo Carvalho

MONOGRAFIA SUBMETIDA AO CORPODOCENTE DO INSTITUTODE CIÊNCIAS

EXATAS DA UNIVERSIDADE FEDERAL DE JUIZ DE FORA, COMO PARTE INTE-

GRANTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE

BACHAREL EM CIÊNCIA DA COMPUTAÇÃO.

Aprovada por:

José Maria Nazar David
Doutor em Engenharia de Sistemas e Computação – UFRJ

Regina Maria Maciel Braga Vilella
Doutor em Engenharia de Sistemas e Computação – UFRJ

Prof. Ronney Moreira de Castro
Doutor em Informática – UNIRIO

Prov. Victor Stroele de Andrade Menezes
Doutor em Engenharia de Sistemas e Computação –UFRJ

JUIZ DE FORA

22 DE JANEIRO, 2026

Resumo

A Internet das Coisas (IoT) requer sistemas de processamento de dados em tempo real.

Nesse cenário, a integração de Inteligência Artificial (IA) e aprendizado de máquina su-

pervisionado viabiliza a análise automatizada de dados. Entretanto, a ocorrência de

concept drift em fluxos cont́ınuos (streaming) ocasiona a degradação de desempenho dos

modelos. Para tratar esse problema, este trabalho apresenta a arquitetura AutoMLOps,

disponibilizada como um serviço via API utilizando FastAPI e direcionada a aplicações

de IoT, com configuração parametrizável conforme o domı́nio. A arquitetura realiza a

seleção automática de modelos supervisionados por meio de técnicas de AutoML, moni-

tora métricas de desempenho e adota o padrão Champion/Challenger. Adicionalmente,

utiliza um ı́ndice de saúde unificado (Health Index – HI) para acionar processos de re-

treinamento e chaveamento de modelos. A avaliação experimental, conduzida com 3.283

registros de monitoramento bovino para emissão de CO2, evidenciou a capacidade do HI

em identificar a degradação de desempenho. Em cenários com ocorrência de concept drift

induzido por inserção de rúıdo, a redução do ı́ndice acionou os mecanismos de controle

e o ciclo human-in-the-loop, permitindo o retreinamento automático e a recuperação do

desempenho do sistema.

Palavras-chave: Internet das Coisas (IoT), AutoMLOps, Aprendizado de Máquina,

concept drift, Arquiteturas autoadaptativas

Abstract

The Internet of Things (IoT) requires real-time data processing systems capable of han-

dling continuous data streams. In this context, the integration of Artificial Intelligence

(AI) and supervised machine learning enables automated data analysis. However, the

occurrence of concept drift in streaming data leads to performance degradation of pre-

dictive models over time. To address this challenge, this work presents the AutoMLOps

architecture, delivered as an API-based service using FastAPI and designed for IoT ap-

plications with domain-specific parametrization. The architecture performs automatic

selection of supervised learning models through AutoML techniques, continuously moni-

tors performance metrics, and adopts the Champion/Challenger pattern. Additionally, it

introduces a unified Health Index (HI) to trigger retraining processes and model switching.

The experimental evaluation, conducted with 3.283 records of bovine monitoring data for

CO2 emissions, demonstrated the effectiveness of the Health Index in identifying perfor-

mance degradation. In scenarios with induced concept drift through noise insertion, the

reduction in the index activated control mechanisms and the human-in-the-loop cycle,

enabling automatic retraining and recovery of system performance.

Keywords: Internet of Things (IoT), AutoMLOps, Machine Learning, concept drift,

Self-adaptive Architectures

Agradecimentos

Inicialmente, agradeço a Deus pela força, sabedoria e perseverança ao longo desta

trajetória acadêmica. Paralelamente, reconheço o papel da minha famı́lia e parentes

pelo encorajamento, apoio e compreensão demonstrados durante o desenvolvimento deste

trabalho.

No que diz respeito à orientação, agradeço ao Prof. Dr. José Maria Nazar David

pela disponibilidade e pelas contribuições para a conclusão deste projeto. Ainda sob essa

perspectiva, destaco a colaboração da coorientadora, Profa. Dra. Regina Maria Maciel

Braga Vilella, pelas contribuições e incentivo oferecidos durante as etapas da pesquisa.

Além disso, registro meu agradecimento aos professores e funcionários do De-

partamento de Ciência da Computação da Universidade Federal de Juiz de Fora pelos

ensinamentos e suporte prestados durante a graduação. Por fim, menciono os amigos pelo

companheirismo e apoio mantidos em todos os momentos desta jornada.

Conteúdo

Lista de Figuras 6

Lista de Tabelas 7

Lista de Abreviações 8

1 Introdução 9

2 Referencial Teórico 12
2.1 IoT . 12
2.2 Arquiteturas de Software autoadaptativas 13
2.3 Uso da IA com IoT . 15
2.4 MLOps . 16

2.4.1 Data Drift . 18
2.4.2 Concept Drift . 19
2.4.3 Padrão Champion/Challenger . 20
2.4.4 Human-in-the-Loop (HITL) . 21

3 Trabalhos Relacionados 23
3.1 Questões de Pesquisa . 24
3.2 Critérios de Inclusão e Exclusão . 25
3.3 Estratégia de Busca . 25
3.4 Procedimentos de Busca e Análise dos Estudos 27
3.5 Resultados e Discussões . 28

4 Metodologia 41
4.1 Definição do Problema . 41
4.2 Desenvolvimento da Solução (Artefato) . 42
4.3 Avaliação . 44

4.3.1 Preparação e Enriquecimento dos Dados 45

5 Desenvolvimento da Solução 46
5.1 Requisitos do Sistema . 46
5.2 Visão Geral . 49
5.3 Arquitetura de Software . 50
5.4 O Mecanismo Proativo: HI . 53
5.5 Human-in-the-Loop e Reconfiguração . 54
5.6 Protocolo de Validação Experimental . 55

6 Resultados e Análise 57
6.1 Regime Estável e Monitoramento (Fase 1) 58
6.2 Detecção de concept drift e Alerta (Fase 2) 58
6.3 Intervenção Humana e Recuperação (Fase 3) 60

7 Discussão 62
7.1 Achados Teóricos . 63
7.2 Achados Técnicos . 63

8 Conclusão 65
8.1 Trabalhos Futuros . 66

Bibliografia 67

Lista de Figuras

2.1 Ciclo de adaptação MAPE-K . 14

3.1 Fluxograma do protocolo PRISMA . 28
3.2 Gráfico de quantidade de artigos publicados por ano 33
3.3 Categorização dos artigos selecionados por tipo de abordagem técnica. . . . 36
3.4 Distribuição dos desafios em arquiteturas IoT autoadaptativas 37

4.1 Metodologia adotada . 41
4.2 Pilha tecnológica utilizada na implementação do AutoMLOps 44

5.1 Diagrama de Caso de Uso . 48
5.2 Visão Geral . 50
5.3 Arquitetura Proposta . 51
5.4 Dashboard de monitoramento Grafana . 55
5.5 Fases do cenário de validação . 56

6.1 Comportamento do sistema em regime estável 58
6.2 Detecção de anomalia e emissão de alerta 60
6.3 Recuperação de desempenho pós-autorização 61

Lista de Tabelas

3.1 Questões de Pesquisa . 24
3.2 Critérios de Inclusão . 25
3.3 Critérios de Exclusão . 25
3.4 Elementos do framework PICOC utilizados na estratégia de busca 26
3.5 Estudos inclúıdos na fase de análise . 29

5.1 Requisitos Funcionais (RFs) . 46
5.2 Requisitos Não Funcionais (RNFs) . 49

Lista de Abreviações

API Interface de Programação de Aplicações

AUC Área Sob a Curva

AutoML Aprendizado de Máquina Automatizado

AutoMLOps Arquitetura de Software autoadaptativa para IoT

CI/CD Integração Cont́ınua e Entrega Cont́ınua

CPS Sistemas Ciber-F́ısicos

DCC Departamento de Ciência da Computação

DSR Pesquisa em Ciência do Design

HI Índice de Saúde

HITL Intervenção Humana no Ciclo

IA Inteligência Artificial

IoT Internet das Coisas

M2M Comunicação Máquina a Máquina

MAPE-K Monitoramento, Análise, Planejamento, Execução e Conhecimento

MLOps Operações de Aprendizado de Máquina

MSL Mapeamento Sistemático da Literatura

PICOC População, Intervenção, Comparação, Resultados e Contexto

PRISMA Diretrizes para Relato de Revisões Sistemáticas e Meta-Análises

RF Requisito Funcional

RNF Requisito Não Funcional

SDN Redes Definidas por Software

SOA Arquitetura Orientada a Serviços

UFJF Universidade Federal de Juiz de Fora

XAI Inteligência Artificial Explicável

9

1 Introdução

A Internet das Coisas (IoT) estabelece um paradigma tecnológico fundamentado na in-

terconexão de dispositivos f́ısicos para coleta, transmissão e processamento de dados em

tempo real (MANCINI, 2017). Essa capacidade impulsiona aplicações em setores como

saúde, agricultura de precisão, cidades inteligentes e Indústria 4.0, ao viabilizar a au-

tomação e o suporte à tomada de decisão (ROCHA; KISSIMOTO, 2022). Contudo, o

volume de dados gerado, caracterizado por variabilidade e imprevisibilidade, demanda

arquiteturas de software adaptativas. Nesse contexto, Heinz et al. (2018) definem tais ar-

quiteturas como sistemas capazes de monitorar, analisar e modificar seu comportamento

em resposta a mudanças internas e externas, preservando atributos de qualidade.

Sob essa perspectiva, arquiteturas de software autoadaptativas distinguem-se

pela capacidade de monitorar seu funcionamento e ajustar o comportamento diante de

alterações no ambiente operacional (KEPHART; CHESS, 2003). Paralelamente, a In-

teligência Artificial (IA) consolidou-se como ferramenta para análise de dados, sendo

incorporada em sistemas IoT (AVILA et al., 2022). A integração entre arquiteturas au-

toadaptativas e técnicas de IA configura uma abordagem para o tratamento da natureza

dinâmica dos dados em ambientes IoT, contribuindo para a eficiência sistêmica.

Apesar dos avanços, soluções existentes apresentam limitações. O monitoramento

de modelos de aprendizado de máquina depende de intervenção manual, o que compro-

mete a escalabilidade e a autonomia dos sistemas (ROCHA; KISSIMOTO, 2022; SOUZA;

FONTANARI, 2024). Ademais, diversas propostas concentram-se em etapas isoladas do

ciclo adaptativo, como o monitoramento ou a seleção de modelos, em detrimento de me-

canismos integrados de substituição automática baseados em métricas de desempenho

(AUDRITO, 2020). Essas lacunas restringem a aplicabilidade das soluções em cenários

IoT, nos quais a dinâmica dos dados pode levar à degradação do desempenho dos modelos

preditivos em razão de fenômenos como o concept drift (GAMA et al., 2014). O concept

drift manifesta-se quando a relação estat́ıstica entre as variáveis de entrada e a variável

alvo se altera ao longo do tempo, invalidando a função de mapeamento aprendida du-

1 Introdução 10

rante a fase de treinamento (WIDMER; KUBAT, 1996; QUIÑONERO-CANDELA et al.,

2009). Em ambientes de IoT, onde os fluxos de dados são cont́ınuos e não estacionários,

esse fenômeno ocorre de forma abrupta, gradual, incremental ou recorrente (GAMA et

al., 2014; LU et al., 2018).

Diante desse contexto, o presente trabalho busca responder à seguinte questão

de pesquisa: “Como apoiar a construção de arquiteturas autoadaptativas que

utilizam técnicas de IA por meio do monitoramento de modelos?”

Esta investigação fundamenta-se na arquitetura ADAPTFlow, proposta por Soa-

res (2024), cujo objetivo é automatizar as etapas iniciais do ciclo de vida do aprendizado

de máquina. A arquitetura original disponibiliza um serviço para ingestão de dados,

treinamento de múltiplos algoritmos via AutoML e seleção dos modelos com melhor de-

sempenho. Entretanto, essa proposta limita-se às fases de treinamento e seleção, sem

contemplar o gerenciamento pós-implantação em produção.

Para mitigar essa lacuna, este trabalho propõe a extensão da arquitetura ADAPT-

Flow por meio da implementação da camada operacional (Ops) do ciclo de MLOps. O

objetivo principal consiste no desenvolvimento de uma API parametrizável, escalável e

agnóstica ao domı́nio, capaz de viabilizar a autoadaptação de sistemas IoT por meio do

monitoramento cont́ınuo de modelos de aprendizado de máquina em produção.

Para alcançar o objetivo principal, foram definidos os seguintes objetivos es-

pećıficos: (i) realizar um Mapeamento Sistemático da Literatura (MSL) para compreender

o estado da arte e identificar lacunas sobre adaptação em sistemas IoT; (ii) desenvolver a

arquitetura AutoMLOps, implementando mecanismos de monitoramento cont́ınuo (Health

Index) e estratégias de substituição de modelos (Champion/Challenger); e (iii) avaliar a

eficácia da solução proposta por meio de um estudo de caso no domı́nio da Agropecuária,

aplicado ao monitoramento de emissões de CO2.

A arquitetura proposta, denominada AutoMLOps, adota a estratégia Champi-

on/Challenger para o gerenciamento do ciclo de vida dos modelos e emprega o padrão

de projeto Observer como mecanismo central de adaptação. Essa abordagem substitui o

monitoramento passivo por um processo de reavaliação proativa, acionado por evidências

de degradação do desempenho, tais como anomalias nos dados de entrada ou redução

1 Introdução 11

da confiança nas predições (SOARES, 2024; AUDRITO, 2020). A coleta cont́ınua de

evidências em tempo real contribui para a eficiência operacional e a capacidade de res-

posta do sistema frente a mudanças.

O monitoramento integra o ciclo Human-in-the-Loop e baseia-se em uma métrica

unificada denominada Health Index (HI), a qual orienta as decisões de adaptação. O HI

consiste em uma medida composta que avalia a condição do modelo em produção a partir

da combinação de três dimensões: o Risco de Deriva (Drift Risk), associado a variações

estat́ısticas nos dados; o Risco de Confiança (Confidence Risk), relacionado à incerteza das

predições; e o Risco de Anomalia (Anomaly Risk), responsável por identificar observações

fora do padrão do conjunto de dados original (GAMA et al., 2014).

Com base no HI, o sistema gera alertas automáticos para retreinamento e chave-

amento de modelos por meio de endpoints da API. O serviço permite a configuração de

métricas de desempenho, como acurácia, AUC, recall, precisão e F1-score, transformando

a seleção de modelos em um processo cont́ınuo de gerenciamento do ciclo de vida. Para

apoiar a análise dos dados, a solução integra-se à ferramenta Grafana (Grafana Labs,

2025) para visualização dos indicadores.

O restante deste trabalho organiza-se da seguinte forma: o Caṕıtulo 2 apresenta o

referencial teórico; o Caṕıtulo 3 discute os trabalhos relacionados; o Caṕıtulo 4 descreve a

metodologia baseada em Design Science Research; o Caṕıtulo 5 detalha o desenvolvimento

da solução; o Caṕıtulo 6 apresenta os resultados experimentais; o Caṕıtulo 7 discute as

implicações dos resultados; e o Caṕıtulo 8 apresenta as conclusões e trabalhos futuros.

12

2 Referencial Teórico

Este caṕıtulo apresenta os conceitos fundamentais que sustentam a compreensão da

solução proposta, fornecendo o embasamento teórico necessário para o desenvolvimento e

a avaliação do artefato de pesquisa.

2.1 IoT

De acordo com Farooq et al. (2015), a IoT consiste em uma rede de objetos f́ısicos, ou

“coisas”, equipados com sensores, atuadores, softwares e recursos de conectividade, que

possibilitam a troca de dados entre dispositivos, fabricantes, operadores e outros sistemas

conectados.

Esse conceito vai além da comunicação máquina a máquina (M2M), uma vez que

incorpora inteligência e autonomia ao ambiente computacional, permitindo que disposi-

tivos atuem de forma colaborativa e integrada (FAROOQ et al., 2015). A capacidade

de gerar, processar e compartilhar grandes volumes de dados em tempo real tem impul-

sionado processos de transformação digital em diversos setores, como saúde, transporte,

indústria, cidades inteligentes e agricultura de precisão (SUN et al., 2025). Esses avanços

têm intensificado a demanda por soluções arquiteturais capazes de lidar com sistemas

complexos, especialmente no que se refere a atributos de qualidade, como escalabilidade,

confiabilidade e desempenho (TREVEIL et al., 2020).

Segundo Ali et al. (2022), a IoT adota, de forma geral, uma arquitetura baseada

em camadas, comumente estruturada em:

• Camada de percepção, responsável pela captura de informações do ambiente por

meio de sensores e atuadores;

• Camada de rede, encarregada da comunicação e do transporte de dados, utilizando

diferentes tecnologias, como Wi-Fi, 5G, LoRaWAN e Bluetooth;

• Camada de aplicação, na qual os dados coletados são processados e transformados

2.2 Arquiteturas de Software autoadaptativas 13

em serviços e aplicações voltadas ao usuário final.

Apesar de seus benef́ıcios, a adoção da IoT impõe desafios à construção de sis-

temas baseados nessas arquiteturas. O volume massivo de dados gerados requer soluções

eficientes para armazenamento, processamento e análise, tornando indispensável a inte-

gração com técnicas de IA e aprendizado de máquina (RUDENKO et al., 2022). Essas

técnicas possibilitam a extração de conhecimento a partir dos dados, a identificação de

padrões e o suporte à tomada de decisão em tempo real.

Outro aspecto cŕıtico refere-se à segurança e à privacidade. A comunicação en-

tre dispositivos conectados amplia a superf́ıcie de ataque, expondo vulnerabilidades que

podem comprometer tanto informações senśıveis quanto a disponibilidade dos serviços.

Nesse sentido, pesquisas recentes têm investigado abordagens que conciliem escalabili-

dade, confiabilidade e proteção de dados, elementos fundamentais para a consolidação

da IoT como uma infraestrutura tecnológica de larga escala (WAKILI; BAKKALI, 2025;

SUN et al., 2025).

Por fim, destaca-se que a IoT não se limita a uma tendência tecnológica, mas atua

como um catalisador de inovação, viabilizando a construção de sistemas autônomos, adap-

tativos e inteligentes, capazes de atender às exigências de ambientes altamente dinâmicos

e complexos(TANG; QIN, 2023).

2.2 Arquiteturas de Software autoadaptativas

A necessidade de adaptação cont́ınua em sistemas de software decorre da variabilidade

do ambiente de execução, da evolução dos requisitos e das mudanças nas condições ope-

racionais (HEINZ et al., 2018). Para atender a esse contexto, surgem as arquiteturas

de software autoadaptativas, cujo objetivo é permitir que o próprio sistema identifique

variações relevantes e ajuste seu comportamento de forma autônoma. Dessa maneira,

a adaptação cont́ınua é viabilizada por mecanismos que observam o estado do sistema,

avaliam suas condições e executam ações corretivas ou evolutivas ao longo do tempo

(KEPHART; CHESS, 2003).

Segundo Heinz et al. (2018), uma arquitetura autoadaptativa preserva os atribu-

2.2 Arquiteturas de Software autoadaptativas 14

tos de qualidade do sistema por meio de mecanismos de monitoramento, análise e recon-

figuração dinâmica, assegurando o atendimento aos requisitos funcionais e não funcionais

mesmo em cenários variáveis.

Esse conceito é comumente representado pelo ciclo MAPE-K (Monitor, Analyze,

Plan, Execute – Knowledge), que organiza o processo de adaptação em etapas sistemáticas

e interdependentes. Essa estrutura possibilita que os sistemas reajam de maneira autônoma

a alterações ambientais ou operacionais.

Conforme ilustrado na Figura 2.1, o ciclo inicia-se na etapa de Monitoramento

(Monitor), responsável pela coleta cont́ınua de dados sobre o estado do sistema e do

ambiente. Em seguida, na etapa de Análise (Analyze), os dados coletados são avaliados

com o objetivo de identificar desvios, tendências ou violações de requisitos previamente

estabelecidos. Com base nessa análise, a etapa de Planejamento (Plan) define estratégias

de adaptação, selecionando ações capazes de restaurar ou manter os objetivos do sistema.

Posteriormente, na etapa de Execução (Execute), essas ações são aplicadas por meio de

mecanismos de reconfiguração ou ajuste do comportamento do sistema.

Figura 2.1: Ciclo de adaptação MAPE-K

Fonte: (KEPHART; CHESS, 2003) e (GORLA et al., 2010).

Estudos realizados por Kephart e Chess (2003) e Heinz et al. (2018) indicam que

arquiteturas autoadaptativas contribuem para a manutenção da confiabilidade, escalabi-

2.3 Uso da IA com IoT 15

lidade e autonomia, especialmente em ambientes caracterizados por fluxos cont́ınuos de

dados e alta variabilidade contextual. No entanto, para que a adaptação ocorra de ma-

neira sistemática, o sistema deve dispor de mecanismos capazes de analisar dados e apoiar

a tomada de decisão.

Nesse contexto, Djennadi et al. (2024) propõem a reconfiguração adaptativa de

rotas em edif́ıcios inteligentes por meio de redes definidas por software (Software-Defined

Networking – SDN). A abordagem baseia-se no monitoramento do estado da infraestru-

tura, na análise das condições operacionais e na execução automática de reconfigurações

fundamentadas em poĺıticas previamente definidas.

De forma semelhante, Lam, Haugen e Delsing (2022) discutem a orquestração

dinâmica de sistemas industriais baseados em IoT, nos quais a arquitetura observa o com-

portamento dos dispositivos, avalia o estado do sistema e reconfigura serviços conforme as

condições operacionais, caracterizando um ciclo cont́ınuo de decisão e execução voltado à

adaptação.

Por sua vez, Dias, Restivo e Ferreira (2021) apresentam mecanismos de autorre-

paração (self-healing) que permitem ao sistema identificar falhas, definir ações de recu-

peração e aplicar correções de forma autônoma. Esses mecanismos incorporam ciclos de

monitoramento, análise e execução, voltados à manutenção do funcionamento do sistema

diante de falhas ou degradações.

2.3 Uso da IA com IoT

O mecanismo de decisão requerido por arquiteturas de software autoadaptativas pode ser

implementado por meio de técnicas de IA. Nesse contexto, a integração entre IA e a IoT

possibilita que sistemas baseados em dispositivos conectados não apenas coletem grandes

volumes de dados, mas também analisem essas informações e tomem decisões durante a

execução do sistema (AVILA et al., 2022). Dessa forma, a adaptação deixa de depender

exclusivamente de regras estáticas e passa a ser orientada por dados observados ao longo

do tempo (HALLOU et al., 2024).

Segundo Ludermir (2021), técnicas como aprendizado de máquina, redes neurais

e algoritmos de classificação têm sido amplamente aplicadas para otimizar processos em

2.4 MLOps 16

diferentes domı́nios da IoT, incluindo monitoramento ambiental, manutenção preditiva,

gestão energética e controle de tráfego. Essas abordagens contribuem para a construção

de sistemas mais eficientes, com maior capacidade de resposta às condições dinâmicas do

ambiente.

Além disso, a IA desempenha papel relevante na melhoria da segurança e da

privacidade em redes IoT. Algoritmos de detecção de anomalias, por exemplo, são empre-

gados para identificar comportamentos suspeitos e mitigar ataques cibernéticos, conforme

discutido por Soares et al. (2024). A análise inteligente dos dados também possibilita a

identificação e o tratamento diferenciado de informações senśıveis, reduzindo riscos asso-

ciados à exposição indevida.

Adicionalmente, a aplicação de técnicas de IA em arquiteturas autoadaptativas

amplia a capacidade dos sistemas de reconfigurar seus componentes de forma autônoma,

com base em evidências extráıdas dos dados (LEE; LEE; SEO, 2022; AMIRI; ZDUN,

2023). Essa integração entre IA e IoT contribui para o desenvolvimento de soluções

alinhadas às exigências de ambientes distribúıdos e dinâmicos. Entretanto, a simples

utilização de modelos de IA não assegura, por si só, a manutenção do desempenho e da

confiabilidade ao longo do tempo, tornando necessário o gerenciamento desses modelos

durante todo o seu ciclo de vida em produção, a fim de garantir sua adequação cont́ınua

às condições do ambiente e aos objetivos do sistema.

2.4 MLOps

Com a crescente adoção de modelos de aprendizado de máquina em ambientes produti-

vos, especialmente em sistemas complexos e distribúıdos, torna-se necessário o gerencia-

mento estruturado de todo o ciclo de vida desses modelos (LAKSHMANAN; ROBINSON;

MUNN, 2020). Nesse contexto, surge a abordagem de MLOps (Machine Learning Ope-

rations), que reúne práticas voltadas à integração entre o desenvolvimento de modelos

de aprendizado de máquina e as operações de software (TREVEIL et al., 2020). O obje-

tivo do MLOps é organizar e automatizar as etapas que abrangem desde a preparação dos

dados até a implantação e o monitoramento cont́ınuo dos modelos em produção (KREUZ-

BERGER; KÜHL; HIRSCHL, 2023). Essa abordagem combina prinćıpios do DevOps com

2.4 MLOps 17

técnicas de Ciência de Dados, contribuindo para o aumento do controle, da rastreabilidade

e da colaboração entre as equipes envolvidas (KODAKANDLA, 2024).

Conforme apontado por Kreuzberger, Kühl e Hirschl (2023), o MLOps incorpora

metodologias de integração e entrega cont́ınuas (CI/CD), que facilitam a atualização de

modelos em ambientes produtivos e reduzem o tempo necessário para validar e disponibi-

lizar novas versões. Essas práticas apresentam especial relevância em sistemas de IoT, nos

quais os dados são gerados em tempo real e demandam respostas rápidas e adaptativas.

Além disso, o MLOps apoia a manutenção da qualidade dos modelos ao longo

do tempo por meio do monitoramento de desempenho, da identificação de desvios e do

retreinamento automatizado (KODAKANDLA, 2024; BAYRAM; ALTILAR, 2021). Em

ambientes distribúıdos, essa abordagem viabiliza a construção de pipelines que sustentam

aplicações inteligentes com maior estabilidade e eficiência.

A implementação das práticas de MLOps pode ocorrer de forma manual ou au-

tomatizada, conforme a maturidade dos processos e a infraestrutura dispońıvel (KREUZ-

BERGER; KÜHL; HIRSCHL, 2023). Quando realizada manualmente, cada etapa do ciclo

de vida dos modelos de aprendizado de máquina empregados em sistemas de IoT, como

coleta de dados, treinamento, validação, implantação e monitoramento, exige intervenção

direta das equipes técnicas (TREVEIL et al., 2020). Essa abordagem demanda maior

esforço operacional, aumenta o risco de inconsistências e dificulta a rastreabilidade das

versões dos modelos (LAKSHMANAN; ROBINSON; MUNN, 2020). Além disso, a re-

plicação de experimentos e a resposta a mudanças nos dados tornam-se mais lentas, o que

pode comprometer a capacidade de adaptação de sistemas de IoT em cenários de variação

cont́ınua dos dados (BAYRAM; ALTILAR, 2021).

Por outro lado, a automação dos pipelines de aprendizado de máquina permite

integrar as etapas de coleta e preparação de dados, treinamento, validação, implantação

e monitoramento dos modelos utilizados no ambiente de produção em fluxos cont́ınuos e

auditáveis, reduzindo a dependência de intervenções manuais. A utilização de ferramen-

tas de CI/CD, monitoramento e orquestração de workflows contribui para a atualização

sistemática dos modelos, o retreinamento com novos dados e a detecção de degradação

de desempenho. Essa abordagem automatizada de MLOps favorece a escalabilidade das

2.4 MLOps 18

soluções, a padronização dos processos e a redução do tempo entre o desenvolvimento e a

disponibilização em produção (TREVEIL et al., 2020).

2.4.1 Data Drift

No contexto de pipelines automatizados de MLOps, a manutenção do desempenho de

modelos de aprendizado de máquina em produção está diretamente relacionada à estabi-

lidade dos dados utilizados durante a fase de inferência. Em sistemas de IoT, nos quais os

dados são gerados de forma cont́ınua e refletem ambientes sujeitos a mudanças frequen-

tes, é comum que as caracteŕısticas estat́ısticas desses dados se modifiquem ao longo do

tempo, dando origem ao fenômeno conhecido como data drift (GAMA et al., 2014).

O data drift refere-se à alteração na distribuição dos dados de entrada observados

em produção em relação à distribuição dos dados utilizados na fase de treinamento do mo-

delo (WIDMER; KUBAT, 1996). Essas mudanças podem ocorrer em função de variações

nas condições ambientais, no comportamento dos usuários, no funcionamento de sensores

ou na dinâmica operacional do sistema. Como consequência, os dados processados passam

a representar padrões distintos daqueles considerados durante o treinamento, o que pode

impactar negativamente o desempenho e a confiabilidade do modelo.

Em ambientes de IoT, o data drift constitui um desafio recorrente, uma vez que

os fluxos de dados são cont́ınuos, distribúıdos e sujeitos a variações temporais. Mesmo

quando a relação entre as variáveis de entrada e sáıda permanece inalterada, alterações

na distribuição dos dados podem comprometer a capacidade de generalização do modelo.

Nesse contexto, a detecção e o monitoramento de data drift constituem elementos cen-

trais das práticas de MLOps, permitindo avaliar continuamente a adequação dos dados

utilizados em produção.

A incorporação de mecanismos de monitoramento de data drift possibilita a

adoção de estratégias de adaptação, como o retreinamento de modelos, o ajuste de

parâmetros ou a substituição controlada de modelos em produção. Essas estratégias

podem ser integradas a abordagens como o padrão Champion/Challenger e práticas de

Human-in-the-Loop, nas quais decisões automatizadas são validadas ou complementadas

por especialistas. Dessa forma, o gerenciamento do data drift contribui para a manutenção

2.4 MLOps 19

da qualidade, da robustez e da confiabilidade dos modelos em ambientes distribúıdos e

dinâmicos.

2.4.2 Concept Drift

Enquanto o data drift diz respeito à mudança na distribuição dos dados de entrada, o

concept drift representa um desafio ainda mais cŕıtico para a confiabilidade de sistemas

inteligentes: a alteração na relação fundamental entre as variáveis de entrada e a variável

alvo. Em outras palavras, o ”conceito”que o modelo aprendeu, regra de decisão que

mapeia X para Y , deixa de ser válido devido a mudanças na dinâmica do ambiente real

(GAMA et al., 2014).

Diferentemente de falhas de software tradicionais, o concept drift frequentemente

ocorre de maneira ”silenciosa”. O modelo continua recebendo dados e gerando predições

sem erros de execução, porém, a acurácia dessas predições degrada-se progressivamente,

uma vez que a fronteira de decisão aprendida no treinamento não reflete mais a realidade

atual (WIDMER; KUBAT, 1996; LU et al., 2018). Em cenários de IoT, onde os dados são

inerentemente não estacionários, essa obsolescência do modelo é praticamente inevitável

se não houver mecanismos de adaptação.

A literatura classifica esse fenômeno conforme a velocidade e o comportamento

da mudança:

• Drift Abrupto: Mudança repentina no conceito, comum em falhas de sensores ou

alterações drásticas no processo monitorado;

• Drift Gradual: Transição lenta onde o conceito antigo e o novo coexistem por um

peŕıodo;

• Drift Incremental: Pequenas variações cont́ınuas que acumulam desvios ao longo

do tempo;

• Drift Recorrente: Reaparecimento de conceitos antigos, t́ıpico de padrões sazo-

nais.

A persistência de modelos estáticos em ambientes sujeitos a concept drift com-

promete diretamente a utilidade da solução de IoT. Portanto, a detecção desse fenômeno

2.4 MLOps 20

exige mais do que apenas monitorar a distribuição dos dados; requer a avaliação cont́ınua

da incerteza do modelo e da sua performance em relação a novos dados rotulados ou

feedbacks do ambiente (BAYRAM; ALTILAR, 2021). É nesse contexto que se torna im-

perativo adotar mecanismos arquiteturais capazes não apenas de identificar a degradação,

mas de operacionalizar a substituição segura dos modelos afetados por novas versões mais

aderentes ao conceito atual, utilizando abordagens consolidadas de MLOps.

2.4.3 Padrão Champion/Challenger

O padrão Champion/Challenger consiste em uma estratégia de MLOps voltada à ava-

liação cont́ınua de modelos de aprendizado de máquina em ambientes sujeitos a variações

nos dados. Nesse contexto, o champion corresponde ao modelo atualmente implantado em

produção, enquanto o challenger refere-se a um ou mais modelos alternativos avaliados

em paralelo. A substituição do modelo ocorre quando um challenger apresenta desempe-

nho superior ao champion, de acordo com métricas previamente definidas e critérios de

validação estabelecidos.

Essa abordagem tem sido aplicada em sistemas de IoT com o objetivo de preservar

a qualidade dos modelos diante da variabilidade dos dados e das condições operacionais,

conforme discutido por Hutter, Kotthoff e Vanschoren (2019). A execução simultânea

de múltiplos modelos, caracteŕıstica do padrão Champion/Challenger, permite a com-

paração de desempenho sob as mesmas condições de operação, contribuindo para decisões

mais consistentes em sistemas distribúıdos, como aqueles baseados em sensores e redes

inteligentes.

Além disso, o padrão Champion/Challenger integra-se às práticas de MLOps ao

apoiar a automação dos ciclos de validação, promoção e substituição de modelos em am-

bientes produtivos, conforme destacado por Kodakandla (2024). Essa integração favorece

a detecção e a mitigação de deriva de dados, contribuindo para a estabilidade de sistemas

que operam de forma cont́ınua.

Em aplicações que envolvem deep learning, estratégias baseadas em múltiplos mo-

delos concorrentes podem ser combinadas com mecanismos de adaptação à deriva concei-

tual (WANG et al., 2020). Essa combinação amplia a capacidade de resposta dos sistemas

2.4 MLOps 21

frente a cenários complexos e ao processamento de dados não estruturados (RESTUCCIA;

MELODIA, 2020).

Dessa forma, o padrão Champion/Challenger favorece a construção de pipelines

adaptativos capazes de sustentar aplicações em ambientes distribúıdos e dinâmicos, aten-

dendo às exigências operacionais da IoT e às práticas contemporâneas de engenharia de

aprendizado de máquina (TREVEIL et al., 2020; KREUZBERGER; KÜHL; HIRSCHL,

2023). Além disso, essa abordagem fornece a estrutura técnica necessária para mitigar os

efeitos do concept drift, permitindo a manutenção da acurácia por meio da competição

cont́ınua entre modelos. Contudo, a automação integral da substituição de modelos em

domı́nios senśıveis pode introduzir riscos operacionais quando as decisões se baseiam ex-

clusivamente em métricas estat́ısticas. Nesse contexto, torna-se fundamental integrar

mecanismos de supervisão que assegurem a robustez e a confiabilidade do processo de

adaptação.

2.4.4 Human-in-the-Loop (HITL)

O conceito de Human-in-the-Loop (HITL) refere-se à integração da intervenção humana

em processos automatizados de aprendizado de máquina, especialmente em etapas cŕıticas

de monitoramento, validação e tomada de decisão (AMERSHI et al., 2014; WU et al.,

2024). Nessa abordagem, operadores ou especialistas são acionados para validar, corrigir

ou complementar as predições realizadas pelo sistema, garantindo maior confiabilidade em

cenários caracterizados por incerteza, ambiguidade ou condições não previstas durante o

treinamento dos modelos (CIGNARELLA et al., 2023; ZHAO et al., 2023).

Em ambientes de MLOps, o HITL atua como um componente de supervisão

cont́ınua, operando em conjunto com métricas automatizadas de desempenho, como o HI.

Quando essas métricas indicam risco de data drift ou redução na confiança das predições,

o sistema pode emitir alertas e solicitar a intervenção humana antes da execução de ações

automáticas, como retreinamento, chaveamento ou substituição de modelos (WU et al.,

2024). Essa estratégia contribui para que decisões cŕıticas não dependam exclusivamente

de mecanismos automatizados, promovendo um equiĺıbrio entre autonomia do sistema e

controle humano (AMERSHI et al., 2014).

2.4 MLOps 22

A aplicação do HITL mostra-se particularmente relevante em sistemas cŕıticos ou

que lidam com dados senśıveis, como aqueles inseridos nos domı́nios da saúde, das finanças

e da IoT. Nesses contextos, decisões incorretas podem acarretar impactos operacionais,

éticos ou econômicos significativos, reforçando a necessidade de validação humana em

pontos estratégicos do processo (DENG; WANG; LI, 2023).

Além de aumentar a segurança e a confiabilidade dos sistemas, o HITL contribui

para a melhoria cont́ınua dos modelos de aprendizado de máquina. O feedback oriundo

da intervenção humana pode ser incorporado aos ciclos de atualização e adaptação dos

pipelines de MLOps, promovendo o refinamento progressivo dos modelos e fortalecendo a

robustez dos processos de automação (WU et al., 2024; CIGNARELLA et al., 2023).

23

3 Trabalhos Relacionados

O MSL consiste em uma abordagem metodológica estruturada voltada à organização,

classificação e análise da produção cient́ıfica sobre um determinado tema. Seu objetivo

principal é identificar lacunas, tendências e oportunidades de pesquisa em uma área de

conhecimento espećıfica (COELHO; DERMEVAL, 2019).

A realização do MSL neste trabalho teve como objetivo compreender o estado

da arte sobre estratégias de detecção e mitigação de concept drift em sistemas auto-

adaptativos, bem como identificar abordagens aplicáveis ao contexto da IoT.

Para isso, este caṕıtulo descreve de forma detalhada as etapas conduzidas durante

o processo de mapeamento, que incluem o planejamento, a formulação das questões de

pesquisa, a definição dos critérios de inclusão e exclusão e a estratégia de busca adotada

para a seleção dos estudos relevantes.

A etapa inicial do MSL consistiu na elaboração de um protocolo de pesquisa,

responsável por orientar todas as fases subsequentes do estudo. Esse protocolo contemplou

os seguintes elementos:

• Objetivo do mapeamento;

• Questões de pesquisa (QPs);

• Fontes de dados selecionadas;

• String de busca utilizada;

• Critérios de inclusão e exclusão.

Com o intuito de ampliar a cobertura da revisão, foram selecionadas as bases de

dados Scopus e IEEE Xplore. A Scopus, de caráter multidisciplinar, reúne publicações em

áreas como ciência da computação, engenharia e IA. A IEEE Xplore, por sua vez, é espe-

cializada em engenharia elétrica, ciência da computação e tecnologias emergentes, sendo

frequentemente utilizada em estudos sobre IoT, arquiteturas de software e aprendizado de

3.1 Questões de Pesquisa 24

máquina. A combinação dessas duas bases visa reduzir posśıveis vieses de seleção e am-

pliar a representatividade dos estudos inclúıdos, favorecendo a incorporação de pesquisas

relevantes, tanto em periódicos quanto em anais de conferências.

Para apoiar a execução e o gerenciamento do processo, foi utilizada a ferramenta

PARSIFAL (PARSIFAL, 2021), que auxiliou na organização dos resultados e na aplicação

sistemática do protocolo definido.

3.1 Questões de Pesquisa

As questões de pesquisa foram formuladas com o objetivo de orientar a análise dos estu-

dos primários e manter o alinhamento com os objetivos do mapeamento. A Tabela 3.1

apresenta as questões definidas, sendo a QP a questão central, que fornece o contexto

para as demais.

Tabela 3.1: Questões de Pesquisa

Identificador Tipo de questão Descrição

QP Questão Principal Como apoiar a construção de arquiteturas

autoadaptativas que utilizam técnicas de IA?

QP1 Questão Secundária Quais são os principais desafios enfrentados

no desenvolvimento dessas arquiteturas?

QP2 Questão Secundária Como a integração de padrões de projetos

pode viabilizar a adaptação cont́ınua em ar-

quiteturas de IoT?

QP3 Questão Secundária Quais métodos de avaliação são utilizados na

literatura para validar a eficácia de arquite-

turas autoadaptativas no tratamento de con-

cept drift?

Fonte: Elaborado pelo autor.

3.2 Critérios de Inclusão e Exclusão 25

3.2 Critérios de Inclusão e Exclusão

Com base nos objetivos do estudo, foram definidos critérios espećıficos para a seleção

dos estudos. As Tabelas 3.2 e 3.3 apresentam, respectivamente, os critérios de inclusão e

exclusão adotados.

Tabela 3.2: Critérios de Inclusão

Identificador Descrição

CI1 Estudos que abordem arquiteturas de software autoadaptativas em

cenários de IoT, com foco no uso de IA para suporte à adaptação. O

trabalho deve discutir desafios de desenvolvimento, propor ou utili-

zar padrões arquiteturais e/ou frameworks para adaptação, ou apre-

sentar métodos de avaliação relacionados à eficácia da adaptação

(como tratamento de concept drift).

Fonte: Elaborado pelo autor.

Tabela 3.3: Critérios de Exclusão

Identificador Descrição

CE1 Estudos não escritos em inglês ou português.

CE2 Estudos cujo texto completo não esteja dispońıvel.

CE3 Publicações que não se caracterizam como artigos cient́ıficos

primários.

CE4 Estudos substitúıdos por versões mais recentes do mesmo trabalho.

Fonte: Elaborado pelo autor.

3.3 Estratégia de Busca

A definição da estratégia de busca teve como objetivo assegurar a identificação abrangente

e sistemática dos estudos primários relevantes ao tema desta pesquisa. Para isso, a cons-

trução da string de busca foi conduzida de forma estruturada, a partir da decomposição da

questão de pesquisa em seus conceitos centrais, utilizando uma adaptação do framework

PICOC (Population, Intervention, Comparison, Outcome e Context), amplamente empre-

gado em estudos de mapeamento e revisão sistemática da literatura (HIGGINS; GREEN,

3.3 Estratégia de Busca 26

2011).

O uso do framework PICOC possibilitou organizar os principais elementos con-

ceituais do estudo, assegurando coerência entre os objetivos da pesquisa e os termos

utilizados na busca. A Tabela 3.4 apresenta os elementos do PICOC considerados neste

trabalho e sua respectiva aplicação no contexto da pesquisa.

Tabela 3.4: Elementos do framework PICOC utilizados na estratégia de busca

Elemento Descrição Aplicação neste estudo

P População Sistemas de IoT

I Intervenção Análise de modelos e arquiteturas que permitem

adaptação dinâmica em tempo de execução

C Comparação –

O Resultado Arquiteturas que promovem melhorias de

eficiência, desempenho ou adaptabilidade dos

sistemas

C Contexto Arquitetura de Software

Fonte: Elaborado pelo autor.

A partir desses eixos conceituais, foram definidos termos-chave, sinônimos e va-

riações terminológicas associadas a cada elemento do PICOC, com o objetivo de ampliar

a abrangência da busca e capturar estudos relevantes que utilizassem diferentes nomen-

claturas. A combinação desses termos resultou na string de busca final apresentada a

seguir:

((‘‘self-adaptive system*’’ OR ‘‘self-adaptiv*’’ OR ‘‘adaptive software’’

OR ‘‘autonomic computing’’ OR ‘‘runtime adaptation’’ OR ‘‘dynamic

reconfiguration’’ OR ‘‘AI-Assisted Software Architecture’’) AND (‘‘Internet

of Things’’ OR ‘‘IoT’’) AND (‘‘software arch*’’ OR ‘‘software design’’

OR ‘‘architectural pattern*’’ OR ‘‘framework’’))

A string foi aplicada diretamente nas bases de dados Scopus e IEEE Xplore,

sem a necessidade de adaptações espećıficas para cada plataforma, uma vez que ambas

suportam operadores booleanos e consultas complexas. A escolha dessas bases justifica-se

3.4 Procedimentos de Busca e Análise dos Estudos 27

por sua ampla cobertura de publicações cient́ıficas nas áreas de ciência da computação,

engenharia de software, IoT e IA.

A avaliação da string de busca foi realizada por meio da utilização de artigos de

controle, previamente selecionados por sua relevância e aderência ao domı́nio da pesquisa.

Esse procedimento teve como finalidade verificar se a string era capaz de recuperar tais

estudos nas bases selecionadas, assegurando que os principais trabalhos relacionados ao

tema fossem contemplados pela estratégia de busca adotada.

3.4 Procedimentos de Busca e Análise dos Estudos

As buscas nas bases de dados foram conduzidas durante o primeiro semestre de 2025.

Inicialmente, a aplicação da string de busca detalhada na seção anterior resultou na

identificação de 262 estudos na base Scopus e 187 estudos na IEEE Xplore, totalizando

449 publicações relacionadas a propostas de arquiteturas de software autoadaptativas

aplicadas a sistemas de IoT. Após a remoção das duplicatas, restaram 366 artigos únicos.

O processo de busca e seleção dos estudos foi conduzido em três etapas sequenciais.

Na primeira etapa, foram analisados os t́ıtulos, resumos e palavras-chave dos

366 artigos identificados. Com base nos critérios de exclusão previamente definidos (ver

Tabela 3.3), 305 estudos foram eliminados, resultando na seleção de 61 artigos para a fase

seguinte.

Na segunda etapa, realizou-se a leitura dos t́ıtulos, resumos, introduções e con-

clusões dos 61 artigos remanescentes. A partir da reaplicação dos critérios de inclusão e

exclusão, 38 estudos foram exclúıdos, sendo a indisponibilidade de acesso ao texto com-

pleto um fator adicional para eliminação. Ao final dessa etapa, 23 artigos avançaram para

a fase final de análise.

Na terceira etapa, procedeu-se à leitura integral dos 23 estudos selecionados.

Após nova verificação dos critérios estabelecidos, todos os 23 artigos foram considerados

relevantes e inclúıdos na análise final do mapeamento sistemático.

A Figura 3.1 apresenta uma visão geral do processo de busca, filtragem e seleção

dos estudos, conforme o protocolo PRISMA.

3.5 Resultados e Discussões 28

Figura 3.1: Fluxograma do protocolo PRISMA

Fonte: Elaborado pelo autor.

3.5 Resultados e Discussões

Esta seção apresenta os principais achados obtidos a partir da análise dos estudos sele-

cionados, os quais estão listados na Tabela 3.5. Os 23 artigos inclúıdos atenderam aos

critérios de inclusão definidos no protocolo do mapeamento sistemático da literatura e

compõem a base emṕırica utilizada para responder às questões de pesquisa estabelecidas.

3.5 Resultados e Discussões 29

Tabela 3.5: Estudos inclúıdos na fase de análise

ID Autor(es) T́ıtulo Ano

E1 HALLOU, Amal et

al.

Context-Aware IoT System Development Appro-

ach Based on Meta-Modeling and Reinforcement

Learning: A Smart Home Case Study.

2024

E2 HACHICHA,

Marwa; BEN HA-

LIMA, Riadh;

HADJ KACEM,

Ahmed.

Modeling and specifying formally compound

MAPE pattern for self-adaptive IoT systems.

2022

E3 ALKHABBAS,

Fahed et al.

Assert: A blockchain-based architectural approach

for engineering secure self-adaptive IoT systems.

2022

E4 LEE, Euijong;

LEE, Sukhoon;

SEO, Young-Duk.

Deep learning based self-adaptive framework for

environmental interoperability in IoT.

2022

E5 DI MENNA, Fe-

derico; MUCCINI,

Henry; VAIDHYA-

NATHAN,

Karthik.

FEAST: a framework for evaluating implementa-

tion architectures of self-adaptive IoT systems.

2022

E6 GULDNER, Achim

et al.

A framework for AI-based self-adaptive cyber-

physical process systems.

2023

E7 KARADUMAN,

Burak; TEZEL,

Baris Tekin;

CHALLENGER,

Moharram.

Enhancing BDI agents using fuzzy logic for CPS

and IoT interoperability using the JaCa platform.

2022

Continua na próxima página...

3.5 Resultados e Discussões 30

Tabela 3.5 – continuação da página anterior

ID Autor(es) T́ıtulo Ano

E8 FONSECA, Adri-

lene et al.

Dealing with IoT defiant components. 2021

E9 DJENNADI, Liti-

cia et al.

SDN-based approach for adaptive reconfiguration

of routing in IoT for smart buildings.

2024

E10 LAM, An Ngoc;

HAUGEN, Oys-

tein; DELSING,

Jerker.

Dynamical orchestration and configuration servi-

ces in industrial IoT systems: An autonomic ap-

proach.

2022

E11 HE, Xing et al. Redefinition of digital twin and its situation aware-

ness framework designing toward fourth paradigm

for energy internet of things.

2024

E12 NIKKHAH,

Shayan Tabatabaei

et al.

A Deployment Framework for Quality-Sensitive

Applications in Resource-Constrained Dynamic

Environments.

2021

E13 TANG, Lin; QIN,

Hang.

Divisible task offloading for multiuser multiserver

mobile edge computing systems based on deep re-

inforcement learning.

2023

E14 AMIRI, Amirali;

ZDUN, Uwe.

Smart and Adaptive Routing Architecture: An

Internet-of-Things Traffic Manager Based on Ar-

tificial Neural Networks.

2023

E15 RULLO, Antonino

et al.

Kalis2.0 — A SECaaS-Based Context-Aware Self-

Adaptive Intrusion Detection System for IoT.

2023

E16 WANG, Xiaofei et

al.

Federated deep reinforcement learning for Internet

of Things with decentralized cooperative edge ca-

ching.

2020

Continua na próxima página...

3.5 Resultados e Discussões 31

Tabela 3.5 – continuação da página anterior

ID Autor(es) T́ıtulo Ano

E17 RESTUCCIA,

Francesco; MELO-

DIA, Tommaso.

DeepWiERL: Bringing deep reinforcement lear-

ning to the internet of self-adaptive things.

2020

E18 BASSENE, Avewe;

GUEYE, Bamba.

A self-adaptive QoS-management framework for

highly dynamic IoT networks.

2022

E19 FRANGOUDIS,

Pantelis A.;

REISINGER,

Matthias; DUST-

DAR, Schahram.

Recursive design for data-driven, self-adaptive IoT

services.

2021

E20 DIAS, Joao Pedro;

RESTIVO, André;

FERREIRA, Hugo

Sereno.

Empowering visual Internet-of-Things mashups

with self-healing capabilities.

2021

E21 DURÁN, Francisco

et al.

Seamless reconfiguration of rule-based IoT applica-

tions.

2021

E22 XIAO, Wenjing et

al.

Collaborative cloud-edge service cognition fra-

mework for DNN configuration toward smart IIoT.

2021

E23 AUDRITO, Gior-

gio.

FCPP: an efficient and extensible field calculus fra-

mework.

2020

Fonte: Elaborado pelo autor.

De modo geral, os estudos analisados abordam diferentes estratégias para o desen-

volvimento de arquiteturas de software autoadaptativas aplicadas à IoT, contemplando

tanto a organização arquitetural dos sistemas quanto os mecanismos empregados para

adaptação em tempo de execução. As propostas diferem quanto às técnicas utilizadas,

aos domı́nios de aplicação e aos requisitos considerados.

Em primeiro lugar, parte dos trabalhos utiliza técnicas de IA, como Aprendizado

3.5 Resultados e Discussões 32

de Máquina, aprendizado profundo e aprendizado por reforço, para apoiar processos de

tomada de decisão e reconfiguração do sistema (E1, E4, E9, E13, E16, E17, E22) (HAL-

LOU et al., 2024; LEE; LEE; SEO, 2022; DJENNADI et al., 2024; TANG; QIN, 2023;

WANG et al., 2020; RESTUCCIA; MELODIA, 2020; XIAO et al., 2021). Nesses estu-

dos, a adaptação é orientada pela análise dos dados coletados do ambiente, possibilitando

ajustes no comportamento do sistema de acordo com as condições operacionais.

Em seguida, observa-se um conjunto de propostas fundamentadas em padrões e

frameworks arquiteturais, com destaque para o uso do ciclo MAPE-K, arquiteturas ori-

entadas a agentes e modelos formais de especificação (E2, E7, E10, E18, E19, E21) (HA-

CHICHA; HALIMA; KACEM, 2022; KARADUMAN; TEZEL; CHALLENGER, 2022;

LAM; HAUGEN; DELSING, 2022; BASSENE; GUEYE, 2022; FRANGOUDIS; REISIN-

GER; DUSTDAR, 2021; DURAN et al., 2021). Esses trabalhos estruturam a adaptação

por meio da separação entre monitoramento, análise, planejamento e execução, o que

contribui para a organização do processo adaptativo.

Além disso, alguns estudos direcionam a adaptação para o atendimento de requi-

sitos não funcionais, como segurança, confiabilidade, qualidade de serviço e tolerância a

falhas. Nesse grupo, incluem-se propostas voltadas à detecção de intrusões e proteção de

dados (E3, E15) (ALKHABBAS et al., 2022; RULLO et al., 2023), bem como mecanismos

de autorreparação e tratamento de falhas (E8, E20).

Por outro lado, há trabalhos que investigam arquiteturas voltadas a ambientes

distribúıdos e heterogêneos, envolvendo computação em nuvem, edge computing e sistemas

ciberf́ısicos (E6, E10, E16, E22) (GULDNER et al., 2023; LAM; HAUGEN; DELSING,

2022; WANG et al., 2020; XIAO et al., 2021). Esses estudos consideram a limitação de

recursos, a descentralização do processamento e a variabilidade dos dados como fatores

relevantes para a adaptação arquitetural.

De forma integrada, a análise dos estudos apresentados na Tabela 3.5 indica que

a literatura combina propostas voltadas à definição de estruturas arquiteturais com me-

canismos técnicos de adaptação. Essa combinação evidencia a necessidade de abordagens

que articulem arquitetura de software, IA e gerenciamento de sistemas em ambientes de

IoT.

3.5 Resultados e Discussões 33

A Figura 3.2 apresenta a distribuição dos artigos inclúıdos de acordo com o ano

de publicação. Observa-se que 2021 concentra o maior número de estudos, indicando um

aumento das investigações sobre arquiteturas de software autoadaptativas aplicadas à IoT

nesse peŕıodo. Essa recorrência pode ser associada à consolidação de plataformas de IoT

e à ampliação do uso de técnicas de adaptação em tempo de execução, motivadas pela

necessidade de lidar com ambientes distribúıdos, heterogêneos e sujeitos a variações nos

dados. Além disso, esse peŕıodo coincide com um maior interesse da literatura em estru-

turar soluções arquiteturais que integrem mecanismos de monitoramento, reconfiguração

e gerenciamento de qualidade de serviço em sistemas de IoT.

Figura 3.2: Gráfico de quantidade de artigos publicados por ano

Fonte: Elaborado pelo autor.

Com base no protocolo de revisão adotado, os trabalhos foram organizados se-

gundo as questões de pesquisa definidas, de modo a possibilitar uma análise estruturada

das contribuições, lacunas e tendências identificadas.

A seguir, cada questão de pesquisa é discutida individualmente, à luz das evidências

extráıdas da literatura.

QP — Como apoiar a construção de arquiteturas autoadaptativas, que

utilizam técnicas de IA, através do monitoramento de modelos?

Com base nos 23 estudos inclúıdos, observa-se que o monitoramento cont́ınuo

de modelos assume papel relevante na construção de arquiteturas autoadaptativas que

utilizam técnicas de IA. Esse monitoramento estabelece a relação entre o comportamento

3.5 Resultados e Discussões 34

esperado do sistema e as variações observadas em tempo de execução, fornecendo subśıdios

para decisões de adaptação em arquiteturas de IoT. Evidências na literatura indicam

que a articulação entre mecanismos de análise e reconfiguração permite que os sistemas

respondam a mudanças no ambiente operacional e nos fluxos de dados (HALLOU et al.,

2024; GULDNER et al., 2023; LAM; HAUGEN; DELSING, 2022).

Apesar dessas contribuições, os estudos analisados tendem a concentrar-se em

soluções espećıficas de monitoramento ou em mecanismos pontuais de adaptação, fre-

quentemente acoplados a arquiteturas ou aplicações particulares. Como consequência, o

gerenciamento do ciclo de vida dos modelos de aprendizado de máquina em produção não

é abordado de forma estruturada. Questões como detecção sistemática de degradação

de desempenho, controle de versões, avaliação comparativa entre modelos e definição de

critérios formais para substituição segura aparecem de maneira fragmentada ou são omi-

tidas. Essa limitação compromete a manutenção da coerência entre decisões baseadas em

IA e os requisitos operacionais ao longo do tempo.

Diante desse cenário, práticas associadas a MLOps configuram-se como um ele-

mento necessário para ampliar o suporte à adaptação cont́ınua. A utilização de métricas

de desempenho, como acurácia, latência e confiabilidade, em conjunto com a detecção

de concept drift e data drift, fornece subśıdios para identificar situações em que um mo-

delo deve ser reavaliado, reconfigurado ou retreinado (TANG; QIN, 2023; WANG et al.,

2020; RESTUCCIA; MELODIA, 2020). Quando incorporadas a ciclos de feedback, es-

sas informações permitem adaptações que preservam o funcionamento do sistema frente

a mudanças no ambiente ou nos dados (DJENNADI et al., 2024; BASSENE; GUEYE,

2022; FRANGOUDIS; REISINGER; DUSTDAR, 2021).

A diversidade de abordagens identificadas nos estudos selecionados é sintetizada

na Figura 3.3. A análise detalhada dessas categorias permite compreender como a litera-

tura atual estrutura a autoadaptação em IoT e onde residem as principais lacunas.

A categoria predominante, referente a Frameworks e Modelos Arquiteturais, en-

globa 10 estudos que buscam estabelecer a ”espinha dorsal”dos sistemas adaptativos. A

hegemonia dessa classe, frequentemente alicerçada no ciclo MAPE-K ou no uso de Gêmeos

Digitais (Digital Twins), sugere que a principal preocupação da comunidade cient́ıfica

3.5 Resultados e Discussões 35

ainda reside na padronização dos fluxos de dados e controle. O uso de Gêmeos Digitais,

especificamente, aparece como uma estratégia para simular adaptações em um ambiente

virtual antes de aplicá-las aos dispositivos f́ısicos. No entanto, embora esses frameworks

ofereçam a estrutura necessária para o feedback, eles tendem a tratar o componente de

inteligência como uma ”caixa preta”, sem detalhar mecanismos para a manutenção da

sua acurácia ao longo do tempo.

Em segunda ordem de relevância, com 6 artigos, encontram-se as propostas fo-

cadas em Aprendizado de Máquina e IA. Diferentemente da categoria anterior, que foca

na estrutura, esses estudos concentram-se no algoritmo de decisão. Nessas abordagens,

técnicas como Aprendizado por Reforço ou Redes Neurais são utilizadas para processar o

contexto e decidir a melhor ação de adaptação. O ponto cŕıtico identificado nesta análise

é que a IA é utilizada como ferramenta para adaptar o sistema, mas raramente é o objeto

da adaptação. Ou seja, o sistema usa um modelo para se reconfigurar, mas não possui

mecanismos para reconfigurar o próprio modelo quando este sofre degradação por concept

drift.

As abordagens de Otimização e Gerenciamento de Recursos (3 estudos) tratam a

adaptação sob uma ótica infraestrutural. O foco principal é o balanceamento de carga e

a decisão dinâmica de offloading entre a borda (Edge) e a nuvem (Cloud). A adaptação,

neste contexto, responde a restrições de energia, largura de banda ou latência. Embora

essenciais para a viabilidade da IoT, essas soluções geralmente operam com regras de-

termińısticas ou otimizações matemáticas, negligenciando a complexidade da deriva de

conceitos em dados de aplicação.

Com menor representatividade, surgem os estudos voltados a Segurança e QoS (2

artigos) e Arquiteturas Baseadas em Agentes (1 artigo). No primeiro caso, a adaptação

é reativa a ameaças ou violações de ńıveis de serviço, utilizando, por vezes, blockchain

para garantir a integridade das reconfigurações. Já a abordagem de agentes (BDI, Lógica

Fuzzy) propõe uma inteligência descentralizada, onde cada dispositivo possui autono-

mia decisória. A baixa adesão a este último modelo pode ser atribúıda à complexidade

computacional imposta aos dispositivos de borda, que frequentemente possuem recursos

limitados.

3.5 Resultados e Discussões 36

Em śıntese, a distribuição apresentada na Figura 3.3 revela um cenário onde a

infraestrutura de adaptação (Frameworks) e a inteligência de decisão (IA) são tratadas

de forma desconexa da gestão do ciclo de vida dos modelos. A literatura prioriza a

construção da arquitetura ou a otimização de recursos, mas deixa descoberta a necessidade

de manutenção cont́ınua da inteligência preditiva. Essa lacuna valida a proposta deste

trabalho, que busca integrar a robustez dos frameworks arquiteturais com as práticas de

MLOps, garantindo que a adaptação contemple não apenas o sistema, mas também os

modelos de IA que o governam.

Figura 3.3: Categorização dos artigos selecionados por tipo de abordagem técnica.

Fonte: Elaborado pelo autor.

QP1 — Quais são os principais desafios enfrentados no desenvolvimento

dessas arquiteturas?

Com relação aos principais desafios enfrentados, os estudos analisados os agru-

pam em quatro categorias recorrentes: (i) escalabilidade e heterogeneidade, (ii) eficiência

energética e overhead de controle, (iii) consistência e confiabilidade, e (iv) integração de

conhecimento e adaptação semântica (HALLOU et al., 2024; GULDNER et al., 2023;

MENNA; MUCCINI; VAIDHYANATHAN, 2022; HE et al., 2024). A distribuição desses

desafios, conforme identificada na literatura, é apresentada na Figura 3.4.

3.5 Resultados e Discussões 37

Figura 3.4: Distribuição dos desafios em arquiteturas IoT autoadaptativas

Fonte: Elaborado pelo autor.

Conforme ilustrado na Figura 3.4, os desafios relacionados à escalabilidade e

heterogeneidade representam a maior parcela dos estudos analisados, correspondendo a

aproximadamente 35%. Esse resultado reflete a dificuldade de projetar arquiteturas ca-

pazes de lidar com o crescimento do número de dispositivos conectados, bem como com

a diversidade de hardware, protocolos e modelos de dados caracteŕısticos dos ambientes

IoT. A necessidade de manter desempenho, estabilidade e capacidade de adaptação em

cenários altamente distribúıdos torna esse desafio central nas arquiteturas autoadaptativas

(DJENNADI et al., 2024; AMIRI; ZDUN, 2023; AUDRITO, 2020).

Em seguida, observa-se que cerca de 25% dos trabalhos enfatizam questões as-

sociadas à eficiência energética e ao overhead de controle. Esses estudos destacam que

mecanismos de monitoramento cont́ınuo, tomada de decisão autônoma e aprendizado em

tempo de execução impõem custos computacionais relevantes, especialmente em dispositi-

vos de borda com recursos limitados (TANG; QIN, 2023; LEE; LEE; SEO, 2022; WANG

et al., 2020).

Os desafios relacionados à consistência e confiabilidade aparecem em aproximada-

mente 20% dos estudos, abrangendo preocupações com a manutenção de estados coerentes

durante reconfigurações dinâmicas e a garantia de que adaptações realizadas em tempo de

execução não introduzam falhas ou comportamentos indesejados (HACHICHA; HALIMA;

KACEM, 2022; DURAN et al., 2021; FONSECA et al., 2021).

3.5 Resultados e Discussões 38

Por fim, a integração de conhecimento e adaptação semântica, também identifi-

cada em cerca de 20% dos estudos, evidencia a dificuldade de promover interoperabili-

dade entre componentes heterogêneos que operam com diferentes ontologias, modelos con-

ceituais e representações de contexto (KARADUMAN; TEZEL; CHALLENGER, 2022;

FRANGOUDIS; REISINGER; DUSTDAR, 2021; DIAS; RESTIVO; FERREIRA, 2021).

QP2 — Como padrões e frameworks consolidados podem ser aplicados

às arquiteturas de software em IoT?

Os padrões e frameworks consolidados desempenham um papel essencial na es-

truturação de arquiteturas autoadaptativas voltadas a sistemas IoT. Entre eles, o modelo

MAPE-K destaca-se como a abordagem mais amplamente adotada na literatura anali-

sada, sendo formalizado e estendido em arquiteturas voltadas à adaptação dinâmica e à

governança de sistemas IoT (HACHICHA; HALIMA; KACEM, 2022; DJENNADI et al.,

2024). Além do MAPE-K, frameworks arquiteturais e plataformas orientadas à interope-

rabilidade têm sido explorados para viabilizar a integração de dispositivos heterogêneos

e a reconfiguração dinâmica de serviços, como evidenciado em abordagens baseadas em

sistemas auto-adaptativos para IoT e CPS (MENNA; MUCCINI; VAIDHYANATHAN,

2022; GULDNER et al., 2023).

De forma complementar, a adoção de modelos baseados em contexto e meca-

nismos de representação semântica tem sido utilizada para promover interoperabilidade

e adaptação senśıvel ao ambiente, conforme observado em arquiteturas context-aware e

sistemas orientados a conhecimento (HALLOU et al., 2024; HE et al., 2024).

No que se refere à adaptação dinâmica, observa-se uma adoção recorrente de

técnicas de aprendizado por reforço e métodos baseados em decisão para lidar com am-

bientes altamente dinâmicos e impreviśıveis. Esses métodos têm sido aplicados tanto na

adaptação de serviços quanto no controle de recursos em sistemas IoT e Edge Computing

(WANG et al., 2020; RESTUCCIA; MELODIA, 2020; TANG; QIN, 2023).

Para assegurar consistência, confiabilidade e previsibilidade do comportamento

adaptativo, diversas soluções recorrem à modelagem formal e à especificação rigorosa

dos ciclos de adaptação, permitindo a verificação do comportamento do sistema antes

e durante a execução (HACHICHA; HALIMA; KACEM, 2022; DIAS; RESTIVO; FER-

3.5 Resultados e Discussões 39

REIRA, 2021).

No contexto de redes IoT e sistemas distribúıdos, arquiteturas adaptativas têm

explorado mecanismos de reconfiguração dinâmica de roteamento e gerenciamento de

tráfego, com foco em escalabilidade e resiliência (DJENNADI et al., 2024; AMIRI; ZDUN,

2023; BASSENE; GUEYE, 2022). Por fim, plataformas orientadas à composição e or-

questração de serviços têm sido estendidas com capacidades de autocura e adaptação em

tempo de execução, reforçando a viabilidade de soluções autoadaptativas em ambientes

produtivos (DIAS; RESTIVO; FERREIRA, 2021; DURAN et al., 2021).

QP3 — Quais métodos de avaliação são utilizados na literatura para

validar a eficácia de arquiteturas autoadaptativas no tratamento de concept

drift?

Nos estudos analisados, os métodos de avaliação da eficácia de arquiteturas au-

toadaptativas no tratamento de concept drift concentram-se na verificação do desempe-

nho dos modelos e na estabilidade das adaptações executadas. A literatura evidencia a

combinação de experimentos emṕıricos, estudos de caso e simulações controladas como

abordagens predominantes para essa validação.

Grande parte dos trabalhos utiliza métricas quantitativas, como acurácia, pre-

cisão, recall, F1-score e perda média, para medir o impacto das estratégias de adaptação

sobre o desempenho dos modelos em ambientes dinâmicos (TANG; QIN, 2023; RESTUC-

CIA; MELODIA, 2020; WANG et al., 2020). Esses indicadores são aplicados em cenários

que simulam mudanças graduais ou abruptas nos dados, permitindo observar a capacidade

de detecção e resposta ao drift.

Alguns estudos, como os de Hallou et al. (2024) e He et al. (2024) adotam experi-

mentos em domı́nios espećıficos, como casas inteligentes e redes de energia, para validar a

robustez das adaptações em contextos reais de IoT. Outros trabalhos propõem frameworks

de avaliação baseados em métricas de desempenho estrutural e na análise de trade-offs

entre custo computacional e qualidade da adaptação (MENNA; MUCCINI; VAIDHYA-

NATHAN, 2022; GULDNER et al., 2023).

A verificação formal também é empregada para avaliar consistência e segurança

durante reconfigurações, por meio da modelagem rigorosa dos ciclos de adaptação e da

3.5 Resultados e Discussões 40

especificação formal do comportamento do sistema (HACHICHA; HALIMA; KACEM,

2022; DURAN et al., 2021). Em paralelo, arquiteturas orientadas à adaptação de redes

IoT utilizam ambientes de simulação e avaliação experimental para testar o comporta-

mento adaptativo e validar mecanismos de reconfiguração dinâmica de rotas (DJENNADI

et al., 2024; AMIRI; ZDUN, 2023).

Por fim, observam-se abordagens que incorporam validação cont́ınua, nas quais

o monitoramento do desempenho dos modelos é integrado ao ciclo MAPE-K, permitindo

a reavaliação sistemática após cada adaptação. Essa estratégia fortalece a relação entre

monitoramento, aprendizado e reconfiguração, constituindo um mecanismo prático para

avaliar a eficácia de arquiteturas autoadaptativas no enfrentamento do concept drift.

Nesse contexto, a proposta deste trabalho implementa a avaliação cont́ınua por

meio da sistematização de práticas deMLOps. Diferentemente de abordagens que utilizam

métricas de desempenho de forma isolada ou restrita a ambientes simulados, a arquitetura

AutoMLOps adota o Health Index (HI) como métrica composta para o monitoramento

unificado de deriva e confiança. A solução operacionaliza o tratamento do concept drift em

tempo de execução, utilizando o padrão Champion/Challenger para realizar a validação

comparativa e a substituição automática dos modelos em produção.

41

4 Metodologia

Esta pesquisa fundamenta-se na metodologia Design Science Research (DSR) (HEVNER

et al., 2004), adotada para o desenvolvimento e a avaliação da plataforma AutoMLOps.

A DSR orienta a construção de artefatos tecnológicos voltados à solução de problemas

práticos, assegurando o rigor cient́ıfico por meio de processos sistemáticos de construção e

validação. O processo investigativo foi estruturado em etapas interconectadas, conforme

ilustrado na Figura 4.1.

Figura 4.1: Metodologia adotada

Fonte: Elaborado pelo autor.

4.1 Definição do Problema

A etapa inicial teve como objetivo compreender o fenômeno investigado e definir o plano

experimental da pesquisa. Para isso, foi conduzido um mapeamento sistemático da li-

teratura, abrangendo temas como concept drift, monitoramento de modelos e sistemas

auto-adaptativos aplicados a ambientes de IoT. Os resultados indicaram que modelos im-

plantados em cenários caracterizados por fluxo cont́ınuo de dados estão sujeitos à não

estacionariedade, o que provoca alterações na distribuição dos dados ao longo do tempo.

Como consequência, observa-se a degradação gradual do desempenho dos modelos em

4.2 Desenvolvimento da Solução (Artefato) 42

produção.

Nesse contexto, a pesquisa classifica-se como aplicada e experimental, direcionada

à concepção de uma solução computacional capaz de detectar e reagir a degradações de

desempenho preditivo. A partir dessa formulação, estabeleceu-se a seguinte hipótese de

trabalho:

H1: A integração de mecanismos de monitoramento baseados em métricas

compostas de risco (Health Index) e estratégias de substituição dinâmica (Cham-

pion/Challenger) em uma arquitetura de referência viabiliza a detecção e a mi-

tigação automatizada do concept drift, assegurando a manutenção da acurácia

de sistemas preditivos em ambientes de IoT.

Essa definição orientou tanto a estrutura do artefato desenvolvido quanto o de-

senho experimental adotado para sua avaliação.

4.2 Desenvolvimento da Solução (Artefato)

O desenvolvimento do artefato, denominado AutoMLOps, consistiu na implementação

de uma arquitetura orientada a serviços (Service-Oriented Architecture – SOA) para su-

portar o ciclo de vida de modelos de aprendizado de máquina em produção. A adoção

desse paradigma justifica-se pela necessidade de modularizar e desacoplar funcionalidades

associadas ao MLOps, tais como monitoramento, avaliação de desempenho, detecção de

drift, versionamento e retreinamento de modelos.

A separação em serviços independentes favorece a reutilização, a escalabilidade e

a evolução incremental da arquitetura, aspectos essenciais em ambientes de IoT caracteri-

zados por heterogeneidade, distribuição e variabilidade cont́ınua dos dados. Além disso, a

orientação a serviços facilita a integração com pipelines e sistemas existentes, bem como a

orquestração de componentes automatizados e humanos (human-in-the-loop), alinhando-

se às exigências de flexibilidade e manutenção cont́ınua do ciclo de vida dos modelos. Os

detalhes arquiteturais, requisitos funcionais e tecnologias empregadas são apresentados

no Caṕıtulo 5.

A implementação da arquitetura AutoMLOps foi materializada por meio de uma

4.2 Desenvolvimento da Solução (Artefato) 43

pilha tecnológica composta por ferramentas de código aberto consolidadas na indústria

e na academia. A Figura 4.2 ilustra o ecossistema de tecnologias adotado, evidenciando

as dependências e interações entre os componentes da camada de aplicação, o motor de

aprendizado e os mecanismos de governança.

O núcleo da aplicação é orquestrado pelo FastAPI, um web framework de alto

desempenho que expõe os serviços da API. A escolha pelo FastAPI justifica-se pelo seu

suporte nativo a operações asśıncronas, essencial para lidar com a latência em cenários

de IoT, e pela integração automática com o Pydantic, que assegura a validação rigorosa

dos dados de entrada, prevenindo falhas decorrentes de tipos de dados incorretos.

Para a automação do ciclo de aprendizado de máquina, adotou-se o PyCaret, uma

biblioteca low-code que atua como o motor de AutoML. O PyCaret abstrai a complexidade

do treinamento e da seleção de modelos, integrando internamente bibliotecas fundamentais

como o Scikit-learn para algoritmos clássicos, e frameworks de gradient boosting de alta

eficiência, especificamente o LightGBM e o CatBoost, reconhecidos pela rapidez e precisão

em dados tabulares.

O suporte à manipulação matemática e estrutural dos dados é fornecido pelas

bibliotecas NumPy e Pandas, que constituem a base para o processamento vetorial e a

análise exploratória antes do treinamento.

No que tange à camada de operações (Ops) e governança, a solução integra o

MLflow. Esta ferramenta é responsável pelo gerenciamento do ciclo de vida dos modelos,

rastreando experimentos, registrando métricas de desempenho e versionando os artefatos

gerados. A persistência dos metadados e dos registros operacionais é garantida pelo

sistema gerenciador de banco de dados relacional PostgreSQL, acessado via SQLAlchemy,

um ORM (Object-Relational Mapper) que facilita a interação entre a aplicação Python e

o banco de dados.

Por fim, a observabilidade do sistema é viabilizada pelo Prometheus, uma ferra-

menta de monitoramento que coleta métricas em tempo real sobre a saúde da API e o

consumo de recursos, permitindo a identificação proativa de anomalias na infraestrutura.

4.3 Avaliação 44

Figura 4.2: Pilha tecnológica utilizada na implementação do AutoMLOps

Fonte: Elaborado pelo autor.

Ademais, visando a reprodutibilidade e a contribuição com a comunidade ci-

ent́ıfica, todo o código-fonte desenvolvido, incluindo os scripts de configuração e im-

plantação, encontra-se dispońıvel em um repositório público no GitHub1.

4.3 Avaliação

A avaliação do artefato foi conduzida por meio de uma simulação controlada, projetada

para reproduzir condições operacionais t́ıpicas de um ambiente de Agropecuária/Zootecnia.

O objetivo principal foi verificar a capacidade da arquitetura AutoMLOps de processar

fluxos cont́ınuos de dados (data streams) e reagir a mudanças nos padrões dos dados

(concept drift) ao longo do tempo.

A verificação ocorreu por meio da simulação de entrada incremental de dados, na

qual o conjunto de dados foi particionado em janelas temporais sequenciais. Inicialmente,

o modelo foi treinado utilizando um primeiro lote de dados históricos. Em seguida, novos

blocos de dados foram inseridos gradualmente no pipeline, permitindo observar o com-

portamento do modelo em produção. Durante essa execução, métricas de desempenho

foram monitoradas, possibilitando a identificação de degradações preditivas associadas a

alterações na distribuição dos dados. Quando detectada queda de desempenho, o pipeline

possibilitou a reavaliação do modelo e a execução de etapas de retreinamento, conforme

as regras definidas na arquitetura AutoMLOps.

1Dispońıvel em: https://github.com/eduardaac/automlops-service.git

4.3 Avaliação 45

O concept drift foi induzido de forma controlada por meio da introdução de va-

riações estat́ısticas nas distribuições das variáveis de entrada ao longo das janelas tempo-

rais, simulando mudanças nas condições ambientais, produtivas e operacionais do sistema

de Agropecuária/Zootecnia. Dessa forma, tornou-se posśıvel avaliar se a arquitetura era

capaz de identificar essas mudanças e sustentar o desempenho do modelo ao longo do

tempo.

4.3.1 Preparação e Enriquecimento dos Dados

Os dados utilizados no experimento originaram-se de registros históricos de produção lei-

teira. Para adequar a base ao cenário de monitoramento ambiental e Agropecuária/Zootecnia

proposto, foi realizada uma etapa de pré-processamento e enriquecimento dos dados (fe-

ature engineering), implementada em Python.

Como sensores de emissão de gases não estavam presentes na coleta original, as

variáveis ambientais foram estimadas sinteticamente com base em fatores de conversão

descritos na literatura Agropecuária/Zootecnia. Em particular, foi considerada a seguinte

variável:

• Dióxido de Carbono Equivalente (CO2e): estimado a partir do consumo

energético associado à produção de leite e às práticas de manejo dos animais.

A variável alvo do modelo de classificação, denominada co2 class, foi gerada por

meio da discretização da variável cont́ınua de CO2e em três categorias balanceadas (Baixo,

Médio e Alto), utilizando a técnica de quantis. O conjunto de dados final resultou em

uma base adequada ao treinamento supervisionado, relacionando variáveis produtivas,

como produção de leite, número de animais, área e ńıvel tecnológico, com indicadores de

impacto ambiental.

46

5 Desenvolvimento da Solução

Este caṕıtulo apresenta a estrutura técnica do artefato desenvolvido. A plataforma Au-

toMLOps consiste em uma arquitetura orientada a serviços, estruturada para viabilizar a

operação em ambientes IoT, com foco na manutenção e na automação dos processos de

Machine Learning.

5.1 Requisitos do Sistema

A especificação das funcionalidades baseou-se nos Requisitos Funcionais (RF) listados na

Tabela 5.1. Estes requisitos fundamentam a modelagem dos casos de uso e estabelecem

os critérios para o monitoramento e a automação do sistema.

Tabela 5.1: Requisitos Funcionais (RFs)

Código Nome do RF Descrição do Requisito Funcional

RF01 Cadastro de Experi-

mento

O sistema deve permitir que o usuário registre um

novo experimento, incluindo informações de data-

set, tarefa e configuração.

RF02 Execução Automati-

zada

O sistema deve executar pipelines de forma au-

tomática utilizando AutoML para gerar múltiplos

modelos.

RF03 Comparação de Mode-

los (Champion/Chal-

lenger)

O sistema deve comparar o modelo atual em

produção com candidatos gerados.

RF04 Monitoramento

Cont́ınuo

O sistema deve monitorar em tempo real as

métricas dos modelos implantados utilizando Pro-

metheus e Grafana.

Continua na próxima página...

4.3 Avaliação 47

Tabela 5.1 – continuação da página anterior

Código Nome do RF Descrição do Requisito Funcional

RF05 Geração de Alertas O sistema deve emitir alertas automáticos quando

a performance do modelo apresentar degradação.

RF06 Cálculo de HI O sistema deve calcular periodicamente um ı́ndice

de saúde do modelo para apoiar decisões de atua-

lização.

RF07 Atualização de Mo-

delo em Produção

O sistema deve permitir a substituição automática

do modelo vigente quando um novo modelo supe-

rar os critérios de desempenho.

RF08 Visualização de

Métricas

O sistema deve oferecer dashboards atualizados

com métricas de treinamento e produção.

RF09 Integração com

Serviços Externos

O sistema deve permitir a comunicação com APIs

externas para ingestão de dados ou acionamento

de inferências.

Fonte: Elaborado pelo autor.

Subsequentemente à definição dos requisitos, o comportamento do sistema foi

modelado conforme o Diagrama de Caso de Uso (Figura 5.1). A ilustração demonstra as

interações entre os atores e as funcionalidades de cadastro, execução, monitoramento e

atualização.

4.3 Avaliação 48

Figura 5.1: Diagrama de Caso de Uso

Fonte: Elaborado pelo autor.

Visando assegurar a estabilidade e a segurança da solução, definiram-se também

os Requisitos Não Funcionais (RNF), com ênfase na integridade dos dados e controle de

acesso, conforme a Tabela 5.2.

5.2 Visão Geral 49

Tabela 5.2: Requisitos Não Funcionais (RNFs)

Código Nome do RNF Descrição do Requisito Não Funcional

RNF01 Auditabilidade O sistema deve manter o histórico de versões

dos modelos e registros de alterações por

peŕıodo determinado para auditoria.

RNF02 Escalabilidade O sistema deve suportar o aumento no vo-

lume de dados e na quantidade de requisições

de inferência sem degradação do tempo de

resposta ou da estabilidade operacional.

RNF03 Confiabilidade O sistema deve garantir a integridade e a con-

sistência dos dados utilizados no cálculo do

HI, prevenindo a ocorrência de falsos positi-

vos na detecção de drift.

Fonte: Elaborado pelo autor.

5.2 Visão Geral

A Figura 5.2 apresenta o fluxo de dados e o funcionamento lógico da solução. A estrutura

organiza-se em módulos sequenciais que abrangem o ciclo de vida do modelo: o Módulo de

Treinamento realiza a ingestão e preparação dos dados; o Módulo de Validação verifica a

integridade e previne vazamento de dados (data leakage); o Registro (Registry) armazena

os artefatos versionados via MLflow; o Serviço de Predição expõe os modelos via API ; e

o Sistema de Monitoramento avalia continuamente a qualidade das inferências.

5.3 Arquitetura de Software 50

Figura 5.2: Visão Geral
Fonte: Elaborado pelo autor.

5.3 Arquitetura de Software

O desenvolvimento da solução utiliza o framework FastAPI para a constituição da API. A

arquitetura aplica o padrão de projeto Observer para estabelecer o desacoplamento entre

os componentes de execução de inferência e os componentes de análise de monitoramento.

A Figura 5.3 exibe a distribuição e a interação entre os componentes. A orga-

nização evidencia a segregação de responsabilidades técnicas.

5.3 Arquitetura de Software 51

Figura 5.3: Arquitetura Proposta

Fonte: Elaborado pelo autor.

O planejamento da arquitetura visa acompanhar o desempenho dos modelos,

identificar variações estat́ısticas nos dados e executar reações automáticas. Os módulos

constituintes compreendem:

5.3 Arquitetura de Software 52

• PredictionService : Atua como ponto de entrada para requisições REST e exe-

cuta inferências em tempo real ou em lote (batch), utilizando modelos serializados

carregados do registro.

• MonitoringService : Implementa o padrãoObserver para coletar métricas de cada

predição e supervisionar o estado do modelo sem bloquear a resposta da API.

• AutoMLHandler : Atua como o orquestrador do ciclo de aprendizado de máquina,

encapsulando o motor PyCaret. Este componente opera de forma asśıncrona (back-

ground task), isolando o processo de treinamento do fluxo de inferência da API. Ele

é responsável por extrair um snapshot dos dados históricos, realizar a separação en-

tre variáveis preditoras (X) e alvo (y) para prevenir data leakage, executar a seleção

e otimização de hiperparâmetros e, por fim, registrar o novo modelo campeão.

• AlertService : Processa os dados de monitoramento e registra alertas no banco de

dados quando os critérios de degradação (multicritério) são atingidos.

• Prometheus e Grafana: Realizam, respectivamente, a coleta de séries temporais

e a visualização das métricas operacionais e de negócio.

• PostgreSQL: Armazena os registros persistentes, incluindo o histórico de alertas,

logs de performance e metadados dos modelos.

A integração destes módulos estabelece uma solução com operação cont́ınua e

rastreabilidade do desempenho dos modelos. Dessa forma, a arquitetura materializa um

ciclo de feedback fechado (closed-loop), no qual a detecção de degradação pelo Monito-

ringService aciona, de maneira reativa e asśıncrona, a orquestração de retreinamento pelo

AutoMLHandler. Essa abordagem assegura que o sistema não apenas identifique o

concept drift, mas reaja a ele autonomamente, mantendo a disponibilidade do serviço de

inferência (PredictionService) enquanto o modelo é atualizado de forma transparente para

as requisições subsequentes.

5.4 O Mecanismo Proativo: HI 53

5.4 O Mecanismo Proativo: HI

O Módulo de Monitoramento utiliza uma métrica quantitativa denominada Health Index

(HI). O HI avalia a saúde operacional do modelo em uma escala de 0 a 1 (ou 0% a 100%),

onde o valor 1.0 representa o estado ideal de estabilidade. O cálculo do ı́ndice é realizado

pela soma ponderada do complemento dos riscos identificados em cada requisição de

inferência, conforme a Equação 5.1:

HI = (0,50×(1−ConfidenceRisk))+(0,40×(1−DriftRisk))+(0,10×(1−AnomalyRisk))

(5.1)

Onde:

• Confidence Risk: Representa a incerteza da predição, calculado como o com-

plemento da probabilidade da classe predita (1 − Probabilidade). Na arquitetura

implementada, este componente possui a maior atribuição por ser o indicador mais

direto da precisão do modelo em tempo de execução.

• Drift Risk: Mede a distância estat́ıstica entre os dados de entrada em produção

e a distribuição de referência utilizada no treinamento. Para esse fim, o sistema

emprega o teste de Kolmogorov-Smirnov (K-S), aplicado de forma univariada. Va-

lores próximos de 0 indicam estabilidade estat́ıstica, enquanto valores próximos de

1 sinalizam a ocorrência de concept drift.

• Anomaly Risk: Indica a presença de outliers ou dados fora do padrão esperado

para as variáveis numéricas, atuando como um regulador para evitar que rúıdos

pontuais degradem severamente o ı́ndice.

Ressalta-se que os pesos atribúıdos a esses fatores são totalmente parametrizáveis

na arquitetura, permitindo ajustes conforme a criticidade de diferentes aplicações. Con-

tudo, para o escopo deste trabalho, a calibração foi definida por meio de experimentação

emṕırica no domı́nio do Agronegócio e Zootecnia. Nesse contexto espećıfico, chegou-se à

estrutura de ponderação apresentada na Equação 5.1.

5.5 Human-in-the-Loop e Reconfiguração 54

O Confidence Risk recebe a maior carga (50%) por refletir falhas imediatas na

confiança do resultado entregue ao usuário, algo cŕıtico no monitoramento de seres vivos.

O Drift Risk atua como um indicador de tendência (40%), sinalizando que o modelo

pode estar se tornando obsoleto devido a mudanças ambientais ou fisiológicas. Por fim,

o Anomaly Risk recebe o menor peso (10%) para garantir a estabilidade do sistema,

prevenindo o fenômeno de thrashing (trocas excessivas de modelos) causadas por variações

espúrias ou erros de leitura nos sensores.

Dessa forma, a métrica penaliza o ı́ndice de saúde proporcionalmente à gravidade

técnica de cada desvio. A convergência desses fatores resulta na redução do HI, o que

aciona proativamente os alertas e o ciclo human-in-the-loop quando o valor atinge o limiar

de 0,70 estabelecido na configuração do AutoMLOps.

5.5 Human-in-the-Loop e Reconfiguração

A arquitetura incorpora o ciclo HITL. Quando o valor do HI atinge um patamar inferior

ao limiar configurado (e.g., 0,70) e há convergência de múltiplos riscos, o sistema não

inicia o retreinamento imediatamente; em vez disso, persiste um registro de alerta na

tabela alerts do PostgreSQL.

Este evento notifica o operador técnico. Apoiado pela visualização dos dados nos

painéis do Grafana (Figura 5.4), o operador avalia a necessidade de intervenção. Mediante

autorização, o sistema executa o pipeline de retreinamento ou promove a substituição

do modelo vigente (Champion) por um candidato (Challenger) que demonstre métricas

superiores.

5.6 Protocolo de Validação Experimental 55

Figura 5.4: Dashboard de monitoramento Grafana

Fonte: Elaborado pelo autor.

5.6 Protocolo de Validação Experimental

A avaliação da arquitetura e do mecanismo HITL ocorreu mediante a submissão do sistema

a um cenário de estresse. Para reproduzir o comportamento de sensores IoT, desenvolveu-

se um script de injeção de carga. Esse componente realiza a leitura sequencial dos registros

e o envio à API do AutoMLOps via requisições HTTP POST, estabelecendo um fluxo de

inferência.

A Figura 5.5 demonstra o comportamento do sistema ao longo do teste. O pro-

tocolo experimental compreende três fases de execução:

1. Fase de Estabilidade: Envio dos dados originais, mantendo a distribuição es-

tat́ıstica do treinamento do modelo (linhas 1 a 50 do dataset). Esta etapa define a

linha de base do comportamento do sistema.

2. Fase de Indução de Drift: Introdução de concept drift nos dados para verificação

da resposta do sistema. O script de simulação aplicou as seguintes transformações

matemáticas nas variáveis de entrada:

(a) Queda de Produtividade: Multiplicação da variável producao leite pelo

fator 0,5 (redução de 50%).

5.6 Protocolo de Validação Experimental 56

(b) Aumento de Densidade: Multiplicação da variável n vacas pelo fator 1,5

(aumento de 50%).

Tais alterações modificam a relação entre as variáveis de entrada e a classe de emissão

de CO2, simulando a perda de eficiência produtiva (aumento do número de animais

com redução da produção).

3. Fase de Recuperação: Peŕıodo subsequente à detecção do drift e ao retreina-

mento, no qual o sistema opera com modelos ajustados ao novo padrão de dados.

Figura 5.5: Fases do cenário de validação

Fonte: Elaborado pelo autor.

57

6 Resultados e Análise

A validação experimental fundamentou-se no dataset de Monitoramento de Bovinos Lei-

teiros, composto por 3.283 registros coletados ao longo de um peŕıodo de 12 meses. A

escolha deste domı́nio justifica-se pela disponibilidade dos dados ao grupo de pesquisa,

bem como pela relevância estratégica do tema: o monitoramento da emissão de CO2 traz

benef́ıcios como a otimização da eficiência produtiva aliada à sustentabilidade e permite

lidar com desafios inerentes ao setor, como a complexidade e o alto custo das medições

manuais em campo.

O problema de negócio abordado consistiu na classificação multiclasse das cate-

gorias de emissão de CO2 (Alta, Média e Baixa), a partir de quatro variáveis predito-

ras: identificação do animal (brinco), peso corporal, produção de leite e data de coleta.

Ressalta-se que a variável de identificação do animal foi empregada exclusivamente para

fins de rastreabilidade das inferências, sendo removida do processo de treinamento para

evitar que o modelo memorizasse indiv́ıduos espećıficos (overfitting).

Durante a definição do pipeline de treinamento, a arquitetura impôs a separação

expĺıcita das variáveis preditoras (X) e do alvo (y) antes da etapa de configuração do

AutoML. Essa estratégia resultou em métricas realistas, assegurando que o desempenho

observado na Fase 3 decorreu da capacidade de generalização do modelo e não de memo-

rização dos dados.

A sensibilidade do sistema foi quantificada por meio da comparação métrica entre

os cenários de operação normal e de degradação induzida:

• Cenário de Controle (Estabilidade): Sob condições normais, os dados apresen-

taram uma correlação positiva forte (+0, 76) entre as variáveis de peso corporal e

produção de leite, com um coeficiente de variação de 23, 97% para a variável leite.

Neste contexto, o HI manteve-se consistentemente acima do limiar de 0, 70.

• Cenário de Estresse (Drift): A simulação de problemas de qualidade de dados

introduziu rúıdo, elevando a presença de outliers para 30% da amostra. Conse-

6.1 Regime Estável e Monitoramento (Fase 1) 58

quentemente, observou-se a inversão da correlação entre peso e leite, que passou a

registrar −0, 15.

6.1 Regime Estável e Monitoramento (Fase 1)

Inicialmente, o modelo de classificação operou em regime de estabilidade. O sistema

processou as requisições contendo dados de produção leiteira e estimativas de emissões,

mantendo métricas de desempenho dentro dos limiares aceitáveis. O HI, métrica composta

desenvolvida nesta pesquisa, manteve-se próximo ao valor máximo. A Figura 6.1 ilustra

a série temporal deste peŕıodo, confirmando que a arquitetura foi capaz de ingerir o fluxo

de dados e monitorar a integridade estat́ıstica em tempo real, sem introduzir latência

impeditiva.

Figura 6.1: Comportamento do sistema em regime estável

Fonte: Elaborado pelo autor.

6.2 Detecção de concept drift e Alerta (Fase 2)

Na segunda etapa, a indução controlada de data drift, manifestada por alterações na distri-

buição dos dados, gerou uma divergência estat́ıstica entre os dados de entrada e o padrão

previamente aprendido pelo modelo. Diferentemente de uma falha sistêmica abrupta, o

processo de monitoramento identificou uma degradação gradual da performance que, em-

bora não comprometesse imediatamente a continuidade da operação, demandava atenção

6.2 Detecção de concept drift e Alerta (Fase 2) 59

e intervenção.

A Figura 6.2 apresenta o dashboard consolidado no momento exato da detecção.

A análise da interface revela três componentes do comportamento do sistema:

1. Status de Alerta (Warning): O sistema identificou automaticamente a condição

de degradação, exibindo o status ”Active Alerts: 1” em destaque (faixa amarela).

O tipo de alerta foi classificado como ”PERFORMANCE DEGRADATION”, com

status ”OPEN”.

2. Health Index (HI): O ı́ndice de saúde do modelo Champion (Logistic Regression)

recuou para 59,0%. Este valor, situando-se logo abaixo do limiar de alerta (70%),

colocou o sistema em zona de atenção, mas evitou o bloqueio total das inferências.

3. Plano de Ação Sugerido: O campo ”Action Required” indicou automaticamente

a instrução ”Investigate and Monitor”. Isso demonstra que a arquitetura do

AutoMLOps priorizou a segurança: em vez de disparar um retreinamento às cegas

(que poderia propagar erros), o sistema solicitou validação humana para investigar

as métricas de saúde (Health Metrics).

Observa-se ainda na tabela de modelos que, apesar da degradação, a Logistic

Regression manteve-se como Champion com a Accuracy de 6511%, superando os modelos

desafiantes (LGBM e Random Forest), que apresentaram ı́ndices de saúde ainda inferiores

(56,9% e 55,1%, respectivamente).

6.3 Intervenção Humana e Recuperação (Fase 3) 60

Figura 6.2: Detecção de anomalia e emissão de alerta

Fonte: Elaborado pelo autor.

6.3 Intervenção Humana e Recuperação (Fase 3)

A terceira fase iniciou-se com a simulação da intervenção do operador. Após a autorização

manual, o sistema disparou o pipeline de retreinamento automático (AutoML). Nesse

estágio, o AutoMLHandler realizou os seguintes passos:

1. Ingestão e Particionamento: O sistema consolidou o conjunto de dados históricos

com as amostras recentes (que caracterizaram o drift), aplicando uma divisão de

70% para treinamento e 30% para validação (hold-out).

2. Treinamento Competitivo: Diversos algoritmos candidatos (Challengers) foram

treinados e avaliados. O algoritmo RandomForest obteve o melhor desempenho na

métrica de validação cruzada, superando o modelo vigente.

3. Promoção e Arquivamento: O modelo vencedor foi promovido a Champion,

sendo registrado no MLflow e carregado para produção. Os demais modelos can-

didatos, embora não selecionados, tiveram seus artefatos e métricas arquivados no

registro de experimentos para fins de auditoria e rastreabilidade futura.

6.3 Intervenção Humana e Recuperação (Fase 3) 61

Após a substituição do modelo em produção, observou-se a recuperação do HI,

conforme visualizado na Figura 6.3. Esse resultado demonstra a eficácia do ciclo completo

de adaptação, composto pelas etapas de detecção, alerta, intervenção e adaptação.

Figura 6.3: Recuperação de desempenho pós-autorização

Fonte: Elaborado pelo autor.

62

7 Discussão

A análise dos resultados corrobora a hipótese de que a integração do monitoramento

cont́ınuo em pipelines de MLOps, aliada à supervisão humana (Human-in-the-Loop —

HITL), promove a estabilidade de modelos preditivos em ambientes de IoT. Essa abor-

dagem distingue-se de sistemas puramente autônomos, os quais, diante de rúıdos mo-

mentâneos, tendem a iniciar ciclos desnecessários de retreinamento (thrashing). Nessa

arquitetura, o HI atuou como um filtro técnico decisivo, acionando alertas apenas me-

diante evidências estat́ısticas de degradação, o que fundamentou intervenções precisas e

evitou o consumo indevido de recursos computacionais.

No domı́nio da Agropecuária e Zootecnia, a validação humana desempenhou um

papel importante ao distinguir variações temporárias nos dados, decorrentes de falhas em

sensores ou manejo at́ıpico, da real obsolescência do modelo. A arquitetura AutoMLOps

assegurou o controle do especialista, posicionando a IA como uma ferramenta de suporte

à decisão, e não como um agente decisório isolado. Os experimentos demonstraram uma

redução no tempo decorrido entre a detecção do problema e a autorização da solução,

validando a segurança do método h́ıbrido.

É imperativo destacar que, no contexto espećıfico do monitoramento de emissões

de CO2, a queda de desempenho dos modelos preditivos transcende a dimensão estat́ıstica,

comprometendo a integridade dos inventários ambientais. A degradação da acurácia re-

sulta em estimativas enviesadas da pegada de carbono, o que pode mascarar picos de

emissão cŕıticos ou, inversamente, sugerir conformidade ambiental inexistente. Essa im-

precisão inviabiliza a tomada de decisão correta sobre estratégias de mitigação e afeta

diretamente a credibilidade dos indicadores de sustentabilidade da produção. Portanto, a

estabilidade garantida pela arquitetura proposta atua como um mecanismo de auditoria

cont́ınua, assegurando que os dados de emissões reflitam a realidade f́ısica do ambiente

monitorado.

7.1 Achados Teóricos 63

7.1 Achados Teóricos

Do ponto de vista teórico, o trabalho contribui ao propor um serviço parametrizável,

desenhado para se adaptar a diferentes domı́nios e aplicações. A disponibilização da

solução em formato de API fomenta a reutilização e facilita a integração com sistemas

legados ou de terceiros, superando a rigidez de soluções monoĺıticas.

Em termos de fundamentação arquitetural, a pesquisa consolidou uma integração

consistente entre Arquiteturas Autoadaptativas, práticas de MLOps e Inteligência Artifi-

cial. A aplicação do ciclo MAPE-K, conjugada ao padrão de projeto Observer, estabeleceu

uma base sólida para o monitoramento cont́ınuo, permitindo que a tomada de decisão au-

tomatizada e a reconfiguração do sistema ocorram de maneira orquestrada em ambientes

dinâmicos.

Metodologicamente, a adoção da DSR demonstrou eficácia tanto na condução

da construção quanto na avaliação do artefato, assegurando que o rigor cient́ıfico fosse

mantido sem detrimento da relevância prática e da aplicabilidade da solução.

7.2 Achados Técnicos

No âmbito técnico, a adoção de uma Arquitetura Orientada a Serviços (SOA) foi deter-

minante para a viabilidade operacional do sistema. Essa escolha possibilitou a escalabili-

dade horizontal necessária para suportar altos volumes de dados, caracteŕıstica intŕınseca

a ambientes de IoT. Durante os testes de estresse, o serviço processou 10.000 requisições

mantendo a estabilidade e o tempo de resposta dentro dos parâmetros aceitáveis.

O mecanismo de monitoramento cont́ınuo provou-se eficaz na identificação precisa

da degradação de desempenho dos modelos. O sistema sustentou decisões automatizadas

de retreinamento e o chaveamento dinâmico de modelos (Champion/Challenger) mesmo

sob carga elevada, confirmando a robustez da implementação do AutoMLHandler.

Por fim, a integração com ferramentas de observabilidade conferiu transparência

ao comportamento do sistema. A rastreabilidade detalhada das requisições e das métricas

operacionais proporcionou maior controle durante cenários de alta demanda, validando a

tese de que a observabilidade é um requisito não funcional indispensável para a confiabi-

7.2 Achados Técnicos 64

lidade de operações de Machine Learning em produção.

65

8 Conclusão

Esta pesquisa apresentou o desenvolvimento de um serviço parametrizável, materializado

na forma de uma API, voltado ao apoio à construção de arquiteturas autoadaptativas

baseadas em Inteligência Artificial. A solução proposta preenche uma lacuna relevante

na integração entre engenharia de software e ciência de dados, oferecendo um mecanismo

robusto para o monitoramento cont́ınuo de modelos de aprendizado de máquina em am-

bientes de IoT.

A fundamentação arquitetural, alicerçada na integração de prinćıpios de siste-

mas autoadaptativos, práticas de MLOps e na aplicação do ciclo MAPE-K, mostrou-se

adequada para lidar com ambientes dinâmicos e sujeitos a mudanças constantes. A ope-

racionalização desses conceitos permitiu a identificação proativa da degradação de de-

sempenho (concept drift) por meio do Health Index (HI), apoiando decisões automáticas

cŕıticas, como a execução de pipelines de retreinamento e o chaveamento dinâmico de

modelos (Champion/Challenger).

A validação prática, realizada no cenário de Agropecuária e Zootecnia para o

monitoramento de emissões de CO2, demonstrou a eficácia da arquitetura em recuperar

a capacidade preditiva do sistema diante de desvios estat́ısticos. Mais do que resolver um

problema espećıfico, os resultados indicam que a API é flex́ıvel, reutilizável e aplicável a

diferentes domı́nios. A capacidade de personalizar métricas de avaliação (como acurácia,

F1-score ou precisão) e parametrizar os pesos do HI possibilita que a solução atenda aos

requisitos de qualidade de diversos contextos operacionais.

Em suma, este trabalho contribui para a área de sistemas autoadaptativos com IA

ao fornecer um artefato que une a detecção estat́ıstica de anomalias à supervisão humana,

garantindo a continuidade operacional e a confiabilidade das inferências em sistemas de

fluxo cont́ınuo de dados.

8.1 Trabalhos Futuros 66

8.1 Trabalhos Futuros

Como desdobramento desta pesquisa e visando a evolução da plataforma AutoMLOps,

sugerem-se as seguintes vertentes de investigação:

• Generalização via Novos Ciclos de DSR: Condução de iterativos ciclos de De-

sign Science Research em domı́nios distintos do agronegócio. O objetivo é avaliar

a capacidade de generalização e reutilização das APIs frente a diferentes tipolo-

gias de dados e requisitos de aplicação não funcionais, validando a flexibilidade da

arquitetura proposta em cenários heterogêneos.

• Expansão Experimental: Ampliação das avaliações experimentais através da in-

corporação de novas métricas de desempenho e da exploração de estratégias de

adaptação alternativas. Sugere-se investigar métodos além do Champion/Challen-

ger, como Ensemble Learning dinâmico ou aprendizado incremental, para verificar

sua eficácia em ambientes de alta volatilidade.

• Inteligência Artificial Explicável (XAI) e Auditoria: Aprofundamento na in-

tegração de técnicas de XAI para aumentar a transparência das decisões do sistema.

A proposta é que a explicabilidade não sirva apenas para diagnóstico técnico, mas

atue como pilar de suporte ao ciclo Human-in-the-Loop, facilitando a auditoria das

adaptações automáticas e aumentando a confiança do operador na autorização de

trocas de modelos.

• Refinamento por Feedback Humano: Implementação de mecanismos de apren-

dizado que incorporem o feedback do operador ao ciclo de decisão. Isso permitiria

que o sistema ajustasse automaticamente a sensibilidade do HI e os limiares de

alerta com base no histórico de intervenções manuais, personalizando a resposta do

sistema ao perfil do especialista.

• Expansão para Edge Computing: Adaptação dos módulos de inferência e mo-

nitoramento para execução direta em dispositivos de borda. Essa abordagem visa

descentralizar a detecção de anomalias, reduzindo a latência do alerta e o consumo

de largura de banda na transmissão de dados brutos.

BIBLIOGRAFIA 67

Bibliografia

ALI, O. et al. A comprehensive review of internet of things: Technology stack, middlewa-
res, and fog/edge computing interface. Sensors, v. 22, n. 3, p. 995, 2022.

ALKHABBAS, F. et al. ASSERT: A blockchain-based architectural approach for engine-
ering secure self-adaptive IoT systems. Sensors, v. 22, n. 18, p. 6842, 2022.

AMERSHI, S. et al. Human-in-the-loop: Interactive machine learning. In: Proceedings
of the 2014 CHI Conference on Human Factors in Computing Systems. Toronto: ACM,
2014. p. 3433–3442.

AMIRI, A.; ZDUN, U. Smart and adaptive routing architecture: An internet-of-things
traffic manager based on artificial neural networks. Future Generation Computer Systems,
2023.

AUDRITO, G. FCPP: an efficient and extensible field calculus framework. In: 2020 IEEE
International Conference on Autonomic Computing and Self-Organizing Systems (AC-
SOS). [S.l.]: IEEE, 2020. p. 153–159.

AVILA, D. Fernandes de et al. Internet of things e inteligência artificial nos meios produ-
tivos. Revista Ciatec-UPF, v. 14, n. 2, 2022.

BASSENE, A.; GUEYE, B. A self-adaptive qos-management framework for highly dyna-
mic iot networks. Journal of Network and Computer Applications, 2022.

BAYRAM, F.; ALTILAR, T. Concept drift detection and adaptation in iot systems.
Future Generation Computer Systems, v. 115, p. 293–306, 2021.

CIGNARELLA, A. et al. Human-in-the-loop machine learning: A survey and perspectives.
IEEE Access, v. 11, p. 143275–143300, 2023.

COELHO, D. J. A. P. d. M.; DERMEVAL, I. I. B. d. M.Mapeamento sistemático e revisão
sistemática da literatura em informática na educação. São Paulo: Sociedade Brasileira de
Computação (SBC), 2019. Acesso em: 5 nov. 2025. Dispońıvel em: ⟨https://ceie.sbc.org.
br/metodologia/wp-content/uploads/2019/11/livro2 cap3.pdf⟩.

DENG, Y.; WANG, J.; LI, H. Human-in-the-loop approaches for iot-based intelligent
systems: A comprehensive review. IEEE Internet of Things Journal, v. 10, n. 5, p. 4201–
4218, 2023.

DIAS, J. P.; RESTIVO, A.; FERREIRA, H. S. Empowering visual internet-of-things
mashups with self-healing capabilities. In: 2021 IEEE/ACM 3rd International Workshop
on Software Engineering Research and Practices for the IoT (SERP4IoT). [S.l.]: IEEE,
2021. p. 44–51.

DJENNADI, L. et al. Sdn-based approach for adaptive reconfiguration of routing in iot
for smart-buildings. In: 2024 IEEE 25th International Conference on High Performance
Switching and Routing (HPSR). [S.l.]: IEEE, 2024. p. 137–142.

https://ceie.sbc.org.br/metodologia/wp-content/uploads/2019/11/livro2_cap3.pdf
https://ceie.sbc.org.br/metodologia/wp-content/uploads/2019/11/livro2_cap3.pdf

BIBLIOGRAFIA 68

DURAN, F. et al. Seamless reconfiguration of rule-based iot applications. Journal of
Systems and Software, 2021.

FAROOQ, M. U. et al. A review on internet of things (iot). International Journal of
Computer Applications, v. 113, n. 1, 2015.

FONSECA, A. et al. Dealing with iot defiant components. Journal of Internet Services
and Applications, 2021.

FRANGOUDIS, P. A.; REISINGER, M.; DUSTDAR, S. Recursive design for data-driven,
self-adaptive iot services. IEEE Internet of Things Journal, 2021.

GAMA, J. et al. A survey on concept drift adaptation. ACM Computing Surveys (CSUR),
New York, v. 46, n. 4, p. 1–37, mar. 2014.

GORLA, A. et al. Achieving cost-effective software reliability through self-healing. In:
IEEE. 2010 Third International Conference on Software Testing, Verification and Vali-
dation. [S.l.], 2010. p. 255–264.

Grafana Labs. Grafana documentation. 2025. ⟨https://grafana.com/docs/grafana/latest/
⟩. Acesso em: 16 dez. 2025.

GULDNER, A. et al. A framework for AI-based self-adaptive cyber-physical process sys-
tems. it-Information Technology, v. 65, n. 3, p. 113–128, 2023.

HACHICHA, M.; HALIMA, R. B.; KACEM, A. H. Modeling and specifying formally
compound MAPE pattern for self-adaptive IoT systems. Innovations in Systems and
Software Engineering, v. 18, n. 4, p. 505–521, 2022.

HALLOU, A. et al. Context-aware IoT system development approach based on meta-
modeling and reinforcement learning: A smart home case study. International Journal of
Online & Biomedical Engineering, v. 20, n. 6, 2024.

HE, X. et al. Redefinition of digital twin and its situation awareness framework designing
toward fourth paradigm for energy internet of things. Applied Energy, 2024.

HEINZ, A. et al. Self-adaptive software architectures for dynamic environments. Journal
of Systems and Software, v. 136, p. 1–17, 2018.

HEVNER, A. R. et al. Design science in information systems research. MIS Quarterly,
v. 28, n. 1, p. 75–105, 2004.

HIGGINS, J. P. T.; GREEN, S. Cochrane Handbook for Systematic Reviews of Interven-
tions. Chichester: John Wiley & Sons, 2011.

HUTTER, F.; KOTTHOFF, L.; VANSCHOREN, J. Automated Machine Learning:
Methods, Systems, Challenges. Cham: Springer Nature, 2019.

KARADUMAN, B.; TEZEL, B. T.; CHALLENGER, M. Enhancing bdi agents using
fuzzy logic for cps and iot interoperability using the jaca platform. Future Internet, 2022.

KEPHART, J. O.; CHESS, D. M. The vision of autonomic computing. Computer, v. 36,
n. 1, p. 41–50, 2003.

https://grafana.com/docs/grafana/latest/
https://grafana.com/docs/grafana/latest/

BIBLIOGRAFIA 69

KODAKANDLA, N. Data drift detection and mitigation: A comprehensive MLOps ap-
proach for real-time systems. International Journal of Science and Research Archive, v. 12,
n. 1, p. 3127–3139, 2024.

KREUZBERGER, D.; KÜHL, N.; HIRSCHL, S. Machine learning operations (mlops):
Overview, definition, and architecture. IEEE Access, v. 11, p. 31866–31879, 2023.

LAKSHMANAN, V.; ROBINSON, S.; MUNN, M. Machine Learning Design Patterns:
Solutions to Common Challenges in Data Preparation, Model Building, and MLOps. Se-
bastopol: O’Reilly Media, 2020.

LAM, A. N.; HAUGEN, O.; DELSING, J. Dynamical orchestration and configuration
services in industrial IoT systems: An autonomic approach. IEEE Open Journal of the
Industrial Electronics Society, IEEE, v. 3, p. 128–145, 2022.

LEE, E.; LEE, S.; SEO, Y.-D. Deep learning based self-adaptive framework for environ-
mental interoperability in internet of things. In: Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing. [S.l.: s.n.], 2022. p. 32–35.

LU, J. et al. Learning under concept drift: A review. IEEE Transactions on Knowledge
and Data Engineering, v. 31, n. 12, p. 2346–2363, 2018.

LUDERMIR, T. B. Inteligência artificial e aprendizado de máquina: estado atual e
tendências. Estudos Avançados, v. 35, p. 85–94, 2021.

MANCINI, M. Internet das Coisas: História, conceitos, aplicações e desafios. [S.l.]: Pro-
ject Management Institute–PMI, 2017.

MENNA, F. D.; MUCCINI, H.; VAIDHYANATHAN, K. FEAST: a framework for eva-
luating implementation architectures of self-adaptive IoT systems. In: Proceedings of the
37th ACM/SIGAPP Symposium on Applied Computing. [S.l.: s.n.], 2022. p. 1440–1447.

PARSIFAL. Parsifal: A Tool for Systematic Literature Reviews. 2021. ⟨https://parsif.al/
about/⟩. Acesso em: 03 jun. 2025.

QUIÑONERO-CANDELA, J. et al. (Ed.). Dataset Shift in Machine Learning. [S.l.]: MIT
Press, 2009.

RESTUCCIA, F.; MELODIA, T. Deepwierl: Bringing deep reinforcement learning to the
internet of self-adaptive things. IEEE Transactions on Mobile Computing, 2020.

ROCHA, I. F.; KISSIMOTO, K. O. Barreiras e benef́ıcios na adoção de inteligência
artificial e iot na gestão da operação. RAM. Revista de Administração Mackenzie, v. 23,
p. eRAMR220119, 2022.

RUDENKO, R. et al. A brief review on internet of things, industry 4.0 and cybersecurity.
Electronics, v. 11, n. 11, p. 1742, 2022.

RULLO, A. et al. Kalis2.0 — a secaas-based context-aware self-adaptive intrusion detec-
tion system for iot. Computers & Security, 2023.

SOARES, R. L. A. S. ADAPTFlow: uma arquitetura orientada por dados para suporte à
auto-adaptação em sistemas inteligentes. Trabalho de Conclusão de Curso, Juiz de Fora,
2024.

https://parsif.al/about/
https://parsif.al/about/

BIBLIOGRAFIA 70

SOARES, S. C. M. et al. Arquitetura de detecção de intrusão por anomalias com federated
learning em redes iot. In: Anais de evento cient́ıfico. [S.l.: s.n.], 2024.

SOUZA, L. C. P. de; FONTANARI, R. Inteligência artificial: desafios da criação, da
criatividade e da autonomia humana. Tŕıade: Comunicação, Cultura e Mı́dia, v. 12,
n. 25, p. e024015–e024015, 2024.

SUN, P. et al. A survey on privacy and security issues in iot-based environments: Te-
chnologies, protection measures and future directions. Computers & Security, v. 148, p.
104097, 2025.

TANG, L.; QIN, H. Divisible task offloading for multiuser multiserver mobile edge com-
puting systems based on deep reinforcement learning. IEEE Internet of Things Journal,
2023.

TREVEIL, M. et al. Introducing MLOps. Sebastopol: O’Reilly Media, 2020.

WAKILI, A.; BAKKALI, S. Privacy-preserving security of IoT networks: A comparative
analysis of methods and applications. Cyber Security and Applications, v. 3, p. 100084,
2025.

WANG, X. et al. Federated deep reinforcement learning for internet of things with decen-
tralized cooperative edge caching. IEEE Internet of Things Journal, 2020.

WIDMER, G.; KUBAT, M. Learning in the presence of concept drift and hidden contexts.
Machine Learning, Dordrecht, v. 23, n. 1, p. 69–101, 1996.

WU, X. et al. Human-in-the-loop artificial intelligence for trustworthy mlops. IEEE Tran-
sactions on Artificial Intelligence, v. 5, n. 3, p. 890–905, 2024.

XIAO, W. et al. Collaborative cloud-edge service cognition framework for dnn configura-
tion toward smart iiot. IEEE Transactions on Industrial Informatics, 2021.

ZHAO, Z. et al. Human-in-the-loop for machine learning: Challenges and opportunities.
Pattern Recognition Letters, v. 168, p. 56–63, 2023.

	Lista de Figuras
	Lista de Tabelas
	Lista de Abreviações
	Introdução
	Referencial Teórico
	IoT
	Arquiteturas de Software autoadaptativas
	Uso da IA com IoT
	MLOps
	Data Drift
	Concept Drift
	Padrão Champion/Challenger
	Human-in-the-Loop (HITL)

	Trabalhos Relacionados
	Questões de Pesquisa
	Critérios de Inclusão e Exclusão
	Estratégia de Busca
	Procedimentos de Busca e Análise dos Estudos
	Resultados e Discussões

	Metodologia
	Definição do Problema
	Desenvolvimento da Solução (Artefato)
	Avaliação
	Preparação e Enriquecimento dos Dados

	Desenvolvimento da Solução
	Requisitos do Sistema
	Visão Geral
	Arquitetura de Software
	O Mecanismo Proativo: HI
	Human-in-the-Loop e Reconfiguração
	Protocolo de Validação Experimental

	Resultados e Análise
	Regime Estável e Monitoramento (Fase 1)
	Detecção de concept drift e Alerta (Fase 2)
	Intervenção Humana e Recuperação (Fase 3)

	Discussão
	Achados Teóricos
	Achados Técnicos

	Conclusão
	Trabalhos Futuros

	Bibliografia

