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Resumo

A Internet das Coisas (IoT) requer sistemas de processamento de dados em tempo real.
Nesse cendrio, a integragao de Inteligéncia Artificial (IA) e aprendizado de maquina su-
pervisionado viabiliza a andlise automatizada de dados. Entretanto, a ocorréncia de
concept drift em fluxos continuos (streaming) ocasiona a degradagao de desempenho dos
modelos. Para tratar esse problema, este trabalho apresenta a arquitetura AutoMLOps,
disponibilizada como um servigo via API utilizando FastAPI e direcionada a aplicacoes
de IoT, com configuracao parametrizavel conforme o dominio. A arquitetura realiza a
selecao automatica de modelos supervisionados por meio de técnicas de AutoML, moni-
tora métricas de desempenho e adota o padrao Champion/Challenger. Adicionalmente,
utiliza um indice de satide unificado (Health Index — HI) para acionar processos de re-
treinamento e chaveamento de modelos. A avaliacao experimental, conduzida com 3.283
registros de monitoramento bovino para emissao de CO,, evidenciou a capacidade do HI
em identificar a degradacao de desempenho. Em cenarios com ocorréncia de concept drift
induzido por insercao de ruido, a reducao do indice acionou os mecanismos de controle
e o ciclo human-in-the-loop, permitindo o retreinamento automaético e a recuperacao do

desempenho do sistema.

Palavras-chave: Internet das Coisas (IoT), AutoMLOps, Aprendizado de Méquina,

concept drift, Arquiteturas autoadaptativas



Abstract

The Internet of Things (IoT) requires real-time data processing systems capable of han-
dling continuous data streams. In this context, the integration of Artificial Intelligence
(AI) and supervised machine learning enables automated data analysis. However, the
occurrence of concept drift in streaming data leads to performance degradation of pre-
dictive models over time. To address this challenge, this work presents the AutoMLOps
architecture, delivered as an API-based service using FastAPI and designed for IoT ap-
plications with domain-specific parametrization. The architecture performs automatic
selection of supervised learning models through AutoML techniques, continuously moni-
tors performance metrics, and adopts the Champion/Challenger pattern. Additionally, it
introduces a unified Health Index (HI) to trigger retraining processes and model switching.
The experimental evaluation, conducted with 3.283 records of bovine monitoring data for
COs emissions, demonstrated the effectiveness of the Health Index in identifying perfor-
mance degradation. In scenarios with induced concept drift through noise insertion, the
reduction in the index activated control mechanisms and the human-in-the-loop cycle,

enabling automatic retraining and recovery of system performance.

Keywords: Internet of Things (IoT), AutoMLOps, Machine Learning, concept drift,

Self-adaptive Architectures



Agradecimentos

Inicialmente, agradego a Deus pela forca, sabedoria e perseveranca ao longo desta
trajetoria académica. Paralelamente, reconheco o papel da minha familia e parentes
pelo encorajamento, apoio e compreensao demonstrados durante o desenvolvimento deste
trabalho.

No que diz respeito a orientacao, agradeco ao Prof. Dr. José Maria Nazar David
pela disponibilidade e pelas contribuigoes para a conclusao deste projeto. Ainda sob essa
perspectiva, destaco a colaboracao da coorientadora, Profa. Dra. Regina Maria Maciel
Braga Vilella, pelas contribuicoes e incentivo oferecidos durante as etapas da pesquisa.

Além disso, registro meu agradecimento aos professores e funcionérios do De-
partamento de Ciéncia da Computacao da Universidade Federal de Juiz de Fora pelos
ensinamentos e suporte prestados durante a graduacao. Por fim, menciono os amigos pelo

companheirismo e apoio mantidos em todos os momentos desta jornada.



Conteudo

Lista de Figuras
Lista de Tabelas
Lista de Abreviagoes
1 Introducao

2 Referencial Teorico
2.1 ToT . . o
2.2  Arquiteturas de Software autoadaptativas . . . . . . ... ... ... ...
2.3 UsodalAcomIoT . ... . . . . . .. . . .. . ... ...
24 MLODPS. . . . . e
24.1 DataDrift . . . . . ...
24.2 Concept Drift . . . . . . .o
2.4.3 Padrao Champion/Challenger . . . . . . . . . ... .. ... ....
2.4.4 Human-in-the-Loop (HITL) . . ... ... ... ... ... .....

3 Trabalhos Relacionados
3.1 Questoes de Pesquisa . . . . . . . . . ... ...
3.2 Critérios de Inclusao e Exclusao . . . . . . . . . . ... ... ... ... ..
3.3 Estratégiade Busca . . . . . . . ... L
3.4 Procedimentos de Busca e Analise dos Estudos . . . . . . . ... ... ...
3.5 Resultados e Discussoes . . . . . . . . .

4 Metodologia
4.1 Definicao do Problema . . . . . . . . ...
4.2 Desenvolvimento da Solugao (Artefato) . . . . . .. .. ... ... ...
4.3 Avaliagdo . . . . ...
4.3.1 Preparacao e Enriquecimento dos Dados . . . . . . ... ... ...

5 Desenvolvimento da Solugao
5.1 Requisitos do Sistema . . . . . . . . ...
5.2 Visao Geral . . . . . . ..
5.3 Arquitetura de Software . . . . .. ...
5.4 O Mecanismo Proativo: HI . . . . . . . . .. .. ... ... ... ......
5.5 Human-in-the-Loop e Reconfiguracao . . . . . . . . . ... ... ... ...
5.6 Protocolo de Validacao Experimental . . . . . . . . .. .. ... ... ...

6 Resultados e Andlise
6.1 Regime Estdvel e Monitoramento (Fase 1) . . . . ... ... ... ... ..
6.2 Detecgao de concept drift e Alerta (Fase 2) . . . . . . ... ... ... ...
6.3 Intervencao Humana e Recuperagao (Fase 3) . . . . . ... ... ... ...

12
12
13
15
16
18
19
20
21

23
24
25
25
27
28

41
41
42
44
45

46
46
49
50
93
o4
55



7 Discussao
7.1 Achados Teéricos
7.2 Achados Técnicos

8 Conclusao
8.1 Trabalhos Futuros

Bibliografia

62
63
63

65
66

67



2.1

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3

Lista de Figuras

Ciclo de adaptagao MAPE-K . . . . . .. ... ... ... ... ...... 14
Fluxograma do protocolo PRISMA . . . .. ... ... ... ... ..... 28
Grafico de quantidade de artigos publicados porano . . . . . . . . . .. .. 33
Categorizacao dos artigos selecionados por tipo de abordagem técnica. . . . 36
Distribuicao dos desafios em arquiteturas [oT autoadaptativas . . . . . . . 37
Metodologia adotada . . . . . . . .. ... 41
Pilha tecnolégica utilizada na implementacao do AutoMLOps . . . . . . . 44
Diagrama de Casode Uso . . . . . . .. .. ... ... .. .. .. ..., 48
Visao Geral . . . . . . . . 50
Arquitetura Proposta . . . . . . . ... 51
Dashboard de monitoramento Grafana . . . . . . .. ... ... 55
Fases do cenario de validacao . . . . . . . .. ... ... ... ... ..., 56
Comportamento do sistema em regime estavel . . . . .. .. ... .. ... 58
Detecgao de anomalia e emissao de alerta . . . . . . . . ... .. ... ... 60

Recuperacao de desempenho pés-autorizagao . . . . . . . . .. .. ... .. 61



3.1
3.2
3.3
3.4
3.5

5.1
5.2

Lista de Tabelas

Questoes de Pesquisa . . . . . . . . ... 24
Critérios de Inclusao . . . . . . . . .. ..o 25
Critérios de Exclusao . . . . . . . . .. .. 25
Elementos do framework PICOC utilizados na estratégia de busca . . . . . 26
Estudos incluidos na fase de andlise . . . . . . . . ... ... ... ... .. 29
Requisitos Funcionais (RFs) . . . .. ... ... . o 0L 46

Requisitos Nao Funcionais (RNFs) . . ... .. ... ... .. ... ... 49



Lista de Abreviacoes

API Interface de Programacao de Aplicagoes
AUC Area Sob a Curva
AutoML Aprendizado de Maquina Automatizado

AutoMLOps Arquitetura de Software autoadaptativa para IoT

CI/CD Integragao Continua e Entrega Continua

CPS Sistemas Ciber-Fisicos

DCC Departamento de Ciéncia da Computagao

DSR Pesquisa em Ciéncia do Design

HI Indice de Satde

HITL Intervengao Humana no Ciclo

IA Inteligéncia Artificial

[oT Internet das Coisas

M2M Comunicagao Méaquina a Maquina

MAPE-K Monitoramento, Analise, Planejamento, Execucao e Conhecimento
MLOps Operagoes de Aprendizado de Méaquina

MSL Mapeamento Sistematico da Literatura

PICOC Populacao, Intervencao, Comparagao, Resultados e Contexto
PRISMA Diretrizes para Relato de Revisoes Sistematicas e Meta-Analises
RF Requisito Funcional

RNF Requisito Nao Funcional

SDN Redes Definidas por Software

SOA Arquitetura Orientada a Servigcos

UFJF Universidade Federal de Juiz de Fora

XAI Inteligéncia Artificial Explicavel



1 Introducao

A Internet das Coisas (IoT) estabelece um paradigma tecnoldgico fundamentado na in-
terconexao de dispositivos fisicos para coleta, transmissao e processamento de dados em
tempo real (MANCINI, 2017). Essa capacidade impulsiona aplicagbes em setores como
saude, agricultura de precisao, cidades inteligentes e Industria 4.0, ao viabilizar a au-
tomagao e o suporte a tomada de decisao (ROCHA; KISSIMOTO, 2022). Contudo, o
volume de dados gerado, caracterizado por variabilidade e imprevisibilidade, demanda
arquiteturas de software adaptativas. Nesse contexto, Heinz et al. (2018) definem tais ar-
quiteturas como sistemas capazes de monitorar, analisar e modificar seu comportamento
em resposta a mudancas internas e externas, preservando atributos de qualidade.

Sob essa perspectiva, arquiteturas de software autoadaptativas distinguem-se
pela capacidade de monitorar seu funcionamento e ajustar o comportamento diante de
alteragoes no ambiente operacional (KEPHART; CHESS, 2003). Paralelamente, a In-
teligéncia Artificial (IA) consolidou-se como ferramenta para anélise de dados, sendo
incorporada em sistemas [oT (AVILA et al., 2022). A integragao entre arquiteturas au-
toadaptativas e técnicas de IA configura uma abordagem para o tratamento da natureza
dinamica dos dados em ambientes IoT, contribuindo para a eficiéncia sistémica.

Apesar dos avancos, solugoes existentes apresentam limitacoes. O monitoramento
de modelos de aprendizado de maquina depende de intervengao manual, o que compro-
mete a escalabilidade e a autonomia dos sistemas (ROCHA; KISSIMOTO, 2022; SOUZA,;
FONTANARI, 2024). Ademais, diversas propostas concentram-se em etapas isoladas do
ciclo adaptativo, como o monitoramento ou a selecao de modelos, em detrimento de me-
canismos integrados de substituicao automadtica baseados em métricas de desempenho
(AUDRITO, 2020). Essas lacunas restringem a aplicabilidade das solug¢oes em cendrios
[0oT, nos quais a dinamica dos dados pode levar a degradagao do desempenho dos modelos
preditivos em razao de fenémenos como o concept drift (GAMA et al., 2014). O concept
drift manifesta-se quando a relacao estatistica entre as variaveis de entrada e a variavel

alvo se altera ao longo do tempo, invalidando a fungao de mapeamento aprendida du-
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rante a fase de treinamento (WIDMER; KUBAT, 1996; QUINONERO-CANDELA et al.,
2009). Em ambientes de IoT, onde os fluxos de dados sdo continuos e ndo estacionarios,
esse fenomeno ocorre de forma abrupta, gradual, incremental ou recorrente (GAMA et
al., 2014; LU et al., 2018).

Diante desse contexto, o presente trabalho busca responder a seguinte questao
de pesquisa: “Como apoiar a construcao de arquiteturas autoadaptativas que
utilizam técnicas de IA por meio do monitoramento de modelos?”

Esta investigacao fundamenta-se na arquitetura ADAPTFlow, proposta por Soa-
res (2024), cujo objetivo é automatizar as etapas iniciais do ciclo de vida do aprendizado
de maquina. A arquitetura original disponibiliza um servigo para ingestao de dados,
treinamento de multiplos algoritmos via AutoML e selecao dos modelos com melhor de-
sempenho. Entretanto, essa proposta limita-se as fases de treinamento e selecao, sem
contemplar o gerenciamento pds-implantacao em producao.

Para mitigar essa lacuna, este trabalho propoe a extensao da arquitetura ADAPT-
Flow por meio da implementagao da camada operacional (Ops) do ciclo de MLOps. O
objetivo principal consiste no desenvolvimento de uma API parametrizavel, escalavel e
agnostica ao dominio, capaz de viabilizar a autoadaptacao de sistemas IoT por meio do
monitoramento continuo de modelos de aprendizado de maquina em producao.

Para alcancar o objetivo principal, foram definidos os seguintes objetivos es-
pecificos: (i) realizar um Mapeamento Sistemdtico da Literatura (MSL) para compreender
o estado da arte e identificar lacunas sobre adaptagao em sistemas [oT; (ii) desenvolver a
arquitetura AutoMLOps, implementando mecanismos de monitoramento continuo (Health
Indez) e estratégias de substitui¢do de modelos (Champion/Challenger); e (iil) avaliar a
eficacia da solugao proposta por meio de um estudo de caso no dominio da Agropecuaria,
aplicado ao monitoramento de emissoes de C'Os.

A arquitetura proposta, denominada AutoMLOps, adota a estratégia Champi-
on/Challenger para o gerenciamento do ciclo de vida dos modelos e emprega o padrao
de projeto Observer como mecanismo central de adaptacao. Essa abordagem substitui o
monitoramento passivo por um processo de reavaliagao proativa, acionado por evidéncias

de degradacao do desempenho, tais como anomalias nos dados de entrada ou reducao
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da confianga nas predigdes (SOARES, 2024; AUDRITO, 2020). A coleta continua de
evidéncias em tempo real contribui para a eficiéncia operacional e a capacidade de res-
posta do sistema frente a mudancas.

O monitoramento integra o ciclo Human-in-the-Loop e baseia-se em uma métrica
unificada denominada Health Index (HI), a qual orienta as decisdes de adaptacao. O HI
consiste em uma medida composta que avalia a condigao do modelo em producao a partir
da combinagao de trés dimensdes: o Risco de Deriva (Drift Risk), associado a variagoes
estatisticas nos dados; o Risco de Confianga (Confidence Risk), relacionado a incerteza das
predigoes; e o Risco de Anomalia (Anomaly Risk), responsével por identificar observagoes
fora do padrao do conjunto de dados original (GAMA et al., 2014).

Com base no HI, o sistema gera alertas automéaticos para retreinamento e chave-
amento de modelos por meio de endpoints da API. O servigo permite a configuracao de
métricas de desempenho, como acuracia, AUC, recall, precisao e F1-score, transformando
a selecao de modelos em um processo continuo de gerenciamento do ciclo de vida. Para
apoiar a analise dos dados, a solucdo integra-se a ferramenta Grafana (Grafana Labs,
2025) para visualizagao dos indicadores.

O restante deste trabalho organiza-se da seguinte forma: o Capitulo 2 apresenta o
referencial tedrico; o Capitulo 3 discute os trabalhos relacionados; o Capitulo 4 descreve a
metodologia baseada em Design Science Research; o Capitulo 5 detalha o desenvolvimento
da solugao; o Capitulo 6 apresenta os resultados experimentais; o Capitulo 7 discute as

implicagoes dos resultados; e o Capitulo 8 apresenta as conclusoes e trabalhos futuros.
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2 Referencial Teodrico

Este capitulo apresenta os conceitos fundamentais que sustentam a compreensao da
solugao proposta, fornecendo o embasamento tedrico necessario para o desenvolvimento e

a avaliacao do artefato de pesquisa.

2.1 IoT

De acordo com Farooq et al. (2015), a IoT consiste em uma rede de objetos fisicos, ou
“coisas”, equipados com sensores, atuadores, softwares e recursos de conectividade, que
possibilitam a troca de dados entre dispositivos, fabricantes, operadores e outros sistemas
conectados.

Esse conceito vai além da comunicagao méquina a maquina (M2M), uma vez que
incorpora inteligéncia e autonomia ao ambiente computacional, permitindo que disposi-
tivos atuem de forma colaborativa e integrada (FAROOQ et al., 2015). A capacidade
de gerar, processar e compartilhar grandes volumes de dados em tempo real tem impul-
sionado processos de transformacao digital em diversos setores, como saude, transporte,
industria, cidades inteligentes e agricultura de precisao (SUN et al., 2025). Esses avangos
tém intensificado a demanda por solucoes arquiteturais capazes de lidar com sistemas
complexos, especialmente no que se refere a atributos de qualidade, como escalabilidade,
confiabilidade e desempenho (TREVEIL et al., 2020).

Segundo Ali et al. (2022), a IoT adota, de forma geral, uma arquitetura baseada

em camadas, comumente estruturada em:

e Camada de percepgao, responsavel pela captura de informagoes do ambiente por

meio de sensores e atuadores;

e Camada de rede, encarregada da comunicacao e do transporte de dados, utilizando

diferentes tecnologias, como Wi-Fi, 5G, LoRaWAN e Bluetooth;

e Camada de aplicagao, na qual os dados coletados sao processados e transformados
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em servigos e aplicacoes voltadas ao usuario final.

Apesar de seus beneficios, a adocao da IoT impoe desafios a construcao de sis-
temas baseados nessas arquiteturas. O volume massivo de dados gerados requer solucoes
eficientes para armazenamento, processamento e analise, tornando indispensavel a inte-
gragao com técnicas de IA e aprendizado de maquina (RUDENKO et al., 2022). Essas
técnicas possibilitam a extracao de conhecimento a partir dos dados, a identificacao de
padroes e o suporte a tomada de decisao em tempo real.

Outro aspecto critico refere-se a seguranca e a privacidade. A comunicacao en-
tre dispositivos conectados amplia a superficie de ataque, expondo vulnerabilidades que
podem comprometer tanto informacgoes sensiveis quanto a disponibilidade dos servigos.
Nesse sentido, pesquisas recentes tém investigado abordagens que conciliem escalabili-
dade, confiabilidade e protecao de dados, elementos fundamentais para a consolidacao
da IoT como uma infraestrutura tecnolégica de larga escala (WAKILI; BAKKALI, 2025;
SUN et al., 2025).

Por fim, destaca-se que a IoT nao se limita a uma tendéncia tecnolégica, mas atua
como um catalisador de inovacao, viabilizando a construgao de sistemas autonomos, adap-

tativos e inteligentes, capazes de atender as exigéncias de ambientes altamente dinamicos

e complexos(TANG; QIN, 2023).

2.2 Arquiteturas de Software autoadaptativas

A necessidade de adaptacao continua em sistemas de software decorre da variabilidade
do ambiente de execucao, da evolugao dos requisitos e das mudancas nas condigoes ope-
racionais (HEINZ et al., 2018). Para atender a esse contexto, surgem as arquiteturas
de software autoadaptativas, cujo objetivo é permitir que o proprio sistema identifique
variacoes relevantes e ajuste seu comportamento de forma autonoma. Dessa maneira,
a adaptagao continua ¢é viabilizada por mecanismos que observam o estado do sistema,
avaliam suas condigdes e executam acgoes corretivas ou evolutivas ao longo do tempo
(KEPHART; CHESS, 2003).

Segundo Heinz et al. (2018), uma arquitetura autoadaptativa preserva os atribu-



2.2 Arquiteturas de Software autoadaptativas 14

tos de qualidade do sistema por meio de mecanismos de monitoramento, analise e recon-
figuracao dinamica, assegurando o atendimento aos requisitos funcionais e nao funcionais
mesmo em cenarios variaveis.

Esse conceito é comumente representado pelo ciclo MAPE-K (Monitor, Analyze,
Plan, Ezecute — Knowledge), que organiza o processo de adaptacdo em etapas sisteméticas
e interdependentes. Essa estrutura possibilita que os sistemas reajam de maneira autonoma
a alteracoes ambientais ou operacionais.

Conforme ilustrado na Figura 2.1, o ciclo inicia-se na etapa de Monitoramento
(Monitor), responsavel pela coleta continua de dados sobre o estado do sistema e do
ambiente. Em seguida, na etapa de Andlise (Analyze), os dados coletados sao avaliados
com o objetivo de identificar desvios, tendéncias ou violagoes de requisitos previamente
estabelecidos. Com base nessa anélise, a etapa de Planejamento (Plan) define estratégias
de adaptacao, selecionando agoes capazes de restaurar ou manter os objetivos do sistema.
Posteriormente, na etapa de Execucdo (Ezecute), essas agoes sao aplicadas por meio de

mecanismos de reconfiguracao ou ajuste do comportamento do sistema.

Autonomic manager

w"ze Plan
mnowledgd
&Managed element>

Figura 2.1: Ciclo de adaptacao MAPE-K

Fonte: (KEPHART; CHESS, 2003) e (GORLA et al., 2010).

Estudos realizados por Kephart e Chess (2003) e Heinz et al. (2018) indicam que

arquiteturas autoadaptativas contribuem para a manutencao da confiabilidade, escalabi-
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lidade e autonomia, especialmente em ambientes caracterizados por fluxos continuos de
dados e alta variabilidade contextual. No entanto, para que a adaptagao ocorra de ma-
neira sistematica, o sistema deve dispor de mecanismos capazes de analisar dados e apoiar
a tomada de decisao.

Nesse contexto, Djennadi et al. (2024) propoem a reconfiguragao adaptativa de
rotas em edificios inteligentes por meio de redes definidas por software (Software-Defined
Networking — SDN). A abordagem baseia-se no monitoramento do estado da infraestru-
tura, na andlise das condigoes operacionais e na execucao automatica de reconfiguragoes
fundamentadas em politicas previamente definidas.

De forma semelhante, Lam, Haugen e Delsing (2022) discutem a orquestracao
dinamica de sistemas industriais baseados em 0T, nos quais a arquitetura observa o com-
portamento dos dispositivos, avalia o estado do sistema e reconfigura servicos conforme as
condigoOes operacionais, caracterizando um ciclo continuo de decisao e execugao voltado a
adaptacao.

Por sua vez, Dias, Restivo e Ferreira (2021) apresentam mecanismos de autorre-
paragao (self-healing) que permitem ao sistema identificar falhas, definir agoes de recu-
peracao e aplicar correcoes de forma autonoma. Esses mecanismos incorporam ciclos de
monitoramento, analise e execucao, voltados a manutencao do funcionamento do sistema

diante de falhas ou degradacoes.

2.3 Uso da IA com IoT

O mecanismo de decisao requerido por arquiteturas de software autoadaptativas pode ser
implementado por meio de técnicas de TA. Nesse contexto, a integragao entre IA e a [oT
possibilita que sistemas baseados em dispositivos conectados nao apenas coletem grandes
volumes de dados, mas também analisem essas informacoes e tomem decisoes durante a
execugao do sistema (AVILA et al., 2022). Dessa forma, a adaptagao deixa de depender
exclusivamente de regras estaticas e passa a ser orientada por dados observados ao longo
do tempo (HALLOU et al., 2024).

Segundo Ludermir (2021), técnicas como aprendizado de méquina, redes neurais

e algoritmos de classificacao tém sido amplamente aplicadas para otimizar processos em
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diferentes dominios da IoT, incluindo monitoramento ambiental, manutencao preditiva,
gestao energética e controle de trafego. Essas abordagens contribuem para a construgao
de sistemas mais eficientes, com maior capacidade de resposta as condi¢oes dinamicas do
ambiente.

Além disso, a IA desempenha papel relevante na melhoria da seguranca e da
privacidade em redes IoT. Algoritmos de deteccao de anomalias, por exemplo, sdo empre-
gados para identificar comportamentos suspeitos e mitigar ataques cibernéticos, conforme
discutido por Soares et al. (2024). A andlise inteligente dos dados também possibilita a
identificacao e o tratamento diferenciado de informacgoes sensiveis, reduzindo riscos asso-
ciados a exposicao indevida.

Adicionalmente, a aplicacao de técnicas de IA em arquiteturas autoadaptativas
amplia a capacidade dos sistemas de reconfigurar seus componentes de forma autonoma,
com base em evidéncias extraidas dos dados (LEE; LEE; SEO, 2022; AMIRI; ZDUN,
2023). Essa integragao entre IA e IoT contribui para o desenvolvimento de solugoes
alinhadas as exigéncias de ambientes distribuidos e dinamicos. Entretanto, a simples
utilizacao de modelos de IA nao assegura, por si s6, a manutencao do desempenho e da
confiabilidade ao longo do tempo, tornando necessario o gerenciamento desses modelos
durante todo o seu ciclo de vida em producao, a fim de garantir sua adequagao continua

as condigoes do ambiente e aos objetivos do sistema.

2.4 MLOps

Com a crescente adogao de modelos de aprendizado de maquina em ambientes produti-
vos, especialmente em sistemas complexos e distribuidos, torna-se necessario o gerencia-
mento estruturado de todo o ciclo de vida desses modelos (LAKSHMANAN; ROBINSON;
MUNN, 2020). Nesse contexto, surge a abordagem de MLOps (Machine Learning Ope-
rations), que reune praticas voltadas a integragao entre o desenvolvimento de modelos
de aprendizado de méquina e as operagoes de software (TREVEIL et al., 2020). O obje-
tivo do MLOps é organizar e automatizar as etapas que abrangem desde a preparacao dos
dados até a implantagao e o monitoramento continuo dos modelos em produgao (KREUZ-

BERGER; KUHL; HIRSCHL, 2023). Essa abordagem combina principios do DevOps com
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técnicas de Ciéncia de Dados, contribuindo para o aumento do controle, da rastreabilidade
e da colaboragao entre as equipes envolvidas (KODAKANDLA, 2024).

Conforme apontado por Kreuzberger, Kiihl e Hirschl (2023), o MLOps incorpora
metodologias de integragao e entrega continuas (CI/CD), que facilitam a atualizacao de
modelos em ambientes produtivos e reduzem o tempo necessario para validar e disponibi-
lizar novas versoes. Essas praticas apresentam especial relevancia em sistemas de [oT, nos
quais os dados sao gerados em tempo real e demandam respostas rapidas e adaptativas.

Além disso, o MLOps apoia a manutencao da qualidade dos modelos ao longo
do tempo por meio do monitoramento de desempenho, da identificacao de desvios e do
retreinamento automatizado (KODAKANDLA, 2024; BAYRAM; ALTILAR, 2021). Em
ambientes distribuidos, essa abordagem viabiliza a construcao de pipelines que sustentam
aplicacoes inteligentes com maior estabilidade e eficiéncia.

A implementacao das praticas de MLOps pode ocorrer de forma manual ou au-
tomatizada, conforme a maturidade dos processos e a infraestrutura disponivel (KREUZ-
BERGER; KUHL; HIRSCHL, 2023). Quando realizada manualmente, cada etapa do ciclo
de vida dos modelos de aprendizado de maquina empregados em sistemas de IoT, como
coleta de dados, treinamento, validagao, implantagao e monitoramento, exige intervencao
direta das equipes técnicas (TREVEIL et al., 2020). Essa abordagem demanda maior
esforco operacional, aumenta o risco de inconsisténcias e dificulta a rastreabilidade das
versoes dos modelos (LAKSHMANAN; ROBINSON; MUNN, 2020). Além disso, a re-
plicacao de experimentos e a resposta a mudancas nos dados tornam-se mais lentas, o que
pode comprometer a capacidade de adaptagao de sistemas de IoT em cendrios de variagao
continua dos dados (BAYRAM; ALTILAR, 2021).

Por outro lado, a automagao dos pipelines de aprendizado de maquina permite
integrar as etapas de coleta e preparacao de dados, treinamento, validagao, implantacao
e monitoramento dos modelos utilizados no ambiente de producao em fluxos continuos e
auditaveis, reduzindo a dependéncia de intervencoes manuais. A utilizacao de ferramen-
tas de CI/CD, monitoramento e orquestracao de workflows contribui para a atualizagao
sistematica dos modelos, o retreinamento com novos dados e a deteccao de degradacao

de desempenho. Essa abordagem automatizada de MLOps favorece a escalabilidade das
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solugoes, a padronizacao dos processos e a redugao do tempo entre o desenvolvimento e a

disponibilizagdo em produgao (TREVEIL et al., 2020).

2.4.1 Data Drift

No contexto de pipelines automatizados de MLOps, a manutencao do desempenho de
modelos de aprendizado de maquina em producao esta diretamente relacionada a estabi-
lidade dos dados utilizados durante a fase de inferéncia. Em sistemas de IoT, nos quais os
dados sao gerados de forma continua e refletem ambientes sujeitos a mudancas frequen-
tes, é comum que as caracteristicas estatisticas desses dados se modifiquem ao longo do
tempo, dando origem ao fenémeno conhecido como data drift (GAMA et al., 2014).

O data drift refere-se a alteragao na distribuicao dos dados de entrada observados
em producao em relagao a distribuicao dos dados utilizados na fase de treinamento do mo-
delo (WIDMER; KUBAT, 1996). Essas mudancas podem ocorrer em funcao de variagoes
nas condigoes ambientais, no comportamento dos usudrios, no funcionamento de sensores
ou na dinamica operacional do sistema. Como consequéncia, os dados processados passam
a representar padroes distintos daqueles considerados durante o treinamento, o que pode
impactar negativamente o desempenho e a confiabilidade do modelo.

Em ambientes de IoT, o data drift constitui um desafio recorrente, uma vez que
os fluxos de dados sao continuos, distribuidos e sujeitos a variacoes temporais. Mesmo
quando a relagao entre as variaveis de entrada e saida permanece inalterada, alteragoes
na distribuicao dos dados podem comprometer a capacidade de generalizacao do modelo.
Nesse contexto, a deteccao e o monitoramento de data drift constituem elementos cen-
trais das praticas de MLOps, permitindo avaliar continuamente a adequacao dos dados
utilizados em producao.

A incorporacao de mecanismos de monitoramento de data drift possibilita a
adogao de estratégias de adaptagao, como o retreinamento de modelos, o ajuste de
parametros ou a substituicao controlada de modelos em producao. Essas estratégias
podem ser integradas a abordagens como o padrao Champion/Challenger e praticas de
Human-in-the-Loop, nas quais decisoes automatizadas sao validadas ou complementadas

por especialistas. Dessa forma, o gerenciamento do data drift contribui para a manutengao
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da qualidade, da robustez e da confiabilidade dos modelos em ambientes distribuidos e

dinamicos.

2.4.2 Concept Drift

Enquanto o data drift diz respeito a mudanca na distribuicao dos dados de entrada, o
concept drift representa um desafio ainda mais critico para a confiabilidade de sistemas
inteligentes: a alteracao na relagao fundamental entre as variaveis de entrada e a variavel
alvo. Em outras palavras, o ”"conceito”que o modelo aprendeu, regra de decisao que
mapeia X para Y, deixa de ser valido devido a mudancas na dinamica do ambiente real
(GAMA et al., 2014).

Diferentemente de falhas de software tradicionais, o concept drift frequentemente
ocorre de maneira "silenciosa”. O modelo continua recebendo dados e gerando predigoes
sem erros de execucao, porém, a acuracia dessas predicoes degrada-se progressivamente,
uma vez que a fronteira de decisao aprendida no treinamento nao reflete mais a realidade
atual (WIDMER; KUBAT, 1996; LU et al., 2018). Em cenarios de IoT, onde os dados sdo
inerentemente nao estaciondrios, essa obsolescéncia do modelo é praticamente inevitavel
se nao houver mecanismos de adaptacao.

A literatura classifica esse fenomeno conforme a velocidade e o comportamento

da mudanca:

e Drift Abrupto: Mudanca repentina no conceito, comum em falhas de sensores ou

alteragoes drasticas no processo monitorado;

e Drift Gradual: Transicao lenta onde o conceito antigo e o novo coexistem por um

periodo;

e Drift Incremental: Pequenas variacoes continuas que acumulam desvios ao longo

do tempo;

e Drift Recorrente: Reaparecimento de conceitos antigos, tipico de padroes sazo-

nais.

A persisténcia de modelos estaticos em ambientes sujeitos a concept drift com-

promete diretamente a utilidade da solugao de IoT. Portanto, a deteccao desse fendmeno
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exige mais do que apenas monitorar a distribuicao dos dados; requer a avaliacao continua
da incerteza do modelo e da sua performance em relacao a novos dados rotulados ou
feedbacks do ambiente (BAYRAM; ALTILAR, 2021). E nesse contexto que se torna im-
perativo adotar mecanismos arquiteturais capazes nao apenas de identificar a degradacao,
mas de operacionalizar a substituicao segura dos modelos afetados por novas versoes mais

aderentes ao conceito atual, utilizando abordagens consolidadas de MLOps.

2.4.3 Padrao Champion/Challenger

O padrao Champion/Challenger consiste em uma estratégia de MLOps voltada a ava-
liacao continua de modelos de aprendizado de maquina em ambientes sujeitos a variagoes
nos dados. Nesse contexto, o champion corresponde ao modelo atualmente implantado em
producao, enquanto o challenger refere-se a um ou mais modelos alternativos avaliados
em paralelo. A substituicao do modelo ocorre quando um challenger apresenta desempe-
nho superior ao champion, de acordo com métricas previamente definidas e critérios de
validacao estabelecidos.

Essa abordagem tem sido aplicada em sistemas de [oT com o objetivo de preservar
a qualidade dos modelos diante da variabilidade dos dados e das condigoes operacionais,
conforme discutido por Hutter, Kotthoff e Vanschoren (2019). A execucdo simulténea
de multiplos modelos, caracteristica do padrao Champion/Challenger, permite a com-
paracao de desempenho sob as mesmas condigoes de operacao, contribuindo para decisoes
mais consistentes em sistemas distribuidos, como aqueles baseados em sensores e redes
inteligentes.

Além disso, o padrao Champion/Challenger integra-se as praticas de MLOps ao
apoiar a automacao dos ciclos de validagao, promocao e substituicao de modelos em am-
bientes produtivos, conforme destacado por Kodakandla (2024). Essa integragao favorece
a deteccao e a mitigacao de deriva de dados, contribuindo para a estabilidade de sistemas
que operam de forma continua.

Em aplicacoes que envolvem deep learning, estratégias baseadas em multiplos mo-
delos concorrentes podem ser combinadas com mecanismos de adaptagao a deriva concei-

tual (WANG et al., 2020). Essa combinagao amplia a capacidade de resposta dos sistemas
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frente a cendrios complexos e ao processamento de dados nao estruturados (RESTUCCIA;
MELODIA, 2020).

Dessa forma, o padrao Champion/Challenger favorece a construgao de pipelines
adaptativos capazes de sustentar aplicacoes em ambientes distribuidos e dinamicos, aten-
dendo as exigéncias operacionais da IoT e as praticas contemporaneas de engenharia de
aprendizado de maquina (TREVEIL et al., 2020; KREUZBERGER,; KUHL; HIRSCHL,
2023). Além disso, essa abordagem fornece a estrutura técnica necessaria para mitigar os
efeitos do concept drift, permitindo a manutencao da acuracia por meio da competicao
continua entre modelos. Contudo, a automacao integral da substituicao de modelos em
dominios sensiveis pode introduzir riscos operacionais quando as decisoes se baseiam ex-
clusivamente em métricas estatisticas. Nesse contexto, torna-se fundamental integrar
mecanismos de supervisao que assegurem a robustez e a confiabilidade do processo de

adaptacao.

2.4.4 Human-in-the-Loop (HITL)

O conceito de Human-in-the-Loop (HITL) refere-se a integragao da intervengdo humana
em processos automatizados de aprendizado de maquina, especialmente em etapas criticas
de monitoramento, validagdo e tomada de decisao (AMERSHI et al., 2014; WU et al.,
2024). Nessa abordagem, operadores ou especialistas sdo acionados para validar, corrigir
ou complementar as predicoes realizadas pelo sistema, garantindo maior confiabilidade em
cendrios caracterizados por incerteza, ambiguidade ou condi¢oes nao previstas durante o
treinamento dos modelos (CIGNARELLA et al., 2023; ZHAO et al., 2023).

Em ambientes de MLOps, o HITL atua como um componente de supervisao
continua, operando em conjunto com métricas automatizadas de desempenho, como o HI.
Quando essas métricas indicam risco de data drift ou reducao na confianga das predicoes,
o sistema pode emitir alertas e solicitar a intervencao humana antes da execugao de agoes
automaticas, como retreinamento, chaveamento ou substitui¢ao de modelos (WU et al.,
2024). Essa estratégia contribui para que decisoes criticas ndo dependam exclusivamente
de mecanismos automatizados, promovendo um equilibrio entre autonomia do sistema e

controle humano (AMERSHI et al., 2014).
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A aplicacao do HITL mostra-se particularmente relevante em sistemas criticos ou
que lidam com dados sensiveis, como aqueles inseridos nos dominios da satide, das financas
e da IoT. Nesses contextos, decisoes incorretas podem acarretar impactos operacionais,
éticos ou econdomicos significativos, reforcando a necessidade de validacao humana em
pontos estratégicos do processo (DENG; WANG; LI, 2023).

Além de aumentar a seguranca e a confiabilidade dos sistemas, o HITL contribui
para a melhoria continua dos modelos de aprendizado de méquina. O feedback oriundo
da intervencao humana pode ser incorporado aos ciclos de atualizacao e adaptacao dos
pipelines de MLOps, promovendo o refinamento progressivo dos modelos e fortalecendo a

robustez dos processos de automagao (WU et al., 2024; CIGNARELLA et al., 2023).



23

3 Trabalhos Relacionados

O MSL consiste em uma abordagem metodoldgica estruturada voltada a organizacao,
classificacao e andlise da producao cientifica sobre um determinado tema. Seu objetivo
principal é identificar lacunas, tendéncias e oportunidades de pesquisa em uma area de
conhecimento especifica (COELHO; DERMEVAL, 2019).

A realizacgao do MSL neste trabalho teve como objetivo compreender o estado
da arte sobre estratégias de deteccao e mitigacao de concept drift em sistemas auto-
adaptativos, bem como identificar abordagens aplicaveis ao contexto da IoT.

Para isso, este capitulo descreve de forma detalhada as etapas conduzidas durante
o processo de mapeamento, que incluem o planejamento, a formulagao das questoes de
pesquisa, a definicao dos critérios de inclusao e exclusao e a estratégia de busca adotada
para a selecao dos estudos relevantes.

A etapa inicial do MSL consistiu na elaboragdo de um protocolo de pesquisa,
responsavel por orientar todas as fases subsequentes do estudo. Esse protocolo contemplou

os seguintes elementos:

e Objetivo do mapeamento;

Questoes de pesquisa (QPs);

Fontes de dados selecionadas;

String de busca utilizada;

Critérios de inclusdo e exclusao.

Com o intuito de ampliar a cobertura da revisao, foram selecionadas as bases de
dados Scopus e IEEE Xplore. A Scopus, de carater multidisciplinar, retine publica¢oes em
areas como ciéncia da computacao, engenharia e IA. A IEEE Xplore, por sua vez, é espe-
cializada em engenharia elétrica, ciéncia da computagao e tecnologias emergentes, sendo

frequentemente utilizada em estudos sobre IoT, arquiteturas de software e aprendizado de
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maquina. A combinacao dessas duas bases visa reduzir possiveis vieses de selecao e am-
pliar a representatividade dos estudos incluidos, favorecendo a incorporacao de pesquisas
relevantes, tanto em periédicos quanto em anais de conferéncias.

Para apoiar a execucao e o gerenciamento do processo, foi utilizada a ferramenta
PARSIFAL (PARSIFAL, 2021), que auxiliou na organizagao dos resultados e na aplicagao

sistematica do protocolo definido.

3.1 Questoes de Pesquisa

As questoes de pesquisa foram formuladas com o objetivo de orientar a andlise dos estu-
dos primérios e manter o alinhamento com os objetivos do mapeamento. A Tabela 3.1
apresenta as questoes definidas, sendo a QP a questao central, que fornece o contexto

para as demais.

Tabela 3.1: Questoes de Pesquisa

Identificador | Tipo de questao Descricao

QP Questao Principal Como apoiar a construcao de arquiteturas

autoadaptativas que utilizam técnicas de TA?

QP1 Questao Secundéaria Quais sao os principais desafios enfrentados

no desenvolvimento dessas arquiteturas?

QP2 Questao Secundéaria Como a integracao de padroes de projetos
pode viabilizar a adaptagao continua em ar-

quiteturas de IoT?

QP3 Questao Secundéria Quais métodos de avaliacao sao utilizados na
literatura para validar a eficacia de arquite-

turas autoadaptativas no tratamento de con-

cept drift?

Fonte: Elaborado pelo autor.
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3.2 Critérios de Inclusao e Exclusao

Com base nos objetivos do estudo, foram definidos critérios especificos para a selecao
dos estudos. As Tabelas 3.2 e 3.3 apresentam, respectivamente, os critérios de inclusao e

exclusao adotados.

Tabela 3.2: Critérios de Inclusdo

Identificador | Descricao

CI1 Estudos que abordem arquiteturas de software autoadaptativas em
cenarios de IoT, com foco no uso de IA para suporte a adaptacao. O
trabalho deve discutir desafios de desenvolvimento, propor ou utili-
zar padroes arquiteturais e/ou frameworks para adaptacao, ou apre-
sentar métodos de avaliacao relacionados a eficacia da adaptagao

(como tratamento de concept drift).

Fonte: Elaborado pelo autor.

Tabela 3.3: Critérios de Exclusao

Identificador | Descricao
CE1 Estudos nao escritos em inglés ou portugues.
CE2 Estudos cujo texto completo nao esteja disponivel.
CE3 Publicacoes que nao se caracterizam como artigos cientificos
primarios.
CE4 Estudos substituidos por versoes mais recentes do mesmo trabalho.

Fonte: Elaborado pelo autor.

3.3 Estratégia de Busca

A definicao da estratégia de busca teve como objetivo assegurar a identificacao abrangente
e sistematica dos estudos primarios relevantes ao tema desta pesquisa. Para isso, a cons-
trucao da string de busca foi conduzida de forma estruturada, a partir da decomposicao da
questao de pesquisa em seus conceitos centrais, utilizando uma adaptagao do framework
PICOC (Population, Intervention, Comparison, Outcome e Context), amplamente empre-

gado em estudos de mapeamento e revisao sistematica da literatura (HIGGINS; GREEN,
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2011).

O uso do framework PICOC possibilitou organizar os principais elementos con-
ceituais do estudo, assegurando coeréncia entre os objetivos da pesquisa e os termos
utilizados na busca. A Tabela 3.4 apresenta os elementos do PICOC considerados neste

trabalho e sua respectiva aplicacao no contexto da pesquisa.

Tabela 3.4: Elementos do framework PICOC utilizados na estratégia de busca

Elemento | Descricao Aplicacao neste estudo
P Populacao Sistemas de [oT
I Intervencao Analise de modelos e arquiteturas que permitem

adaptagao dinamica em tempo de execugao

Comparagao —

O Resultado Arquiteturas que promovem melhorias de
eficiencia, desempenho ou adaptabilidade dos
sistemas

C Contexto Arquitetura de Software

Fonte: Elaborado pelo autor.

A partir desses eixos conceituais, foram definidos termos-chave, sinonimos e va-
riagoes terminoldgicas associadas a cada elemento do PICOC, com o objetivo de ampliar
a abrangeéncia da busca e capturar estudos relevantes que utilizassem diferentes nomen-
claturas. A combinacao desses termos resultou na string de busca final apresentada a

seguir:

((““‘self-adaptive system*’’ OR ‘‘self-adaptiv+*’’ OR ‘‘adaptive software’’

OR ‘‘autonomic computing’’ OR ‘‘runtime adaptation’’ OR ‘dynamic

reconfiguration’’ OR ¢‘AI-Assisted Software Architecture’’) AND (‘‘Internet

of Things’’ OR ‘‘IoT’’) AND (‘‘software arch*’’ OR ‘‘software design’’

OR ‘‘architectural pattern*’’ OR ‘‘framework’’))

A string foi aplicada diretamente nas bases de dados Scopus e IEEE Xplore,
sem a necessidade de adaptacoes especificas para cada plataforma, uma vez que ambas

suportam operadores booleanos e consultas complexas. A escolha dessas bases justifica-se
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por sua ampla cobertura de publicacoes cientificas nas areas de ciéncia da computagao,
engenharia de software, IoT e TA.

A avaliacao da string de busca foi realizada por meio da utilizacao de artigos de
controle, previamente selecionados por sua relevancia e aderéncia ao dominio da pesquisa.
Esse procedimento teve como finalidade verificar se a string era capaz de recuperar tais
estudos nas bases selecionadas, assegurando que os principais trabalhos relacionados ao

tema fossem contemplados pela estratégia de busca adotada.

3.4 Procedimentos de Busca e Analise dos Estudos

As buscas nas bases de dados foram conduzidas durante o primeiro semestre de 2025.
Inicialmente, a aplicagao da string de busca detalhada na secao anterior resultou na
identificacao de 262 estudos na base Scopus e 187 estudos na IEEE Xplore, totalizando
449 publicagoes relacionadas a propostas de arquiteturas de software autoadaptativas
aplicadas a sistemas de IoT. Apds a remocao das duplicatas, restaram 366 artigos tinicos.
O processo de busca e selecao dos estudos foi conduzido em trés etapas sequenciais.

Na primeira etapa, foram analisados os titulos, resumos e palavras-chave dos
366 artigos identificados. Com base nos critérios de exclusao previamente definidos (ver
Tabela 3.3), 305 estudos foram eliminados, resultando na sele¢ao de 61 artigos para a fase
seguinte.

Na segunda etapa, realizou-se a leitura dos titulos, resumos, introducoes e con-
clusoes dos 61 artigos remanescentes. A partir da reaplicacao dos critérios de inclusao e
exclusao, 38 estudos foram excluidos, sendo a indisponibilidade de acesso ao texto com-
pleto um fator adicional para eliminacao. Ao final dessa etapa, 23 artigos avancaram para
a fase final de anélise.

Na terceira etapa, procedeu-se a leitura integral dos 23 estudos selecionados.
Apoés nova verificagao dos critérios estabelecidos, todos os 23 artigos foram considerados
relevantes e incluidos na analise final do mapeamento sistematico.

A Figura 3.1 apresenta uma visao geral do processo de busca, filtragem e selegao

dos estudos, conforme o protocolo PRISMA.
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Identificagdo dos estudos através de bases de dados

*E Registros identificados através de:
_E Scopus (n = 262) Registros removidos:
]
= IEEE Xplore (n = 187) Duplicados (n = 83)
- Total( n = 449)
Registros removidos apos leitura
Registros em triagem: de titulo e resumos:
(n = 366) (n=305)
E
4]
&0
i
|L_— ' : "
Publicacdes para elegibilidade: Reglstr{oﬂs Eegrgjcwldos.
(n=8a1)
= Total de estudos incluidos na
= revisdo:
o
£ (n=23)

Figura 3.1: Fluxograma do protocolo PRISMA

Fonte: Elaborado pelo autor.

3.5 Resultados e Discussoes

Esta secao apresenta os principais achados obtidos a partir da andlise dos estudos sele-
cionados, os quais estao listados na Tabela 3.5. Os 23 artigos incluidos atenderam aos
critérios de inclusao definidos no protocolo do mapeamento sistematico da literatura e

compoem a base empirica utilizada para responder as questoes de pesquisa estabelecidas.
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Tabela 3.5: Estudos incluidos na fase de analise
ID | Autor(es) Titulo Ano
E1 | HALLOU, Amal et | Context-Aware IoT System Development Appro- | 2024
al. ach Based on Meta-Modeling and Reinforcement
Learning: A Smart Home Case Study.
E2 | HACHICHA, Modeling and  specifying formally compound | 2022
Marwa; BEN HA- | MAPEFE pattern for self-adaptive loT systems.
LIMA, Riadh;
HADJ KACEM,
Ahmed.
E3 | ALKHABBAS, Assert: A blockchain-based architectural approach | 2022
Fahed et al. for engineering secure self-adaptive loT systems.
E4 | LEE, Euijong; | Deep learning based self-adaptive framework for | 2022
LEE, Sukhoon; | environmental interoperability in IoT.
SEO, Young-Duk.
E5 | DI MENNA, Fe- | FEAST: a framework for evaluating implementa- | 2022
derico, MUCCINI, | tion architectures of self-adaptive IoT systems.
Henry; VAIDHYA-
NATHAN,
Karthik.
E6 | GULDNER, Achim | A framework for Al-based self-adaptive cyber- | 2023
et al. physical process systems.
E7 | KARADUMAN, Enhancing BDI agents using fuzzy logic for CPS | 2022
Burak; TEZEL, | and IoT interoperability using the JaCa platform.
Baris Tekin;
CHALLENGER,
Moharram.

Continua na préxima péagina...
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Tabela 3.5 — continuagao da pagina anterior
ID | Autor(es) Titulo Ano
E8 | FONSECA, Adri- | Dealing with IoT defiant components. 2021
lene et al.
E9 | DJENNADI, Liti- | SDN-based approach for adaptive reconfiguration | 2024
cia et al. of routing in IoT for smart buildings.
E10 | LAM, An Ngoc; | Dynamical orchestration and configuration servi- | 2022
HAUGEN, Oys- | ces in industrial IoT systems: An autonomic ap-
tein;  DELSING, | proach.
Jerker.
E11 | HE, Xing et al. Redefinition of digital twin and its situation aware- | 2024
ness framework designing toward fourth paradigm
for energy internet of things.
E12 | NIKKHAH, A Deployment Framework for Quality-Sensitive | 2021
Shayan Tabatabaei | Applications in Resource-Constrained Dynamic
et al. Environments.
E13 | TANG, Lin; QIN, | Divisible task offloading for multiuser multiserver | 2023
Hang. mobile edge computing systems based on deep re-
inforcement learning.
E14 | AMIRI, Amirali; | Smart and Adaptive Routing Architecture: An | 2023
ZDUN, Uwe. Internet-of-Things Traffic Manager Based on Ar-
tificial Neural Networks.
E15 | RULLO, Antonino | Kalis2.0 — A SECaaS-Based Context-Aware Self- | 2023
et al. Adaptive Intrusion Detection System for IoT.
E16 | WANG, Xiaofei et | Federated deep reinforcement learning for Internet | 2020
al. of Things with decentralized cooperative edge ca-
ching.

Continua na préxima pagina...
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Tabela 3.5 — continuagao da pagina anterior

ID | Autor(es) Titulo Ano

E17 | RESTUCCIA, DeepWiERL: Bringing deep reinforcement lear- | 2020
Francesco; MELO- | ning to the internet of self-adaptive things.
DIA, Tommaso.

E18 | BASSENE, Avewe; | A self-adaptive QoS-management framework for | 2022
GUEYE, Bamba. highly dynamic loT networks.

E19 | FRANGOUDIS, Recursive design for data-driven, self-adaptive IoT | 2021
Pantelis A.; | services.
REISINGER,
Matthias; DUST-
DAR, Schahram.

E20 | DIAS, Joao Pedro; | Empowering wvisual Internet-of-Things mashups | 2021
RESTIVO, André; | with self-healing capabilities.
FERREIRA, Hugo
Sereno.

E21 | DURAN, Francisco | Seamless reconfiguration of rule-based IoT applica- | 2021
et al. tions.

E22 | XTAO, Wenjing et | Collaborative cloud-edge service cognition fra- | 2021
al. mework for DNN configuration toward smart IloT.

E23 | AUDRITO, Gior- | FCPP: an efficient and extensible field calculus fra- | 2020
gio. mework.

Fonte: Elaborado pelo autor.

De modo geral, os estudos analisados abordam diferentes estratégias para o desen-

volvimento de arquiteturas de software autoadaptativas aplicadas a IoT, contemplando

tanto a organizacao arquitetural dos sistemas quanto os mecanismos empregados para

adaptacao em tempo de execucao. As propostas diferem quanto as técnicas utilizadas,

aos dominios de aplicacao e aos requisitos considerados.

Em primeiro lugar, parte dos trabalhos utiliza técnicas de IA, como Aprendizado
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de Maquina, aprendizado profundo e aprendizado por reforco, para apoiar processos de
tomada de decisao e reconfiguracao do sistema (E1, E4, E9, E13, E16, E17, E22) (HAL-
LOU et al., 2024; LEE; LEE; SEO, 2022; DJENNADI et al., 2024; TANG; QIN, 2023;
WANG et al., 2020; RESTUCCIA; MELODIA, 2020; XIAO et al., 2021). Nesses estu-
dos, a adaptacao é orientada pela analise dos dados coletados do ambiente, possibilitando
ajustes no comportamento do sistema de acordo com as condigoes operacionais.

Em seguida, observa-se um conjunto de propostas fundamentadas em padroes e
frameworks arquiteturais, com destaque para o uso do ciclo MAPE-K, arquiteturas ori-
entadas a agentes e modelos formais de especificagao (E2, E7, E10, E18, E19, E21) (HA-
CHICHA; HALIMA; KACEM, 2022; KARADUMAN; TEZEL; CHALLENGER, 2022;
LAM; HAUGEN; DELSING, 2022; BASSENE; GUEYE, 2022; FRANGOUDIS; REISIN-
GER; DUSTDAR, 2021; DURAN et al., 2021). Esses trabalhos estruturam a adaptagao
por meio da separacao entre monitoramento, andlise, planejamento e execucgao, o que
contribui para a organizacao do processo adaptativo.

Além disso, alguns estudos direcionam a adaptacao para o atendimento de requi-
sitos nao funcionais, como seguranca, confiabilidade, qualidade de servico e tolerancia a
falhas. Nesse grupo, incluem-se propostas voltadas a deteccao de intrusoes e protegao de
dados (E3, E15) (ALKHABBAS et al., 2022; RULLO et al., 2023), bem como mecanismos
de autorreparacao e tratamento de falhas (E8, E20).

Por outro lado, ha trabalhos que investigam arquiteturas voltadas a ambientes
distribuidos e heterogéneos, envolvendo computacao em nuvem, edge computing e sistemas
ciberfisicos (E6, E10, E16, E22) (GULDNER et al., 2023; LAM; HAUGEN; DELSING,
2022; WANG et al., 2020; XIAO et al., 2021). Esses estudos consideram a limitacao de
recursos, a descentralizacao do processamento e a variabilidade dos dados como fatores
relevantes para a adaptacao arquitetural.

De forma integrada, a analise dos estudos apresentados na Tabela 3.5 indica que
a literatura combina propostas voltadas a definicao de estruturas arquiteturais com me-
canismos técnicos de adaptagao. Essa combinacao evidencia a necessidade de abordagens
que articulem arquitetura de software, IA e gerenciamento de sistemas em ambientes de

IoT.
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A Figura 3.2 apresenta a distribuigao dos artigos incluidos de acordo com o ano
de publicacao. Observa-se que 2021 concentra o maior nimero de estudos, indicando um
aumento das investigacoes sobre arquiteturas de software autoadaptativas aplicadas a [oT
nesse periodo. Essa recorréncia pode ser associada a consolidacao de plataformas de IoT
e a ampliacao do uso de técnicas de adaptacao em tempo de execucao, motivadas pela
necessidade de lidar com ambientes distribuidos, heterogéneos e sujeitos a variagoes nos
dados. Além disso, esse periodo coincide com um maior interesse da literatura em estru-
turar solugoes arquiteturais que integrem mecanismos de monitoramento, reconfiguragao

e gerenciamento de qualidade de servigo em sistemas de IoT.

Distribuicdo Temporal das Publicacées

Quantidade de Artigos
s

T
2020 2021 2022 2023 2024
Ano de Publicagdo

Figura 3.2: Gréfico de quantidade de artigos publicados por ano

Fonte: Elaborado pelo autor.

Com base no protocolo de revisao adotado, os trabalhos foram organizados se-
gundo as questoes de pesquisa definidas, de modo a possibilitar uma analise estruturada
das contribuicoes, lacunas e tendéncias identificadas.

A seguir, cada questao de pesquisa é discutida individualmente, a luz das evidéncias
extraidas da literatura.

QP — Como apoiar a construcao de arquiteturas autoadaptativas, que
utilizam técnicas de TA, através do monitoramento de modelos?

Com base nos 23 estudos incluidos, observa-se que o monitoramento continuo
de modelos assume papel relevante na construcao de arquiteturas autoadaptativas que

utilizam técnicas de TA. Esse monitoramento estabelece a relagdo entre o comportamento
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esperado do sistema e as variagoes observadas em tempo de execucao, fornecendo subsidios
para decisoes de adaptacao em arquiteturas de IoT. Evidéncias na literatura indicam
que a articulagao entre mecanismos de analise e reconfiguracao permite que os sistemas
respondam a mudangas no ambiente operacional e nos fluxos de dados (HALLOU et al.,
2024; GULDNER et al., 2023; LAM; HAUGEN; DELSING, 2022).

Apesar dessas contribuicoes, os estudos analisados tendem a concentrar-se em
solugoes especificas de monitoramento ou em mecanismos pontuais de adaptagao, fre-
quentemente acoplados a arquiteturas ou aplicacoes particulares. Como consequéncia, o
gerenciamento do ciclo de vida dos modelos de aprendizado de maquina em producao nao
é abordado de forma estruturada. Questoes como deteccao sistematica de degradacao
de desempenho, controle de versoes, avaliacao comparativa entre modelos e definicao de
critérios formais para substituicao segura aparecem de maneira fragmentada ou sao omi-
tidas. Essa limitacao compromete a manutencao da coeréncia entre decisoes baseadas em
IA e os requisitos operacionais ao longo do tempo.

Diante desse cendrio, praticas associadas a MLOps configuram-se como um ele-
mento necessario para ampliar o suporte a adaptacao continua. A utilizacao de métricas
de desempenho, como acurécia, laténcia e confiabilidade, em conjunto com a deteccao
de concept drift e data drift, fornece subsidios para identificar situacoes em que um mo-
delo deve ser reavaliado, reconfigurado ou retreinado (TANG; QIN, 2023; WANG et al.,
2020; RESTUCCIA; MELODIA, 2020). Quando incorporadas a ciclos de feedback, es-
sas informacgoes permitem adaptacoes que preservam o funcionamento do sistema frente
a mudancas no ambiente ou nos dados (DJENNADI et al., 2024; BASSENE; GUEYE,
2022; FRANGOUDIS; REISINGER; DUSTDAR, 2021).

A diversidade de abordagens identificadas nos estudos selecionados é sintetizada
na Figura 3.3. A anélise detalhada dessas categorias permite compreender como a litera-
tura atual estrutura a autoadaptagao em IoT e onde residem as principais lacunas.

A categoria predominante, referente a Frameworks e Modelos Arquiteturais, en-
globa 10 estudos que buscam estabelecer a ”espinha dorsal”dos sistemas adaptativos. A
hegemonia dessa classe, frequentemente alicergada no ciclo MAPE-K ou no uso de Gémeos

Digitais (Digital Twins), sugere que a principal preocupacao da comunidade cientifica
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ainda reside na padronizagao dos fluxos de dados e controle. O uso de Gémeos Digitais,
especificamente, aparece como uma estratégia para simular adaptagoes em um ambiente
virtual antes de aplicd-las aos dispositivos fisicos. No entanto, embora esses frameworks
oferecam a estrutura necessaria para o feedback, eles tendem a tratar o componente de
inteligéncia como uma ”caixa preta”’, sem detalhar mecanismos para a manutencao da
sua acuracia ao longo do tempo.

Em segunda ordem de relevancia, com 6 artigos, encontram-se as propostas fo-
cadas em Aprendizado de Maquina e IA. Diferentemente da categoria anterior, que foca
na estrutura, esses estudos concentram-se no algoritmo de decisao. Nessas abordagens,
técnicas como Aprendizado por Reforco ou Redes Neurais sao utilizadas para processar o
contexto e decidir a melhor acao de adaptagao. O ponto critico identificado nesta andlise
é que a IA é utilizada como ferramenta para adaptar o sistema, mas raramente é o objeto
da adaptacdo. Ou seja, o sistema usa um modelo para se reconfigurar, mas nao possui
mecanismos para reconfigurar o préprio modelo quando este sofre degradagao por concept
drift.

As abordagens de Otimizacao e Gerenciamento de Recursos (3 estudos) tratam a
adaptagao sob uma otica infraestrutural. O foco principal é o balanceamento de carga e
a decisao dinamica de offloading entre a borda (Edge) e a nuvem (Cloud). A adaptagao,
neste contexto, responde a restrigoes de energia, largura de banda ou laténcia. Embora
essenciais para a viabilidade da IoT, essas solugoes geralmente operam com regras de-
terministicas ou otimizagoes matematicas, negligenciando a complexidade da deriva de
conceitos em dados de aplicacao.

Com menor representatividade, surgem os estudos voltados a Seguranga e QoS (2
artigos) e Arquiteturas Baseadas em Agentes (1 artigo). No primeiro caso, a adaptacao
¢ reativa a ameacas ou violagoes de niveis de servigo, utilizando, por vezes, blockchain
para garantir a integridade das reconfiguracoes. Ja a abordagem de agentes (BDI, Légica
Fuzzy) propoe uma inteligéncia descentralizada, onde cada dispositivo possui autono-
mia decisoria. A baixa adesao a este ultimo modelo pode ser atribuida a complexidade
computacional imposta aos dispositivos de borda, que frequentemente possuem recursos

limitados.
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Em sintese, a distribuicao apresentada na Figura 3.3 revela um cenario onde a
infraestrutura de adaptagao (Frameworks) e a inteligéncia de decisao (IA) sdo tratadas
de forma desconexa da gestao do ciclo de vida dos modelos. A literatura prioriza a
construcao da arquitetura ou a otimizacao de recursos, mas deixa descoberta a necessidade
de manutencao continua da inteligéncia preditiva. Essa lacuna valida a proposta deste
trabalho, que busca integrar a robustez dos frameworks arquiteturais com as praticas de
MLOps, garantindo que a adaptacao contemple nao apenas o sistema, mas também os

modelos de TA que o governam.

Categorizaciio dos Artigos por Abordagem

Frameworks/Modelos Arquiteturais (Geral, MAPEK, DT)

=

Aprendizado de Méquina/LA (Geral)

Otimizagéo/Gerenciamento de Recursos (Edge/Cloud)

| I

in/QoS (Foco

Arquiteturas Baseadas em Agentes (BDL, Fum)- 1

=)
-
o
o
a

Quantidade de Artigos

Figura 3.3: Categorizagao dos artigos selecionados por tipo de abordagem técnica.

Fonte: Elaborado pelo autor.

QP1 — Quais sao os principais desafios enfrentados no desenvolvimento
dessas arquiteturas?

Com relacao aos principais desafios enfrentados, os estudos analisados os agru-
pam em quatro categorias recorrentes: (i) escalabilidade e heterogeneidade, (ii) eficiéncia
energética e overhead de controle, (iii) consisténcia e confiabilidade, e (iv) integracao de
conhecimento e adaptagdo semantica (HALLOU et al., 2024; GULDNER et al., 2023;
MENNA; MUCCINI; VAIDHYANATHAN, 2022; HE et al., 2024). A distribui¢ao desses

desafios, conforme identificada na literatura, é apresentada na Figura 3.4.
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35%

Escalabilidade ¢ heterogeneidade

Desafios W Eficiéncia energética e overhead de controle

IoT W Consistincia e confiabilidade

do de ¢ adaptacdo semintica

20%

Figura 3.4: Distribuicao dos desafios em arquiteturas IoT autoadaptativas

Fonte: Elaborado pelo autor.

Conforme ilustrado na Figura 3.4, os desafios relacionados a escalabilidade e
heterogeneidade representam a maior parcela dos estudos analisados, correspondendo a
aproximadamente 35%. Esse resultado reflete a dificuldade de projetar arquiteturas ca-
pazes de lidar com o crescimento do nimero de dispositivos conectados, bem como com
a diversidade de hardware, protocolos e modelos de dados caracteristicos dos ambientes
IoT. A necessidade de manter desempenho, estabilidade e capacidade de adaptacao em
cenarios altamente distribuidos torna esse desafio central nas arquiteturas autoadaptativas
(DJENNADI et al., 2024; AMIRI; ZDUN, 2023; AUDRITO, 2020).

Em seguida, observa-se que cerca de 25% dos trabalhos enfatizam questoes as-
sociadas a eficiéncia energética e ao overhead de controle. Esses estudos destacam que
mecanismos de monitoramento continuo, tomada de decisao autonoma e aprendizado em
tempo de execucao impoem custos computacionais relevantes, especialmente em dispositi-
vos de borda com recursos limitados (TANG; QIN, 2023; LEE; LEE; SEO, 2022; WANG
et al., 2020).

Os desafios relacionados a consisténcia e confiabilidade aparecem em aproximada-
mente 20% dos estudos, abrangendo preocupagoes com a manutencao de estados coerentes
durante reconfiguracoes dinamicas e a garantia de que adaptacoes realizadas em tempo de
execugao nao introduzam falhas ou comportamentos indesejados (HACHICHA; HALIMA;
KACEM, 2022; DURAN et al., 2021; FONSECA et al., 2021).
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Por fim, a integracao de conhecimento e adaptagao semantica, também identifi-
cada em cerca de 20% dos estudos, evidencia a dificuldade de promover interoperabili-
dade entre componentes heterogéneos que operam com diferentes ontologias, modelos con-
ceituais e representacoes de contexto (KARADUMAN; TEZEL; CHALLENGER, 2022;
FRANGOUDIS; REISINGER; DUSTDAR, 2021; DIAS; RESTIVO; FERREIRA, 2021).

QP2 — Como padroes e frameworks consolidados podem ser aplicados
as arquiteturas de software em IoT?

Os padroes e frameworks consolidados desempenham um papel essencial na es-
truturagao de arquiteturas autoadaptativas voltadas a sistemas IoT. Entre eles, o modelo
MAPE-K destaca-se como a abordagem mais amplamente adotada na literatura anali-
sada, sendo formalizado e estendido em arquiteturas voltadas a adaptacao dinamica e a
governanca de sistemas loT (HACHICHA; HALIMA; KACEM, 2022; DJENNADI et al.,
2024). Além do MAPE-K, frameworks arquiteturais e plataformas orientadas a interope-
rabilidade tém sido explorados para viabilizar a integragao de dispositivos heterogéneos
e a reconfiguracao dinamica de servigos, como evidenciado em abordagens baseadas em
sistemas auto-adaptativos para IoT e CPS (MENNA; MUCCINI; VAIDHYANATHAN,
2022; GULDNER et al., 2023).

De forma complementar, a adocao de modelos baseados em contexto e meca-
nismos de representacao semantica tem sido utilizada para promover interoperabilidade
e adaptacao sensivel ao ambiente, conforme observado em arquiteturas contezt-aware e
sistemas orientados a conhecimento (HALLOU et al., 2024; HE et al., 2024).

No que se refere a adaptacao dinamica, observa-se uma adogao recorrente de
técnicas de aprendizado por reforco e métodos baseados em decisao para lidar com am-
bientes altamente dinamicos e imprevisiveis. Esses métodos tém sido aplicados tanto na
adaptagao de servigos quanto no controle de recursos em sistemas IoT e Edge Computing
(WANG et al., 2020; RESTUCCIA; MELODIA, 2020; TANG; QIN, 2023).

Para assegurar consisténcia, confiabilidade e previsibilidade do comportamento
adaptativo, diversas solugoes recorrem a modelagem formal e a especificacao rigorosa
dos ciclos de adaptacao, permitindo a verificacao do comportamento do sistema antes

e durante a execucao (HACHICHA; HALIMA; KACEM, 2022; DIAS; RESTIVO; FER-
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REIRA, 2021).

No contexto de redes IoT e sistemas distribuidos, arquiteturas adaptativas tem
explorado mecanismos de reconfiguracao dinamica de roteamento e gerenciamento de
trafego, com foco em escalabilidade e resiliéncia (DJENNADI et al., 2024; AMIRI; ZDUN,
2023; BASSENE; GUEYE, 2022). Por fim, plataformas orientadas & composigao e or-
questracao de servicos tém sido estendidas com capacidades de autocura e adaptagao em
tempo de execucao, reforcando a viabilidade de solugoes autoadaptativas em ambientes
produtivos (DIAS; RESTIVO; FERREIRA, 2021; DURAN et al., 2021).

QP3 — Quais métodos de avaliagao sao utilizados na literatura para
validar a eficacia de arquiteturas autoadaptativas no tratamento de concept
drift?

Nos estudos analisados, os métodos de avaliacao da eficdcia de arquiteturas au-
toadaptativas no tratamento de concept drift concentram-se na verificacao do desempe-
nho dos modelos e na estabilidade das adaptagoes executadas. A literatura evidencia a
combinacao de experimentos empiricos, estudos de caso e simulagoes controladas como
abordagens predominantes para essa validacao.

Grande parte dos trabalhos utiliza métricas quantitativas, como acuracia, pre-
cisao, recall, F1-score e perda média, para medir o impacto das estratégias de adaptacao
sobre o desempenho dos modelos em ambientes dinamicos (TANG; QIN, 2023; RESTUC-
CIA; MELODIA, 2020; WANG et al., 2020). Esses indicadores sao aplicados em cendrios
que simulam mudancas graduais ou abruptas nos dados, permitindo observar a capacidade
de deteccao e resposta ao drift.

Alguns estudos, como os de Hallou et al. (2024) e He et al. (2024) adotam experi-
mentos em dominios especificos, como casas inteligentes e redes de energia, para validar a
robustez das adaptacoes em contextos reais de [oT. Outros trabalhos propoem frameworks
de avaliagao baseados em métricas de desempenho estrutural e na analise de trade-offs
entre custo computacional e qualidade da adaptacao (MENNA; MUCCINI; VAIDHYA-
NATHAN, 2022; GULDNER et al., 2023).

A verificacao formal também é empregada para avaliar consisténcia e seguranca

durante reconfiguragoes, por meio da modelagem rigorosa dos ciclos de adaptacao e da
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especificacao formal do comportamento do sistema (HACHICHA; HALIMA; KACEM,
2022; DURAN et al., 2021). Em paralelo, arquiteturas orientadas & adaptagado de redes
[oT utilizam ambientes de simulagao e avaliacao experimental para testar o comporta-
mento adaptativo e validar mecanismos de reconfiguragao dinamica de rotas (DJENNADI
et al., 2024; AMIRI; ZDUN, 2023).

Por fim, observam-se abordagens que incorporam validacao continua, nas quais
o monitoramento do desempenho dos modelos é integrado ao ciclo MAPE-K, permitindo
a reavaliacao sistematica apds cada adaptacao. Essa estratégia fortalece a relacao entre
monitoramento, aprendizado e reconfiguracao, constituindo um mecanismo pratico para
avaliar a eficacia de arquiteturas autoadaptativas no enfrentamento do concept drift.

Nesse contexto, a proposta deste trabalho implementa a avaliagao continua por
meio da sistematizacao de praticas de MLOps. Diferentemente de abordagens que utilizam
métricas de desempenho de forma isolada ou restrita a ambientes simulados, a arquitetura
AutoMLOps adota o Health Index (HI) como métrica composta para o monitoramento
unificado de deriva e confianca. A solucao operacionaliza o tratamento do concept drift em
tempo de execucao, utilizando o padrao Champion/Challenger para realizar a validagao

comparativa e a substituicao automatica dos modelos em producao.
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4 Metodologia

Esta pesquisa fundamenta-se na metodologia Design Science Research (DSR) (HEVNER
et al., 2004), adotada para o desenvolvimento e a avaliagdo da plataforma AutoMLOps.
A DSR orienta a construcao de artefatos tecnoldgicos voltados a solucao de problemas
praticos, assegurando o rigor cientifico por meio de processos sistematicos de construgao e
validacao. O processo investigativo foi estruturado em etapas interconectadas, conforme

ilustrado na Figura 4.1.

N 1. Definigao do Problema
g Mapeamento Sistematico da Literatura
% J
2. Desenvolvimento da Solugao (O Artefato)
—
Plataforma AutoMLOps

3. Avaliagao
« A ; : <t
nuu[' Execugdo experimental e coleta de dados

Figura 4.1: Metodologia adotada

Fonte: Elaborado pelo autor.

4.1 Definicao do Problema

A etapa inicial teve como objetivo compreender o fenomeno investigado e definir o plano
experimental da pesquisa. Para isso, foi conduzido um mapeamento sistematico da li-
teratura, abrangendo temas como concept drift, monitoramento de modelos e sistemas
auto-adaptativos aplicados a ambientes de IoT. Os resultados indicaram que modelos im-
plantados em cendrios caracterizados por fluxo continuo de dados estao sujeitos a nao
estacionariedade, o que provoca alteracoes na distribuicao dos dados ao longo do tempo.

Como consequéncia, observa-se a degradacao gradual do desempenho dos modelos em
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producao.

Nesse contexto, a pesquisa classifica-se como aplicada e experimental, direcionada
a concepcao de uma solugao computacional capaz de detectar e reagir a degradacoes de
desempenho preditivo. A partir dessa formulacao, estabeleceu-se a seguinte hipdtese de

trabalho:

H1: A integracao de mecanismos de monitoramento baseados em métricas
compostas de risco (Health Index) e estratégias de substituigao dinamica (Cham-
pion/Challenger) em uma arquitetura de referéncia viabiliza a detecgao e a mi-
tigagao automatizada do concept drift, assegurando a manutengao da acurécia

de sistemas preditivos em ambientes de IoT.

Essa definicao orientou tanto a estrutura do artefato desenvolvido quanto o de-

senho experimental adotado para sua avaliacao.

4.2 Desenvolvimento da Solugao (Artefato)

O desenvolvimento do artefato, denominado AutoMLOps, consistiu na implementacao
de uma arquitetura orientada a servigos (Service-Oriented Architecture — SOA) para su-
portar o ciclo de vida de modelos de aprendizado de maquina em producao. A adogao
desse paradigma justifica-se pela necessidade de modularizar e desacoplar funcionalidades
associadas ao MLOps, tais como monitoramento, avaliacao de desempenho, deteccao de
drift, versionamento e retreinamento de modelos.

A separacao em servicos independentes favorece a reutilizacao, a escalabilidade e
a evolucao incremental da arquitetura, aspectos essenciais em ambientes de [oT caracteri-
zados por heterogeneidade, distribuigao e variabilidade continua dos dados. Além disso, a
orientacao a servigos facilita a integracao com pipelines e sistemas existentes, bem como a
orquestragao de componentes automatizados e humanos (human-in-the-loop), alinhando-
se as exigeéncias de flexibilidade e manutengao continua do ciclo de vida dos modelos. Os
detalhes arquiteturais, requisitos funcionais e tecnologias empregadas sao apresentados
no Capitulo 5.

A implementacao da arquitetura AutoMLOps foi materializada por meio de uma
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pilha tecnoldégica composta por ferramentas de cédigo aberto consolidadas na industria
e na academia. A Figura 4.2 ilustra o ecossistema de tecnologias adotado, evidenciando
as dependéncias e interacoes entre os componentes da camada de aplicacao, o motor de
aprendizado e os mecanismos de governanga.

O nucleo da aplicacao é orquestrado pelo FastAPI, um web framework de alto
desempenho que expoe os servicos da API. A escolha pelo FastAPI justifica-se pelo seu
suporte nativo a operagoes assincronas, essencial para lidar com a laténcia em cenéarios
de IoT, e pela integracao automatica com o Pydantic, que assegura a validacao rigorosa
dos dados de entrada, prevenindo falhas decorrentes de tipos de dados incorretos.

Para a automacao do ciclo de aprendizado de maquina, adotou-se o PyCaret, uma
biblioteca low-code que atua como o motor de AutoML. O PyCaret abstrai a complexidade
do treinamento e da selecao de modelos, integrando internamente bibliotecas fundamentais
como o Scikit-learn para algoritmos classicos, e frameworks de gradient boosting de alta
eficiéncia, especificamente o Light GBM e o CatBoost, reconhecidos pela rapidez e precisao
em dados tabulares.

O suporte a manipulacao matematica e estrutural dos dados é fornecido pelas
bibliotecas NumPy e Pandas, que constituem a base para o processamento vetorial e a
analise exploratéria antes do treinamento.

No que tange a camada de operagoes (Ops) e governanga, a solucdo integra o
MLflow. Esta ferramenta é responsavel pelo gerenciamento do ciclo de vida dos modelos,
rastreando experimentos, registrando métricas de desempenho e versionando os artefatos
gerados. A persisténcia dos metadados e dos registros operacionais é garantida pelo
sistema gerenciador de banco de dados relacional PostgreSQL, acessado via SQLAlchemy,
um ORM (Object-Relational Mapper) que facilita a interacdo entre a aplicacdo Python e
o banco de dados.

Por fim, a observabilidade do sistema ¢é viabilizada pelo Prometheus, uma ferra-
menta de monitoramento que coleta métricas em tempo real sobre a saiude da API e o

consumo de recursos, permitindo a identificacao proativa de anomalias na infraestrutura.
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Figura 4.2: Pilha tecnolégica utilizada na implementagao do AutoMLOps

Fonte: Elaborado pelo autor.

Ademais, visando a reprodutibilidade e a contribuicdo com a comunidade ci-
entifica, todo o cdédigo-fonte desenvolvido, incluindo os scripts de configuracao e im-

plantacio, encontra-se disponivel em um repositério piblico no GitHub?.

4.3 Avaliacao

A avaliagdo do artefato foi conduzida por meio de uma simulagao controlada, projetada
para reproduzir condigdes operacionais tipicas de um ambiente de Agropecudria/Zootecnia.
O objetivo principal foi verificar a capacidade da arquitetura AutoMLOps de processar
fluxos continuos de dados (data streams) e reagir a mudangas nos padroes dos dados
(concept drift) ao longo do tempo.

A verificagao ocorreu por meio da simulacao de entrada incremental de dados, na
qual o conjunto de dados foi particionado em janelas temporais sequenciais. Inicialmente,
o modelo foi treinado utilizando um primeiro lote de dados histéricos. Em seguida, novos
blocos de dados foram inseridos gradualmente no pipeline, permitindo observar o com-
portamento do modelo em producao. Durante essa execucao, métricas de desempenho
foram monitoradas, possibilitando a identificacao de degradacoes preditivas associadas a
alteracoes na distribuicao dos dados. Quando detectada queda de desempenho, o pipeline
possibilitou a reavaliacao do modelo e a execucao de etapas de retreinamento, conforme

as regras definidas na arquitetura AutoMLOps.

!Disponivel em: https://github.com/eduardaac/automlops-service.git
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O concept drift foi induzido de forma controlada por meio da introducao de va-
riagoes estatisticas nas distribuicoes das varidveis de entrada ao longo das janelas tempo-
rais, simulando mudancas nas condi¢oes ambientais, produtivas e operacionais do sistema
de Agropecudria/Zootecnia. Dessa forma, tornou-se possivel avaliar se a arquitetura era
capaz de identificar essas mudancas e sustentar o desempenho do modelo ao longo do

tempo.

4.3.1 Preparacao e Enriquecimento dos Dados

Os dados utilizados no experimento originaram-se de registros historicos de producao lei-
teira. Para adequar a base ao cendrio de monitoramento ambiental e Agropecudria/Zootecnia
proposto, foi realizada uma etapa de pré-processamento e enriquecimento dos dados (fe-
ature engineering), implementada em Python.

Como sensores de emissao de gases nao estavam presentes na coleta original, as
variaveis ambientais foram estimadas sinteticamente com base em fatores de conversao
descritos na literatura Agropecudria/Zootecnia. Em particular, foi considerada a seguinte

variavel:

e Diéxido de Carbono Equivalente (COse): estimado a partir do consumo

energético associado a produgao de leite e as praticas de manejo dos animais.

A variavel alvo do modelo de classificacao, denominada co2_class, foi gerada por
meio da discretizacao da varidvel continua de COqe em trés categorias balanceadas (Baixo,
Médio e Alto), utilizando a técnica de quantis. O conjunto de dados final resultou em
uma base adequada ao treinamento supervisionado, relacionando variaveis produtivas,
como producao de leite, nimero de animais, area e nivel tecnolégico, com indicadores de

impacto ambiental.
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5 Desenvolvimento da Solucao

Este capitulo apresenta a estrutura técnica do artefato desenvolvido. A plataforma Au-

toMLOps consiste em uma arquitetura orientada a servigos, estruturada para viabilizar a

operacao em ambientes IoT, com foco na manutencao e na automacao dos processos de

Machine Learning.

5.1 Requisitos do Sistema

A especificacao das funcionalidades baseou-se nos Requisitos Funcionais (RF) listados na

Tabela 5.1. Estes requisitos fundamentam a modelagem dos casos de uso e estabelecem

os critérios para o monitoramento e a automagao do sistema.

Tabela 5.1: Requisitos Funcionais (RFs)

Cédigo | Nome do RF Descricao do Requisito Funcional
RF01 | Cadastro de Experi- | O sistema deve permitir que o usudrio registre um
mento novo experimento, incluindo informagoes de data-
set, tarefa e configuracao.
RF02 | Execucao Automati- | O sistema deve executar pipelines de forma au-
zada tomatica utilizando AutoML para gerar multiplos
modelos.
RF03 | Comparacao de Mode- | O sistema deve comparar o modelo atual em
los (Champion/Chal- | produgao com candidatos gerados.
lenger)
RF04 | Monitoramento O sistema deve monitorar em tempo real as
Continuo métricas dos modelos implantados utilizando Pro-
metheus e Grafana.

Continua na préxima pagina...
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Tabela 5.1 — continuagao da pagina anterior

Cédigo | Nome do RF Descricao do Requisito Funcional
RF05 | Geragao de Alertas O sistema deve emitir alertas automaticos quando
a performance do modelo apresentar degradagcao.
RF06 | Calculo de HI O sistema deve calcular periodicamente um indice
de saide do modelo para apoiar decisoes de atua-
lizacao.
RFO7 | Atualizagao de Mo- | O sistema deve permitir a substitui¢cao automatica
delo em Producao do modelo vigente quando um novo modelo supe-
rar os critérios de desempenho.
RFO08 | Visualizacao de | O sistema deve oferecer dashboards atualizados
Métricas com métricas de treinamento e produgao.
RF09 | Integracao com | O sistema deve permitir a comunicagao com APlIs
Servicos Externos externas para ingestao de dados ou acionamento
de inferéncias.

Fonte: Elaborado pelo autor.

Subsequentemente a definicdo dos requisitos, o comportamento do sistema foi

modelado conforme o Diagrama de Caso de Uso (Figura 5.1). A ilustra¢do demonstra as

interacoes entre os atores e as funcionalidades de cadastro, execugao, monitoramento e

atualizagao.
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Figura 5.1: Diagrama de Caso de Uso

Fonte: Elaborado pelo autor.

Visando assegurar a estabilidade e a seguranca da solucao, definiram-se também

os Requisitos Nao Funcionais (RNF), com énfase na integridade dos dados e controle de

acesso, conforme a Tabela 5.2.
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Tabela 5.2: Requisitos Nao Funcionais (RNFs)

Codigo

Nome do RNF

Descrigcao do Requisito Nao Funcional

RNFO01

Auditabilidade

O sistema deve manter o histérico de versoes
dos modelos e registros de alteragoes por

periodo determinado para auditoria.

RNF02

Escalabilidade

O sistema deve suportar o aumento no vo-
lume de dados e na quantidade de requisi¢oes
de inferéncia sem degradacao do tempo de

resposta ou da estabilidade operacional.

RNF03

Confiabilidade

O sistema deve garantir a integridade e a con-
sisténcia dos dados utilizados no céalculo do
HI, prevenindo a ocorréncia de falsos positi-

vos na deteccao de drift.

Fonte: Elaborado pelo autor.

5.2 Visao Geral

A Figura 5.2 apresenta o fluxo de dados e o funcionamento logico da solucao. A estrutura
organiza-se em modulos sequenciais que abrangem o ciclo de vida do modelo: o Mdédulo de
Treinamento realiza a ingestao e preparacao dos dados; o Médulo de Validagao verifica a
integridade e previne vazamento de dados (data leakage); o Registro (Registry) armazena

os artefatos versionados via MLflow; o Servico de Predicao expoe os modelos via API; e

o Sistema de Monitoramento avalia continuamente a qualidade das inferéncias.
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& Validation Module ———» Registry (MLflow)

@ Training Module

@ Prediction Service —_— &8 Monitoring System — B Alert System

Figura 5.2: Visao Geral
Fonte: Elaborado pelo autor.

5.3 Arquitetura de Software

O desenvolvimento da solugao utiliza o framework FastAPI para a constituicao da AP A
arquitetura aplica o padrao de projeto Observer para estabelecer o desacoplamento entre
os componentes de execucgao de inferéncia e os componentes de andlise de monitoramento.

A Figura 5.3 exibe a distribuigao e a interagao entre os componentes. A orga-

nizacao evidencia a segregacao de responsabilidades técnicas.
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Figura 5.3: Arquitetura Proposta

Fonte: Elaborado pelo autor.

O planejamento da arquitetura visa acompanhar o desempenho dos modelos,
identificar variagoes estatisticas nos dados e executar reagoes automaticas. Os modulos

constituintes compreendem:
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e PredictionService: Atua como ponto de entrada para requisicoes REST e exe-
cuta inferéncias em tempo real ou em lote ( batch), utilizando modelos serializados

carregados do registro.

e MonitoringService: Implementa o padrao Observer para coletar métricas de cada

predicao e supervisionar o estado do modelo sem bloquear a resposta da AP

e AutoMLHandler: Atua como o orquestrador do ciclo de aprendizado de maquina,
encapsulando o motor PyCaret. Este componente opera de forma assincrona (back-
ground task), isolando o processo de treinamento do fluxo de inferéncia da API. Ele
é responsavel por extrair um snapshot dos dados historicos, realizar a separacao en-
tre variaveis preditoras (X) e alvo (y) para prevenir data leakage, executar a selegao

e otimizacao de hiperparametros e, por fim, registrar o novo modelo campeao.

e AlertService: Processa os dados de monitoramento e registra alertas no banco de

dados quando os critérios de degradagao (multicritério) sdo atingidos.

e Prometheus e Grafana: Realizam, respectivamente, a coleta de séries temporais

e a visualizagao das métricas operacionais e de negocio.

e PostgreSQL: Armazena os registros persistentes, incluindo o histérico de alertas,

logs de performance e metadados dos modelos.

A integracao destes modulos estabelece uma solucao com operacao continua e
rastreabilidade do desempenho dos modelos. Dessa forma, a arquitetura materializa um
ciclo de feedback fechado (closed-loop), no qual a deteccao de degradagao pelo Monito-
ringService aciona, de maneira reativa e assincrona, a orquestragao de retreinamento pelo
AutoMLHandler. Essa abordagem assegura que o sistema nao apenas identifique o
concept drift, mas reaja a ele autonomamente, mantendo a disponibilidade do servico de
inferéncia (PredictionService) enquanto o modelo é atualizado de forma transparente para

as requisigoes subsequentes.
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5.4 O Mecanismo Proativo: HI

O Moédulo de Monitoramento utiliza uma métrica quantitativa denominada Health Index
(HI). O HI avalia a saide operacional do modelo em uma escala de 0 a 1 (ou 0% a 100%),
onde o valor 1.0 representa o estado ideal de estabilidade. O calculo do indice é realizado
pela soma ponderada do complemento dos riscos identificados em cada requisicao de

inferéncia, conforme a Equacao 5.1:

HI = (0,50 x (1 —ConfidenceRisk))+ (0,40 x (1 — DriftRisk)) + (0,10 x (1 — AnomalyRisk))
(5.1)
Onde:

e Confidence Risk: Representa a incerteza da predicao, calculado como o com-
plemento da probabilidade da classe predita (1 — Probabilidade). Na arquitetura
implementada, este componente possui a maior atribuicao por ser o indicador mais

direto da precisao do modelo em tempo de execucao.

e Drift Risk: Mede a distancia estatistica entre os dados de entrada em producao
e a distribuicao de referéncia utilizada no treinamento. Para esse fim, o sistema
emprega o teste de Kolmogorov-Smirnov (K-S), aplicado de forma univariada. Va-
lores proximos de 0 indicam estabilidade estatistica, enquanto valores préoximos de

1 sinalizam a ocorréncia de concept drift.

e Anomaly Risk: Indica a presenca de outliers ou dados fora do padrao esperado
para as variaveis numéricas, atuando como um regulador para evitar que ruidos

pontuais degradem severamente o indice.

Ressalta-se que os pesos atribuidos a esses fatores sao totalmente parametrizaveis
na arquitetura, permitindo ajustes conforme a criticidade de diferentes aplicagoes. Con-
tudo, para o escopo deste trabalho, a calibracao foi definida por meio de experimentacgao
empirica no dominio do Agronegdcio e Zootecnia. Nesse contexto especifico, chegou-se a

estrutura de ponderacao apresentada na Equacao 5.1.



5.5 Human-in-the-Loop e Reconfiguracao 54

O Confidence Risk recebe a maior carga (50%) por refletir falhas imediatas na
confianca do resultado entregue ao usuario, algo critico no monitoramento de seres vivos.
O Drift Risk atua como um indicador de tendéncia (40%), sinalizando que o modelo
pode estar se tornando obsoleto devido a mudancas ambientais ou fisiolégicas. Por fim,
o Anomaly Risk recebe o menor peso (10%) para garantir a estabilidade do sistema,
prevenindo o fendémeno de thrashing (trocas excessivas de modelos) causadas por variagoes
espurias ou erros de leitura nos sensores.

Dessa forma, a métrica penaliza o indice de satide proporcionalmente a gravidade
técnica de cada desvio. A convergéncia desses fatores resulta na reducao do HI, o que
aciona proativamente os alertas e o ciclo human-in-the-loop quando o valor atinge o limiar

de 0,70 estabelecido na configuracao do AutoMLOps.

5.5 Human-in-the-Loop e Reconfiguracao

A arquitetura incorpora o ciclo HITL. Quando o valor do HI atinge um patamar inferior
ao limiar configurado (e.g., 0,70) e h& convergéncia de multiplos riscos, o sistema nao
inicia o retreinamento imediatamente; em vez disso, persiste um registro de alerta na
tabela alerts do PostgreSQL.

Este evento notifica o operador técnico. Apoiado pela visualizacao dos dados nos
painéis do Grafana (Figura 5.4), o operador avalia a necessidade de intervengao. Mediante
autorizagao, o sistema executa o pipeline de retreinamento ou promove a substituicao
do modelo vigente (Champion) por um candidato (Challenger) que demonstre métricas

superiores.
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Active Models - Comparison

Model Stage Accuracy ¢ Precision ¢ Recall 7 F1 Score ¢ Health Index Created At + Last Update

LogisticRegression CHAMPION 99.6% 99.6% 99.6% 99.6% 100% 2025-12-0900:35 2025-12-0900:35

RandomForestClassifier CHALLENGER 97.7% 97.7% 97.7% 97.7% 100% 2025-12-0900:35 2025-12-0900:35

LGBMCIassifier CHALLENGER 97.4% 87.4% 97.4% 97.4% 100% 2025-12-09 00:35 2025-12-0900:35

Active Models - Optimization Metric Evolution

99.50%
99.00%
98.50%

Performance

98.00%

97.50%

21:37:00 21:37:15 21:37:30 21:37:45 21:38:00 21:38:15 21:38:30 21:38:45 21:39:00 21:39:15 21:39:30 21:39:45 21:40:00 21:40:15 21:40:30 21:40:45 21:41:00 21:41:15 21:41:30 21:41:45
Name « Last Mean 2

== RandomForestClassifier (CHALLENGER) 97.65% 97.65%
== LogisticRegression (CHAMPION) 99.61% 99.61%
== LGBMClassifier (CHALLENGER) 97.39% 97.39% ~

Figura 5.4: Dashboard de monitoramento Grafana

Fonte: Elaborado pelo autor.

5.6 Protocolo de Validacao Experimental

A avaliagao da arquitetura e do mecanismo HITL ocorreu mediante a submissao do sistema
a um cenario de estresse. Para reproduzir o comportamento de sensores loT, desenvolveu-
se um script de injecao de carga. Esse componente realiza a leitura sequencial dos registros
e o envio a API do AutoMLOps via requisicoes HI'TP POST, estabelecendo um fluxo de
inferéncia.

A Figura 5.5 demonstra o comportamento do sistema ao longo do teste. O pro-

tocolo experimental compreende trés fases de execucao:

1. Fase de Estabilidade: Envio dos dados originais, mantendo a distribuicao es-
tatistica do treinamento do modelo (linhas 1 a 50 do dataset). Esta etapa define a

linha de base do comportamento do sistema.

2. Fase de Indugao de Drift: Introducao de concept drift nos dados para verificagao
da resposta do sistema. O script de simulacao aplicou as seguintes transformacoes

matematicas nas variaveis de entrada:

(a) Queda de Produtividade: Multiplicacdo da varidvel producao_leite pelo

fator 0,5 (redugao de 50%).
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Health Index (HI)

(b) Aumento de Densidade: Multiplicagdo da varidvel n_vacas pelo fator 1,5

(aumento de 50%).

Tais alteragoes modificam a relacgao entre as variaveis de entrada e a classe de emissao
de COgy, simulando a perda de eficiéncia produtiva (aumento do nimero de animais

com reducao da produgao).

Fase de Recuperacao: Periodo subsequente a deteccao do drift e ao retreina-

mento, no qual o sistema opera com modelos ajustados ao novo padrao de dados.

11
FASE 1: ESTABILIDADE FASE 2: INDUCAO DE DRIFT FASE 3: RECUPERACAO
1.0 4
oo | \ VWN\/W‘,
Injecdo de Carga
(Leite x 0.5)
0.8 4
Nove Modelo
(Retreinamento)
Limiar de Alerta (0.70)
[ e s e e ey | e
0.6
0.5 4
0.4 T T T T T T T T
0 20 40 60 80 100 120 140

Requisicdes (Tempo)

Figura 5.5: Fases do cendrio de validacao

Fonte: Elaborado pelo autor.
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6 Resultados e Analise

A validacao experimental fundamentou-se no dataset de Monitoramento de Bovinos Lei-
teiros, composto por 3.283 registros coletados ao longo de um periodo de 12 meses. A
escolha deste dominio justifica-se pela disponibilidade dos dados ao grupo de pesquisa,
bem como pela relevancia estratégica do tema: o monitoramento da emissao de CO, traz
beneficios como a otimizacao da eficiéncia produtiva aliada a sustentabilidade e permite
lidar com desafios inerentes ao setor, como a complexidade e o alto custo das medigoes
manuais em campo.

O problema de negécio abordado consistiu na classificacao multiclasse das cate-
gorias de emissdo de COy (Alta, Média e Baixa), a partir de quatro varidveis predito-
ras: identificagdo do animal (brinco), peso corporal, producao de leite e data de coleta.
Ressalta-se que a variavel de identificacao do animal foi empregada exclusivamente para
fins de rastreabilidade das inferéncias, sendo removida do processo de treinamento para
evitar que o modelo memorizasse individuos especificos (overfitting).

Durante a definicao do pipeline de treinamento, a arquitetura impos a separacao
explicita das varidveis preditoras (X) e do alvo (y) antes da etapa de configuracao do
AutoML. Essa estratégia resultou em métricas realistas, assegurando que o desempenho
observado na Fase 3 decorreu da capacidade de generalizacao do modelo e nao de memo-
rizagao dos dados.

A sensibilidade do sistema foi quantificada por meio da comparacao métrica entre

os cenarios de operacao normal e de degradacao induzida:

e Cendrio de Controle (Estabilidade): Sob condigoes normais, os dados apresen-
taram uma correlagdo positiva forte (+0,76) entre as varidveis de peso corporal e
producao de leite, com um coeficiente de variacao de 23,97% para a variavel leite.

Neste contexto, o HI manteve-se consistentemente acima do limiar de 0, 70.

e Cendrio de Estresse (Drift): A simulagao de problemas de qualidade de dados

introduziu ruido, elevando a presenca de outliers para 30% da amostra. Conse-
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quentemente, observou-se a inversao da correlagao entre peso e leite, que passou a

registrar —0, 15.

6.1 Regime Estavel e Monitoramento (Fase 1)

Inicialmente, o modelo de classificagao operou em regime de estabilidade. O sistema
processou as requisicoes contendo dados de producao leiteira e estimativas de emissoes,
mantendo métricas de desempenho dentro dos limiares aceitaveis. O HI, métrica composta
desenvolvida nesta pesquisa, manteve-se préximo ao valor maximo. A Figura 6.1 ilustra
a série temporal deste periodo, confirmando que a arquitetura foi capaz de ingerir o fluxo
de dados e monitorar a integridade estatistica em tempo real, sem introduzir laténcia

impeditiva.

Active Models - Comparison

Model Stage Accuracy 7 Precision 57 Recall 57 F1 Score 57 Health Index Created At + Last Update
LogisticRegression CHAMPION 95.2% 96.5% 94.8% 95.6% _2025—12-09 00:35 2025-12-09 00:42
LGBMClassifier CHALLENGER 94.9% 95.8% 94.2% 95.0% _2025-12-09 00:35 2025-12-09 00:42
RandomForestClassifier CHALLENGER 93.8% 94.5% 93.1% 93.8% _2025-12-09 00:35 2025-12-09 00:42

Active Models - Optimization Metric Evolution

98.00%
97.00%
96.00%
95.00%
94.00%

Performance

93.00%
21:38:30 21:38:45 21:39:00 21:39:15 21:39:30 21:39:45 21:40:00 21:40:15 21:40:30 21:40:45 21:41:00 21:41:15 21:41:30 21:41:45 21:42:00 21:42:15 21:42:30 21:42:45 21:43:00 21:43:15
None ~ Last Mean 2

== RandomForestClassifier (CHALLENGER) 93.80%  94.91% ﬂ
== LogisticRegression (CHAMPION) 95.22%  96.35% |
== LGBMClassifier (CHALLENGER) 94.99% 95.86% -,

Figura 6.1: Comportamento do sistema em regime estavel

Fonte: Elaborado pelo autor.

6.2 Deteccao de concept drift e Alerta (Fase 2)

Na segunda etapa, a indugao controlada de data drift, manifestada por alteracoes na distri-
buicao dos dados, gerou uma divergéncia estatistica entre os dados de entrada e o padrao
previamente aprendido pelo modelo. Diferentemente de uma falha sistémica abrupta, o
processo de monitoramento identificou uma degradacao gradual da performance que, em-

bora nao comprometesse imediatamente a continuidade da operacao, demandava atengao
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e intervencao.
A Figura 6.2 apresenta o dashboard consolidado no momento exato da detecgao.

A anélise da interface revela trés componentes do comportamento do sistema:

1. Status de Alerta (Warning): O sistema identificou automaticamente a condigao
de degradacao, exibindo o status "Active Alerts: 1”7 em destaque (faixa amarela).
O tipo de alerta foi classificado como "PERFORMANCE DEGRADATION”, com
status "OPEN".

2. Health Index (HI): O indice de satide do modelo Champion (Logistic Regression)
recuou para 59,0%. Este valor, situando-se logo abaixo do limiar de alerta (70%),

colocou o sistema em zona de atencao, mas evitou o bloqueio total das inferéncias.

3. Plano de Agao Sugerido: O campo "Action Required” indicou automaticamente
a instrucao ”Investigate and Monitor”. Isso demonstra que a arquitetura do
AutoMLOps priorizou a seguranca: em vez de disparar um retreinamento as cegas
(que poderia propagar erros), o sistema solicitou validagdo humana para investigar

as métricas de saude (Health Metrics).

Observa-se ainda na tabela de modelos que, apesar da degradagao, a Logistic
Regression manteve-se como Champion com a Accuracy de 6511%, superando os modelos
desafiantes (LGBM e Random Forest), que apresentaram indices de satude ainda inferiores

(56,9% e 55,1%, respectivamente).
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Model Stage Accuracy 7 Precision 7 Recall 7 F1 Score ¥ Health Index Greated At + Last Update
LogisticRegression 85.1% 95.6% 58.9% 72.8% 59.0% 2025-12-09 00:35 2025-12-09 00:44
LGBMClassifier CHA ENGER 63.0% 83.7% 56.1% 70.2% 56.9% 2025-12-09 00:35 2025-12-0900:44

RandomForestClassifier CHALLENGER 60.7% 88.8% 53.9% 67.1% 55.1% 2025-12-09 00:35 2025-12-0900:44

Active Models - Optimization Metric Evolution

65.00%
64.00%
63.00%

Performance

62.00%

81.00%

21:44:45 2145:00 21:45:15 21:45:30 21:45:45 21:46:00 21:46:15 21:46:30 21:48:45 21:47:00 21:47:15 21:47:30 21:47:45 21:48:00 21:48:15 21:48:30 21:48:45 21:49:00 21:48:15 21:48:30
Hame

Last Mean

== RandomForesiClassifier (CHALLENGER) 80.72%
= LogicticRegression (CHAMPION) 85.059 %
= LGBMClassifier (CHALLENGER) 52.99% 2% ~
Total Active Alerts
]
Active Alerts - Action Plan
Alert ID Alert Type Status Model Model Stage Action Required Alert Details Retraining Job Cre

1 PERFORMANCE DEGRADATION “ngw;[wcﬂégre;swol champion Investigate and Monitor 4ealth Metrics: « Healt No 025-1

Figura 6.2: Deteccao de anomalia e emissao de alerta

Fonte: Elaborado pelo autor.

6.3 Intervencao Humana e Recuperacao (Fase 3)

A terceira fase iniciou-se com a simulacao da intervencao do operador. Apds a autorizacao
manual, o sistema disparou o pipeline de retreinamento automdtico (AutoML). Nesse

estagio, o AutoMLHandler realizou os seguintes passos:

1. Ingestao e Particionamento: O sistema consolidou o conjunto de dados histéricos
com as amostras recentes (que caracterizaram o drift), aplicando uma divisao de

70% para treinamento e 30% para validacao (hold-out).

2. Treinamento Competitivo: Diversos algoritmos candidatos (Challengers) foram
treinados e avaliados. O algoritmo RandomForest obteve o melhor desempenho na

métrica de validagao cruzada, superando o modelo vigente.

3. Promocgao e Arquivamento: O modelo vencedor foi promovido a Champion,
sendo registrado no MLflow e carregado para producao. Os demais modelos can-
didatos, embora nao selecionados, tiveram seus artefatos e métricas arquivados no

registro de experimentos para fins de auditoria e rastreabilidade futura.
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Apoés a substituicao do modelo em producao, observou-se a recuperacao do HI,

conforme visualizado na Figura 6.3. Esse resultado demonstra a eficdcia do ciclo completo

de adaptacao, composto pelas etapas de deteccao, alerta, intervencao e adaptacao.

Model Stage
RandomForestClassifier CHAMPION
LogisticRegression CHALLENGER
LGBMClassifier CHALLENGER

Active Models - Optimization Metric Evolution

Performance

21:44:00 21:45:00 21:46:00

Name -

= RandomForestClassifier (CHAMPION)
= LogisticRegression (CHALLENGER)
= LGBMClassifier (CHALLENGER)

Accuracy 7

97.5%

97.4%

97.2%

21:47:00

Precision 57 Recall 7 F1 Score Health Index Created At + Last Update
97.6% 97.5% 97.5% 100% 2025-12-09 00:57 2025-12-09 00:57
97.5% 97.4% 97.3% 100% 2025-12-09 00:57 2025-12-09 00:57
97.2% 97.2% 97.2% 100% 2025-12-09 00:57 2025-12-09 00:57
e
21:48:00 21:49:00 21:50:00 21:51:00 21:52:00 21:53:00 21:54:00 21:55:00 21:56:00 21:57:00 21:58:00
Last Mean *

97.52%  97.52%
97.35%  97.35%
97.17%  97.17% -

Figura 6.3: Recuperacao de desempenho pés-autorizacao

Fonte: Elaborado pelo autor.
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7 Discussao

A anélise dos resultados corrobora a hipdtese de que a integracao do monitoramento
continuo em pipelines de MLOps, aliada a supervisao humana (Human-in-the-Loop —
HITL), promove a estabilidade de modelos preditivos em ambientes de IoT. Essa abor-
dagem distingue-se de sistemas puramente autonomos, os quais, diante de ruidos mo-
mentaneos, tendem a iniciar ciclos desnecessarios de retreinamento (thrashing). Nessa
arquitetura, o HI atuou como um filtro técnico decisivo, acionando alertas apenas me-
diante evideéncias estatisticas de degradagao, o que fundamentou intervencgoes precisas e
evitou o consumo indevido de recursos computacionais.

No dominio da Agropecuaria e Zootecnia, a validacao humana desempenhou um
papel importante ao distinguir variacoes temporarias nos dados, decorrentes de falhas em
sensores ou manejo atipico, da real obsolescéncia do modelo. A arquitetura AutoMLOps
assegurou o controle do especialista, posicionando a IA como uma ferramenta de suporte
a decisao, e nao como um agente decisério isolado. Os experimentos demonstraram uma
reducao no tempo decorrido entre a deteccao do problema e a autorizacao da solugao,
validando a seguranca do método hibrido.

E imperativo destacar que, no contexto especifico do monitoramento de emissoes
de C'Os, a queda de desempenho dos modelos preditivos transcende a dimensao estatistica,
comprometendo a integridade dos inventarios ambientais. A degradacao da acuracia re-
sulta em estimativas enviesadas da pegada de carbono, o que pode mascarar picos de
emissao criticos ou, inversamente, sugerir conformidade ambiental inexistente. Essa im-
precisao inviabiliza a tomada de decisao correta sobre estratégias de mitigacao e afeta
diretamente a credibilidade dos indicadores de sustentabilidade da producao. Portanto, a
estabilidade garantida pela arquitetura proposta atua como um mecanismo de auditoria
continua, assegurando que os dados de emissoes reflitam a realidade fisica do ambiente

monitorado.
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7.1 Achados Tedricos

Do ponto de vista tedrico, o trabalho contribui ao propor um servigo parametrizavel,
desenhado para se adaptar a diferentes dominios e aplicacoes. A disponibilizacao da
solucao em formato de API fomenta a reutilizacao e facilita a integracdo com sistemas
legados ou de terceiros, superando a rigidez de solu¢oes monoliticas.

Em termos de fundamentacao arquitetural, a pesquisa consolidou uma integracao
consistente entre Arquiteturas Autoadaptativas, praticas de MLOps e Inteligéncia Artifi-
cial. A aplicagao do ciclo MAPE-K, conjugada ao padrao de projeto Observer, estabeleceu
uma base sélida para o monitoramento continuo, permitindo que a tomada de decisao au-
tomatizada e a reconfiguracao do sistema ocorram de maneira orquestrada em ambientes
dinamicos.

Metodologicamente, a adogao da DSR demonstrou eficacia tanto na condugao
da construcao quanto na avaliagdo do artefato, assegurando que o rigor cientifico fosse

mantido sem detrimento da relevancia pratica e da aplicabilidade da solucao.

7.2 Achados Técnicos

No ambito técnico, a adogao de uma Arquitetura Orientada a Servigos (SOA) foi deter-
minante para a viabilidade operacional do sistema. Essa escolha possibilitou a escalabili-
dade horizontal necessaria para suportar altos volumes de dados, caracteristica intrinseca
a ambientes de IoT. Durante os testes de estresse, o servigo processou 10.000 requisi¢oes
mantendo a estabilidade e o tempo de resposta dentro dos parametros aceitaveis.

O mecanismo de monitoramento continuo provou-se eficaz na identificacao precisa
da degradagao de desempenho dos modelos. O sistema sustentou decisoes automatizadas
de retreinamento e o chaveamento dinamico de modelos (Champion/Challenger) mesmo
sob carga elevada, confirmando a robustez da implementacao do AutoMLHandler.

Por fim, a integracao com ferramentas de observabilidade conferiu transparéncia
ao comportamento do sistema. A rastreabilidade detalhada das requisi¢oes e das métricas
operacionais proporcionou maior controle durante cenarios de alta demanda, validando a

tese de que a observabilidade é um requisito nao funcional indispensavel para a confiabi-
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lidade de operacgoes de Machine Learning em produgao.
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8 Conclusao

Esta pesquisa apresentou o desenvolvimento de um servigo parametrizavel, materializado
na forma de uma API voltado ao apoio a construcao de arquiteturas autoadaptativas
baseadas em Inteligéncia Artificial. A solugao proposta preenche uma lacuna relevante
na integracao entre engenharia de software e ciéncia de dados, oferecendo um mecanismo
robusto para o monitoramento continuo de modelos de aprendizado de maquina em am-
bientes de IoT.

A fundamentacao arquitetural, alicercada na integracao de principios de siste-
mas autoadaptativos, praticas de MLOps e na aplicacao do ciclo MAPE-K, mostrou-se
adequada para lidar com ambientes dinamicos e sujeitos a mudancas constantes. A ope-
racionalizacao desses conceitos permitiu a identificacao proativa da degradacao de de-
sempenho (concept drift) por meio do Health Index (HI), apoiando decisdes automaticas
criticas, como a execucao de pipelines de retreinamento e o chaveamento dinamico de
modelos (Champion/Challenger).

A validagao pratica, realizada no cenario de Agropecuaria e Zootecnia para o
monitoramento de emissoes de COs, demonstrou a eficacia da arquitetura em recuperar
a capacidade preditiva do sistema diante de desvios estatisticos. Mais do que resolver um
problema especifico, os resultados indicam que a API é flexivel, reutilizavel e aplicavel a
diferentes dominios. A capacidade de personalizar métricas de avaliagdo (como acurécia,
Fl-score ou precisao) e parametrizar os pesos do HI possibilita que a solu¢ao atenda aos
requisitos de qualidade de diversos contextos operacionais.

Em suma, este trabalho contribui para a area de sistemas autoadaptativos com TA
ao fornecer um artefato que une a deteccao estatistica de anomalias a supervisao humana,
garantindo a continuidade operacional e a confiabilidade das inferéncias em sistemas de

fluxo continuo de dados.
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Como desdobramento desta pesquisa e visando a evolucao da plataforma AutoMLOps,

sugerem-se as seguintes vertentes de investigagao:

e Generalizacao via Novos Ciclos de DSR: Condugao de iterativos ciclos de De-
sign Science Research em dominios distintos do agronegécio. O objetivo é avaliar
a capacidade de generalizacao e reutilizacao das APIs frente a diferentes tipolo-
gias de dados e requisitos de aplicagao nao funcionais, validando a flexibilidade da

arquitetura proposta em cendrios heterogéneos.

¢ Expansao Experimental: Ampliacao das avaliagoes experimentais através da in-
corporacao de novas métricas de desempenho e da exploragao de estratégias de
adaptagao alternativas. Sugere-se investigar métodos além do Champion/Challen-
ger, como Ensemble Learning dinamico ou aprendizado incremental, para verificar

sua eficicia em ambientes de alta volatilidade.

e Inteligéncia Artificial Explicavel (XAI) e Auditoria: Aprofundamento na in-
tegracao de técnicas de XAl para aumentar a transparéncia das decisoes do sistema.
A proposta é que a explicabilidade nao sirva apenas para diagnostico técnico, mas
atue como pilar de suporte ao ciclo Human-in-the-Loop, facilitando a auditoria das
adaptacoes automaticas e aumentando a confianca do operador na autorizagao de

trocas de modelos.

e Refinamento por Feedback Humano: Implementacao de mecanismos de apren-
dizado que incorporem o feedback do operador ao ciclo de decisao. Isso permitiria
que o sistema ajustasse automaticamente a sensibilidade do HI e os limiares de
alerta com base no histérico de intervengoes manuais, personalizando a resposta do

sistema ao perfil do especialista.

e Expansao para Edge Computing: Adaptagao dos médulos de inferéncia e mo-
nitoramento para execugao direta em dispositivos de borda. Essa abordagem visa
descentralizar a detecgao de anomalias, reduzindo a laténcia do alerta e o consumo

de largura de banda na transmissao de dados brutos.
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