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BACHAREL EM CIÊNCIA DA COMPUTAÇÃO.
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Resumo

Este trabalho investiga a aplicação da Decomposição emModos Dinâmicos (DMD)

e de suas variantes sequenciais na modelagem e reconstrução da dinâmica temporal de

escoamentos com transporte de sedimentos. Considerando a alta dimensionalidade dos

dados gerados por simulações de Dinâmica dos Fluidos Computacional (CFD), modelos

de ordem reduzida surgem como uma alternativa eficiente para a análise e aproximação

da dinâmica dominante do sistema.

Foram implementados em C++ o DMD clássico, o Online DMD e o Strea-

ming DMD, sendo os métodos aplicados a diferentes janelas temporais de uma simulação

numérica de escoamento com sedimentos, a partir de snapshots bidimensionais em escala

de cinza. A comparação entre os métodos foi conduzida de forma controlada, adotando

postos reduzidos consistentes e estratégias uniformes de inicialização.

A avaliação do desempenho foi realizada exclusivamente por meio de métricas

quantitativas, incluindo o erro quadrático médio (MSE), o Peak Signal-to-Noise Ratio

(PSNR), bem como o custo computacional em termos de tempo de execução e uso de

memória. Os resultados evidenciam diferenças relevantes entre as abordagens, destacando

o compromisso entre precisão, robustez temporal e eficiência computacional na escolha do

método mais adequado para aplicações sequenciais envolvendo transporte de sedimentos.

Palavras-chave: Decomposição em Modos Dinâmicos; Modelos de Ordem Reduzida;

Transporte de Sedimentos.



Abstract

This work investigates the application of Dynamic Mode Decomposition (DMD)

and its sequential variants for modeling and reconstructing the temporal dynamics of

sediment-laden flows. Due to the high dimensionality of data generated by Computa-

tional Fluid Dynamics (CFD) simulations, reduced-order models represent an efficient

alternative for capturing the dominant system dynamics at lower computational cost.

The classical DMD, Online DMD, and Streaming DMD methods were implemen-

ted in C++ and applied to different temporal windows of a numerical sediment trans-

port simulation, using two-dimensional grayscale snapshots as input data. The compa-

rison between methods was conducted under controlled conditions, adopting consistent

reduced-order ranks and uniform initialization strategies.

Performance evaluation was carried out exclusively using quantitative metrics,

including the mean squared error (MSE), the Peak Signal-to-Noise Ratio (PSNR), as well

as computational cost in terms of execution time and memory usage. The results highlight

relevant differences among the approaches, emphasizing the trade-off between accuracy,

temporal robustness, and computational efficiency when selecting an appropriate DMD-

based method for sequential applications involving sediment transport.

Keywords: Dynamic Mode Decomposition; Reduced-Order Models; Sediment Trans-

port.
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4.12 Evolução do erro quadrático médio ao longo do tempo para o Online DMD
no Experimento E3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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1 Introdução

1.1 Apresentação do Tema

A Dinâmica dos Fluidos Computacional (do inglês Computational Fluid Dynamics – CFD)

dedica-se ao estudo e à simulação numérica de escoamentos por meio da combinação de

modelos f́ısicos, métodos numéricos e técnicas computacionais. Nas últimas décadas, essa

abordagem tornou-se essencial para investigar fenômenos complexos em que a interação

entre fases e mecanismos de transporte desempenha papel central, como em problemas

com part́ıculas ou sedimentos em suspensão (ZHANG et al., 2024b; SCHMID, 2022).

Escoamentos com dinâmica de sedimentos tipicamente exibem forte não lineari-

dade, múltiplas escalas temporais e espaciais e regimes transientes, o que dificulta tanto a

modelagem quanto a análise de dados provenientes de simulações de alta fidelidade. Nesses

cenários, técnicas capazes de extrair estruturas coerentes e representar a dinâmica domi-

nante de forma compacta tornam-se particularmente relevantes (LIBERO et al., 2024;

BAO et al., 2019).

Entre as abordagens baseadas em dados, destaca-se a Dynamic Mode Decompo-

sition (DMD), que decompõe séries temporais de campos de alta dimensionalidade em

modos espaciais associados a frequências e taxas de crescimento ou decaimento. Essa de-

composição permite identificar padrões dominantes e interpretar mecanismos dinâmicos

presentes na evolução do sistema (GIORGI; FICARELLA; FONTANAROSA, 2018; SCH-

MID, 2022). Para ampliar a aplicabilidade do método em situações práticas, diversas

variantes têm sido propostas para lidar com rúıdo, com dados em fluxo cont́ınuo e com

dinâmicas não estacionárias, incluindo formulações online/streaming e estratégias de re-

gularização (SCHMID, 2022; LIBERO et al., 2024).
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1.2 Contextualização

A simulação de sistemas multifásicos com part́ıculas ou sedimentos em suspensão per-

manece entre os desafios mais relevantes em CFD, dada a combinação de alta dimensi-

onalidade, acoplamentos f́ısico-matemáticos e elevados custos computacionais (GRAVE;

CAMATA; COUTINHO, 2020; ZHANG et al., 2024b). Como consequência, análises pa-

ramétricas, estudos de incerteza e aplicações em tempo quase real podem ser limitados

pelo tempo de processamento e pelo grande volume de dados gerado.

Nesse contexto, modelos de ordem reduzida (Reduced-Order Models – ROMs) têm

se mostrado ferramentas eficazes para capturar a dinâmica dominante do sistema com

menor custo computacional. Em termos gerais, ROMs buscam identificar subespaços

de baixa dimensão que preservem o comportamento essencial do sistema, evitando a

necessidade de resolver integralmente o modelo de alta fidelidade a cada nova consulta

(BERKOOZ; HOLMES; LUMLEY, 1993; BENNER; GUGERCIN; WILLCOX, 2015; RO-

WLEY; DAWSON, 2017; ROWLEY; COLONIUS; MURRAY, 2004). Exemplos clássicos

incluem métodos baseados em decomposição ortogonal própria (POD), projeções de Galer-

kin e suas extensões (por exemplo, Petrov–Galerkin), amplamente utilizados em dinâmica

dos fluidos e em problemas de transporte (BERKOOZ; HOLMES; LUMLEY, 1993; RO-

WLEY; COLONIUS; MURRAY, 2004).

Além de técnicas puramente projetivas, abordagens h́ıbridas vêm combinando

ROMs por projeção com estratégias baseadas em dados para aumentar robustez e precisão,

especialmente em regimes turbulentos e/ou com modelos de fechamento. Um exemplo é a

combinação de POD–Galerkin com aproximações orientadas por dados para representar

termos associados à viscosidade turbulenta em formulações por volumes finitos (HIJAZI et

al., 2020). Trabalhos recentes também propõem estruturas h́ıbridas projeção/dados para

equações de Navier–Stokes parametrizadas (ZHANG et al., 2024a) e discutem aplicações

em sistemas multifásicos, como escoamentos gás–sólido, empregando aprendizado pro-

fundo para modelar a dinâmica modal (LI; DUAN; SAKAI, 2024).

Entre as abordagens de ROMs fundamentadas em dados, o DMD ocupa posição

de destaque por extrair diretamente, a partir de séries temporais, modos associados a

caracteŕısticas dinâmicas, sendo amplamente utilizado em análise modal e em construção
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de modelos preditivos em fluidos (TAIRA et al., 2017). Entretanto, o DMD clássico pode

apresentar limitações em presença de rúıdo e quando a dinâmica apresenta mudanças

estruturais ao longo do tempo. Por isso, variantes do DMD têm sido desenvolvidas para

melhorar estabilidade numérica e robustez, bem como para lidar com dados streaming,

janelas deslizantes e mudanças de regime (SCHMID, 2022; LIBERO et al., 2024).

Dado o amplo espectro de variantes existentes e a diversidade de comportamentos

presentes em escoamentos com transporte de sedimentos, torna-se relevante compreender

como essas abordagens se comportam em cenários distintos, especialmente no que diz

respeito à reconstrução temporal, à previsão e à robustez a rúıdos e variações topológicas.

1.3 Motivação e Justificativa

A análise de escoamentos com transporte de sedimentos demanda ferramentas capazes

de representar, com eficiência e precisão, sistemas caracterizados por múltiplas escalas,

acoplamento entre fases e dinâmica transiente. Em aplicações ambientais, industriais e

geotécnicas — como rios, canais, reatores e dutos — essa dinâmica impacta diretamente

a previsão de processos de erosão, deposição, desgaste e transporte de part́ıculas.

Embora simulações numéricas de alta fidelidade forneçam descrições detalhadas

do sistema, seu custo computacional pode inviabilizar varreduras paramétricas, rotinas

de otimização, quantificação de incerteza ou uso operacional. Nesse cenário, ROMs e

decomposições modais baseadas em dados oferecem alternativas promissoras ao permitir

representações compactas do comportamento dominante.

Apesar do avanço recente de variantes do DMD, ainda há lacunas quanto ao seu

desempenho em sistemas multifásicos com sedimentos, especialmente quando há rúıdo,

transientes e mudanças estruturais no escoamento. Em particular, são necessários estu-

dos que avaliem, de forma comparativa e quantitativa, a eficácia dessas variantes para

reconstrução, previsão e robustez em cenários representativos.

Diante desse contexto, torna-se relevante investigar abordagens que conciliem

redução de custo computacional com a capacidade de preservar as principais carac-

teŕısticas dinâmicas do escoamento multifásico com sedimentos. Assim, este trabalho

adota técnicas de redução de ordem e decomposições modais baseadas em dados como es-
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tratégia para estudar o desempenho de variantes da Decomposição em Modos Dinâmicos.

1.4 Descrição do Problema

Sistemas com transporte de sedimentos podem apresentar mudanças topológicas, regimes

transientes e sensibilidade a rúıdos, tornando desafiadora a obtenção de representações

compactas que sejam, ao mesmo tempo, interpretáveis e preditivas. A DMD e suas vari-

antes são candidatas naturais para análise, reconstrução e previsão, porém ainda é pouco

compreendido como diferentes formulações se comportam especificamente em cenários

envolvendo part́ıculas em suspensão.

Além disso, faltam comparações padronizadas que permitam avaliar, sob condições

controladas, a capacidade das diferentes variantes em (i) reconstruir campos temporais,

(ii) prever estados futuros e (iii) manter robustez frente a rúıdos e variações estrutu-

rais. Para viabilizar tais comparações de maneira reprodut́ıvel, é desejável dispor de uma

implementação unificada, modular e extenśıvel que permita configurar experimentos, ins-

trumentar desempenho e reproduzir resultados.

Dessa forma, o problema central deste trabalho envolve tanto a investigação do

desempenho de variantes do DMD em escoamentos com transporte de sedimentos quanto

o desenvolvimento de uma implementação computacional que viabilize tais análises de

forma eficiente, padronizada e reprodut́ıvel.

1.5 Objetivos

1.5.1 Objetivo Geral

Desenvolver e avaliar variantes da decomposição em modos dinâmicos (DMD) aplicadas a

escoamentos com transporte de sedimentos, por meio da implementação de uma biblioteca

modular em C++ (dispońıvel em: ⟨https://github.com/brenolino/dmd-variations⟩) e

da análise comparativa de sua capacidade de reconstrução e robustez frente a rúıdos e

mudanças topológicas.

https://github.com/brenolino/dmd-variations
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1.5.2 Objetivos Espećıficos

Para alcançar o objetivo geral, este trabalho propõe os seguintes objetivos espećıficos:

1. Implementar em C++ o DMD clássico e as variantes Online DMD e Streaming DMD

em uma infraestrutura unificada, modular e extenśıvel, possibilitando experimentos

reprodut́ıveis e controlados.

2. Aplicar essas variantes a conjuntos de dados provenientes de simulações numéricas

de escoamentos com part́ıculas em suspensão.

3. Avaliar a capacidade de cada variante em reconstruir campos do sistema.

4. Comparar quantitativamente os métodos com base em métricas padronizadas, iden-

tificando vantagens, limitações e cenários de melhor aplicabilidade.

1.6 Organização do Texto

Além desta introdução, este trabalho está organizado da seguinte forma: o Caṕıtulo 2,

Fundamentação Teórica, apresenta os conceitos de CFD e modelos de ordem reduzida,

com ênfase na Decomposição em Modos Dinâmicos e em suas principais variantes. O

Caṕıtulo 3, Metodologia, descreve a abordagem adotada, a origem e caracterização dos

dados, a infraestrutura computacional implementada em C++ e as variantes consideradas

(DMD clássico, Online DMD e Streaming DMD), bem como as métricas de avaliação. O

Caṕıtulo 4, Resultados e Discussões, reúne a validação das implementações e os resultados

dos estudos de caso, incluindo a comparação entre os métodos. Por fim, o Caṕıtulo 5,

Conclusões, apresenta as conclusões do trabalho e possibilidades de continuidade.
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2 Fundamentação Teórica

2.1 Dinâmica dos Fluidos Computacional e Modelos

de Ordem Reduzida

A Dinâmica dos Fluidos Computacional desempenha um papel central na análise de esco-

amentos complexos, especialmente em sistemas que envolvem interação entre fases, como

aqueles com transporte de sedimentos. Esses escoamentos frequentemente apresentam

não linearidades pronunciadas, múltiplas escalas temporais e espaciais, além de regimes

transientes que demandam elevado custo computacional para serem simulados em alta

fidelidade (GRAVE; CAMATA; COUTINHO, 2020). Em muitos casos, a realização de

análises paramétricas ou estudos em larga escala torna-se inviável devido ao custo asso-

ciado às simulações completas.

Com o intuito de mitigar essas limitações, os Modelos de Ordem Reduzida têm

sido empregados como alternativas eficientes para representar os principais comportamen-

tos dinâmicos do sistema utilizando um número reduzido de graus de liberdade. Em geral,

esses modelos são constrúıdos a partir de dados provenientes de simulações ou experimen-

tos, permitindo capturar estruturas coerentes e relevantes para a dinâmica do escoamento

(BEIT-SADI; KROL; WYNN, 2021; GIORGI; FICARELLA; FONTANAROSA, 2018).

Entre as técnicas mais utilizadas na construção de ROMs destacam-se a De-

composição Ortogonal Própria e o Dynamic Mode Decomposition. Enquanto a POD

busca modos que maximizam a energia representada nos dados, o DMD fornece uma

visão espectral da dinâmica ao associar modos espaciais a frequências e taxas de cresci-

mento ou decaimento, tornando-o particularmente adequado para a análise de fenômenos

oscilatórios, instabilidades e padrões transientes observados em escoamentos complexos

(SCHMID, 2022).

Outra caracteŕıstica importante do DMD é sua natureza baseada em dados, o

que permite aplicá-lo como ferramenta de pós-processamento para extrair informações
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dinâmicas de simulações CFD sem a necessidade de acessar explicitamente as equações

governantes do escoamento (CALMET et al., 2020; NADERI; EIVAZI; ESFAHANIAN,

2019). Essa flexibilidade possibilita a construção de modelos compactos capazes de re-

produzir a evolução temporal do sistema e identificar modos dominantes associados à sua

dinâmica global.

A literatura recente demonstra um amplo espectro de aplicações do DMD e de

suas variantes em escoamentos turbulentos, cavitantes e multifásicos reforçando seu po-

tencial como ferramenta versátil na análise modal de sistemas fluidodinâmicos (LIBERO

et al., 2024; ZHANG et al., 2024b).

Nas seções seguintes, apresenta-se a formulação matemática do método DMD

clássico, bem como os prinćıpios que fundamentam sua utilização na construção de mo-

delos de ordem reduzida empregados em CFD.

2.2 Decomposição em Modos Dinâmicos (DMD)

A Decomposição em Modos Dinâmicos é uma técnica de análise modal que extrai, a

partir de dados temporais, estruturas espaciais coerentes associadas a comportamentos

dinâmicos bem definidos. O método identifica modos espaciais e suas respectivas taxas

de crescimento, decaimento ou oscilação, permitindo caracterizar a evolução temporal do

sistema sem recorrer explicitamente às equações governantes do escoamento (SCHMID,

2022; CALMET et al., 2020).

A ideia central do DMD é que a dinâmica observada pode, em muitos casos,

ser aproximada por um operador linear que descreve a evolução temporal dos dados. A

partir dessa aproximação, o método decompõe o comportamento do sistema em modos

dinâmicos, cada um representando uma estrutura espacial caracteŕıstica e um padrão

temporal associado (GIORGI; FICARELLA; FONTANAROSA, 2018).

Além de sua aplicação em análise modal e redução de ordem, o DMD também

permite descrever a evolução temporal do sistema a partir dos modos identificados. Isso

possibilita tanto a representação dos estados já observados quanto a extrapolação de

seu comportamento para instantes futuros, o que o torna especialmente relevante para

aplicações em previsão e reconstrução de campos fluidodinâmicos (QIN et al., 2019; BAO
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et al., 2019).

A interpretação temporal do modelo deriva dos autovalores do operador dinâmico

aproximado, que codificam informações sobre frequência e sobre taxas de crescimento ou

amortecimento associadas a cada modo. Esses elementos resultam em uma descrição com-

pacta e interpretável da dinâmica, capaz de capturar instabilidades, padrões recorrentes

e comportamentos transientes.

De forma conceitual, o DMD parte da aproximação

xk+1 ≈ Axk, (2.1)

na qual um operador linear desconhecido A relaciona estados consecutivos do sistema.

O método constrói, a partir dos dados, uma representação reduzida desse operador que

permite extrair seus autovalores e autovetores associados. Os autovetores projetados

definem os modos dinâmicos, enquanto os autovalores determinam seu comportamento

temporal.

A próxima subseção apresenta a formulação matemática clássica do DMD, deta-

lhando as etapas necessárias para sua aplicação em problemas de fluidodinâmica compu-

tacional.

2.2.1 Formulação matemática do DMD clássico

Organização dos dados

Considere uma sequência de m estados observados de um sistema dinâmico, obtidos em

instantes igualmente espaçados t1, t2, . . . , tm, com passo temporal ∆t. Cada estado é

representado por um vetor coluna

xk ∈ Rn,

onde n corresponde ao número de graus de liberdade do sistema. No contexto deste

trabalho, cada xk é obtido pela vetorização de um campo bidimensional (simulação CFD)

em um único vetor de dimensão n.

Para formular o DMD, esses vetores são organizados em duas matrizes defasadas:
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X =

[
x1 x2 · · · xm−1

]
, Y =

[
x2 x3 · · · xm

]
. (2.2)

com X,Y ∈ Rn×(m−1). O objetivo do DMD é encontrar um operador linear A ∈ Rn×n tal

que, para cada par de estados consecutivos, tenhamos a aproximação

xk+1 ≈ Axk, k = 1, . . . ,m− 1. (2.3)

o que, em forma matricial, se escreve como

Y ≈ AX. (2.4)

A matriz A representa o operador dinâmico que aproxima a evolução temporal

do sistema no intervalo amostrado. Entretanto, sua dimensão n× n é tipicamente muito

elevada em aplicações de fluidodinâmica, tornando inviável a computação direta desse

operador. Assim, o DMD utiliza técnicas de redução de ordem para obter uma repre-

sentação equivalente de baixa dimensão que capture os principais padrões dinâmicos do

sistema.

Estimativa do operador dinâmico via mı́nimos quadrados

Os vetores xk que compõem as matrizesX eY representam amostras do estado do sistema

em instantes sucessivos. Esses vetores são frequentemente referidos na literatura como

snapshots.

Partindo da organização dos dados discutida anteriormente, a evolução temporal

observada pode ser aproximada por meio da relação linear Eq. (2.4) na qual A atua como

um operador dinâmico que aproxima a transição entre estados consecutivos. A estimativa

desse operador pode ser formulada como o problema de mı́nimos quadrados

min
A
∥Y −AX∥F . (2.5)

cuja solução é dada pela pseudoinversa de Moore–Penrose:
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A = YX†. (2.6)

Apesar de sua simplicidade conceitual, essa formulação não é adequada para

aplicações de fluidodinâmica, pois o operador A teria dimensão n×n, onde n corresponde

ao número total de graus de liberdade do campo espacial. Como n é tipicamente muito

grande em problemas reais, a computação direta de A torna-se inviável em termos de

custo computacional e armazenamento.

Por essa razão, o DMD emprega uma representação reduzida do operador dinâmico,

obtida por meio da decomposição em valores singulares (SVD), apresentada a seguir.

Redução de ordem via decomposição em valores singulares

Para tornar viável a estimativa do operador dinâmico, o DMD utiliza uma representação

reduzida do sistema baseada na decomposição em valores singulares da matriz X. A SVD

permite identificar os componentes espaciais mais relevantes dos dados, possibilitando a

projeção da dinâmica em um subespaço de dimensão muito menor que n.

A decomposição é dada por

X = UΣV⊤ (2.7)

onde U ∈ Rn×n e V ∈ R(m−1)×(m−1) são matrizes ortogonais, e Σ é uma matriz diagonal

contendo os valores singulares de X em ordem decrescente.

Em aplicações práticas, retêm-se apenas os r maiores valores singulares, resul-

tando na aproximação truncada

X ≈ Ur Σr V
⊤
r (2.8)

na qual Ur ∈ Rn×r, Σr ∈ Rr×r e Vr ∈ R(m−1)×r. Essa truncação define o subespaço

dominante no qual a dinâmica será projetada.

Substituindo essa aproximação na relação Y ≈ AX e multiplicando à esquerda

por U⊤
r , obtém-se



2.2 Decomposição em Modos Dinâmicos (DMD) 17

U⊤
r Y ≈ U⊤

r AUr ΣrV
⊤
r . (2.9)

Como o objetivo é representar a dinâmica no subespaço gerado por Ur, define-se

Ã = U⊤
r AUr. (2.10)

o que permite reescrever a expressão anterior como

U⊤
r Y ≈ ÃΣrV

⊤
r . (2.11)

Multiplicando à direita por VrΣ
−1
r , obtém-se então

Ã ≈ U⊤
r YVr Σ

−1
r . (2.12)

que é o operador dinâmico reduzido associado ao subespaço dominante da SVD. A matriz

Ã ∈ Rr×r captura a dinâmica essencial do sistema e torna o problema computacional-

mente viável, permitindo calcular explicitamente seus autovalores e autovetores na etapa

seguinte.

Autovalores e modos dinâmicos

Uma vez obtida a matriz reduzida Ã ∈ Rr×r, a dinâmica do sistema pode ser analisada

por meio de sua decomposição espectral. Os autovalores e autovetores de Ã satisfazem

ÃW = WΛ. (2.13)

ondeW ∈ Cr×r contém os autovetores à direita e Λ = diag(λ1, . . . , λr) é a matriz diagonal

de autovalores. Cada autovalor λj descreve o comportamento temporal associado a um

modo dinâmico: seu módulo indica a taxa de crescimento ou decaimento, enquanto seu

argumento determina a frequência de oscilação.

Para recuperar os modos no espaço original, projeta-se os autovetores de Ã de

volta ao espaço de dimensão n por meio da expressão
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Φ = YVr Σ
−1
r W =

[
ϕ1 ϕ2 · · · ϕr

]
. (2.14)

em que cada coluna ϕj ∈ Cn representa um modo DMD. Esses modos correspondem a

estruturas espaciais coerentes cuja evolução temporal é governada pelo autovalor associado

λj. Modos com |λj| > 1 indicam crescimento, enquanto |λj| < 1 indicam amortecimento.

Modos com autovalores complexos apresentam comportamento oscilatório.

A coleção formada por (ϕj, λj) fornece uma descrição compacta e interpretável da

dinâmica essencial do sistema, permitindo reconstruir sua evolução temporal a partir de

combinações lineares desses modos. Essa reconstrução é apresentada na subseção seguinte.

Evolução temporal e reconstrução

A partir dos modos dinâmicos Φ e dos autovalores associados λj, é posśıvel descrever

a evolução temporal aproximada do sistema no subespaço dominante identificado pelo

DMD. O primeiro passo consiste em determinar os coeficientes iniciais que expressam o

estado inicial como combinação dos modos:

x1 ≈ Φb ⇒ b = Φ† x1 (2.15)

onde Φ† denota a pseudoinversa de Moore–Penrose e b = [b1, . . . , br]
⊤ contém as ampli-

tudes iniciais associadas a cada modo.

Como os autovalores λj representam a evolução temporal discreta dos modos,

costuma-se introduzir a forma cont́ınua

ωj =
ln(λj)

∆t
(2.16)

na qual Re(ωj) descreve a taxa de crescimento ou decaimento e Im(ωj) fornece a frequência

angular associada ao modo ϕj. Com isso, a solução aproximada do sistema pode ser

expressa como

x(t) ≈
r∑

j=1

bj ϕj e
ωjt (2.17)
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o que permite reconstruir os estados observados e, se desejado, extrapolar a dinâmica

para instantes futuros. A qualidade dessa reconstrução depende da escolha do posto r,

da riqueza dos dados e da adequação da aproximação linear ao comportamento real do

sistema.

A representação modal fornecida pelo DMD concentra a dinâmica essencial do

sistema em um conjunto reduzido de modos coerentes, possibilitando analisar padrões

temporais, identificar instabilidades e construir modelos compactos capazes de reproduzir

a evolução do escoamento de forma eficiente. Essa formulação serve de base para as

variantes do DMD apresentadas posteriormente e para as implementações desenvolvidas

neste trabalho.

2.2.2 Limitações do DMD clássico e variantes

Apesar de sua formulação consolidada, a decomposição em modos dinâmicos apresenta

limitações estruturais que motivaram o surgimento de variantes mais robustas e adapta-

tivas. Em sua configuração clássica, o DMD depende da disponibilidade simultânea de

todos os pares de snapshots, o que o torna inadequado para aplicações em que os dados

chegam de forma sequencial ou quando o volume de informações excede a capacidade de

armazenamento. Além disso, a estimação do operador dinâmico é senśıvel ao condiciona-

mento das matrizes de dados, reduzindo sua robustez frente a rúıdos e perturbações —

condição comum em medições experimentais ou simulações extensas.

Outro fator limitante é a suposição de que a dinâmica global pode ser representada

por um operador linear fixo. Em sistemas não estacionários ou sujeitos a mudanças

topológicas, essa hipótese deixa de ser válida, comprometendo a capacidade do método

de acompanhar a evolução temporal do sistema (ZHANG et al., 2019). Adicionalmente, o

custo computacional associado à decomposição em valores singulares torna-se proibitivo

em aplicações de Dinâmica dos Fluidos Computacional, onde cada snapshot pode conter

dezenas ou centenas de milhares de graus de liberdade (HEMATI; WILLIAMS; ROWLEY,

2014).

Para superar tais limitações, diferentes variantes do DMD têm sido propostas.

Algumas introduzem regularização para melhorar a estabilidade frente a rúıdos; outras
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ampliam a capacidade de representação por meio de expansões não lineares no espaço

de observáveis; e há ainda métodos que incorporam informações f́ısicas ao processo de

decomposição. Particular relevância é dada às abordagens adaptativas e incrementais,

capazes de atualizar o modelo continuamente à medida que novos dados chegam, evitando

o custo e a rigidez do processamento em lotes.

Entre essas abordagens, destaca-se o DMD Online, que realiza uma atualização

recursiva do operador dinâmico reduzido à medida que novos snapshots são observados,

dispensando o armazenamento de toda a matriz de dados. Essa formulação possibilita

acompanhar sistemas cuja dinâmica é explicitamente dependente do tempo e permite

incorporar fatores de esquecimento que priorizam informações recentes (ZHANG et al.,

2019).

Outra técnica relevante é o Streaming DMD, que utiliza uma formulação de baixa

memória para atualizar incrementalmente as bases modais e as projeções dinâmicas a

cada novo snapshot. Esse método reduz a necessidade de armazenamento, incorpora

mecanismos de compressão baseados em decomposição modal e mantém apenas as direções

dinamicamente mais relevantes, mesmo na presença de rúıdos significativos (HEMATI;

WILLIAMS; ROWLEY, 2014).

Essas variantes tornam-se particularmente adequadas para aplicações com gran-

des volumes de dados, dinâmica variável e presença de rúıdos — caracteŕısticas t́ıpicas de

escoamentos com transporte de sedimentos. As próximas seções apresentam os algoritmos

empregados neste trabalho, bem como sua implementação em C++.
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3 Metodologia

3.1 Visão geral da metodologia

A metodologia adotada neste trabalho tem como objetivo viabilizar a análise compara-

tiva de variantes da decomposição em modos dinâmicos aplicadas a escoamentos com

transporte de sedimentos, combinando a utilização de dados provenientes de simulações

numéricas com o desenvolvimento de uma infraestrutura computacional própria em C++.

Inicialmente, são utilizados conjuntos de dados gerados por simulações de Dinâmica

dos Fluidos Computacional, nos quais a evolução temporal do escoamento é representada

por campos espaciais discretizados ao longo do tempo. Esses campos são disponibilizados

na forma de imagens previamente processadas, as quais são organizadas sequencialmente

e interpretadas como amostras do estado do sistema dinâmico.

A partir dessas amostras, os dados são estruturados de modo a permitir a aplicação

dos métodos de decomposição modal. Em particular, cada imagem é convertida em um

vetor de estado, e as sequências temporais são organizadas conforme a formulação do

DMD apresentada no caṕıtulo de fundamentação teórica. Essa organização possibilita a

aplicação direta do DMD clássico, bem como de suas variantes incrementais.

No âmbito computacional, é desenvolvida uma biblioteca modular em C++, pro-

jetada para implementar o DMD clássico, o Online DMD e o Streaming DMD de forma

unificada. Essa infraestrutura permite a execução de experimentos sob condições contro-

ladas, garantindo consistência metodológica e reprodutibilidade dos resultados.

Por fim, as diferentes variantes são avaliadas com base em métricas que con-

templam a qualidade da reconstrução temporal e aspectos computacionais relevantes. As

etapas seguintes deste caṕıtulo detalham a origem e a caracterização dos dados utilizados,

bem como as estratégias de implementação adotadas para cada algoritmo.
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3.2 Origem e caracterização dos dados

Os dados utilizados neste trabalho foram obtidos a partir de simulações numéricas de

Dinâmica dos Fluidos Computacional envolvendo escoamentos com transporte de sedi-

mentos. Nessas simulações, o domı́nio f́ısico do problema é representado por uma malha

computacional baseada em elementos finitos, a partir da qual são obtidos campos espaciais

que descrevem a evolução temporal do escoamento. Esses campos resultam da resolução

numérica das equações que governam o sistema, realizada por ferramentas de simulação

apropriadas, produzindo informações definidas sobre a malha ao longo do tempo.

A partir desse processo, são gerados campos bidimensionais representativos do es-

tado do sistema em instantes temporais sucessivos. Tais campos correspondem a amostras

igualmente espaçadas no tempo e descrevem grandezas de interesse associadas à dinâmica

do transporte de sedimentos. Para fins de análise, essas informações foram exportadas

no formato de imagens, preservando a estrutura espacial necessária para a aplicação das

técnicas de decomposição modal.

As imagens utilizadas neste trabalho foram disponibilizadas juntamente com a

biblioteca associada ao projeto, sendo obtidas por meio da execução de um script automa-

tizado que realiza o download e a organização dos dados. Importante destacar que essas

imagens já se encontram previamente processadas, incluindo segmentação da região de

interesse e conversão para escala de cinza. Dessa forma, não foi necessário realizar etapas

adicionais de pré-processamento sobre os dados brutos antes da aplicação dos métodos

estudados.

Para fins de contextualização, a Figura 3.1 apresenta um exemplo do campo

original gerado pela simulação de CFD antes das etapas de segmentação da região de

interesse e conversão para escala de cinza. Essa visualização ilustra a extensão completa

do domı́nio computacional e o tipo de informação espacial dispońıvel nos dados brutos.
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Figura 3.1: Campo de sedimentos obtido diretamente da simulação de CFD.

Cada imagem representa, portanto, um estado do sistema dinâmico em um dado

instante de tempo e é interpretada como uma amostra da evolução temporal do escoa-

mento. Essas amostras são utilizadas diretamente na construção das sequências temporais

analisadas pelos métodos de decomposição em modos dinâmicos. A organização temporal

dessas imagens e sua conversão para vetores de estado, são detalhadas na seção seguinte.

3.2.1 Organização temporal e definição dos snapshots

Para a aplicação dos métodos de decomposição em modos dinâmicos, os dados devem

ser organizados como uma sequência temporal de estados do sistema. No contexto deste

trabalho, cada estado é representado por uma imagem bidimensional proveniente da si-

mulação numérica, correspondente a um instante espećıfico da evolução do escoamento.

Cada imagem é interpretada como uma amostra do estado do sistema dinâmico e,

seguindo a terminologia adotada na literatura, é denominada um snapshot. Essas imagens

são ordenadas temporalmente de acordo com o instante em que foram geradas, assumindo

um intervalo de tempo constante entre amostras consecutivas.

Para viabilizar a aplicação dos algoritmos de DMD, cada imagem bidimensional

é convertida em um vetor coluna por meio de um processo de vetorização, no qual os

valores de intensidade dos pixels são organizados sequencialmente em um único vetor.

Dessa forma, cada snapshot é representado por um vetor de estado em um espaço de alta

dimensão, preservando a informação espacial originalmente contida na imagem.
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A sequência de vetores de estado é então organizada em duas matrizes defasa-

das no tempo, conforme a formulação clássica do DMD. A primeira matriz é composta

pelos snapshots correspondentes aos instantes iniciais, enquanto a segunda contém os

snapshots deslocados temporalmente em uma unidade de tempo. Essa organização esta-

belece a relação temporal necessária para a estimativa do operador dinâmico que aproxima

a evolução do sistema.

Essa estrutura de dados é utilizada de forma consistente em todas as variantes

estudadas neste trabalho. No caso do DMD clássico, as matrizes completas são cons-

trúıdas previamente. Já nas variantes incrementais, como o Online DMD e o Streaming

DMD, os snapshots são incorporados progressivamente ao longo do tempo, respeitando a

mesma lógica de organização temporal. Os detalhes espećıficos de cada abordagem são

apresentados nas seções seguintes.

3.3 Implementação computacional

3.3.1 Arquitetura geral da biblioteca em C++

Com o objetivo de viabilizar experimentos controlados e reprodut́ıveis, foi desenvolvida

uma biblioteca em C++ para a implementação do DMD clássico e de suas variantes

Online e Streaming. A biblioteca foi projetada com uma arquitetura modular, de modo

a reduzir redundâncias entre implementações, facilitar a extensão para novas variantes e

garantir consistência entre os procedimentos numéricos empregados em cada método.

A organização do código separa claramente as responsabilidades relacionadas (i)

à leitura e preparação dos dados, (ii) à execução dos algoritmos de decomposição, e (iii)

ao cálculo de medidas necessárias para avaliação posterior. Essa separação permite que

os diferentes métodos sejam aplicados sobre a mesma estrutura de dados e com inter-

faces consistentes, isolando o efeito das variações algoŕıtmicas e evitando interferências

decorrentes de diferenças de implementação.

Em termos de funcionamento, a biblioteca opera sobre uma sequência temporal

de snapshots vetorizados, a partir da qual são calculados os elementos necessários para

a análise dinâmica do sistema. Esses elementos incluem os modos dinâmicos associados,
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bem como as informações temporais utilizadas nos processos de reconstrução da dinâmica

temporal.

A configuração dos algoritmos é realizada por meio de parâmetros definidos expli-

citamente, como o posto de truncamento e as estratégias de atualização adotadas em cada

variante. Essa abordagem garante que diferentes métodos sejam avaliados sob condições

controladas e comparáveis, preservando a consistência metodológica entre os experimentos

realizados.

As seções seguintes apresentam em detalhes a implementação do DMD clássico e

de suas variantes, destacando as particularidades algoŕıtmicas e computacionais de cada

abordagem.

3.3.2 Bibliotecas e ferramentas utilizadas

A implementação da biblioteca foi realizada integralmente em C++, com o objetivo de

garantir eficiência computacional, controle expĺıcito de memória e flexibilidade na inte-

gração dos diferentes algoritmos de decomposição estudados. Para viabilizar as operações

numéricas necessárias, foram utilizadas bibliotecas amplamente consolidadas no contexto

cient́ıfico e de computação de alto desempenho.

Em particular, a biblioteca Eigen1 foi empregada para a realização de operações

de álgebra linear, como multiplicações matriciais, decomposição em valores singulares e

resolução de sistemas lineares. A escolha da Eigen deve-se à sua eficiência, interface

expressiva baseada em templates e ampla utilização em aplicações cient́ıficas, além de

oferecer suporte direto a matrizes densas e operações necessárias para a implementação

dos métodos de DMD.

Além disso, foram utilizadas estruturas padrão da biblioteca padrão do C++

(STL) para gerenciamento de dados, controle de fluxo e organização das estruturas in-

ternas, contribuindo para a portabilidade e manutenção do código. Essa combinação de

ferramentas permitiu desenvolver uma infraestrutura computacional eficiente e modular,

adequada ao processamento de dados de alta dimensionalidade provenientes de simulações

numéricas.

1⟨https://libeigen.gitlab.io/⟩

https://libeigen.gitlab.io/


3.4 Implementação do DMD clássico 26

O uso dessas bibliotecas fornece uma base sólida para a implementação consistente

das diferentes variantes do DMD, permitindo que as diferenças observadas nos resultados

estejam associadas às caracteŕısticas algoŕıtmicas de cada método, e não a limitações da

infraestrutura computacional adotada.

3.4 Implementação do DMD clássico

A implementação do DMD clássico foi estruturada em duas etapas complementares: (i)

o ajuste do modelo a partir de uma matriz de snapshots e (ii) a reconstrução tem-

poral a partir do modelo ajustado. Essas etapas correspondem diretamente aos métodos

DMD::fit() e DMD::predict(), respectivamente.

No ajuste, a entrada é a matriz X ∈ Rn×m, onde cada coluna representa um

snapshot vetorizado do sistema. O objetivo é extrair uma representação modal de baixa

dimensão associada a um operador linear que aproxima a evolução temporal observada

nos dados. Para isso, a sequência é organizada em duas matrizes defasadas no tempo,

X1 e X2, contendo estados consecutivos do sistema, o que estabelece a relação temporal

necessária para a aproximação do operador dinâmico. Em seguida, calcula-se a decom-

posição em valores singulares de X1 e aplica-se truncamento para um posto r, reduzindo

a dimensionalidade do problema e tornando viável a construção do operador dinâmico

reduzido. Nesta implementação, o parâmetro r pode ser fornecido explicitamente ou de-

terminado automaticamente a partir do espectro de valores singulares, dependendo da

configuração adotada no experimento.

Com a base reduzida determinada, constrói-se o operador reduzido Ã, que apro-

xima a dinâmica no subespaço dominante. A decomposição espectral desse operador

fornece os autovalores λ e autovetores associados, que são utilizados para reconstruir os

modos dinâmicos Φ no espaço original. Por fim, calcula-se o vetor de amplitudes iniciais

b por meio de uma pseudoinversa, ajustando a combinação modal ao primeiro estado ob-

servado. A conversão dos autovalores discretos para frequências cont́ınuas ω é realizada

por ω = ln(λ)/∆t, o que permite avaliar a solução em instantes arbitrários no tempo.

O Algoritmo 1 resume o fluxo computacional implementado no método DMD::fit().

Uma vez ajustado o modelo, a reconstrução temporal é realizada a partir da
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Algoritmo 1: Ajuste do Modelo DMD (DMD::fit())

Entrada: X ∈ Rn×m, ∆t, posto r (ou seleção automática)
Sáıda: Φ, λ, b, ω

1 ińıcio
2 Calcule dimensões de X: (n,m)← shape(X);
3 Calcule matriz defasada X1: X1 ← X[:, 1 : (m− 1)];
4 Calcule matriz defasada X2: X2 ← X[:, 2 : m];
5 Calcule estado inicial: x0 ← X1[:, 1];
6 Calcule SVD de X1: (U,Σ,V)← SVD(X1);
7 Calcule truncamento para posto r: (Ur,Σr,Vr)← truncar (U,Σ,V);

8 Calcule operador dinâmico reduzido: Ã← U⊤
r X2Vr Σ

−1
r ;

9 Calcule autovalores e autovetores de Ã: (λ,W)← eig(Ã);
10 Calcule modos dinâmicos: Φ← X2Vr Σ

−1
r W;

11 Calcule amplitudes iniciais: b← Φ† x0;
12 Calcule frequências cont́ınuas: ω ← ln(λ)/∆t;
13 retorna Φ,λ,b,ω;

14 fim

mesma formulação modal. Para cada instante tj, calcula-se o vetor de contribuições

temporais d(tj) = b⊙ exp(ωtj) e obtém-se o estado correspondente por x̂(tj) = Φd(tj).

No escopo deste trabalho, essa expressão é avaliada exclusivamente nos instantes

temporais associados ao conjunto de dados utilizado no ajuste do modelo, caracterizando

o regime de reconstrução one-step-ahead. Como a implementação envolve quantidades

complexas ao longo dos cálculos, o estado final retornado é obtido tomando-se apenas a

parte real da solução.

O Algoritmo 2 descreve o procedimento implementado no método DMD::predict().

Algoritmo 2: Reconstrução com DMD (DMD::predict())

Entrada: Φ, b, ω, t = [t1, . . . , tp]

Sáıda: X̂ ∈ Rn×p

1 ińıcio
2 para j ← 1 até p faça
3 Calcule contribuição temporal: dj ← b⊙ exp(ω tj);
4 Calcule estado no instante tj: x̂j ← Φdj;

5 Atribua coluna j de X̂: X̂[:, j]← x̂j;

6 fim para

7 retorna X̂;

8 fim
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3.4.1 Definição do posto reduzido

A definição do posto reduzido r é uma etapa essencial na aplicação do DMD, pois afeta

diretamente a capacidade de representar a dinâmica dominante do sistema e o custo

computacional do método. Valores muito baixos de r podem levar à perda de informações

relevantes, enquanto valores elevados tendem a aumentar o custo computacional sem

ganhos significativos de precisão.

Nesta implementação, o posto reduzido pode ser fornecido explicitamente ou

determinado de forma automática a partir do espectro de valores singulares da matriz de

dados. No caso da seleção automática, utiliza-se um critério baseado em um limiar ótimo

aplicado aos valores singulares, conforme descrito em (GAVISH; DONOHO, 2014).

SejaX1 ∈ Rn×(m−1) a matriz de snapshots defasados no tempo, cuja decomposição

em valores singulares é dada por

X1 = UΣV⊤, (3.1)

com Σ = diag(s1, s2, . . . , sp) contendo os valores singulares ordenados de forma decres-

cente. Define-se a razão de aspecto da matriz como

β =
min(n,m− 1)

max(n,m− 1)
. (3.2)

A partir dessa razão, é definido um limiar de truncamento

τ = ω(β) smed, (3.3)

onde smed representa a mediana dos valores singulares e ω(β) é uma função dependente

apenas da razão de aspecto da matriz, conforme especificado em (GAVISH; DONOHO,

2014). O posto reduzido é então obtido como o número de valores singulares que satisfa-

zem si > τ .

O valor de r obtido por esse procedimento fornece uma estimativa do número de

componentes necessárias para representar a dinâmica dominante do sistema a partir do

espectro de valores singulares dos dados. Esse critério é adotado nesta implementação
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como uma opção automática para a definição do posto reduzido, podendo ser utilizada

conforme a configuração do método.

3.5 Implementação do Online DMD

A variante Online DMD foi implementada com o objetivo de permitir a atualização in-

cremental do modelo dinâmico à medida que novos snapshots são observados, evitando a

recomputação completa em lote. Essa abordagem é adequada a cenários em que os dados

são processados sequencialmente e, em particular, a sistemas cuja dinâmica pode variar

ao longo do tempo.

No presente trabalho, o método é aplicado em um subespaço de dimensão re-

duzida, obtido a partir de um conjunto inicial de snapshots (warmup). Esse conjunto

é utilizado para construir uma base espacial U ∈ Rn×r por meio de uma decomposição

em valores singulares truncada, onde n representa a dimensão original do estado e r a

dimensão reduzida escolhida. Cada estado xk ∈ Rn é projetado no subespaço reduzido

por

zk = U⊤xk, (3.4)

A dinâmica do sistema passa a ser modelada no espaço reduzido, estimando-se

um operador reduzido Ar ∈ Rr×r tal que

zk+1 ≈ Ar zk. (3.5)

A inicialização do método consiste em: (i) construir a base U a partir do warmup;

(ii) projetar pares consecutivos (xk,xk+1) no subespaço reduzido, obtendo (zk, zk+1); e (iii)

inicializar o operador reduzido Ar no espaço reduzido. No código, essa etapa é realizada

no procedimento de inicialização a partir do warmup, que prepara U e o estado inicial do

modelo antes do processamento sequencial.

O Algoritmo 3 resume a etapa de inicialização a partir do warmup (implementação

OnlineDMDReduced::initialize from warmup()).

Após a inicialização, o método opera de forma sequencial. A cada instante,
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Algoritmo 3: Inicialização do Online DMD a partir do warmup
(OnlineDMDReduced::initialize from warmup())

Entrada: Xw = [x1, . . . ,xW ] ∈ Rn×W , posto r, fator de esquecimento w
Sáıda: U ∈ Rn×r, operador reduzido inicial Ar ∈ Rr×r

1 ińıcio
2 Calcule SVD do warmup: (Ufull,Σ,V)← SVD(Xw);
3 Calcule base truncada: U← Ufull[:, 1 : r];
4 Calcule número de pares: P ← W − 1;
5 para k ← 1 até P faça
6 Calcule projeção do estado: zk ← U⊤xk;
7 Calcule projeção do próximo estado: zk+1 ← U⊤xk+1;
8 Atribua coluna k de Xp: Xp[:, k]← zk;
9 Atribua coluna k de Yp: Yp[:, k]← zk+1;

10 fim para
11 Inicialize operador reduzido Ar por mı́nimos quadrados com fator de

esquecimento w;

12 fim

realiza-se primeiramente uma predição causal de um passo à frente (one-step-ahead) e

atualizações incrementais do operador reduzido à medida que novos dados são observados.

Em seguida, após a observação do estado real subsequente, o operador reduzido Ar é

atualizado de forma incremental com o novo par projetado (zk, zk+1). Essa estratégia

permite que Ar se adapte progressivamente a alterações na dinâmica do sistema.

O Algoritmo 4 descreve o ciclo de predição e atualização incremental adotado.

Algoritmo 4: Predição causal e atualização incremental do Online DMD

Entrada: Base U, operador reduzido Ar, sequência {xk}Nk=1

Sáıda: Estados previstos x̂k+1

1 ińıcio
2 para k ← 1 até N − 1 faça
3 Calcule projeção do estado atual: zk ← U⊤xk;
4 Calcule predição no espaço reduzido: ẑk+1 ← Ar zk;
5 Calcule estado previsto no espaço original: x̂k+1 ← Uẑk+1;
6 Calcule projeção do próximo estado real: zk+1 ← U⊤xk+1;
7 Atualize operador reduzido: Ar ← update(Ar, zk, zk+1, w);

8 fim para

9 fim

A atualização incremental do operador reduzido Ar é baseada em uma regra

de mı́nimos quadrados recursivos com fator de esquecimento w, o que enfatiza amostras

recentes e torna o ajuste mais responsivo a variações temporais. No código, essa etapa

corresponde ao núcleo de atualização realizado sobre os estados reduzidos, mantendo
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também uma matriz auxiliar P associada à forma recursiva do problema.

O Algoritmo 5 apresenta a regra de atualização recursiva utilizada no ajuste de

Ar.

Algoritmo 5: Atualização recursiva do operador reduzido Ar

(OnlineDMD::update())

Entrada: zk, zk+1, operador Ar, matriz auxiliar P, fator de esquecimento
w

Sáıda: Operador atualizado Ar

1 ińıcio

2 Calcule ganho escalar: γ ←
(
1 + z⊤k Pzk

)−1
;

3 Calcule reśıduo de predição: r← zk+1 −Ar zk;
4 Atualize operador reduzido: Ar ← Ar + r (γPzk)

⊤;
5 Atualize matriz auxiliar: P← (P− γPzkz

⊤
k P)/w;

6 fim

É importante notar que, diferentemente do DMD clássico, o Online DMD imple-

mentado neste trabalho não reconstrói uma trajetória completa a partir de uma expansão

modal do tipo Φ exp(ωt) e amplitudes globais. Em vez disso, a reconstrução empregada

é causal e de um passo à frente: em cada instante, o estado xk+1 é aproximado dire-

tamente pela aplicação do operador reduzido Ar ao estado atual projetado, seguida da

reconstrução via U. Assim, a mesma rotina é utilizada para a reconstrução temporal em

esquema causal one-step-ahead : a cada iteração, a entrada xk corresponde ao estado real

observado do sistema, a partir do qual se obtém a estimativa do estado imediatamente

subsequente. Essa formulação permite avaliar a capacidade do modelo em reproduzir a

dinâmica local do sistema a partir de dados observados, sem recorrer a extrapolações

temporais ou realimentação autoregressiva de estados previstos.

3.6 Implementação do Streaming DMD

A variante Streaming DMD foi implementada para processar snapshots de forma sequen-

cial, mantendo um modelo dinâmico atualizado sem armazenar todas as matrizes com-

pletas do método clássico. Diferentemente do Online DMD utilizado neste trabalho, que

opera em um subespaço fixo obtido no warmup, o Streaming DMD permite adaptar di-

namicamente as bases reduzidas ao longo do tempo, adicionando novas direções quando
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a projeção passa a representar mal os dados e realizando compressões quando a dimensão

reduzida cresce além de um limite.

A implementação mantém duas bases reduzidas no espaço original, Ux ∈ Rn×rx

e Uy ∈ Rn×ry , associadas, respectivamente, aos estados atuais xk e aos estados seguintes

xk+1. Para cada par consecutivo, definem-se as projeções reduzidas

x̃k = U⊤
x xk, ỹk = U⊤

y xk+1. (3.6)

A dinâmica é representada por meio de matrizes de regressão reduzidas Q, Px

e Py, atualizadas incrementalmente com fator de esquecimento ρ ∈ (0, 1]. O operador

reduzido utilizado na predição é dado por

Ã = QP†
x (3.7)

que aproxima a dinâmica entre estados consecutivos no subespaço reduzido.

A inicialização do método é realizada a partir de um conjunto inicial de snapshots

(warmup), conforme descrito no Algoritmo 6.

Algoritmo 6: Inicialização do Streaming DMD
(StreamingDMD::StreamingDMD())

Entrada: Warmup Xw, rmin, rmax, limiar τ , meia-vida h
Sáıda: Ux, Uy, Q, Px, Py, ρ

1 ińıcio
2 Calcule fator de esquecimento ρ;
3 Construa pares X e Y;
4 Calcule bases iniciais Ux e Uy por SVD truncada;

5 Projete dados: X̃← U⊤
xX, Ỹ ← U⊤

y Y;

6 Inicialize Q, Px e Py;

7 fim

Após a inicialização, o modelo passa a ser atualizado incrementalmente à medida

que novos pares (xk,xk+1) são observados. Nessa etapa, o método avalia a qualidade

da projeção dos dados nas bases atuais, permitindo expansão adaptativa das bases e

aplicação de compressão quando necessário. Para evitar crescimento descontrolado da

dimensão reduzida, uma etapa de compressão é aplicada sempre que o rank ultrapassa

um valor máximo permitido.
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O Algoritmo 7 descreve o procedimento completo de atualização incremental.

Algoritmo 7: Atualização incremental do Streaming DMD
(StreamingDMD::update())

Entrada: (xk,xk+1), Ux, Uy, Q, Px, Py, ρ, τ , rmax

Sáıda: Bases e matrizes reduzidas atualizadas
1 ińıcio
2 Projete estados nas bases atuais;
3 Calcule reśıduos de projeção;
4 se erro relativo > τ então
5 Adicione nova direção à base correspondente;
6 Atualize matrizes associadas;

7 fim se
8 se rank > rmax então
9 Execute compressão POD;

10 fim se
11 Atualize Q, Px e Py com esquecimento;

12 fim

A predição causal de um passo à frente (one-step-ahead) segue a mesma lógica

adotada na variante anterior: o estado corrente é projetado no subespaço reduzido, a

dinâmica é aplicada por meio do operador Ã e o resultado é reconstrúıdo no espaço

original. O Algoritmo 8 apresenta esse procedimento.

Algoritmo 8: Predição one-step-ahead no Streaming DMD
(StreamingDMD::predict next())

Entrada: xk, Ux, Uy, Q, Px

Sáıda: x̂k+1

1 ińıcio

2 Calcule Ã← QP†
x;

3 Projete estado: x̃← U⊤
x xk;

4 Prediga no espaço reduzido: ỹ← Ãx̃;
5 Reconstrua no espaço original: x̂k+1 ← Uyỹ;

6 fim

3.7 Métricas de avaliação

A avaliação dos métodos implementados foi realizada a partir de três critérios principais:

(i) qualidade de reconstrução, (ii) tempo de processamento e (iii) uso de memória. Essas

métricas permitem analisar tanto a precisão dos modelos quanto o custo computacional

associado a cada abordagem.



3.7 Métricas de avaliação 34

(i) Qualidade de reconstrução. A qualidade dos resultados foi avaliada por

meio do erro quadrático médio (mean squared error, MSE) e do Peak Signal-to-Noise Ratio

(PSNR), calculados no esquema causal one-step-ahead. Em cada iteração, compara-se o

estado real xk+1 com a predição x̂k+1 fornecida pelo modelo, obtendo-se o vetor diferença

d = xk+1 − x̂k+1. (3.8)

O erro quadrático médio é definido por

MSE =
∥d∥22
n

, (3.9)

onde n representa a dimensão do estado. Essa métrica quantifica o erro médio por com-

ponente do vetor de estado e permite avaliar a evolução temporal da qualidade da recons-

trução.

Como complemento à análise baseada em MSE, a qualidade visual das recons-

truções foi avaliada por meio do Peak Signal-to-Noise Ratio, amplamente utilizado em

comparação de imagens. O PSNR é definido como

PSNR = 10 log10

(
I2max

MSE

)
, (3.10)

onde Imax representa o valor máximo posśıvel de intensidade do sinal da imagem. Valores

mais elevados de PSNR indicam maior similaridade entre a imagem reconstrúıda e a

imagem original no mesmo instante temporal.

Nos experimentos realizados, o MSE foi analisado ao longo do tempo para ava-

liar o comportamento dinâmico do erro, enquanto o PSNR foi empregado como métrica

pontual para quantificar a qualidade visual das reconstruções em instantes espećıficos.

(ii) Tempo de processamento. O tempo total de execução de cada algoritmo

foi medido utilizando a biblioteca std::chrono da linguagem C++. O instante inicial é

registrado imediatamente antes da execução do método avaliado e o instante final é obtido

após o término completo do processamento. A diferença entre esses dois instantes fornece

o tempo total de execução, expresso em segundos.
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Essa medida engloba todas as etapas realizadas pelo algoritmo correspondente,

incluindo inicialização, ajuste do modelo, atualizações incrementais, quando aplicáveis, e

etapa de reconstrução, permitindo uma comparação direta do custo computacional global

entre os métodos.

(iii) Uso de memória. O uso de memória foi avaliado a partir do pico de

memória residente do processo durante a execução do algoritmo. Para isso, utiliza-se

uma chamada ao sistema operacional via getrusage, que fornece estat́ısticas de uso de

recursos do processo corrente.

O valor considerado corresponde ao máximo de memória residente observado ao

longo da execução. Essa métrica fornece uma estimativa do impacto de cada método

em termos de consumo de memória, permitindo comparar abordagens em lote, online e

streaming sob a perspectiva de eficiência de recursos.
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4 Resultados e Discussões

4.1 Estudo de Caso: Corrente de Sedimentos

Os experimentos foram conduzidos a partir de snapshots bidimensionais em tons de cinza,

provenientes de uma simulação de escoamento com transporte de sedimentos. A utilização

de imagens em escala de cinza permite representar o campo de concentração por um único

valor escalar por pixel, reduzindo a faixa dinâmica dos dados e simplificando o tratamento

numérico, o que contribui para a eficiência computacional dos métodos aplicados.

Cada imagem representa um campo escalar associado à concentração de sedi-

mentos no domı́nio em um instante discreto. Para a aplicação dos métodos baseados em

DMD, cada imagem foi vetorizada e organizada como uma coluna da matriz de dados

X = [x0,x1, . . . ,xN−1].

Nesta seção, apresentam-se os resultados obtidos ao aplicar o DMD clássico,

o Online DMD e o Streaming DMD sobre diferentes janelas temporais da simulação,

mantendo-se uma comparação justa ao utilizar, em cada experimento, o mesmo conjunto

de dados de entrada para todos os métodos. As métricas de avaliação seguem a definição

apresentada anteriormente neste trabalho.

A Figura 4.1 apresenta snapshots reais do campo de concentração de sedimentos

em instantes representativos da simulação, com o objetivo de contextualizar visualmente

a dinâmica espacial e temporal do sistema que se busca modelar nos experimentos subse-

quentes.
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(a) Campo de sedimentos no instante t = 0.

(b) Campo de sedimentos no instante t = 1000.

(c) Campo de sedimentos no instante t = 2000.

(d) Campo de sedimentos no instante t = 3000.

(e) Campo de sedimentos no instante t = 4000.

Figura 4.1: Evolução temporal do campo de concentração de sedimentos em instantes
representativos da simulação.

Configuração dos Experimentos

Foram considerados diferentes intervalos temporais da simulação, todos com passo de

tempo constante ∆t = 1. As janelas foram definidas de modo a conter conjuntos de 500

snapshots, permitindo avaliar o desempenho dos métodos em diferentes faixas temporais

do escoamento e verificar sua capacidade de reconstrução sob dinâmicas possivelmente

distintas.

A escolha de intervalos com 500 imagens também está associada a considerações

de custo computacional e viabilidade prática dos experimentos. O processamento e ar-

mazenamento de grandes quantidades de snapshots bidimensionais impõem demandas

significativas de tempo e memória, de modo que a adoção de janelas de tamanho mode-

rado permite a realização de múltiplos experimentos comparativos de forma consistente,

sem comprometer a estabilidade da execução no ambiente computacional dispońıvel.

A Tabela 4.1 resume as janelas avaliadas e o número de snapshots utilizado em

cada experimento.
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Tabela 4.1: Janelas temporais avaliadas nos experimentos com sedimentos.

Experimento Intervalo N (snapshots)

E1 1000, 1500 500
E2 2000, 2500 500
E3 3000, 3500 500

Conforme ilustrado anteriormente na Figura 4.1, a simulação apresenta mudanças

visuais relevantes ao longo do tempo. Assim, a escolha de múltiplas janelas visa testar os

métodos sob condições dinâmicas distintas, enquanto o intervalo estendido (E4) permite

observar a evolução do erro e a robustez numérica em horizontes maiores.

No caso do Online DMD, que requer um peŕıodo inicial para a construção da

base espacial reduzida, foi adotada uma estratégia uniforme em todos os experimentos: o

tamanho da janela de warmup foi definido como metade do número total de snapshots do

intervalo analisado. Assim, para os experimentos com 500 imagens, foram utilizados 250

snapshots iniciais exclusivamente para a construção da base U, sendo toda a sequência

temporal posteriormente processada pelo método ao longo da etapa de reconstrução.

Essa escolha permite um compromisso entre a qualidade inicial da base reduzida

e a quantidade de dados dispońıveis para avaliação do comportamento online do método,

mantendo consistência entre os diferentes intervalos analisados.

Definição do Posto Reduzido

Para garantir uma comparação justa entre os métodos avaliados, o posto reduzido utili-

zado nos experimentos foi definido de forma consistente para todas as abordagens. Em

cada intervalo temporal considerado, o posto foi inicialmente estimado a partir do DMD

clássico, por meio da análise do espectro de valores singulares da matriz de snapshots

correspondente.

Esse procedimento foi realizado apenas uma vez para cada intervalo, com o ob-

jetivo exclusivo de determinar o valor de posto representativo da dinâmica dominante

naquela janela temporal. Após essa etapa preliminar, o valor obtido foi fixado e fornecido

manualmente como parâmetro de entrada para todas as execuções subsequentes, inclu-

indo o próprio DMD clássico. Dessa forma, evita-se que o custo computacional associado

ao cálculo automático do posto influencie as métricas de tempo e memória analisadas nos
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resultados.

O mesmo valor de posto foi empregado no DMD clássico e no Online DMD.

No caso do Streaming DMD, devido à presença de mecanismos adaptativos de expansão

e compressão da base reduzida, foi definido um intervalo admisśıvel em torno do posto

estimado. Especificamente, para um posto médio r, foram adotados os limites rmin = r−10

e rmax = r+10, permitindo variações controladas na dimensão reduzida sem comprometer

a comparabilidade com os demais métodos.

Como o posto estimado varia de acordo com o intervalo temporal considerado,

valores distintos foram obtidos para cada experimento. Esses valores são explicitamente

indicados na apresentação dos resultados correspondentes a cada janela temporal.

4.2 Resultados nas Simulações com Sedimentos

4.2.1 Experimento E1: Imagens de 1000 a 1500

Neste experimento, os métodos foram aplicados ao intervalo temporal compreendido entre

as imagens de ı́ndice 1000 e 1500 da simulação, totalizando 500 snapshots. Esse intervalo

foi adotado como um caso base de referência, pois apresenta uma extensão temporal

adequada para avaliar simultaneamente a qualidade de reconstrução one-step-ahead e o

comportamento temporal do erro, sem os efeitos associados a janelas muito curtas ou

excessivamente longas.

Foi adotado um mesmo posto reduzido r = 116 para o DMD clássico e para o

Online DMD. Esse valor foi determinado a partir da análise do espectro singular do DMD

clássico aplicada a esse intervalo, utilizada exclusivamente para a estimativa do posto

reduzido, e posteriormente fixado manualmente nos experimentos, de modo a evitar que o

custo computacional da seleção de posto influenciasse as comparações de desempenho. No

caso do Streaming DMD, foi adotado um intervalo adaptativo de postos, com rmin = 106

e rmax = 126, centrado no valor médio utilizado pelos demais métodos.

A Figura 4.2 apresenta uma comparação visual entre o campo de sedimentos

original e as reconstruções obtidas pelos diferentes métodos no instante t = 1250. São

mostrados, respectivamente: (a) o snapshot original da simulação, (b) a reconstrução
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obtida pelo DMD clássico, (c) a reconstrução produzida pelo Online DMD e (d) a recons-

trução obtida pelo Streaming DMD, todas avaliadas no mesmo instante temporal.

(a) Campo de sedimentos original no instante t = 1250.

(b) Reconstrução pelo DMD clássico no instante t = 1250.

(c) Reconstrução pelo Online DMD no instante t = 1250.

(d) Reconstrução pelo Streaming DMD no instante t = 1250.

Figura 4.2: Comparação entre o campo de sedimentos original e as reconstruções obtidas
pelos diferentes métodos no instante t = 1250 (Experimento E1).

Além da análise visual, foi avaliado o comportamento temporal do erro por meio

do erro quadrático médio. As Figuras 4.3, 4.4 e 4.5 apresentam a evolução do MSE ao

longo do tempo para o DMD clássico, o Online DMD e o Streaming DMD, respectiva-

mente, ao longo do intervalo considerado.
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Figura 4.3: Evolução do erro quadrático médio ao longo do tempo para o DMD clássico
no Experimento E1.

Figura 4.4: Evolução do erro quadrático médio ao longo do tempo para o Online DMD
no Experimento E1.
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Figura 4.5: Evolução do erro quadrático médio ao longo do tempo para o Streaming DMD
no Experimento E1.

Complementarmente, a qualidade visual das reconstruções foi quantificada por

meio do Peak Signal-to-Noise Ratio, calculado para o instante t = 1250, correspondente

às reconstruções apresentadas na Figura 4.2.

Tabela 4.2: Valores de PSNR (em dB) das reconstruções no instante t = 1250 no Experi-
mento E1.

Método PSNR (dB)

DMD clássico 63.678923
Online DMD 58.353677

Streaming DMD 65.823686

Os resultados apresentados nesta subseção fornecem uma visão inicial do de-

sempenho dos métodos na reconstrução one-step-ahead do campo de sedimentos em um

intervalo temporal representativo da simulação. A comparação entre os métodos ao longo

de diferentes janelas temporais é aprofundada nas subseções seguintes.

4.2.2 Experimento E2: Imagens de 2000 a 2500

Neste experimento, os métodos foram aplicados ao intervalo temporal compreendido entre

as imagens de ı́ndice 2000 e 2500 da simulação, totalizando 500 snapshots. Assim como

no Experimento E1, essa janela temporal foi utilizada para avaliar o desempenho dos

métodos na reconstrução e na evolução temporal do erro, agora em uma faixa distinta da

simulação.
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O posto reduzido adotado neste experimento foi r = 147 para o DMD clássico e

o Online DMD. Para o Streaming DMD, utilizou-se um intervalo adaptativo de postos,

com rmin = 137 e rmax = 157.

A Figura 4.6 apresenta uma comparação visual entre o campo de sedimentos

original e as reconstruções obtidas pelos diferentes métodos no instante t = 2250. São

mostrados, respectivamente: (a) o snapshot original da simulação, (b) a reconstrução

obtida pelo DMD clássico, (c) a reconstrução produzida pelo Online DMD e (d) a recons-

trução obtida pelo Streaming DMD, todas avaliadas no mesmo instante temporal.

(a) Campo de sedimentos original no instante t = 2250.

(b) Reconstrução pelo DMD clássico no instante t = 2250.

(c) Reconstrução pelo Online DMD no instante t = 2250.

(d) Reconstrução pelo Streaming DMD no instante t = 2250.

Figura 4.6: Comparação entre o campo de sedimentos original e as reconstruções obtidas
pelos diferentes métodos no instante t = 2250 (Experimento E2).

De forma análoga ao experimento anterior, foi avaliado o comportamento tempo-

ral do erro por meio do erro quadrático médio (MSE). As Figuras 4.7, 4.8 e 4.9 apresentam

a evolução do MSE ao longo do tempo para os diferentes métodos no intervalo considerado.
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Figura 4.7: Evolução do erro quadrático médio ao longo do tempo para o DMD clássico
no Experimento E2.

Figura 4.8: Evolução do erro quadrático médio ao longo do tempo para o Online DMD
no Experimento E2.
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Figura 4.9: Evolução do erro quadrático médio ao longo do tempo para o Streaming DMD
no Experimento E2.

A Tabela 4.3 apresenta os valores de PSNR calculados para o instante t = 2250,

correspondente às reconstruções exibidas na Figura 4.6.

Tabela 4.3: Valores de PSNR (em dB) das reconstruções no instante t = 2250 no Experi-
mento E2.

Método PSNR (dB)

DMD clássico 67.422187
Online DMD 63.604047

Streaming DMD 70.620878

Os resultados deste experimento reforçam as observações obtidas no Experimento

E1, permitindo avaliar a consistência do desempenho dos métodos em uma faixa temporal

distinta da simulação.

4.2.3 Experimento E3: Imagens de 3000 a 3500

Neste experimento, os métodos foram aplicados ao intervalo temporal compreendido entre

as imagens de ı́ndice 3000 e 3500 da simulação, totalizando 500 snapshots. Essa janela

temporal corresponde a uma fase posterior da simulação, permitindo avaliar a consistência

do desempenho dos métodos em uma faixa distinta daquela analisada nos experimentos

anteriores.

O posto reduzido adotado neste experimento foi r = 156 para o DMD clássico e

o Online DMD. Para o Streaming DMD, utilizou-se um intervalo adaptativo de postos,
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com rmin = 146 e rmax = 166.

A Figura 4.10 apresenta uma comparação visual entre o campo de sedimentos

original e as reconstruções obtidas pelos diferentes métodos no instante t = 3250. São

mostrados, respectivamente: (a) o snapshot original da simulação, (b) a reconstrução

obtida pelo DMD clássico, (c) a reconstrução produzida pelo Online DMD e (d) a recons-

trução obtida pelo Streaming DMD, todas avaliadas no mesmo instante temporal.

(a) Campo de sedimentos original no instante t = 3250.

(b) Reconstrução pelo DMD clássico no instante t = 3250.

(c) Reconstrução pelo Online DMD no instante t = 3250.

(d) Reconstrução pelo Streaming DMD no instante t = 3250.

Figura 4.10: Comparação entre o campo de sedimentos original e as reconstruções obtidas
pelos diferentes métodos no instante t = 3250 (Experimento E3).

O comportamento temporal do erro foi avaliado por meio do erro quadrático

médio (MSE). As Figuras 4.11, 4.12 e 4.13 apresentam a evolução do MSE ao longo do

tempo para os diferentes métodos no intervalo considerado.
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Figura 4.11: Evolução do erro quadrático médio ao longo do tempo para o DMD clássico
no Experimento E3.

Figura 4.12: Evolução do erro quadrático médio ao longo do tempo para o Online DMD
no Experimento E3.
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Figura 4.13: Evolução do erro quadrático médio ao longo do tempo para o Streaming
DMD no Experimento E3.

A Tabela 4.4 apresenta os valores de PSNR calculados para o instante t = 3250,

correspondente às reconstruções exibidas na Figura 4.10.

Tabela 4.4: Valores de PSNR (em dB) das reconstruções no instante t = 3250 no Experi-
mento E3.

Método PSNR (dB)

DMD clássico 69.665698
Online DMD 66.815148

Streaming DMD 74.114566

Os resultados deste experimento permitem verificar a manutenção do desempe-

nho dos métodos em uma fase mais avançada da simulação, complementando as análises

realizadas nos experimentos anteriores.

4.3 Comparação entre os Métodos

Nesta seção é apresentada uma comparação integrada entre o DMD clássico, o Online

DMD e o Streaming DMD, com base nos resultados obtidos nos experimentos descri-

tos anteriormente. A análise considera simultaneamente a evolução do erro de recons-

trução, a estabilidade temporal dos métodos e o custo computacional associado, mantendo

condições equivalentes de dados e parâmetros sempre que posśıvel.

A comparação do desempenho em termos de precisão é baseada no erro quadrático



4.3 Comparação entre os Métodos 49

médio calculado ao longo do tempo. Conforme observado nos experimentos individuais,

o Online DMD apresenta um comportamento caracteŕıstico: enquanto a dinâmica do

sistema permanece bem representada pela base espacial constrúıda no peŕıodo de warmup,

o erro de reconstrução mantém-se controlado e competitivo. No entanto, à medida que

a dinâmica evolui para regiões menos bem representadas por essa base fixa, observa-se

um crescimento acentuado do erro, evidenciando a limitação do método em horizontes

temporais mais longos.

Com o objetivo de evidenciar o desempenho dos métodos em um regime com-

parável, a Figura 4.14 apresenta a comparação do MSE em um intervalo temporal recor-

tado, anterior ao crescimento abrupto do erro do Online DMD. Nesse intervalo, verifica-se

que o Online DMD apresenta os menores valores de MSE entre os métodos avaliados,

indicando excelente capacidade de reconstrução enquanto a base reduzida permanece

adequada. O Streaming DMD apresenta comportamento estável ao longo do tempo,

beneficiando-se do mecanismo de atualização adaptativa da base espacial, enquanto o

DMD clássico mantém desempenho consistente, conforme esperado para um método of-

fline ajustado a um conjunto fixo de dados.

Figura 4.14: Comparação do erro quadrático médio entre os métodos em um intervalo
temporal recortado, anterior ao crescimento acentuado do erro do Online DMD.

Além da precisão, foram analisados o tempo total de execução e o pico de memória

consumida pelos métodos em cada experimento. Essas métricas fornecem uma visão

complementar do custo associado a cada abordagem, o que é essencial em aplicações de
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grande escala ou com restrições de recursos computacionais.

Os valores apresentados nas tabelas de custo computacional correspondem à

média obtida a partir de múltiplas execuções independentes de cada método. Para cada

experimento, cada algoritmo foi executado dez vezes sob as mesmas condições, e os tempos

de execução e picos de memória foram posteriormente agregados por meio do valor médio,

de modo a reduzir a influência de variações pontuais associadas ao sistema operacional e

à execução dos algoritmos.

A Tabela 4.5 apresenta o tempo total de execução dos métodos nos diferentes

experimentos, enquanto a Tabela 4.6 resume os valores de pico de memória observados

durante as execuções.

Tabela 4.5: Tempo total de execução dos métodos nos experimentos realizados.

Experimento DMD clássico (s) Online DMD (s) Streaming DMD (s)

E1 371 57 169
E2 472 52 166
E3 566 56 185

Tabela 4.6: Pico de memória RAM consumida pelos métodos nos experimentos realizados.

Experimento DMD clássico (MB) Online DMD (MB) Streaming DMD (MB)

E1 6294 3184 7219
E2 6539 3184 7135
E3 6718 3192 7251

De forma geral, os resultados evidenciam diferenças claras entre as abordagens.

O DMD clássico apresenta desempenho estável em termos de erro, ao custo de maior

consumo de memória e natureza offline. O Online DMD demonstra excelente desempenho

enquanto opera dentro do regime representado pelo warmup, mas perde precisão à medida

que a dinâmica se afasta dessa base fixa. O Streaming DMD, por sua vez, mostra maior

robustez temporal, mantendo o erro controlado ao longo de janelas mais extensas devido

à adaptação cont́ınua da base espacial.
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5 Conclusões

Neste trabalho, investigou-se a aplicação de modelos de ordem reduzida baseados na

Decomposição em Modos Dinâmicos para a modelagem e reconstrução da dinâmica tem-

poral de um escoamento com transporte de sedimentos. O objetivo principal consistiu

em avaliar o desempenho do DMD clássico e de duas variantes sequenciais em um cenário

caracterizado por dados de alta dimensionalidade e evolução temporal complexa.

Os três métodos foram implementados em C++, com foco na eficiência computa-

cional e no tratamento consistente de dados sequenciais. Em seguida, foram aplicados a

diferentes janelas temporais de uma simulação de escoamento com transporte de sedimen-

tos, utilizando snapshots bidimensionais em escala de cinza. A comparação foi conduzida

de forma sistemática, adotando postos reduzidos compat́ıveis entre os métodos e avali-

ando os resultados por meio de métricas quantitativas (MSE e PSNR), análise visual das

reconstruções e medidas de custo computacional.

Os resultados obtidos evidenciaram que o DMD clássico é capaz de produzir

reconstruções de alta qualidade, porém apresenta elevado custo computacional e elevado

consumo de memória, decorrentes de sua formulação offline e da necessidade de acesso

completo ao conjunto de dados. Esses aspectos limitam sua aplicabilidade em cenários

sequenciais ou de larga escala, como o considerado neste trabalho.

O Online DMD destacou-se como a abordagem mais eficiente do ponto de vista

computacional, apresentando os menores tempos de execução e menor consumo de memória

em todos os experimentos realizados. Conforme observado nas análises de erro, o método

apresenta excelente desempenho durante o regime associado à base constrúıda no peŕıodo

de warmup, com valores de MSE reduzidos e PSNR elevados, chegando a superar os demais

métodos em determinados intervalos temporais. Entretanto, à medida que a dinâmica do

sistema evolui para além do subespaço inicialmente capturado, observa-se um crescimento

acentuado do erro, refletindo a limitação imposta pela base espacial fixa adotada pelo

método.

Por sua vez, o Streaming DMD apresentou comportamento mais robusto ao longo
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do tempo, mantendo ńıveis de erro mais estáveis em janelas temporais prolongadas. Essa

robustez está associada aos mecanismos adaptativos de atualização e compressão da base

espacial, que permitem ao método acomodar mudanças graduais na dinâmica do sistema.

Em contrapartida, tal flexibilidade resulta em maior custo computacional e maior consumo

de memória, como evidenciado pelos tempos de execução e picos de memória observados

nos experimentos.

A análise comparativa de custo computacional confirmou essas tendências: o

DMD clássico apresentou os maiores tempos de execução e elevado uso de memória, o

Streaming DMD ocupou uma posição intermediária, enquanto o Online DMD mostrou-se

a alternativa mais eficiente, desde que aplicado em um horizonte temporal compat́ıvel

com a base reduzida inicialmente constrúıda. Esses resultados reforçam a importância

da escolha do método em função do compromisso entre precisão, custo computacional e

horizonte temporal de interesse.

Como limitações deste trabalho, destaca-se a restrição no tamanho das janelas

temporais avaliadas, imposta pelo custo computacional associado ao processamento e

armazenamento de grandes volumes de imagens. Como perspectivas futuras, destaca-

se a investigação de critérios mais robustos para a escolha do tamanho do warmup no

Online DMD, bem como o estudo do impacto dessa escolha na estabilidade e na precisão

das reconstruções ao longo do tempo. Além disso, a aplicação das abordagens estudadas

a outros cenários de escoamento multifásico, bem como a incorporação de informações

f́ısicas adicionais aos modelos de ordem reduzida, configuram direções promissoras para

trabalhos futuros.

De forma geral, os resultados obtidos demonstram que as variantes sequenciais do

DMD constituem ferramentas promissoras para a análise de escoamentos com transporte

de sedimentos, desde que suas limitações e caracteŕısticas algoŕıtmicas sejam adequada-

mente consideradas no contexto da aplicação.
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