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Resumo

Este trabalho investiga a aplicagdo da Decomposi¢ao em Modos Dinamicos (DMD)
e de suas variantes sequenciais na modelagem e reconstrucao da dinamica temporal de
escoamentos com transporte de sedimentos. Considerando a alta dimensionalidade dos
dados gerados por simulagoes de Dinamica dos Fluidos Computacional (CFD), modelos
de ordem reduzida surgem como uma alternativa eficiente para a analise e aproximacao
da dinamica dominante do sistema.

Foram implementados em C++ o DMD classico, o Online DMD e o Strea-
ming DMD, sendo os métodos aplicados a diferentes janelas temporais de uma simulacao
numérica de escoamento com sedimentos, a partir de snapshots bidimensionais em escala
de cinza. A comparacao entre os métodos foi conduzida de forma controlada, adotando
postos reduzidos consistentes e estratégias uniformes de inicializagao.

A avaliagdo do desempenho foi realizada exclusivamente por meio de métricas
quantitativas, incluindo o erro quadratico médio (MSE), o Peak Signal-to-Noise Ratio
(PSNR), bem como o custo computacional em termos de tempo de execucao e uso de
memoéria. Os resultados evidenciam diferencas relevantes entre as abordagens, destacando
0 compromisso entre precisao, robustez temporal e eficiéncia computacional na escolha do

método mais adequado para aplicagoes sequenciais envolvendo transporte de sedimentos.

Palavras-chave: Decomposicao em Modos Dinamicos; Modelos de Ordem Reduzida;

Transporte de Sedimentos.



Abstract

This work investigates the application of Dynamic Mode Decomposition (DMD)
and its sequential variants for modeling and reconstructing the temporal dynamics of
sediment-laden flows. Due to the high dimensionality of data generated by Computa-
tional Fluid Dynamics (CFD) simulations, reduced-order models represent an efficient
alternative for capturing the dominant system dynamics at lower computational cost.

The classical DMD, Online DMD, and Streaming DMD methods were implemen-
ted in C++ and applied to different temporal windows of a numerical sediment trans-
port simulation, using two-dimensional grayscale snapshots as input data. The compa-
rison between methods was conducted under controlled conditions, adopting consistent
reduced-order ranks and uniform initialization strategies.

Performance evaluation was carried out exclusively using quantitative metrics,
including the mean squared error (MSE), the Peak Signal-to-Noise Ratio (PSNR), as well
as computational cost in terms of execution time and memory usage. The results highlight
relevant differences among the approaches, emphasizing the trade-off between accuracy,
temporal robustness, and computational efficiency when selecting an appropriate DMD-

based method for sequential applications involving sediment transport.

Keywords: Dynamic Mode Decomposition; Reduced-Order Models; Sediment Trans-

port.
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1 Introducao

1.1 Apresentacao do Tema

A Dinémica dos Fluidos Computacional (do inglés Computational Fluid Dynamics — CFD)
dedica-se ao estudo e a simulacao numérica de escoamentos por meio da combinacao de
modelos fisicos, métodos numéricos e técnicas computacionais. Nas ultimas décadas, essa
abordagem tornou-se essencial para investigar fenomenos complexos em que a interacao
entre fases e mecanismos de transporte desempenha papel central, como em problemas
com particulas ou sedimentos em suspensao (ZHANG et al., 2024b; SCHMID, 2022).

Escoamentos com dinamica de sedimentos tipicamente exibem forte nao lineari-
dade, multiplas escalas temporais e espaciais e regimes transientes, o que dificulta tanto a
modelagem quanto a analise de dados provenientes de simulagoes de alta fidelidade. Nesses
cenarios, técnicas capazes de extrair estruturas coerentes e representar a dinamica domi-
nante de forma compacta tornam-se particularmente relevantes (LIBERO et al., 2024;
BAO et al., 2019).

Entre as abordagens baseadas em dados, destaca-se a Dynamic Mode Decompo-
sition (DMD), que decompoe séries temporais de campos de alta dimensionalidade em
modos espaciais associados a frequéncias e taxas de crescimento ou decaimento. Essa de-
composicao permite identificar padroes dominantes e interpretar mecanismos dinamicos
presentes na evolugao do sistema (GIORGI; FICARELLA; FONTANAROSA, 2018; SCH-
MID, 2022). Para ampliar a aplicabilidade do método em situagdes préticas, diversas
variantes tém sido propostas para lidar com ruido, com dados em fluxo continuo e com
dindmicas nao estaciondrias, incluindo formulages online/streaming e estratégias de re-

gularizacao (SCHMID, 2022; LIBERO et al., 2024).
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1.2 Contextualizacao

A simulacao de sistemas multifasicos com particulas ou sedimentos em suspensao per-
manece entre os desafios mais relevantes em CFD, dada a combinacao de alta dimensi-
onalidade, acoplamentos fisico-matematicos e elevados custos computacionais (GRAVE;
CAMATA; COUTINHO, 2020; ZHANG et al., 2024b). Como consequéncia, andlises pa-
ramétricas, estudos de incerteza e aplicagoes em tempo quase real podem ser limitados
pelo tempo de processamento e pelo grande volume de dados gerado.

Nesse contexto, modelos de ordem reduzida ( Reduced-Order Models — ROMs) tém
se mostrado ferramentas eficazes para capturar a dinamica dominante do sistema com
menor custo computacional. Em termos gerais, ROMs buscam identificar subespacos
de baixa dimensao que preservem o comportamento essencial do sistema, evitando a
necessidade de resolver integralmente o modelo de alta fidelidade a cada nova consulta
(BERKOOZ; HOLMES; LUMLEY, 1993; BENNER; GUGERCIN; WILLCOX, 2015; RO-
WLEY; DAWSON, 2017; ROWLEY; COLONIUS; MURRAY, 2004). Exemplos cléssicos
incluem métodos baseados em decomposi¢ao ortogonal prépria (POD), projecoes de Galer-
kin e suas extensoes (por exemplo, Petrov—Galerkin), amplamente utilizados em dinamica
dos fluidos e em problemas de transporte (BERKOOZ; HOLMES; LUMLEY, 1993; RO-
WLEY; COLONIUS; MURRAY, 2004).

Além de técnicas puramente projetivas, abordagens hibridas vém combinando
ROMs por projegao com estratégias baseadas em dados para aumentar robustez e precisao,
especialmente em regimes turbulentos e/ou com modelos de fechamento. Um exemplo é a
combinacao de POD—-Galerkin com aproximagoes orientadas por dados para representar
termos associados a viscosidade turbulenta em formulagoes por volumes finitos (HIJAZI et
al., 2020). Trabalhos recentes também propoem estruturas hibridas projegao/dados para
equagoes de Navier—Stokes parametrizadas (ZHANG et al., 2024a) e discutem aplicagoes
em sistemas multifasicos, como escoamentos gas—sélido, empregando aprendizado pro-
fundo para modelar a dinamica modal (LI; DUAN; SAKAI, 2024).

Entre as abordagens de ROMs fundamentadas em dados, o DMD ocupa posicao
de destaque por extrair diretamente, a partir de séries temporais, modos associados a

caracteristicas dinamicas, sendo amplamente utilizado em andlise modal e em construcao
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de modelos preditivos em fluidos (TAIRA et al., 2017). Entretanto, o DMD classico pode
apresentar limitagoes em presenca de ruido e quando a dinamica apresenta mudancas
estruturais ao longo do tempo. Por isso, variantes do DMD tém sido desenvolvidas para
melhorar estabilidade numérica e robustez, bem como para lidar com dados streaming,
janelas deslizantes e mudangas de regime (SCHMID, 2022; LIBERO et al., 2024).

Dado o amplo espectro de variantes existentes e a diversidade de comportamentos
presentes em escoamentos com transporte de sedimentos, torna-se relevante compreender
como essas abordagens se comportam em cenarios distintos, especialmente no que diz

respeito a reconstrucao temporal, a previsao e a robustez a ruidos e variagoes topoldgicas.

1.3 Motivacao e Justificativa

A andlise de escoamentos com transporte de sedimentos demanda ferramentas capazes
de representar, com eficiéncia e precisao, sistemas caracterizados por multiplas escalas,
acoplamento entre fases e dinamica transiente. Em aplicacoes ambientais, industriais e
geotécnicas — como rios, canais, reatores e dutos — essa dinamica impacta diretamente
a previsao de processos de erosao, deposicao, desgaste e transporte de particulas.

Embora simulagoes numéricas de alta fidelidade fornegam descri¢oes detalhadas
do sistema, seu custo computacional pode inviabilizar varreduras paramétricas, rotinas
de otimizacao, quantificacao de incerteza ou uso operacional. Nesse cenario, ROMs e
decomposi¢oes modais baseadas em dados oferecem alternativas promissoras ao permitir
representacoes compactas do comportamento dominante.

Apesar do avanco recente de variantes do DMD, ainda hé lacunas quanto ao seu
desempenho em sistemas multifasicos com sedimentos, especialmente quando h& ruido,
transientes e mudancas estruturais no escoamento. Em particular, sao necessarios estu-
dos que avaliem, de forma comparativa e quantitativa, a eficacia dessas variantes para
reconstrugao, previsao e robustez em cendrios representativos.

Diante desse contexto, torna-se relevante investigar abordagens que conciliem
reducao de custo computacional com a capacidade de preservar as principais carac-
teristicas dinamicas do escoamento multifasico com sedimentos. Assim, este trabalho

adota técnicas de reducao de ordem e decomposicoes modais baseadas em dados como es-
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tratégia para estudar o desempenho de variantes da Decomposi¢ao em Modos Dinamicos.

1.4 Descricao do Problema

Sistemas com transporte de sedimentos podem apresentar mudancas topologicas, regimes
transientes e sensibilidade a ruidos, tornando desafiadora a obtencao de representacoes
compactas que sejam, ao mesmo tempo, interpretaveis e preditivas. A DMD e suas vari-
antes sao candidatas naturais para andlise, reconstrucao e previsao, porém ainda é pouco
compreendido como diferentes formulacoes se comportam especificamente em cenarios
envolvendo particulas em suspensao.

Além disso, faltam comparacgoes padronizadas que permitam avaliar, sob condigoes
controladas, a capacidade das diferentes variantes em (i) reconstruir campos temporais,
(ii) prever estados futuros e (iii) manter robustez frente a ruidos e variagoes estrutu-
rais. Para viabilizar tais comparacoes de maneira reprodutivel, é desejavel dispor de uma
implementacao unificada, modular e extensivel que permita configurar experimentos, ins-
trumentar desempenho e reproduzir resultados.

Dessa forma, o problema central deste trabalho envolve tanto a investigacao do
desempenho de variantes do DMD em escoamentos com transporte de sedimentos quanto
o desenvolvimento de uma implementacao computacional que viabilize tais andlises de

forma eficiente, padronizada e reprodutivel.

1.5 Objetivos

1.5.1 Objetivo Geral

Desenvolver e avaliar variantes da decomposi¢ao em modos dinamicos (DMD) aplicadas a
escoamentos com transporte de sedimentos, por meio da implementagao de uma biblioteca
modular em C++ (disponivel em: (https://github.com/brenolino/dmd-variations)) e
da analise comparativa de sua capacidade de reconstrucao e robustez frente a ruidos e

mudancas topoldgicas.


https://github.com/brenolino/dmd-variations
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1.5.2 Objetivos Especificos

Para alcancar o objetivo geral, este trabalho propoe os seguintes objetivos especificos:

1. Implementar em C++ o DMD classico e as variantes Online DMD e Streaming DMD
em uma infraestrutura unificada, modular e extensivel, possibilitando experimentos

reprodutiveis e controlados.

2. Aplicar essas variantes a conjuntos de dados provenientes de simulagoes numéricas

de escoamentos com particulas em suspensao.
3. Avaliar a capacidade de cada variante em reconstruir campos do sistema.

4. Comparar quantitativamente os métodos com base em métricas padronizadas, iden-

tificando vantagens, limitacoes e cenarios de melhor aplicabilidade.

1.6 Organizacao do Texto

Além desta introducao, este trabalho esta organizado da seguinte forma: o Capitulo 2,
Fundamentacao Teorica, apresenta os conceitos de CFD e modelos de ordem reduzida,
com énfase na Decomposi¢cao em Modos Dinamicos e em suas principais variantes. O
Capitulo 3, Metodologia, descreve a abordagem adotada, a origem e caracterizagao dos
dados, a infraestrutura computacional implementada em C++ e as variantes consideradas
(DMD cléssico, Online DMD e Streaming DMD), bem como as métricas de avaliagao. O
Capitulo 4, Resultados e Discussoes, reune a validacao das implementacoes e os resultados
dos estudos de caso, incluindo a comparagao entre os métodos. Por fim, o Capitulo 5,

Conclusoes, apresenta as conclusoes do trabalho e possibilidades de continuidade.
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2 Fundamentacao Teodrica

2.1 Dinamica dos Fluidos Computacional e Modelos

de Ordem Reduzida

A Dinamica dos Fluidos Computacional desempenha um papel central na anélise de esco-
amentos complexos, especialmente em sistemas que envolvem interacao entre fases, como
aqueles com transporte de sedimentos. Esses escoamentos frequentemente apresentam
nao linearidades pronunciadas, multiplas escalas temporais e espaciais, além de regimes
transientes que demandam elevado custo computacional para serem simulados em alta
fidelidade (GRAVE; CAMATA; COUTINHO, 2020). Em muitos casos, a realizacao de
analises paramétricas ou estudos em larga escala torna-se inviavel devido ao custo asso-
ciado as simulagoes completas.

Com o intuito de mitigar essas limitagoes, os Modelos de Ordem Reduzida tém
sido empregados como alternativas eficientes para representar os principais comportamen-
tos dinamicos do sistema utilizando um nimero reduzido de graus de liberdade. Em geral,
esses modelos sao construidos a partir de dados provenientes de simulagoes ou experimen-
tos, permitindo capturar estruturas coerentes e relevantes para a dinamica do escoamento
(BEIT-SADI; KROL; WYNN, 2021; GIORGI; FICARELLA; FONTANAROSA, 2018).

Entre as técnicas mais utilizadas na construcao de ROMs destacam-se a De-
composi¢ao Ortogonal Prépria e o Dynamic Mode Decomposition. Enquanto a POD
busca modos que maximizam a energia representada nos dados, o DMD fornece uma
visao espectral da dinamica ao associar modos espaciais a frequéncias e taxas de cresci-
mento ou decaimento, tornando-o particularmente adequado para a analise de fenomenos
oscilatorios, instabilidades e padroes transientes observados em escoamentos complexos
(SCHMID, 2022).

Outra caracteristica importante do DMD ¢é sua natureza baseada em dados, o

que permite aplica-lo como ferramenta de pds-processamento para extrair informagcoes
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dinamicas de simulagoes CFD sem a necessidade de acessar explicitamente as equacoes
governantes do escoamento (CALMET et al., 2020; NADERI; EIVAZI; ESFAHANIAN,
2019). Essa flexibilidade possibilita a constru¢ao de modelos compactos capazes de re-
produzir a evolucao temporal do sistema e identificar modos dominantes associados a sua
dinamica global.

A literatura recente demonstra um amplo espectro de aplicacbes do DMD e de
suas variantes em escoamentos turbulentos, cavitantes e multifdsicos reforcando seu po-
tencial como ferramenta versétil na andlise modal de sistemas fluidodinamicos (LIBERO
et al., 2024; ZHANG et al., 2024D).

Nas secOes seguintes, apresenta-se a formulagao matematica do método DMD
classico, bem como os principios que fundamentam sua utilizagao na construcao de mo-

delos de ordem reduzida empregados em CFD.

2.2 Decomposicao em Modos Dinamicos (DMD)

A Decomposicao em Modos Dinamicos é uma técnica de analise modal que extrai, a
partir de dados temporais, estruturas espaciais coerentes associadas a comportamentos
dinamicos bem definidos. O método identifica modos espaciais e suas respectivas taxas
de crescimento, decaimento ou oscilagao, permitindo caracterizar a evolucao temporal do
sistema sem recorrer explicitamente as equagdes governantes do escoamento (SCHMID,
2022; CALMET et al., 2020).

A ideia central do DMD é que a dinamica observada pode, em muitos casos,
ser aproximada por um operador linear que descreve a evolucao temporal dos dados. A
partir dessa aproximacao, o método decompoe o comportamento do sistema em modos
dinamicos, cada um representando uma estrutura espacial caracteristica e um padrao
temporal associado (GIORGI; FICARELLA; FONTANAROSA, 2018).

Além de sua aplicacao em andlise modal e reducao de ordem, o DMD também
permite descrever a evolucao temporal do sistema a partir dos modos identificados. Isso
possibilita tanto a representacao dos estados ja observados quanto a extrapolacao de
seu comportamento para instantes futuros, o que o torna especialmente relevante para

aplicagoes em previsao e reconstrugao de campos fluidodinamicos (QIN et al., 2019; BAO
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et al., 2019).

A interpretacao temporal do modelo deriva dos autovalores do operador dinamico
aproximado, que codificam informagoes sobre frequéncia e sobre taxas de crescimento ou
amortecimento associadas a cada modo. Esses elementos resultam em uma descricao com-
pacta e interpretavel da dinamica, capaz de capturar instabilidades, padroes recorrentes
e comportamentos transientes.

De forma conceitual, o DMD parte da aproximagao

Xgr1 ~ AXk, (21>

na qual um operador linear desconhecido A relaciona estados consecutivos do sistema.
O método constréi, a partir dos dados, uma representacao reduzida desse operador que
permite extrair seus autovalores e autovetores associados. Os autovetores projetados
definem os modos dinamicos, enquanto os autovalores determinam seu comportamento
temporal.

A préxima subsecao apresenta a formulacao matematica classica do DMD, deta-
lhando as etapas necessarias para sua aplicagdo em problemas de fluidodinamica compu-

tacional.

2.2.1 Formulacao matematica do DMD classico
Organizacao dos dados

Considere uma sequéncia de m estados observados de um sistema dinamico, obtidos em
instantes igualmente espagados tq,%s,...,t,, com passo temporal At. Cada estado é
representado por um vetor coluna

x; € R",

onde n corresponde ao numero de graus de liberdade do sistema. No contexto deste
trabalho, cada x;, é obtido pela vetorizagao de um campo bidimensional (simulagao CFD)
em um unico vetor de dimensao n.

Para formular o DMD, esses vetores sao organizados em duas matrizes defasadas:
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X. = Xl X2 e Xm_1‘| 5 Y = |i)(2 X3 P Xm:| . (2.2)

com X, Y € R O objetivo do DMD é encontrar um operador linear A € R™*™ tal

que, para cada par de estados consecutivos, tenhamos a aproximacao

X1 ~ Axyg, k=1,...,m—1. (2.3)

o que, em forma matricial, se escreve como

Y ~AX. (2.4)

A matriz A representa o operador dinamico que aproxima a evolucao temporal
do sistema no intervalo amostrado. Entretanto, sua dimensao n x n é tipicamente muito
elevada em aplicacoes de fluidodinamica, tornando invidvel a computacao direta desse
operador. Assim, o DMD utiliza técnicas de reducao de ordem para obter uma repre-
sentacao equivalente de baixa dimensao que capture os principais padroes dinamicos do

sistema.

Estimativa do operador dindmico via minimos quadrados

Os vetores x;, que compoem as matrizes X e Y representam amostras do estado do sistema
em instantes sucessivos. Esses vetores sao frequentemente referidos na literatura como
snapshots.

Partindo da organizagao dos dados discutida anteriormente, a evolugao temporal
observada pode ser aproximada por meio da relagao linear Eq. (2.4) na qual A atua como
um operador dinamico que aproxima a transi¢cao entre estados consecutivos. A estimativa

desse operador pode ser formulada como o problema de minimos quadrados

min [[Y — AX]|r. (2.5)

cuja solucao ¢ dada pela pseudoinversa de Moore—Penrose:
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A =YX (2.6)

Apesar de sua simplicidade conceitual, essa formulagao nao é adequada para
aplicagoes de fluidodinamica, pois o operador A teria dimensao n x n, onde n corresponde
ao numero total de graus de liberdade do campo espacial. Como n é tipicamente muito
grande em problemas reais, a computagao direta de A torna-se inviavel em termos de
custo computacional e armazenamento.

Por essa razao, o DMD emprega uma representacao reduzida do operador dinamico,

obtida por meio da decomposigao em valores singulares (SVD), apresentada a seguir.

Reducao de ordem via decomposicao em valores singulares

Para tornar viavel a estimativa do operador dinamico, o DMD utiliza uma representacao
reduzida do sistema baseada na decomposicao em valores singulares da matriz X. A SVD
permite identificar os componentes espaciais mais relevantes dos dados, possibilitando a
projecao da dinamica em um subespaco de dimensao muito menor que n.

A decomposicao é dada por

X=UxV' (2.7)

onde U € R™" ¢ V € Rm=Dx(m=1) s50 matrizes ortogonais, e ¥ é uma matriz diagonal
contendo os valores singulares de X em ordem decrescente.
Em aplicacoes praticas, retém-se apenas os r maiores valores singulares, resul-

tando na aproximacao truncada

X~U,X. VS (2.8)

na qual U, € R™", B, € R e V, € R DX Essa truncacio define o subespaco
dominante no qual a dinamica sera projetada.
Substituindo essa aproximacao na relagao Y ~ AX e multiplicando a esquerda

por U, obtém-se
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U/ Y~U'AU, X,V (2.9)

Como o objetivo é representar a dinamica no subespago gerado por U,., define-se

A=U'AU,. (2.10)

0 que permite reescrever a expressao anterior como

UY~AXV/ . (2.11)

Multiplicando & direita por V.31 obtém-se entao

A~U 'YV, DL (2.12)

que é o operador dinamico reduzido associado ao subespaco dominante da SVD. A matriz
A € R™" captura a dinamica essencial do sistema e torna o problema computacional-
mente viavel, permitindo calcular explicitamente seus autovalores e autovetores na etapa

seguinte.

Autovalores e modos dinamicos

Uma vez obtida a matriz reduzida A € R"™". a dinamica do sistema pode ser analisada
)

por meio de sua decomposicao espectral. Os autovalores e autovetores de A satisfazem

AW =WA. (2.13)

onde W € C™*" contém os autovetores a direita e A = diag(\y, ..., A.) é a matriz diagonal
de autovalores. Cada autovalor \; descreve o comportamento temporal associado a um
modo dinamico: seu moédulo indica a taxa de crescimento ou decaimento, enquanto seu
argumento determina a frequéncia de oscilagao.

Para recuperar os modos no espaco original, projeta-se os autovetores de A de

volta ao espaco de dimensao n por meio da expressao
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@:YVTET1W:{¢1 by - ¢T1_ (2.14)

em que cada coluna ¢; € C" representa um modo DMD. Esses modos correspondem a
estruturas espaciais coerentes cuja evolucao temporal é governada pelo autovalor associado
A;. Modos com |A;| > 1 indicam crescimento, enquanto |A;| < 1 indicam amortecimento.
Modos com autovalores complexos apresentam comportamento oscilatério.

A colegao formada por (¢, A;) fornece uma descri¢do compacta e interpretavel da
dinamica essencial do sistema, permitindo reconstruir sua evolucao temporal a partir de

combinagoes lineares desses modos. Essa reconstrucao ¢ apresentada na subsegao seguinte.

Evolugao temporal e reconstrucao

A partir dos modos dinamicos ® e dos autovalores associados \;, é possivel descrever

YR
a evolucao temporal aproximada do sistema no subespaco dominante identificado pelo
DMD. O primeiro passo consiste em determinar os coeficientes iniciais que expressam o

estado inicial como combinacao dos modos:

X, ~®b = b=&"x, (2.15)

onde @' denota a pseudoinversa de Moore-Penrose e b = [by,...,b,]" contém as ampli-
tudes iniciais associadas a cada modo.
Como os autovalores \; representam a evolucao temporal discreta dos modos,
costuma-se introduzir a forma continua
In(};)

wj = — (2.16)

na qual Re(w;) descreve a taxa de crescimento ou decaimento e Im(w;) fornece a frequéncia
angular associada ao modo ¢;. Com isso, a solucao aproximada do sistema pode ser

expressa como

X(t) ~ Z bj d)j ijt (217)
j=1
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o0 que permite reconstruir os estados observados e, se desejado, extrapolar a dinamica
para instantes futuros. A qualidade dessa reconstrucao depende da escolha do posto r,
da riqueza dos dados e da adequacao da aproximacao linear ao comportamento real do
sistema.

A representagao modal fornecida pelo DMD concentra a dinamica essencial do
sistema em um conjunto reduzido de modos coerentes, possibilitando analisar padroes
temporais, identificar instabilidades e construir modelos compactos capazes de reproduzir
a evolucao do escoamento de forma eficiente. Essa formulacao serve de base para as
variantes do DMD apresentadas posteriormente e para as implementagoes desenvolvidas

neste trabalho.

2.2.2 Limitagoes do DMD classico e variantes

Apesar de sua formulagao consolidada, a decomposicao em modos dinamicos apresenta
limitagoes estruturais que motivaram o surgimento de variantes mais robustas e adapta-
tivas. Em sua configuracao classica, o DMD depende da disponibilidade simultanea de
todos os pares de snapshots, o que o torna inadequado para aplicagoes em que os dados
chegam de forma sequencial ou quando o volume de informagoes excede a capacidade de
armazenamento. Além disso, a estimacao do operador dinamico é sensivel ao condiciona-
mento das matrizes de dados, reduzindo sua robustez frente a ruidos e perturbacoes —
condicao comum em medi¢oes experimentais ou simulacoes extensas.

Outro fator limitante é a suposicao de que a dinamica global pode ser representada
por um operador linear fixo. Em sistemas nao estacionarios ou sujeitos a mudancas
topoldgicas, essa hipotese deixa de ser véalida, comprometendo a capacidade do método
de acompanhar a evolugao temporal do sistema (ZHANG et al., 2019). Adicionalmente, o
custo computacional associado a decomposicao em valores singulares torna-se proibitivo
em aplicagoes de Dinamica dos Fluidos Computacional, onde cada snapshot pode conter
dezenas ou centenas de milhares de graus de liberdade (HEMATI; WILLIAMS; ROWLEY,
2014).

Para superar tais limitacoes, diferentes variantes do DMD tém sido propostas.

Algumas introduzem regularizacdo para melhorar a estabilidade frente a ruidos; outras
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ampliam a capacidade de representacao por meio de expansoes nao lineares no espaco
de observaveis; e ha ainda métodos que incorporam informagoes fisicas ao processo de
decomposi¢ao. Particular relevancia é dada as abordagens adaptativas e incrementais,
capazes de atualizar o modelo continuamente a medida que novos dados chegam, evitando
o custo e a rigidez do processamento em lotes.

Entre essas abordagens, destaca-se o DMD Online, que realiza uma atualizagao
recursiva do operador dinamico reduzido a medida que novos snapshots sao observados,
dispensando o armazenamento de toda a matriz de dados. Essa formulacao possibilita
acompanhar sistemas cuja dinamica é explicitamente dependente do tempo e permite
incorporar fatores de esquecimento que priorizam informacoes recentes (ZHANG et al.,
2019).

Outra técnica relevante é o Streaming DMD, que utiliza uma formulacao de baixa
memoria para atualizar incrementalmente as bases modais e as projecoes dinamicas a
cada novo snapshot. Esse método reduz a necessidade de armazenamento, incorpora
mecanismos de compressao baseados em decomposicao modal e mantém apenas as direcoes
dinamicamente mais relevantes, mesmo na presenga de ruidos significativos (HEMATTI,
WILLIAMS; ROWLEY, 2014).

Essas variantes tornam-se particularmente adequadas para aplicagoes com gran-
des volumes de dados, dinamica variavel e presenca de ruidos — caracteristicas tipicas de
escoamentos com transporte de sedimentos. As préximas se¢oes apresentam os algoritmos

empregados neste trabalho, bem como sua implementacao em C++.



21

3 Metodologia

3.1 Visao geral da metodologia

A metodologia adotada neste trabalho tem como objetivo viabilizar a anélise compara-
tiva de variantes da decomposicao em modos dinamicos aplicadas a escoamentos com
transporte de sedimentos, combinando a utilizacao de dados provenientes de simulagoes
numéricas com o desenvolvimento de uma infraestrutura computacional prépria em C++.

Inicialmente, sao utilizados conjuntos de dados gerados por simulacoes de Dinamica
dos Fluidos Computacional, nos quais a evolucao temporal do escoamento ¢é representada
por campos espaciais discretizados ao longo do tempo. Esses campos sao disponibilizados
na forma de imagens previamente processadas, as quais sao organizadas sequencialmente
e interpretadas como amostras do estado do sistema dinamico.

A partir dessas amostras, os dados sao estruturados de modo a permitir a aplicacao
dos métodos de decomposicao modal. Em particular, cada imagem é convertida em um
vetor de estado, e as sequéncias temporais sao organizadas conforme a formulagao do
DMD apresentada no capitulo de fundamentacao tedrica. Essa organizacao possibilita a
aplicagao direta do DMD classico, bem como de suas variantes incrementais.

No ambito computacional, é desenvolvida uma biblioteca modular em C++, pro-
jetada para implementar o DMD cléssico, o Online DMD e o Streaming DMD de forma
unificada. Essa infraestrutura permite a execucao de experimentos sob condigoes contro-
ladas, garantindo consisténcia metodoldgica e reprodutibilidade dos resultados.

Por fim, as diferentes variantes sao avaliadas com base em métricas que con-
templam a qualidade da reconstrucao temporal e aspectos computacionais relevantes. As
etapas seguintes deste capitulo detalham a origem e a caracterizagao dos dados utilizados,

bem como as estratégias de implementacao adotadas para cada algoritmo.
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3.2 Origem e caracterizacao dos dados

Os dados utilizados neste trabalho foram obtidos a partir de simulagoes numéricas de
Dinamica dos Fluidos Computacional envolvendo escoamentos com transporte de sedi-
mentos. Nessas simulagoes, o dominio fisico do problema é representado por uma malha
computacional baseada em elementos finitos, a partir da qual sdo obtidos campos espaciais
que descrevem a evolucao temporal do escoamento. Esses campos resultam da resolucao
numérica das equagoes que governam o sistema, realizada por ferramentas de simulacao
apropriadas, produzindo informacgoes definidas sobre a malha ao longo do tempo.

A partir desse processo, sao gerados campos bidimensionais representativos do es-
tado do sistema em instantes temporais sucessivos. Tais campos correspondem a amostras
igualmente espacadas no tempo e descrevem grandezas de interesse associadas a dinamica
do transporte de sedimentos. Para fins de andlise, essas informacoes foram exportadas
no formato de imagens, preservando a estrutura espacial necessaria para a aplicacao das
técnicas de decomposicao modal.

As imagens utilizadas neste trabalho foram disponibilizadas juntamente com a
biblioteca associada ao projeto, sendo obtidas por meio da execucao de um script automa-
tizado que realiza o download e a organizacao dos dados. Importante destacar que essas
imagens ja se encontram previamente processadas, incluindo segmentacao da regiao de
interesse e conversao para escala de cinza. Dessa forma, nao foi necessério realizar etapas
adicionais de pré-processamento sobre os dados brutos antes da aplicacao dos métodos
estudados.

Para fins de contextualizagao, a Figura 3.1 apresenta um exemplo do campo
original gerado pela simulagao de CFD antes das etapas de segmentacao da regiao de
interesse e conversao para escala de cinza. Essa visualizacao ilustra a extensao completa

do dominio computacional e o tipo de informacao espacial disponivel nos dados brutos.
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Figura 3.1: Campo de sedimentos obtido diretamente da simulagao de CFD.

Cada imagem representa, portanto, um estado do sistema dinamico em um dado
instante de tempo e é interpretada como uma amostra da evolucao temporal do escoa-
mento. Essas amostras sao utilizadas diretamente na construcao das sequéncias temporais
analisadas pelos métodos de decomposi¢cao em modos dinamicos. A organizagao temporal

dessas imagens e sua conversao para vetores de estado, sao detalhadas na secao seguinte.

3.2.1 Organizacao temporal e definicao dos snapshots

Para a aplicacao dos métodos de decomposicao em modos dinamicos, os dados devem
ser organizados como uma sequéncia temporal de estados do sistema. No contexto deste
trabalho, cada estado é representado por uma imagem bidimensional proveniente da si-
mulacao numérica, correspondente a um instante especifico da evolucao do escoamento.

Cada imagem é interpretada como uma amostra do estado do sistema dinamico e,
seguindo a terminologia adotada na literatura, ¢ denominada um snapshot. Essas imagens
sao ordenadas temporalmente de acordo com o instante em que foram geradas, assumindo
um intervalo de tempo constante entre amostras consecutivas.

Para viabilizar a aplicagao dos algoritmos de DMD), cada imagem bidimensional
¢é convertida em um vetor coluna por meio de um processo de vetorizacgao, no qual os
valores de intensidade dos pixels sao organizados sequencialmente em um tnico vetor.
Dessa forma, cada snapshot é representado por um vetor de estado em um espaco de alta

dimensao, preservando a informagao espacial originalmente contida na imagem.
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A sequéncia de vetores de estado é entao organizada em duas matrizes defasa-
das no tempo, conforme a formulagao classica do DMD. A primeira matriz é composta
pelos snapshots correspondentes aos instantes iniciais, enquanto a segunda contém os
snapshots deslocados temporalmente em uma unidade de tempo. Essa organizacao esta-
belece a relagao temporal necesséria para a estimativa do operador dinamico que aproxima
a evolucao do sistema.

Essa estrutura de dados é utilizada de forma consistente em todas as variantes
estudadas neste trabalho. No caso do DMD classico, as matrizes completas sao cons-
truidas previamente. J& nas variantes incrementais, como o Online DMD e o Streaming
DMD;, os snapshots sao incorporados progressivamente ao longo do tempo, respeitando a
mesma légica de organizacao temporal. Os detalhes especificos de cada abordagem sao

apresentados nas secoes seguintes.

3.3 Implementacao computacional

3.3.1 Arquitetura geral da biblioteca em C++

Com o objetivo de viabilizar experimentos controlados e reprodutiveis, foi desenvolvida
uma biblioteca em C++ para a implementacao do DMD classico e de suas variantes
Online e Streaming. A biblioteca foi projetada com uma arquitetura modular, de modo
a reduzir redundancias entre implementacoes, facilitar a extensao para novas variantes e
garantir consisténcia entre os procedimentos numéricos empregados em cada método.

A organizacao do c6digo separa claramente as responsabilidades relacionadas (i)
a leitura e preparagao dos dados, (ii) a execugao dos algoritmos de decomposicao, e (iii)
ao calculo de medidas necessarias para avaliacao posterior. Essa separacao permite que
os diferentes métodos sejam aplicados sobre a mesma estrutura de dados e com inter-
faces consistentes, isolando o efeito das variagoes algoritmicas e evitando interferéncias
decorrentes de diferencas de implementacao.

Em termos de funcionamento, a biblioteca opera sobre uma sequéncia temporal
de snapshots vetorizados, a partir da qual sao calculados os elementos necessarios para

a analise dinamica do sistema. Esses elementos incluem os modos dinamicos associados,
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bem como as informagoes temporais utilizadas nos processos de reconstrucao da dinamica
temporal.

A configuracao dos algoritmos é realizada por meio de parametros definidos expli-
citamente, como o posto de truncamento e as estratégias de atualizacao adotadas em cada
variante. Essa abordagem garante que diferentes métodos sejam avaliados sob condigoes
controladas e comparaveis, preservando a consisténcia metodoldogica entre os experimentos
realizados.

As secOes seguintes apresentam em detalhes a implementacao do DMD cléssico e
de suas variantes, destacando as particularidades algoritmicas e computacionais de cada

abordagem.

3.3.2 Bibliotecas e ferramentas utilizadas

A implementacao da biblioteca foi realizada integralmente em C++4, com o objetivo de
garantir eficiéncia computacional, controle explicito de memoria e flexibilidade na inte-
gracao dos diferentes algoritmos de decomposicao estudados. Para viabilizar as operagoes
numeéricas necessarias, foram utilizadas bibliotecas amplamente consolidadas no contexto
cientifico e de computacao de alto desempenho.

Em particular, a biblioteca Eigen! foi empregada para a realizacao de operacoes
de algebra linear, como multiplicacoes matriciais, decomposicao em valores singulares e
resolucao de sistemas lineares. A escolha da Eigen deve-se a sua eficiéncia, interface
expressiva baseada em templates e ampla utilizacdo em aplicacoes cientificas, além de
oferecer suporte direto a matrizes densas e operacoes necessarias para a implementacao
dos métodos de DMD.

Além disso, foram utilizadas estruturas padrao da biblioteca padrao do C++
(STL) para gerenciamento de dados, controle de fluxo e organizacao das estruturas in-
ternas, contribuindo para a portabilidade e manutencao do cédigo. Essa combinagao de
ferramentas permitiu desenvolver uma infraestrutura computacional eficiente e modular,
adequada ao processamento de dados de alta dimensionalidade provenientes de simulagoes

numeéricas.

L(https://libeigen.gitlab.io/)
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O uso dessas bibliotecas fornece uma base sélida para a implementacao consistente
das diferentes variantes do DMD, permitindo que as diferencas observadas nos resultados
estejam associadas as caracteristicas algoritmicas de cada método, e nao a limitacoes da

infraestrutura computacional adotada.

3.4 Implementacao do DMD classico

A implementagao do DMD cléssico foi estruturada em duas etapas complementares: (i)
o ajuste do modelo a partir de uma matriz de snapshots e (ii) a reconstrugao tem-
poral a partir do modelo ajustado. Essas etapas correspondem diretamente aos métodos
DMD::fit() e DMD: :predict (), respectivamente.

No ajuste, a entrada é a matriz X € R™™, onde cada coluna representa um
snapshot vetorizado do sistema. O objetivo é extrair uma representacao modal de baixa
dimensao associada a um operador linear que aproxima a evolucao temporal observada
nos dados. Para isso, a sequéncia é organizada em duas matrizes defasadas no tempo,
X e Xy, contendo estados consecutivos do sistema, o que estabelece a relacao temporal
necessaria para a aproximacao do operador dinamico. Em seguida, calcula-se a decom-
posicao em valores singulares de X e aplica-se truncamento para um posto r, reduzindo
a dimensionalidade do problema e tornando viavel a construcao do operador dinamico
reduzido. Nesta implementacao, o parametro r pode ser fornecido explicitamente ou de-
terminado automaticamente a partir do espectro de valores singulares, dependendo da
configuracao adotada no experimento.

Com a base reduzida determinada, constréi-se o operador reduzido A, que apro-
xima a dinamica no subespago dominante. A decomposi¢ao espectral desse operador
fornece os autovalores A e autovetores associados, que sao utilizados para reconstruir os
modos dinamicos ® no espaco original. Por fim, calcula-se o vetor de amplitudes iniciais
b por meio de uma pseudoinversa, ajustando a combinagao modal ao primeiro estado ob-
servado. A conversao dos autovalores discretos para frequéncias continuas w é realizada
por w = In(X)/At, o que permite avaliar a solu¢ao em instantes arbitrarios no tempo.

O Algoritmo 1 resume o fluxo computacional implementado no método DMD: : fit ().

Uma vez ajustado o modelo, a reconstrucao temporal é realizada a partir da



3.4 Implementagao do DMD cléssico 27

Algoritmo 1: Ajuste do Modelo DMD (DMD: :fit())

Entrada: X € R™™, At, posto r (ou selegao automatica)
Saida: &, A\, b, w

1 inicio

2 Calcule dimensoes de X: (n,m) « shape(X);

3 Calcule matriz defasada X;: Xy < X[z, 1: (m — 1)];

4 Calcule matriz defasada Xy: Xy < X[, 2 : mj;

5 Calcule estado inicial: x¢ < X [:, 1];
6

7

8

9

Calcule SVD de X;: (U, %, V) < SVD(X,);
Calcule truncamento para posto r: (U,, 3, V,) < truncar (U, X, V);

Calcule operador dinamico reduzido: A« UrT X, V, ¥t

Calcule autovalores e autovetores de A: (A, W) <« eig(A);
10 Calcule modos dinamicos: ® <+ X, V,. X 1'W;

11 Calcule amplitudes iniciais: b < ®x;

12 Calcule frequéncias continuas: w < In(X)/At;
13 retorna , \, b, w;

14 fim

mesma formulacao modal. Para cada instante t;, calcula-se o vetor de contribuicoes
temporais d(¢;) = b ® exp(wt;) e obtém-se o estado correspondente por x(t;) = ®d(t;).

No escopo deste trabalho, essa expressao é avaliada exclusivamente nos instantes
temporais associados ao conjunto de dados utilizado no ajuste do modelo, caracterizando
o regime de reconstrucao one-step-ahead. Como a implementacao envolve quantidades
complexas ao longo dos calculos, o estado final retornado é obtido tomando-se apenas a
parte real da solugao.

O Algoritmo 2 descreve o procedimento implementado no método DMD: : predict ().

Algoritmo 2: Reconstrugao com DMD (DMD: :predict())
Entrada: ®. b, w, t = [t1,...,1,)]
Saida: X € R"*P

1 inicio

2 para j < 1 até p faga

3 Calcule contribuicao temporal: d; < b ® exp(wt;);
4 Calcule estado no instante ¢;: x; < ®d;;

Atribua coluna j de X: X[;, j] « X;;
fim para

5
6

7 retorna X;
8 fim
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3.4.1 Definicao do posto reduzido

A definicao do posto reduzido r é uma etapa essencial na aplicacao do DMD, pois afeta
diretamente a capacidade de representar a dinamica dominante do sistema e o custo
computacional do método. Valores muito baixos de r podem levar a perda de informagoes
relevantes, enquanto valores elevados tendem a aumentar o custo computacional sem
ganhos significativos de precisao.

Nesta implementagao, o posto reduzido pode ser fornecido explicitamente ou
determinado de forma automatica a partir do espectro de valores singulares da matriz de
dados. No caso da selecao automatica, utiliza-se um critério baseado em um limiar 6timo
aplicado aos valores singulares, conforme descrito em (GAVISH; DONOHO, 2014).

Seja X; € R™(m=1) g matriz de snapshots defasados no tempo, cuja decomposicio

em valores singulares é dada por

X, =UxVT, (3.1)

com X = diag(si, s2,...,5,) contendo os valores singulares ordenados de forma decres-

cente. Define-se a razao de aspecto da matriz como

5= min(n, m — 1) (3.2)

max(n,m — 1)

A partir dessa razao, é definido um limiar de truncamento

7 = W(B) Smed; (3.3)

onde speq representa a mediana dos valores singulares e w(f) é uma fungdo dependente
apenas da razao de aspecto da matriz, conforme especificado em (GAVISH; DONOHO,
2014). O posto reduzido é entao obtido como o nimero de valores singulares que satisfa-
zem s; > T.

O valor de r obtido por esse procedimento fornece uma estimativa do niimero de
componentes necessarias para representar a dinamica dominante do sistema a partir do

espectro de valores singulares dos dados. Esse critério ¢ adotado nesta implementacao
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como uma opc¢ao automatica para a definicao do posto reduzido, podendo ser utilizada

conforme a configuragao do método.

3.5 Implementacao do Online DMD

A variante Online DMD foi implementada com o objetivo de permitir a atualizacao in-
cremental do modelo dinamico a medida que novos snapshots sao observados, evitando a
recomputacao completa em lote. Essa abordagem ¢é adequada a cenérios em que os dados
sao processados sequencialmente e, em particular, a sistemas cuja dinamica pode variar
ao longo do tempo.

No presente trabalho, o método é aplicado em um subespago de dimensao re-
duzida, obtido a partir de um conjunto inicial de snapshots (warmup). Esse conjunto
¢ utilizado para construir uma base espacial U € R™ " por meio de uma decomposicao
em valores singulares truncada, onde n representa a dimensao original do estado e r a
dimensao reduzida escolhida. Cada estado x; € R™ é projetado no subespaco reduzido

por

Zp = UTXk, (34)

A dinamica do sistema passa a ser modelada no espacgo reduzido, estimando-se

um operador reduzido A, € R"™*" tal que

Ziy 1 AT Zy. (35)

A inicializa¢do do método consiste em: (i) construir a base U a partir do warmup;
(ii) projetar pares consecutivos (X, Xx41) no subespago reduzido, obtendo (zy, z+1); e (iii)
inicializar o operador reduzido A, no espaco reduzido. No cédigo, essa etapa é realizada
no procedimento de inicializacao a partir do warmup, que prepara U e o estado inicial do
modelo antes do processamento sequencial.

O Algoritmo 3 resume a etapa de inicializa¢ao a partir do warmup (implementagao
OnlineDMDReduced: :initialize from warmup()).

Apoés a inicializacao, o método opera de forma sequencial. A cada instante,
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Algoritmo 3: Inicializacao do Online DMD a partir do warmup
(OnlineDMDReduced: :initialize from warmup())

Entrada: X, = [x1,...,xw] € R™W posto r, fator de esquecimento w
Saida: U € R™*", operador reduzido inicial A, € R"™"
inicio
Calcule SVD do warmup: (Ugy, X, V) < SVD(X,);
Calcule base truncada: U < Ugy[:, 1 : 7];
Calcule nimero de pares: P <~ W — 1;
para k < 1 até P faca
Calcule projecao do estado: z;, < U'xy;
Calcule projecao do préximo estado: zj, 1 < U'xXpyq;
Atribua coluna k de X,: X, [:, k] < zy;
Atribua coluna k de Y,: Y, [:, k] ¢ zj41;
10 fim para
11 Inicialize operador reduzido A, por minimos quadrados com fator de
esquecimento w;
12 fim

© 0w N O oA W N -

realiza-se primeiramente uma predicdo causal de um passo a frente (one-step-ahead) e
atualizacoes incrementais do operador reduzido a medida que novos dados sao observados.
Em seguida, apds a observacao do estado real subsequente, o operador reduzido A, é
atualizado de forma incremental com o novo par projetado (zy,zjy1). Essa estratégia
permite que A, se adapte progressivamente a alteragoes na dinamica do sistema.

O Algoritmo 4 descreve o ciclo de predigao e atualizacao incremental adotado.

Algoritmo 4: Predicao causal e atualizacao incremental do Online DMD

Entrada: Base U, operador reduzido A, sequéncia {x;}_,
Saida: Estados previstos X1

1 inicio

2 para k < 1 até N — 1 faga

3 Calcule projecao do estado atual: z; < U'xy;

4 Calcule predicao no espago reduzido: zp1 < A, zy;

5 Calcule estado previsto no espaco original: X1 < U Zj1;
6 Calcule projecao do préximo estado real: zj,; < UTxp q;
7 Atualize operador reduzido: A, < update(A.,,zx, Zx41, W);
8

9

fim para
fim

A atualizacao incremental do operador reduzido A, é baseada em uma regra
de minimos quadrados recursivos com fator de esquecimento w, o que enfatiza amostras
recentes e torna o ajuste mais responsivo a variagoes temporais. No cddigo, essa etapa

corresponde ao ntcleo de atualizacao realizado sobre os estados reduzidos, mantendo
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também uma matriz auxiliar P associada a forma recursiva do problema.
O Algoritmo 5 apresenta a regra de atualizacao recursiva utilizada no ajuste de

A,

Algoritmo 5: Atualizagdo recursiva do operador reduzido A,
(OnlineDMD: :update())
Entrada: zg, z;,1, operador A,, matriz auxiliar P, fator de esquecimento
w
Saida: Operador atualizado A,
1 inicio

Calcule ganho escalar: v < (1 + zszk)_l;

Calcule residuo de predigao: r < zxr1 — A, Zg;

Atualize operador reduzido: A, < A, +r (yPz)";

Atualize matriz auxiliar: P < (P — v Pzz] P)/w;
fim

S Uk WN

E importante notar que, diferentemente do DMD classico, o Online DMD imple-
mentado neste trabalho nao reconstréi uma trajetéria completa a partir de uma expansao
modal do tipo ® exp(wt) e amplitudes globais. Em vez disso, a reconstrugao empregada
¢ causal e de um passo a frente: em cada instante, o estado x;.; é aproximado dire-
tamente pela aplicagao do operador reduzido A, ao estado atual projetado, seguida da
reconstrucao via U. Assim, a mesma rotina é utilizada para a reconstrugao temporal em
esquema causal one-step-ahead: a cada iteracao, a entrada x; corresponde ao estado real
observado do sistema, a partir do qual se obtém a estimativa do estado imediatamente
subsequente. Essa formulacao permite avaliar a capacidade do modelo em reproduzir a
dinamica local do sistema a partir de dados observados, sem recorrer a extrapolagoes

temporais ou realimentacao autoregressiva de estados previstos.

3.6 Implementagao do Streaming DMD

A variante Streaming DMD foi implementada para processar snapshots de forma sequen-
cial, mantendo um modelo dinamico atualizado sem armazenar todas as matrizes com-
pletas do método cléssico. Diferentemente do Online DMD utilizado neste trabalho, que
opera em um subespaco fixo obtido no warmup, o Streaming DMD permite adaptar di-

namicamente as bases reduzidas ao longo do tempo, adicionando novas dire¢oes quando
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a projecao passa a representar mal os dados e realizando compressoes quando a dimensao
reduzida cresce além de um limite.

A implementagao mantém duas bases reduzidas no espaco original, U, € R"*"=
e U, € R"v associadas, respectivamente, aos estados atuais x;, e aos estados seguintes

X,11. Para cada par consecutivo, definem-se as projegoes reduzidas

}Nik = UIX;C, S’k = UyTXkJrl. (36)

A dinamica é representada por meio de matrizes de regressao reduzidas Q, P,
e P,, atualizadas incrementalmente com fator de esquecimento p € (0,1]. O operador

reduzido utilizado na predicao ¢ dado por

A=QP! (3.7)

que aproxima a dinamica entre estados consecutivos no subespaco reduzido.
A inicializacao do método é realizada a partir de um conjunto inicial de snapshots

(warmup), conforme descrito no Algoritmo 6.

Algoritmo 6: Inicializacao do Streaming DMD

(StreamingDMD: : StreamingDMD())
Entrada: Warmup X,,, "min, Tmax, limiar 7, meia-vida h
Saida: U,, U,, Q, P, P,, p

1 inicio

2 Calcule fator de esquecimento p;

3 Construa pares X e Y;

4 Calcule bases iniciais U, e U, por SVD truncada;

5

6

7

Projete dados: X «+ UX, Y U;Y;
Inicialize Q, P, e Py;
fim

Apoés a inicializacao, o modelo passa a ser atualizado incrementalmente a medida
que novos pares (X, Xy+1) sdo observados. Nessa etapa, o método avalia a qualidade
da projecao dos dados nas bases atuais, permitindo expansao adaptativa das bases e
aplicacao de compressao quando necessario. Para evitar crescimento descontrolado da
dimensao reduzida, uma etapa de compressao é aplicada sempre que o rank ultrapassa

um valor maximo permitido.
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O Algoritmo 7 descreve o procedimento completo de atualizacao incremental.

Algoritmo 7: Atualizacao  incremental do  Streaming DMD

(StreamingDMD: :update())
Entrada: (xj,Xi+1), Uy, Uy, Q, Py, Py, p, 7, Tiax
Saida: Bases e matrizes reduzidas atualizadas

1 inicio

2 Projete estados nas bases atuais;

3 Calcule residuos de projecao;

4 se erro relativo > T entao

5 Adicione nova direcao a base correspondente;

6

7

8

9

Atualize matrizes associadas;
fim se
se rank > rn.x entao
‘ Execute compressao POD;

10 fim se
11 Atualize Q, P, e P, com esquecimento;
12 fim

A predicao causal de um passo a frente (one-step-ahead) segue a mesma logica
adotada na variante anterior: o estado corrente é projetado no subespaco reduzido, a
dinamica é aplicada por meio do operador A e o resultado é reconstruido no espaco

original. O Algoritmo 8 apresenta esse procedimento.

Algoritmo  8: Predicao  one-step-ahead no  Streaming DMD
(StreamingDMD: :predict next())
Entrada: x;, U,, U,, Q, P,
Saida: x;;
inicio
Calcule A + QP1;
Projete estado: x < U] x;

Reconstrua no espaco original: X1 < U,y;

1
2
3
4 Prediga no espago reduzido: y < Ax;
5
6 fim

3.7 Meétricas de avaliacao

A avaliacao dos métodos implementados foi realizada a partir de trés critérios principais:
(i) qualidade de reconstrugao, (ii) tempo de processamento e (iii) uso de memoria. Essas
métricas permitem analisar tanto a precisao dos modelos quanto o custo computacional

associado a cada abordagem.
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(i) Qualidade de reconstrugao. A qualidade dos resultados foi avaliada por
meio do erro quadrético médio (mean squared error, MSE) e do Peak Signal-to-Noise Ratio
(PSNR), calculados no esquema causal one-step-ahead. Em cada iteragdo, compara-se o

estado real x;,1 com a predigao X1 fornecida pelo modelo, obtendo-se o vetor diferenca
d= Xk+1 — )A(k_t'_l. (38)

O erro quadratico médio é definido por

d 2
MSE = w, (3.9)

n

onde n representa a dimensao do estado. Essa métrica quantifica o erro médio por com-
ponente do vetor de estado e permite avaliar a evolucao temporal da qualidade da recons-
trugao.

Como complemento a andlise baseada em MSE, a qualidade visual das recons-
trugoes foi avaliada por meio do Peak Signal-to-Noise Ratio, amplamente utilizado em

comparacao de imagens. O PSNR ¢ definido como

[2
PSNR = 10log,, (Mm—sg) : (3.10)

onde I,.x representa o valor maximo possivel de intensidade do sinal da imagem. Valores
mais elevados de PSNR indicam maior similaridade entre a imagem reconstruida e a
imagem original no mesmo instante temporal.

Nos experimentos realizados, o MSE foi analisado ao longo do tempo para ava-
liar o comportamento dinamico do erro, enquanto o PSNR foi empregado como métrica
pontual para quantificar a qualidade visual das reconstrugoes em instantes especificos.

(ii) Tempo de processamento. O tempo total de execucao de cada algoritmo
foi medido utilizando a biblioteca std: :chrono da linguagem C++. O instante inicial é
registrado imediatamente antes da execugao do método avaliado e o instante final é obtido
apos o término completo do processamento. A diferenca entre esses dois instantes fornece

o tempo total de execugao, expresso em segundos.
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Essa medida engloba todas as etapas realizadas pelo algoritmo correspondente,
incluindo inicializagao, ajuste do modelo, atualizagoes incrementais, quando aplicaveis, e
etapa de reconstrucao, permitindo uma comparacao direta do custo computacional global
entre os métodos.

(iii) Uso de memoéria. O uso de meméria foi avaliado a partir do pico de
memoria residente do processo durante a execucao do algoritmo. Para isso, utiliza-se
uma chamada ao sistema operacional via getrusage, que fornece estatisticas de uso de
recursos do processo corrente.

O valor considerado corresponde ao méaximo de memoria residente observado ao
longo da execugao. Essa métrica fornece uma estimativa do impacto de cada método
em termos de consumo de memoria, permitindo comparar abordagens em lote, online e

streaming sob a perspectiva de eficiéncia de recursos.
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4 Resultados e Discussoes

4.1 Estudo de Caso: Corrente de Sedimentos

Os experimentos foram conduzidos a partir de snapshots bidimensionais em tons de cinza,
provenientes de uma simulagao de escoamento com transporte de sedimentos. A utilizagao
de imagens em escala de cinza permite representar o campo de concentragao por um inico
valor escalar por pixel, reduzindo a faixa dinamica dos dados e simplificando o tratamento
numérico, o que contribui para a eficiéncia computacional dos métodos aplicados.

Cada imagem representa um campo escalar associado a concentragao de sedi-
mentos no dominio em um instante discreto. Para a aplicacao dos métodos baseados em
DMD, cada imagem foi vetorizada e organizada como uma coluna da matriz de dados
X = [Xo,Xl, . ;XN—I]-

Nesta secao, apresentam-se os resultados obtidos ao aplicar o DMD classico,
o Online DMD e o Streaming DMD sobre diferentes janelas temporais da simulagao,
mantendo-se uma comparacao justa ao utilizar, em cada experimento, o mesmo conjunto
de dados de entrada para todos os métodos. As métricas de avaliacao seguem a defini¢ao
apresentada anteriormente neste trabalho.

A Figura 4.1 apresenta snapshots reais do campo de concentragao de sedimentos
em instantes representativos da simulacao, com o objetivo de contextualizar visualmente
a dinamica espacial e temporal do sistema que se busca modelar nos experimentos subse-

quentes.
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(a) Campo de sedimentos no instante ¢ = 0.

I

(b) Campo de sedimentos no instante ¢ = 1000.

(c) Campo de sedimentos no instante ¢ = 2000.

(d) Campo de sedimentos no instante ¢ = 3000.

(e) Campo de sedimentos no instante ¢t = 4000.

Figura 4.1: Evolucao temporal do campo de concentragao de sedimentos em instantes
representativos da simulacao.

Configuracao dos Experimentos

Foram considerados diferentes intervalos temporais da simulagao, todos com passo de
tempo constante At = 1. As janelas foram definidas de modo a conter conjuntos de 500
snapshots, permitindo avaliar o desempenho dos métodos em diferentes faixas temporais
do escoamento e verificar sua capacidade de reconstrucao sob dinamicas possivelmente
distintas.

A escolha de intervalos com 500 imagens também estd associada a consideragoes
de custo computacional e viabilidade pratica dos experimentos. O processamento e ar-
mazenamento de grandes quantidades de snapshots bidimensionais impoem demandas
significativas de tempo e memoria, de modo que a adocao de janelas de tamanho mode-
rado permite a realizagao de multiplos experimentos comparativos de forma consistente,
sem comprometer a estabilidade da execucao no ambiente computacional disponivel.

A Tabela 4.1 resume as janelas avaliadas e o numero de snapshots utilizado em

cada experimento.
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Tabela 4.1: Janelas temporais avaliadas nos experimentos com sedimentos.

| Experimento | Intervalo | N (snapshots) |

El 1000, 1500 200
E2 2000, 2500 200
E3 3000, 3500 200

Conforme ilustrado anteriormente na Figura 4.1, a simulacao apresenta mudancas
visuais relevantes ao longo do tempo. Assim, a escolha de multiplas janelas visa testar os
métodos sob condigbes dinamicas distintas, enquanto o intervalo estendido (E4) permite
observar a evolucao do erro e a robustez numérica em horizontes maiores.

No caso do Online DMD, que requer um periodo inicial para a construcao da
base espacial reduzida, foi adotada uma estratégia uniforme em todos os experimentos: o
tamanho da janela de warmup foi definido como metade do ntimero total de snapshots do
intervalo analisado. Assim, para os experimentos com 500 imagens, foram utilizados 250
snapshots iniciais exclusivamente para a construcao da base U, sendo toda a sequéncia
temporal posteriormente processada pelo método ao longo da etapa de reconstrucao.

Essa escolha permite um compromisso entre a qualidade inicial da base reduzida
e a quantidade de dados disponiveis para avaliacao do comportamento online do método,

mantendo consisténcia entre os diferentes intervalos analisados.

Definicao do Posto Reduzido

Para garantir uma comparacao justa entre os métodos avaliados, o posto reduzido utili-
zado nos experimentos foi definido de forma consistente para todas as abordagens. Em
cada intervalo temporal considerado, o posto foi inicialmente estimado a partir do DMD
classico, por meio da andlise do espectro de valores singulares da matriz de snapshots
correspondente.

Esse procedimento foi realizado apenas uma vez para cada intervalo, com o ob-
jetivo exclusivo de determinar o valor de posto representativo da dinamica dominante
naquela janela temporal. Apds essa etapa preliminar, o valor obtido foi fixado e fornecido
manualmente como parametro de entrada para todas as execucoes subsequentes, inclu-
indo o préprio DMD classico. Dessa forma, evita-se que o custo computacional associado

ao céalculo automatico do posto influencie as métricas de tempo e memoria analisadas nos
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resultados.

O mesmo valor de posto foi empregado no DMD classico e no Online DMD.
No caso do Streaming DMD, devido a presenca de mecanismos adaptativos de expansao
e compressao da base reduzida, foi definido um intervalo admissivel em torno do posto
estimado. Especificamente, para um posto médio r, foram adotados os limites 7,;, = r—10
e "max = 7+ 10, permitindo variagoes controladas na dimensao reduzida sem comprometer
a comparabilidade com os demais métodos.

Como o posto estimado varia de acordo com o intervalo temporal considerado,
valores distintos foram obtidos para cada experimento. Esses valores sao explicitamente

indicados na apresentacao dos resultados correspondentes a cada janela temporal.

4.2 Resultados nas Simulacoes com Sedimentos

4.2.1 Experimento E1: Imagens de 1000 a 1500

Neste experimento, os métodos foram aplicados ao intervalo temporal compreendido entre
as imagens de indice 1000 e 1500 da simulacao, totalizando 500 snapshots. Esse intervalo
foi adotado como um caso base de referéncia, pois apresenta uma extensao temporal
adequada para avaliar simultaneamente a qualidade de reconstrucao one-step-ahead e o
comportamento temporal do erro, sem os efeitos associados a janelas muito curtas ou
excessivamente longas.

Foi adotado um mesmo posto reduzido r = 116 para o DMD classico e para o
Online DMD. Esse valor foi determinado a partir da anélise do espectro singular do DMD
classico aplicada a esse intervalo, utilizada exclusivamente para a estimativa do posto
reduzido, e posteriormente fixado manualmente nos experimentos, de modo a evitar que o
custo computacional da selecao de posto influenciasse as comparacoes de desempenho. No
caso do Streaming DMD, foi adotado um intervalo adaptativo de postos, com r;, = 106
e "max = 126, centrado no valor médio utilizado pelos demais métodos.

A Figura 4.2 apresenta uma comparacao visual entre o campo de sedimentos
original e as reconstrugoes obtidas pelos diferentes métodos no instante ¢ = 1250. Sao

mostrados, respectivamente: (a) o snapshot original da simulagao, (b) a reconstrugao
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obtida pelo DMD cléssico, (c) a reconstrugao produzida pelo Online DMD e (d) a recons-

trucao obtida pelo Streaming DMD, todas avaliadas no mesmo instante temporal.

(a) Campo de sedimentos original no instante ¢t = 1250.

(b) Reconstrucao pelo DMD cléssico no instante ¢ = 1250.

(c¢) Reconstrucao pelo Online DMD no instante ¢t = 1250.

(d) Reconstrucao pelo Streaming DMD no instante ¢ = 1250.

Figura 4.2: Comparacao entre o campo de sedimentos original e as reconstrucoes obtidas
pelos diferentes métodos no instante ¢ = 1250 (Experimento E1).

Além da andlise visual, foi avaliado o comportamento temporal do erro por meio
do erro quadratico médio. As Figuras 4.3, 4.4 e 4.5 apresentam a evolucao do MSE ao
longo do tempo para o DMD cléssico, o Online DMD e o Streaming DMD, respectiva-

mente, ao longo do intervalo considerado.
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MSE — DMD Cléssico
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Figura 4.3: Evolucao do erro quadratico médio ao longo do tempo para o DMD classico
no Experimento E1.

MSE — Online DMD
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Figura 4.4: Evolugao do erro quadratico médio ao longo do tempo para o Online DMD
no Experimento EI.
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MSE — Streaming DMD
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Figura 4.5: Evolucao do erro quadratico médio ao longo do tempo para o Streaming DMD
no Experimento E1.

Complementarmente, a qualidade visual das reconstrucgoes foi quantificada por
meio do Peak Signal-to-Noise Ratio, calculado para o instante ¢ = 1250, correspondente

as reconstrugoes apresentadas na Figura 4.2.

Tabela 4.2: Valores de PSNR (em dB) das reconstruges no instante ¢ = 1250 no Experi-
mento E1.

| Método [ PSNR (dB) |

DMD classico 63.678923
Online DMD 58.353677
Streaming DMD | 65.823686

Os resultados apresentados nesta subsecao fornecem uma visao inicial do de-
sempenho dos métodos na reconstrucao one-step-ahead do campo de sedimentos em um
intervalo temporal representativo da simulacao. A comparacao entre os métodos ao longo

de diferentes janelas temporais é aprofundada nas subsecoes seguintes.

4.2.2 Experimento E2: Imagens de 2000 a 2500

Neste experimento, os métodos foram aplicados ao intervalo temporal compreendido entre
as imagens de indice 2000 e 2500 da simulacao, totalizando 500 snapshots. Assim como
no Experimento E1, essa janela temporal foi utilizada para avaliar o desempenho dos
métodos na reconstrucao e na evolucao temporal do erro, agora em uma faixa distinta da

simulagao.
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O posto reduzido adotado neste experimento foi r = 147 para o DMD classico e
o Online DMD. Para o Streaming DMD, utilizou-se um intervalo adaptativo de postos,
com Tmin = 137 € rpax = 157.

A Figura 4.6 apresenta uma comparacao visual entre o campo de sedimentos
original e as reconstrugoes obtidas pelos diferentes métodos no instante ¢ = 2250. Sao
mostrados, respectivamente: (a) o snapshot original da simulagao, (b) a reconstrugao

obtida pelo DMD cléssico, (c) a reconstrugao produzida pelo Online DMD e (d) a recons-

trucao obtida pelo Streaming DMD, todas avaliadas no mesmo instante temporal.

(a) Campo de sedimentos original no instante ¢t = 2250.

(b) Reconstrucao pelo DMD cléssico no instante ¢ = 2250.

(¢) Reconstrucao pelo Online DMD no instante t = 2250.

(d) Reconstrucao pelo Streaming DMD no instante ¢ = 2250.

Figura 4.6: Comparacao entre o campo de sedimentos original e as reconstrugoes obtidas
pelos diferentes métodos no instante t = 2250 (Experimento E2).

De forma anéloga ao experimento anterior, foi avaliado o comportamento tempo-
ral do erro por meio do erro quadratico médio (MSE). As Figuras 4.7, 4.8 e 4.9 apresentam

a evolugao do MSE ao longo do tempo para os diferentes métodos no intervalo considerado.
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Figura 4.7: Evolucao do erro quadratico médio ao longo do tempo para o DMD classico
no Experimento E2.
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Figura 4.8: Evolugao do erro quadratico médio ao longo do tempo para o Online DMD
no Experimento E2.
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Figura 4.9: Evolucao do erro quadratico médio ao longo do tempo para o Streaming DMD
no Experimento E2.

A Tabela 4.3 apresenta os valores de PSNR calculados para o instante t = 2250,

correspondente as reconstrucoes exibidas na Figura 4.6.

Tabela 4.3: Valores de PSNR (em dB) das reconstrugoes no instante ¢ = 2250 no Experi-
mento E2.

[ Método | PSNR (dB) |

DMD cléssico 67.422187
Online DMD 63.604047
Streaming DMD | 70.620878

Os resultados deste experimento reforcam as observacoes obtidas no Experimento
E1, permitindo avaliar a consisténcia do desempenho dos métodos em uma faixa temporal

distinta da simulacao.

4.2.3 Experimento E3: Imagens de 3000 a 3500

Neste experimento, os métodos foram aplicados ao intervalo temporal compreendido entre
as imagens de indice 3000 e 3500 da simulacao, totalizando 500 snapshots. Essa janela
temporal corresponde a uma fase posterior da simulagao, permitindo avaliar a consisténcia
do desempenho dos métodos em uma faixa distinta daquela analisada nos experimentos
anteriores.

O posto reduzido adotado neste experimento foi » = 156 para o DMD cléssico e

o Online DMD. Para o Streaming DMD, utilizou-se um intervalo adaptativo de postos,
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com Tpin = 146 e rp.x = 166.

A Figura 4.10 apresenta uma comparagao visual entre o campo de sedimentos
original e as reconstrucoes obtidas pelos diferentes métodos no instante t = 3250. Sao
mostrados, respectivamente: (a) o snapshot original da simulagao, (b) a reconstrugao

obtida pelo DMD cléssico, (c) a reconstrugao produzida pelo Online DMD e (d) a recons-

trucao obtida pelo Streaming DMD, todas avaliadas no mesmo instante temporal.

(a) Campo de sedimentos original no instante ¢t = 3250.

(b) Reconstrucao pelo DMD cléssico no instante ¢ = 3250.

(¢) Reconstrucao pelo Online DMD no instante ¢t = 3250.

(d) Reconstrucao pelo Streaming DMD no instante ¢ = 3250.

Figura 4.10: Comparacao entre o campo de sedimentos original e as reconstrucoes obtidas
pelos diferentes métodos no instante ¢ = 3250 (Experimento E3).

O comportamento temporal do erro foi avaliado por meio do erro quadratico
médio (MSE). As Figuras 4.11, 4.12 e 4.13 apresentam a evolu¢do do MSE ao longo do

tempo para os diferentes métodos no intervalo considerado.
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Figura 4.11: Evolucao do erro quadratico médio ao longo do tempo para o DMD classico
no Experimento E3.
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Figura 4.12: Evolucao do erro quadratico médio ao longo do tempo para o Online DMD
no Experimento E3.
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Figura 4.13: Evolucao do erro quadratico médio ao longo do tempo para o Streaming
DMD no Experimento E3.

A Tabela 4.4 apresenta os valores de PSNR calculados para o instante t = 3250,

correspondente as reconstrugoes exibidas na Figura 4.10.

Tabela 4.4: Valores de PSNR (em dB) das reconstrugoes no instante ¢ = 3250 no Experi-
mento E3.

[ Método | PSNR (dB) |

DMD cléssico 69.665698
Online DMD 66.815148
Streaming DMD | 74.114566

Os resultados deste experimento permitem verificar a manutencao do desempe-
nho dos métodos em uma fase mais avancada da simulagao, complementando as andlises

realizadas nos experimentos anteriores.

4.3 Comparagao entre os Métodos

Nesta secao ¢ apresentada uma comparagao integrada entre o DMD classico, o Online
DMD e o Streaming DMD, com base nos resultados obtidos nos experimentos descri-
tos anteriormente. A andlise considera simultaneamente a evolucao do erro de recons-
trucao, a estabilidade temporal dos métodos e o custo computacional associado, mantendo
condicoes equivalentes de dados e parametros sempre que possivel.

A comparacao do desempenho em termos de precisao é baseada no erro quadratico
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médio calculado ao longo do tempo. Conforme observado nos experimentos individuais,
o Online DMD apresenta um comportamento caracteristico: enquanto a dinamica do
sistema permanece bem representada pela base espacial construida no periodo de warmup,
o erro de reconstrucao mantém-se controlado e competitivo. No entanto, a medida que
a dinamica evolui para regides menos bem representadas por essa base fixa, observa-se
um crescimento acentuado do erro, evidenciando a limitacao do método em horizontes
temporais mais longos.

Com o objetivo de evidenciar o desempenho dos métodos em um regime com-
paravel, a Figura 4.14 apresenta a comparagao do MSE em um intervalo temporal recor-
tado, anterior ao crescimento abrupto do erro do Online DMD. Nesse intervalo, verifica-se
que o Online DMD apresenta os menores valores de MSE entre os métodos avaliados,
indicando excelente capacidade de reconstrucao enquanto a base reduzida permanece
adequada. O Streaming DMD apresenta comportamento estavel ao longo do tempo,
beneficiando-se do mecanismo de atualizagao adaptativa da base espacial, enquanto o
DMD classico mantém desempenho consistente, conforme esperado para um método of-

fline ajustado a um conjunto fixo de dados.

MSE (one-step-ahead) — Comparagao entre métodos
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0.010 A

0.008 -

(o]
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0.004

[ P VSO NN

0.002 -

0.000 -

3000 3050 3100 3150 3200 3250
t (indice do frame)

Figura 4.14: Comparacao do erro quadratico médio entre os métodos em um intervalo
temporal recortado, anterior ao crescimento acentuado do erro do Online DMD.

Além da precisao, foram analisados o tempo total de execucao e o pico de memoria
consumida pelos métodos em cada experimento. Essas métricas fornecem uma visao

complementar do custo associado a cada abordagem, o que ¢é essencial em aplicagoes de
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grande escala ou com restri¢oes de recursos computacionais.

Os valores apresentados nas tabelas de custo computacional correspondem a
média obtida a partir de multiplas execugoes independentes de cada método. Para cada
experimento, cada algoritmo foi executado dez vezes sob as mesmas condigoes, e os tempos
de execucao e picos de memoria foram posteriormente agregados por meio do valor médio,
de modo a reduzir a influéncia de variacoes pontuais associadas ao sistema operacional e
a execucao dos algoritmos.

A Tabela 4.5 apresenta o tempo total de execucao dos métodos nos diferentes
experimentos, enquanto a Tabela 4.6 resume os valores de pico de memoria observados

durante as execucoes.

Tabela 4.5: Tempo total de execucao dos métodos nos experimentos realizados.

| Experimento | DMD cléssico (s) | Online DMD (s) | Streaming DMD (s) |

El 371 57 169
E2 472 52 166
E3 566 56 185

Tabela 4.6: Pico de meméria RAM consumida pelos métodos nos experimentos realizados.

| Experimento | DMD cldssico (MB) | Online DMD (MB) | Streaming DMD (MB) |

El 6294 3184 7219
E2 6539 3184 7135
E3 6718 3192 7251

De forma geral, os resultados evidenciam diferengas claras entre as abordagens.
O DMD cléssico apresenta desempenho estavel em termos de erro, ao custo de maior
consumo de memoria e natureza offline. O Online DMD demonstra excelente desempenho
enquanto opera dentro do regime representado pelo warmup, mas perde precisao a medida
que a dinamica se afasta dessa base fixa. O Streaming DMD, por sua vez, mostra maior
robustez temporal, mantendo o erro controlado ao longo de janelas mais extensas devido

a adaptacao continua da base espacial.
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5 Conclusoes

Neste trabalho, investigou-se a aplicagao de modelos de ordem reduzida baseados na
Decomposicao em Modos Dinamicos para a modelagem e reconstrugao da dinamica tem-
poral de um escoamento com transporte de sedimentos. O objetivo principal consistiu
em avaliar o desempenho do DMD cléssico e de duas variantes sequenciais em um cenério
caracterizado por dados de alta dimensionalidade e evolucao temporal complexa.

Os trés métodos foram implementados em C++4-, com foco na eficiéncia computa-
cional e no tratamento consistente de dados sequenciais. Em seguida, foram aplicados a
diferentes janelas temporais de uma simulacao de escoamento com transporte de sedimen-
tos, utilizando snapshots bidimensionais em escala de cinza. A comparacgao foi conduzida
de forma sistematica, adotando postos reduzidos compativeis entre os métodos e avali-
ando os resultados por meio de métricas quantitativas (MSE e PSNR), anélise visual das
reconstrugoes e medidas de custo computacional.

Os resultados obtidos evidenciaram que o DMD classico é capaz de produzir
reconstrucoes de alta qualidade, porém apresenta elevado custo computacional e elevado
consumo de memoria, decorrentes de sua formulagao offline e da necessidade de acesso
completo ao conjunto de dados. Esses aspectos limitam sua aplicabilidade em cenérios
sequenciais ou de larga escala, como o considerado neste trabalho.

O Online DMD destacou-se como a abordagem mais eficiente do ponto de vista
computacional, apresentando os menores tempos de execugao e menor consumo de meméria
em todos os experimentos realizados. Conforme observado nas analises de erro, o método
apresenta excelente desempenho durante o regime associado a base construida no periodo
de warmup, com valores de MSE reduzidos e PSNR elevados, chegando a superar os demais
métodos em determinados intervalos temporais. Entretanto, a medida que a dinamica do
sistema evolui para além do subespaco inicialmente capturado, observa-se um crescimento
acentuado do erro, refletindo a limitacao imposta pela base espacial fixa adotada pelo
método.

Por sua vez, o Streaming DMD apresentou comportamento mais robusto ao longo
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do tempo, mantendo niveis de erro mais estaveis em janelas temporais prolongadas. Essa
robustez esta associada aos mecanismos adaptativos de atualizagao e compressao da base
espacial, que permitem ao método acomodar mudancas graduais na dinamica do sistema.
Em contrapartida, tal flexibilidade resulta em maior custo computacional e maior consumo
de memoria, como evidenciado pelos tempos de execucao e picos de memoéria observados
nos experimentos.

A andlise comparativa de custo computacional confirmou essas tendéncias: o
DMD classico apresentou os maiores tempos de execucao e elevado uso de memoéria, o
Streaming DMD ocupou uma posigao intermediaria, enquanto o Online DMD mostrou-se
a alternativa mais eficiente, desde que aplicado em um horizonte temporal compativel
com a base reduzida inicialmente construida. Esses resultados reforcam a importancia
da escolha do método em funcao do compromisso entre precisao, custo computacional e
horizonte temporal de interesse.

Como limitacoes deste trabalho, destaca-se a restricao no tamanho das janelas
temporais avaliadas, imposta pelo custo computacional associado ao processamento e
armazenamento de grandes volumes de imagens. Como perspectivas futuras, destaca-
se a investigagao de critérios mais robustos para a escolha do tamanho do warmup no
Online DMD, bem como o estudo do impacto dessa escolha na estabilidade e na precisao
das reconstrucoes ao longo do tempo. Além disso, a aplicacao das abordagens estudadas
a outros cendrios de escoamento multifasico, bem como a incorporacao de informacoes
fisicas adicionais aos modelos de ordem reduzida, configuram direcoes promissoras para
trabalhos futuros.

De forma geral, os resultados obtidos demonstram que as variantes sequenciais do
DMD constituem ferramentas promissoras para a analise de escoamentos com transporte
de sedimentos, desde que suas limitagoes e caracteristicas algoritmicas sejam adequada-

mente consideradas no contexto da aplicagao.
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