UNIVERSIDADE FEDERAL DE JUIZ DE FORA
INsTITUTO DE CIENCIAS EXATAS

BACHARELADO EM CIENCIA DA COMPUTAGAO

Uma Maquina de Parsing Para PEGs com
Atributos

Maria Eduarda de Medeiros Simonassi

JUIZ DE FORA
JANEIRO, 2026

Uma Maquina de Parsing Para PEGs com
Atributos

MARIA EDUARDA DE MEDEIROS SIMONASSI

Universidade Federal de Juiz de Fora
Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

Bacharelado em Ciéncia da Computacao

Orientador: Leonardo Vieira do Santos Reis

Coorientador: Elton Maximo Cardoso

JUIZ DE FORA
JANEIRO, 2026

UMA MAQUINA DE PARSING PArRA PEGsS coMm
ATRIBUTOS

Maria Eduarda de Medeiros Simonassi

MONOGRAFIA SUBMETIDA AO CORPO DOCENTE DO INSTITUTO DE CIENCIAS
EXATAS DA UNIVERSIDADE FEDERAL DE JUIZ DE FORA, COMO PARTE INTE-
GRANTE DOS REQUISITOS NECESSARIOS PARA A OBTENCAO DO GRAU DE
BACHAREL EM CIENCIA DA COMPUTACAO.

Aprovada por:

Leonardo Vieira do Santos Reis
Doutor em Ciéncia da Computagao/UFMG

Elton Méximo Cardoso
Doutor em Ciéncia da Computagao/UFOP

Rodrigo Geraldo Ribeiro
Doutor em Ciéncia da Computacao/UFMG

Gleiph Ghiotto Lima de Menezes
Doutor em Ciéncia da Computagao/UFF

JUIZ DE FORA
16 DE JANEIRO, 2026

Resumo

A anadlise sintatica constitui um elemento fundamental na construcao de linguagens e sis-
temas computacionais, sendo tradicionalmente baseada em modelos como as Gramaticas
Livres de Contexto (CFGs) e, mais recentemente, nas Parsing Ezxpression Grammars
(PEGs). Embora as PEGs oferecam um modelo deterministico e livre de ambiguida-
des, apresentam limitagoes na descricao de construgoes que dependem de informagoes
contextuais, como aquelas envolvidas no processamento de formatos de arquivos com-
plexos, a exemplo do PNG. As Parsing Expression Grammars with Syntactic Attributes
(PEGwSA) estendem esse formalismo ao incorporar atributos herdados e sintetizados ao
processo de reconhecimento, possibilitando a modelagem de tais dependéncias contextu-
ais. Uma abordagem para a implementacao de PEGs consiste no uso de Maquinas de
Parsing, como a proposta por lerusalimschy (2009). Neste trabalho, é proposta e formali-
zada uma Maquina de Parsing para PEGwSA, que estende o modelo original ao introduzir
a no¢ao de memoaria, bem como um conjunto de instrucoes especificas para a manipulacao
de atributos, operacgoes aritméticas e processamento de listas. A proposta foi mecanizada
por meio da ferramenta PLT Redex, permitindo a verificacao da semantica operacional

pela execucao do modelo.

Palavras-chave: Parsing Expression Grammars (PEG). Atributos Sintdticos. Méquina

de Parsing. PLT Redex. Semantica Formal

Abstract

Syntactic analysis is a fundamental component in the construction of programming lan-
guages and computational systems, traditionally grounded in models such as Context-Free
Grammars (CFGs) and, more recently, Parsing Expression Grammars (PEGs). Although
PEGs provide a deterministic and unambiguous formalism, they present limitations in
describing constructions that depend on contextual information, such as those involved in
the processing of complex file formats, for example, PNG. Parsing Expression Grammars
with Syntactic Attributes (PEGwSA) extend this formalism by incorporating inherited
and synthesized attributes into the recognition process, enabling the modeling of such con-
textual dependencies. One approach to implementing PEGs is through Parsing Machines,
such as the one proposed by Ierusalimschy (2009). This work proposes and formalizes a
Parsing Machine for PEGwSA, extending the original model by introducing the notion
of memory, as well as a set of specific instructions for attribute manipulation, arithmetic
operations, and list processing. The proposal was mechanized using the PLT Redex tool,

allowing the verification of the operational semantics through the execution of the model.

Keywords: Parsing Expression Grammars (PEG). Syntactic Attributes. Parsing Ma-

chine. PLT Redex. Formal Semantics

Agradecimentos

A minha familia: ao meu pai e a minha mae, que, sob muito sol, me conduziram
até aqui a sombra, por me encorajarem, apoiarem e ampararem em todas as circunstancias
da vida, e por me ensinarem o valor do conhecimento. A minha avo, que jamais me deixou
faltar amor e carinho e nunca duvidou de que eu poderia ser aquilo que desejasse. As
minhas irmas, Mariana e Manuela, por me fazerem irma mais velha e, assim, contribuirem
para que eu me tornasse muito do que sou e do que faco. Ao meu noivo, Lucas, pela
presenca encorajadora durante toda a minha jornada académica, por acreditar em tudo
o que realizei, pelo apoio incondicional e pela parceria na vida.

Aos professores Leonardo Vieira dos Santos Reis e Elton Maximo Cardoso, pela
paciéncia ao longo do desenvolvimento deste trabalho, pela confianca depositada em mim
e pelos valiosos conselhos e palavras de incentivo.

As minhas amigas Carolina Neves e Julia Heloiza Vargas, por participarem da
minha construcao como pessoa e por estarem sempre ao meu lado, acreditando e me in-
centivando. Aos meus amigos Luciana Prachedes, Paula Rinco, Patrick Carvalho, Marcos
Porto e Vinicius Souza, por tornarem a trajetéria académica mais leve e por me mostrarem
que a amizade é parte fundamental da vida.

Por fim, mas nao menos importante, as mulheres que vieram antes de mim e que
tornaram isso tudo possivel, por terem lutado pelo nosso direito ao conhecimento e pelo

direito de existéncia.

“Somos mais do que aquilo que nos fize-

»

ram.

Toni Morrison, Amada

Conteudo

Lista de Figuras

Lista de Abreviacoes

1

2

6

Introducao

Semantica Formal

2.1 Semantica Operacional
2.2 PLT Redex

Anilise Sintatica

3.1 Parsing Expression Grammarso
3.2 Uma Maquina de Parsing Para PEGs
3.3 Parsing Expression Grammars with Syntactic Attributes

Maquina de Parsing para PEGwSA

4.1 Semantica da Maquina

4.2 Compilando para PEGwWSA oo
4.2.1 Definicao
4.2.2 Constraint
4.2.3 Update.
4.2.4 Chamada de nao-terminal
4.2.5 Escolha ordenada

Formalizagcao de PEGwSA em PLT Redex

5.1 Definicao da linguagemo
5.2 Representacao do Programa e da Entrada
5.3 Valores dos Atributos
54 Definicao da pilhao
5.5 Representacao da Memoéria
5.6 Semantica
5.7 Limitagoes da Formalizacao L

Conclusao

Bibliografia

11
11
14

17
17
25
30

38
38
43
43
44
44
45
46

48
48
49
49
90
50
o1
58

60

62

2.1
2.2
2.3

2.4
2.5

2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14

5.1

5.2

5.3

Lista de Figuras

Sintaxe Abstrata de A 12
Semantica big-step de Ao 13
Semantica big-step da expressao if true then pred suc pred zero else

ZETO ZETO . o v o o i i e e e e e e e e e e e 13
Semantica small-step de A 14
Semamtica small-step da expressao if true then (pred (suc (pred zero)))
elSe ZeYO 14
Especificacao em PLT Reder da linguagem A 15
Relagao de redugao da linguagem A 15
Captura de tela do visualizador de reducao de Redex 16
Sintaxe abstrata das PEGs. o000 18
Semantica operacional de expressoes de parsing. 20
Semantica Operacional da Maquina de Parsing 27
Instrucoes da Maquina de Parsing para Gy 28
Instrucoes da Maquina de Parsing para Gy 29
Sintaxe abstrata das PEGwSA. o0 0. 31
Sintaxe abstrata de valor. L 32
Semantica big-step de literais, construtores e referéncias a atributos. 33
Semantica big-step de operacoes aritméticas, légicas e relacionais. 34
Semantica big-step de manipulacoes de listas e mapas. 35
PEGWSA G3 36
Sintaxe abstrata das PEGwSA. 39
Semantica Operacional da Maquina de Parsing para PEGwSA 1 40
Semantica Operacional da Maquina de Parsing para PEGwSA 2 40
Semantica Operacional da Maquina de Parsing para PEGwSA 3 41
Semantica Operacional da Maquina de Parsing para PEGwSA 4 42
Semantica Operacional da Maquina de Parsing para PEGwSA 5 42
Semantica Operacional da Maquina de Parsing para PEGwSA 6 42
Semantica Operacional da Maquina de Parsing para PEGwSA 7 43
Semantica Operacional da Maquina de Parsing para PEGwSA 8 43
Cédigo para definicao 44
Cédigo para constraint 44
Cédigo para update 45
Cédigo para chamada de nao-terminal 45
Cédigo para escolha ordenada 46
Especificacao em PLT Reder da Linguagem da Maquina de Parsing para

PEGWSA . . . 48
Especificacao em PLT Reder da Linguagem da Maquina de Parsing para

PEGWSA . . . 49

Especificacao em PLT Reder da Linguagem da M&aquina de Parsing para
PEGWSA e 50

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

5.12

Especificacao em PLT Reder da Linguagem da Maquina de Parsing para

PEGWSA e 50
Especificacao em PLT Redexr da Linguagem da Maquina de Parsing para
PEGWSA 51
Relagao de reducao da instrucao Choice da Maquina de Parsing para
PEGWSA e 52

Relagao de reducgao da instrugao Call da Maquina de Parsing para PEGwSA 53
Relacao de reducao da instrugao Load da Maquina de Parsing para PEGwSA 54
Relagao de reducao da instrucao Store da Méquina de Parsing para PEGwSA 55
Relagao de reducao da instrugao Add da Maquina de Parsing para PEGwSA 56
Relagao de reducao da instrucao Return da Maquina de Parsing para

PEGWSA e 57
Relacao de reducao da instrucao Fail da Maquina de Parsing para PEGwSA 58

Lista de Abreviacoes

DCC Departamento de Ciéncia da Computucao
UFJF Universidade Federal de Juiz de Fora
PEG Parsing Expression Grammars

PEGwSA Parsing Expression Grammars with Syntactic Attributes

1 Introducao

A anélise sintatica é um componente central na construcao de linguagens e sistemas com-
putacionais, envolvendo o reconhecimento e a decomposicao estrutural de sequéncias de
simbolos. Tradicionalmente, essa drea fundamentou-se em sistemas generativos, como
as Gramaticas Livres de Contexto (AHO et al., 2008). Contudo, o surgimento do for-
malismo das Parsing Expression Grammars (PEGs) introduziu um modelo baseado no
reconhecimento de cadeias, oferecendo uma base formal rigorosa para o parsing descen-
dente (top-down) e eliminando ambiguidades comuns em gramaéticas generativas (FORD,
2004).

Apesar de sua precisao, as PEGs tradicionais apresentam limitacoes na descricao
de construcoes sintaticas que dependem de informagoes contextuais, como aquelas en-
contradas em linguagens extensiveis ou em formatos de arquivos complexos, a exemplo
do PNG, nos quais o tamanho dos dados deve ser determinado previamente (REIS; 10-
RIO; BIGONHA, 2014; ZHANG; MORRISETT; TAN, 2023). Para suprir essa lacuna,
surgiram as Parsing Expression Grammars with Syntactic Attributes (PEGwWSA), que es-
tendem o formalismo original ao incorporar atributos herdados e sintetizados, bem como
operadores para a manipulagao dessas informagoes durante o processo de andlise (REIS
et al., 2014; FERREIRA, 2024).

No que se refere a implementacgao de PEGs, algoritmos como o Packrat garantem
tempo de execucao linear, a custa de um consumo elevado de memoria, o que pode torna-
los impraticaveis em cenarios que envolvem grandes volumes de dados. Como alternativa
a essa abordagem, Ierusalimschy (2009) propos a Maquina de Parsing, um modelo de
execucao baseado em instrucoes atomicas e no uso de uma pilha, concebido originalmente
para PEGs e caracterizado por um uso mais eficiente dos recursos de memoria.

O objetivo deste trabalho é propor e formalizar uma Maquina de Parsing para
PEGwSA. A proposta estende o modelo original da Maquina de Parsing para PEGs,
incorporando a nogao de memoria e um conjunto de instrugoes especificas para o trata-

mento da légica associada aos atributos. A maquina proposta é introduzida por meio de

1 Introducao 10

sua formalizagao e implementacao na ferramenta PLT Redez, fornecendo uma base tedrica
para a construcao de analisadores sintdticos mais expressivos e eficientes.

Este trabalho esta organizado da seguinte forma. No Capitulo 2, sao apresentados
os conceitos fundamentais relacionados a semantica operacional e a ferramenta PLT Redezx.
O Capitulo 3 apresenta os conceitos fundamentais relacionados a andlise sintatica, as
Parsing Expression Grammars (PEGs), as extensoes introduzidas pelas PEGwSA e a
descrigao da Maquina de Parsing original para PEGs. No Capitulo 4, é apresentada a
proposta de extensao da Maquina de Parsing para suportar atributos sintaticos, incluindo
sua formalizagao operacional. O Capitulo 5 detalha a implementacao da maquina proposta
na ferramenta PLT Redex. Por fim, o Capitulo 6 apresenta as conclusoes do trabalho e

possiveis direcoes para pesquisas futuras.

11

2 Semantica Formal

A semantica corresponde ao significado de simbolos e sentencas. Em Ciéncia da Com-
putacao, a semantica formal é entendida como a especificagao rigorosa do significado
ou do comportamento de programas. O emprego de métodos formais na definicao da
semantica de linguagens de programacao permite evidenciar ambiguidades presentes em
especificagoes informais, além de fornecer uma base sélida para a implementacao e para
a prova de correcao de programas. Ressalta-se que a semantica é atribuida apenas a
programas sintaticamente validos e bem tipados, uma vez que programas invalidos nao
devem possuir significado. Distinguem-se, de modo geral, trés abordagens principais de
semantica formal: operacional, denotacional e axiomatica.

A semantica denotacional constitui uma abordagem na qual o significado de pro-
gramas ¢ expresso mediante objetos matematicos que descrevem abstratamente o com-
portamento de cada construcao da linguagem. A semantica axiomatica, por sua vez,
configura-se como uma abordagem em que o significado de programas é especificado in-
diretamente, por meio de axiomas e regras de inferéncia que relacionam programas a
propriedades l6gicas sobre seus estados (NIELSON; NIELSON, 2007). Este trabalho usa

exclusivamente a semantica operacional, cuja descricao é apresentada na secao seguinte.

2.1 Semantica Operacional

A abordagem operacional concentra-se em definir como as computagcoes sao realizadas em
uma determinada maquina abstrata e, a partir dessa caracterizagao, estabelecer o seu sig-
nificado. Nesse contexto, a semantica operacional facilita a implementacao de um interpre-
tador para a linguagem, uma vez que descreve explicitamente os passos de execucao. Tra-
dicionalmente, essa abordagem é subdividida em semantica big-step e semamtica small-
step, que diferem principalmente no nivel de detalhamento e na forma de especificar as
transicoes de execucao.

A semaéantica operacional big-step, também denominada semantica natural, relaci-

2.1 Semantica Operacional 12

ona diretamente programas ou expressoes aos seus resultados finais, abstraindo os passos
intermediarios de computacao. Ja a semantica small-step descreve o comportamento de
programas como uma sequéncia de passos de execucao elementares, em vez de relacionar
diretamente cada programa ao seu resultado final.

A linguagem de expressoes aritméticas A, originalmente definida em Pierce (2002)

e apresentada na Figura 2.1 sera utilizada para exemplificar a abordagem operacional.

e = zero | true | false | suc e

| pred e | iszero e | if e then e else e

Figura 2.1: Sintaxe Abstrata de A

A primeira parte (e) declara um conjunto de elementos sintaticos, indicando que
a letra e os representa. Cada regra subsequente fornece uma forma sintatica alternativa
para tais elementos. Em cada posicao onde o simbolo e aparece, pode-se substitui-lo por
qualquer construgao valida. A linguagem A contém um conjunto de formas sintaticas: as
constantes booleanas true e false, uma expressao condicional, a constante numérica zero,
os operadores aritméticos suc (sucessor) e pred (predecessor), e uma operagao de teste
1szero, que retorna true quando aplicada a zero e false quando aplicada a qualquer outro
nimero.

A semantica operacional define como as computacoes sao realizadas a partir de
um conjunto de regras que descrevem o funcionamento de uma determinada maquina
abstrata. FEssas regras sao especificadas em um estilo de deducgao natural, conforme o
modelo apresentado a seguir.

premissas

—nome
conclusao

Cada regra ¢é apresentada no formato de uma inferéncia, composta por um con-
junto de premissas, dispostas acima da linha, e uma conclusao, posicionada abaixo dela.
A regra expressa que, sempre que todas as premissas forem satisfeitas, a conclusao cor-
respondente pode ser validamente derivada. O nome associado a regra identifica o tipo
de inferéncia realizada e facilita sua referéncia ao longo da definicao semantica.

A semantica big-step descreve como os resultados finais sao obtidos, relacionando

2.1 Semantica Operacional 13

as construgoes da linguagem com o valor final ou efeito que produzem. A Figura 2.2
apresenta uma semantica big-step para A. O julgamento e |} v significa que a expressao e

avalia para o valor final v.

el v e | suc v
viwv suc e |} suc v pred e |} v
e |} zero e | zero e | suc v
pred e |} zero iszero e | true iszero e |} false
ep true ey Y v ep { false e3 v

if e; then ey else ez | v if e; then ey else e3 || v

Figura 2.2: Semantica big-step de A

A Figura 2.3 apresenta uma derivacao da semantica big-step que demonstra que a
expressao if true then (pred (suc (pred zero))) else zero ¢é avaliada para zero.
zero | zero

pred zero | zero
suc (pred zero) |} suc zero

true |} true pred (suc (pred zero)) | zero

if true then (pred (suc (pred zero))) else zero | zero

Figura 2.3: Semantica big-step da expressao if true then pred suc pred zero else
Zero zero

A semantica small-step descreve como os passos individuais de uma computacao
sao realizados, detalhando de que forma cada construcao atinge seu valor ou efeito final.
A Figura 2.4 apresenta a semantica small-step para a linguagem A.

O julgamento e — ¢’ indica que a expressao e é reduzida a ¢/ em um unico
passo, enquanto —* representa o fecho reflexivo e transitivo da relacao — .

Embora as regras apresentadas na Figura 2.4 sejam escritas na formatacao de
um sistema de deducao natural, elas geralmente nao sao utilizadas dessa forma. Em vez
disso, parte-se de um termo inicial, que é reescrito passo a passo por meio da aplicacao
das regras. Uma outra maneira de interpretar esse processo é como uma sequéncia de
transicoes de estado: inicia-se em um estado representado por um termo inicial e, a cada

passo, alcanca-se um novo estado no qual o termo foi modificado de acordo com a regra

2.2 PLT Redex 14

E-PRED-Suc - E-ISZERO-ZERO
pred (suc v) — v iszero zero — true
e—¢é
- - E-ISZERO : E-IszERO-SucC
iszero e — iszero e/ iszero (suc v) — false
e; — €
E-PRED-ZERO - S E-Ir
pred zero — zero if e; then e, else es — if €] then e, else es
e—¢€
E-Suc - E-Ir-TRUE
suc e — suc ¢’ if true then ey else e3 — ey
e—¢é
E-PRED - E-IF-FALSE
pred e — pred ¢’ if false then ey else e3 — e3

Figura 2.4: Semantica small-step de A

aplicada. A Figura 2.5 ilustra esse processo ao mostrar como a expressao if true then

(pred (suc (pred zero))) else zero é reduzida a zero.

*

—* if true then pred (suc (pred zero)) else zero

—* if true then pred (suc zero) else zero (pred zero — zero)
—* if true then zero else zero (pred suc v — v)
—* zero

Figura 2.5: Semamtica small-step da expressao if true then (pred (suc (pred
zero))) else zero

E possivel definir as semanticas big-step e small-step para uma mesma linguagem
e, posteriormente, demonstrar que ambas sao equivalentes no sentido de que todo pro-
grama que termina com um valor em uma delas necessariamente termina com o mesmo
valor na outra. No entanto, essas abordagens apresentam diferencas conceituais e meto-
doldgicas relevantes, cuja discussao detalhada pode ser encontrada em (NIELSON; NI-

ELSON, 2007; PIERCE, 2002).

2.2 PLT Redex

Desenvolvido como uma linguagem de dominio especifico executavel dentro do ecossistema
Racket, o PLT Redex destina-se a mecanizacao de modelos semanticos. A ferramenta
permite que engenheiros semanticos construam especificacoes formais que compreendem

gramaticas, regras de reducao e meta-funcoes caracteristicas de semanticas operacionais.

CO O UL i W N+

N O U W N

2.2 PLT Redex 15

O ambiente oferece diversos recursos para operacionalizar defini¢oes semanticas, tais como:
mecanismos de depuracao passo a passo aplicaveis a semanticas small-step, visualizadores
de grafos de reducao, infraestrutura para criacao de testes unitarios e capacidades de
execucao automatizada de testes, dentre outras funcionalidades. A fim de introduzir o

PLT Redex, a linguagem A foi especificada na Figura 2.6.

(define-language A
[e ::= true

false
zero
(suc e)
(pred e)
(iszero e)
(if e then e else e)])

Figura 2.6: Especificacao em PLT Redex da linguagem A

A modelagem de linguagens no PLT Redex é realizada mediante a fun¢ao define-
language, responsavel por estabelecer uma gramatica livre de contexto que caracteriza
a sintaxe da linguagem em questao. A invocacao dessa funcao requer a especificacao de
dois elementos fundamentais: a identificacao da linguagem e a definicao dos nao-terminais
que a constituem. A linguagem, ilustrada na Figura 2.6, é identificada por A e um tnico
nao-terminal e, cujas formas validas incluem: valores booleanos (true e false), nimeros
naturais (representados por zero, (suc e) e (pred e)), construgdes condicionais (if e

then e else e) e operagoes relacionais (iszero e).

(reduction relation A
(--> (if true then e_1 else e_2) e_1 "if-true")
(--> (if false then e_1 else e_2) e_2 "if-false")
(--> (iszero zero) true "=0")
(--> (iszero (suc e)) false "/=0")
(--> (pred zero) zero "predO")
(--> (pred (suc e)) e "pred-suc"))

Figura 2.7: Relagao de reducao da linguagem A

Com o intuito de definir a semantica da linguagem A, empregamos a fungao
reduction-relation, apresentada na Figura 2.7, para descrever o conjunto de regras de
reescrita que especificam a evolugao dos termos da linguagem. Um termo corresponde
a uma expressao sintaticamente valida de A, construida de acordo com sua gramatica

e representando um estado possivel de computacao. Em PLT Redex, tais termos sao

2.2 PLT Redex 16

descritos por padroes da linguagem e manipulados diretamente pelas regras semanticas,
sem a necessidade de uma implementacao explicita de um avaliador.

Nesse contexto, uma regra de reescrita possui a forma (-> <termo> <termo
reescrito> <nome da regra>), indicando que, sempre que um termo correspondente
ao padrao <termo> for identificado, ele pode ser substituido pelo <termo reescrito>,
conforme a regra nomeada. Essa substituicao modela um tnico passo de execucao da
linguagem, permitindo descrever o comportamento computacional de forma declarativa e
incremental. O parametro facultativo <nome da regra> é uma cadeia de caracteres que
nomeia a regra de reescrita.

As regras "if-true" e "if-else" definem, respectivamente, que uma expressao
condicional (if e then e; else e;) deve ser reduzida para e; se e é true e para ey se €
é false. As regras "=0" e "/=0" determinam, respectivamente, que a operacao (iszero
e) reduz para true se t é zero e para false se t é (suc e;), ou seja, se t é o sucessor de
um numero natural. Por fim, as regras "pred0" e "pred-suc" definem que o predecessor
de um numero natural (pred e) reduz para zero se t é zero e para e; se t é (suc ej).

A Figura 2.8 apresenta uma captura de tela do visualizador de redugao de PLT Re-
dex do termo if true then (if false then (iszero (suc zero) else (pred zero))

else (suc (suc zero)))).

(1f true

then

(if fal=e (if false
then then
{iszero (suc zero)) [—%——¥ (iszeroc (suc zero))
else f-true else
(pred zero)) (pred zerao))

else

[suc (suc zero)))

Figura 2.8: Captura de tela do visualizador de reducao de Redex

17

3 Analise Sintatica

A anélise sintdtica, responsavel pelo reconhecimento e pela decomposicao estrutural de
sequéncias de simbolos, constitui um componente central na construcao de linguagens e
sistemas computacionais. Por meio dela, cadeias de simbolos passam a ser interpretadas
como estruturas organizadas, viabilizando etapas posteriores do processamento, como a
analise semantica e a execucao de programas. Historicamente, a teoria e a pratica da
sintaxe téem sido predominantemente alicercadas em sistemas generativos, nos quais uma
linguagem ¢é formalmente definida por um conjunto de regras aplicadas recursivamente
para produzir cadeias validas, como ocorre nas Graméticas Livre de Contexto (AHO et
al., 2008).

Entretanto, a evolucao das linguagens de programacao e das técnicas de parsing
evidenciou limitagoes praticas desses modelos, especialmente no que diz respeito a ambi-
guidade e ao controle do processo de reconhecimento sintatico. Nesse contexto, surgem
abordagens alternativas que deslocam o foco da geragao para o reconhecimento de cadeias,

oferecendo mecanismos mais diretos e deterministicos para a anélise sintatica.

3.1 Parsing Expression Grammars

Em contraste com a tradicao generativa predominante na teoria formal de linguagens,
o formalismo das Parsing Ezpression Grammars (PEGs) propoe um modelo baseado no
reconhecimento de cadeias, estabelecendo regras e predicados que decidem se uma string
pertence ou nao a linguagem (FORD, 2004). As PEGs revitalizaram o interesse pelas
abordagens de parsing descendente (top-down parsing), ao oferecer uma fundamentagao
formal rigorosa para o problema de reconhecimento sintatico.

O formalismo das PEGs estabelece regras que determinam se uma sequéncia
de simbolos de entrada pertence a linguagem especificada. Dessa forma, as PEGs atuam
como reconhecedoras que validam prefixos da entrada sem necessariamente consumir toda

a string de entrada, caracteristica fundamental para sua aplicacao em andlise sintatica

3.1 Parsing Expression Grammars 18

descendente. As PEGs sao particularmente adequadas para a descri¢ao de linguagens ori-
entadas a maquinas, as quais, por concepgao, devem ser precisas e nao ambiguas (FORD,
2004).

Formalmente, uma Parsing Fxpression Grammar G é definida como uma quadrupla

G = (Vn,Vr, R, eg) em que:

e Uy é o conjunto finito de simbolos nao-terminais;

e U é o conjunto finito de simbolos terminais;

R é a funcao que mapeia cada nao-terminal em Vy para uma parsing expression,

denotada como A <« e;
e cg ¢ a expressao de parsing inicial

Dessa forma, a sintaxe abstrata das PEGs pode ser definida como na Figura
3.1. Uma expressao de parsing e pode ser um terminal (a), uma cadeia vazia (¢), uma
sequéncia (e @ €), uma escolha ordenada (e/e), uma repeticao (e*), uma negacao (le) ou
uma chamada de nado-terminal (A). A aplicacdo de uma expressdo de parsing a uma

entrada pode resultar estritamente em sucesso ou falha.

e == aleleee|efe|ex]|le| A

Figura 3.1: Sintaxe abstrata das PEGs.

Ja a semantica operacional das PEGs ¢é definida através de uma relagao entre
expressoes de parsing e strings de entrada. Utilizando a convengao de notacao empregada
em Daher et al. (2025), (e,s) =¢ (Sp, sr) denota que a expressao e consome o prefixo s,
da entrada s, deixando o sufixo s,, enquanto (e, s) =¢ L indica falha no reconhecimento.
Uma expressao é considerada bem-sucedida quando nao produz L como resultado. A
Figura 3.2 define a semantica operacional das PEGs.

A regra Eps estabelece que a expressao vazia, e, sempre é bem-sucedida in-
dependentemente da entrada s, nao consumindo nenhum caractere e deixando a string

inalterada. A regra C'hrS especifica que um terminal a consome com sucesso o primeiro

3.1 Parsing Expression Grammars 19

caractere da entrada quando este corresponde ao simbolo a. Por outro lado, as regras
ChrF e CharNil estabelecem que o reconhecimento falha quando o primeiro caractere
da entrada nao corresponde ao terminal esperado ou quando a entrada esta vazia, respec-
tivamente.

A regra Var realiza a analise sintatica a partir da expressao associada a variavel
presente na gramatica GG. No caso de uma expressao sequencial e; @ e;, o resultado é
construido pela concatenacao dos prefixos reconhecidos por ey e ey, enquanto o restante
da entrada corresponde ao que permanece apds a aplicacao de e;. As regras Catpy e
Cat gy estabelecem que, se qualquer uma das expressoes e; ou e, falhar durante a analise,
entao toda a expressao sequencial deve ser considerada mal sucedida.

Para operadores de escolha, aplica-se a condi¢ao de que a expressao alternativa
es somente é avaliada quando e; falha, garantindo assim a semantica deterministica do
operador de escolha em PEGs. J4 a andlise de uma expressao e* consiste na execucao
repetida de e sobre a cadeia de entrada. Esse processo continua enquanto e obtiver sucesso;
quando e eventualmente falha, a expressao e* é considerada bem-—sucedida, sem consumir
nenhum simbolo adicional da entrada.

Por fim, as regras da expressao de predicado de negacao !e determinam que, caso
e seja bem—sucedida sobre a entrada s, a expressao 'e deve falhar. Em contrapartida,
quando e falha sobre s, !e é considerada bem—sucedida, também sem consumir qualquer

parte da entrada.

Exemplo 3.1.1. Considere a PEG G; = ({a,b},{P}, R, P) e que R possui a regra:

P<aePeb/c

Com essa defini¢ao é possivel construir a arvore de reconhecimento da string ab.
O processo comega com a expressao de parsing inicial P e a entrada ab. Uma vez que P
¢ um nao-terminal, utiliza-se a regra Var para substitui-lo por sua expressao de parsing
associada, resultando no par (ae Peb/c, ab), que representa a expressao de parsing corrente

e a entrada a ser reconhecida. Atingindo, assim a seguinte configuracao:

3.1 Parsing Expression Grammars 20
E ChrS —a all ChrF
pS T T
(e,8) =¢ (g,9) (a,as,) =¢ (a,s,) (a,bs,) =¢ L
A+—e€eR (e,8) =g
Var
(A, s) =ar
(e1, 319131)237") =a (va 31)237‘) (e2, szsr) =a (sza Sr)
Catsy
(e1 @ e, 5p13p23r) =G (Smspm 5;)
(e1,8) =¢ L Cat (€1, 8p,8r) = (Spys Sr) (e2,8,) =¢ L Cat
(e1@e9,5) =¢ L . (e10€9,5,5) =c L 2
(€1, 8p5r) = (5ps 57) (e1,8) =¢ L (e2,8) =g
Altg; Altgo
(e1/€2, 5psr) = (Sp, Sr) (e1/ea,8) =a T
(67 Spy szsr) =G (8P17 szsr) (6*, SmST) =a (Sm? ST)
» Star,ec
(e vsmspzsr) =a (Smspzvsr)
e, s) =a L e, S$,8.) =a (8,,s e, s) =ag L
5 ;) G StCLT‘end (7'p r) G (Py r) NOtF '< 3) G Notg
(€*,s) =¢ (g,9) (le,sps,) =a L (le,s) =¢ (g,5)

ChrNil
(CL, 8) =G 1

Figura 3.2: Semantica operacional de expressoes de parsing.

3.1 Parsing Expression Grammars 21

P« aePeb/lcc R (aePebjc,ab) =¢r
(P,ab) =¢ 1

Var

Como a premissa ainda nao teve seu resultado r; avaliado, a hipdtese inicial
permanece com resultado indefinido. A expressao de parsing ae P eb/c constitui uma es-
colha priorizada e dessa forma, tenta-se primeiramente combinar a entrada com a primeira

alternativa, o que resulta na configuracao:
(a@ Peb,ab) =¢

P« aePeb/cc R (aePebjc ab) =¢r
(P,(lb) =g T

Altsqy

Var

Dado que a e P e b constitui uma sequéncia de expressoes de parsing, o reconhe-
cimento da entrada é realizado de forma segmentada. Como a precedéncia nas PEGs é
a esquerda, a expressao de parsing a e P é avaliada primeiro, e a entrada remanescente
¢ entao combinada com a expressao de parsing b. De modo andlogo, a sequéncia a e P
¢ decomposta nas expressoes a e P, obtendo-se sucesso no terminal a, que consome o

prefixo “a” da entrada.

(a,ab) =¢ (a,b) chars (P,b) =g ra
(a® Pyab) =g o e (b,r2) =a rs3 Cate
(ae Peb,ab) =g r Alte, '
P+ aePeb/cc R (aePeb/c,ab) =g 1 Vi

(P,ab) =g r1

Nesse ponto, os resultado 79, r3 e r4 sao associados as regras Catgy, indicando
que os valores a serem determinado sao independente entre si e em relagao a rq, ainda
que ry dependa logicamente de 4, e r; dependa de ry e r3. A expressao de parsing P
¢ novamente substituida pela sua regra determinada em R, para melhor visualizacao da

arvore de reconhecimento, as primeiras premissas e hipdteses foram ocultadas:

(ae Pebb)=crs

AltS
o P« aePeb/lcc R (aePeb/e,b) =g s th
(aa ab) =a (a7 b) ’ (P, b) =G T4 '

atsy

A sequéncia ae Peb é novamente decomposta de forma sucessiva, dessa vez, resul-

tando em falha na avaliacao do terminal “a”diante da entrada “b”. Essa falha propaga-se

3.1 Parsing Expression Grammars 22

pelas demais sequéncias, ocasionando o retorno ao ponto correspondente da escolha orde-

nada:

(aoePebb)=¢ L
P+ aePeb/cc R (¢ePeb/e,b) =¢ L

AltSq
Var;

Contudo, a regra AltS; pressupOe que a primeira premissa nao resulte em falha.
Nesse caso, aplica-se a logica da escolha ordenada: ao obter falha na primeira expressao de
parsing, a PEG busca sucesso na segunda expressao. Ao adaptar a arvore para substituir

a regra AltS; pela regra AltS;, obtém-se:

a#b

——————— CharF
(CL, b) =a L
CatFq
(ae Pb) =g L Cat
atlk
(e Pebb) =¢ L (&:b) =15 |
t52
P+ aePeb/cceR (aoPob/€,b):>G7”5V
ary
O resultado 75 é obtido mediante a aplicacao da regra Eps:
a#b
L CharF
(a, b) =qa L
CatF
(CL o P, b) =q L
CatFy Eps
(aePebb) =g L (g,b) =¢ (g,b) Al
t52
P+ aePeb/c€R (aoPob/g,b)éG(a,b)V
ari
A arvore de reconhecimento atinge a seguinte configuracao:
a#b)
@h=gl
aePb e L .
(@ePebb=c L Ebh=cEb)
oo, P aePeb/ecR (aePeb/e,b) =¢ (g,b) Var -
(a,ab) =¢ (a,b) ¢ (Pb) =14 Cats N
(a® P ab) =¢ o (b;r2) =G T3 Cats
(aePeb,ab) =¢ AL o
P+« aePeb/ceER (a0 Peb/e,ab) =¢ 1 V "

(P,ab) =g 1

3.1 Parsing Expression Grammars 23

Os resultados ry e r4 sao atualizados:

a#b
(a,b) =¢ L
(a®@Pb) =¢ L
CatF; Eps
(aePebb) =g L (e,0) =q (e,b)
g L aePebjeeR (aePeb/zb) =g (b)
(a,ab) =¢ (a,b)) (P,b) =¢ (e,b) ater
(a® P,ab) =¢ (a,b) (b,b) =¢ s
(aePeb,ab) =¢ e
P« aePeb/cc R (aePeb/e,ab) =¢ .

CharF

CatF;

AltSg

Cats;

(P,ab) =¢
Por fim, aplicando a regra Chars a entrada “b”com o terminal b, obtém-se a

arvore de reconhecimento final que demonstra a geracao da cadeia ab pela PEG Gjy:

_87b e
(a, b) =¢ L
T 7O
(a® Pb) =¢ L
CatF, Ep
(aePebb) =g L b =a (5 |,
(Y
s P« aePeb/cs€R (ae Peb/e,b) =¢ (¢,b)
(a,ab) =¢ (a,b) ¢ (P,b) =¢ (g,b) o ol
ats, ————————— Char
(ae P.ab) = (a,0) ' 0.0 =c e
ats
(a® Peb,ab) =¢ (ab,e) . '
tsy
P+ aePeb/c€R (a® Peb/e,ab) =¢ (ab,e)
Var

(P,ab) =¢ (ab,e)
A primeira vista, a PEG (G; parece reconhecer exclusivamente strings da lingua-
gem {a"b" | n > 0}. Contudo, ao analisar a drvore de reconhecimento para a entrada bb,

verifica-se que a string também é aceita:

a 7& b CharF
(a,bb) =¢ L
Ca Eps
(e Pobbb) =g L 7 (e,bb) =q (, bb) M
P+ aePeb/ccR (a e Peb/e,bb) = (z,bb) .

(P,bb) =¢ (e, bb) v

Esse comportamento decorre de uma caracteristica fundamental que distingue as
PEGs das Gramaticas Livres de Contexto: nas PEGs, o parsing pode alcangar sucesso
sem consumir qualquer entrada. Dessa forma, na PEG G;, em virtude da presenca da

alternativa ¢ na escolha ordenada da regra de P, a entrada bb é considerada valida.

Exemplo 3.1.2. Considere a PEG Gy = ({c¢}, {S}, R, S) e que R possui a regra:

S cfec

3.1 Parsing Expression Grammars 24

A partir dessa definicao, queremos reconhecer a entrada cc. Utilizando a arvore
de reconhecimento, o primeiro passo é substituir o nao-terminal S pela sua expressao de
parsing correspondente utilizando a regra Var:

S+ ceceR (c*oc,cc) =g m
(S,CC) =a

Var

Assim, o passo seguinte consiste na decomposi¢ao da sequéncia c* e c. De acordo
com a regra Catgy, a segunda premissa é definida a partir da entrada remanescente resul-
tante do processamento da primeira expressao de parsing. Desse modo, na notacao (_, rs)
empregada, o conteido consumido nao é relevante, sendo considerado apenas o sufixo

restante ry:

(c*,cc) =g (L, 19) (c,19) = 13
S« ceceR (c"ec,cc) =gm
(S,cc) =

Cat51

ar

A expressao de parsing da repeticao é derivada da seguinte forma:

(c,cc) = (o,14) (c*,1ry) = 15 S
(c*,cc) =a (-,12) () =a s
S« ceceR (c*ec,cc) =g
(S,cc) =a

Catg1

ar

Aplicando a regra Chars e substituindo o par resultante na segunda premissa,

obtém-se:
Charg
(¢,cc) =a (¢, 0) (c*,¢) =¢ 15 St
(c*,cc) = (o,12) (c,r9) = 13
Catgq
S« c*eceR (c*ec,cc) =g
Var
(S,cc) =g m
Utilizando novamente a regra da repeticao:
e, c) =g (- o =
— Charg (('7 p) G (»TG) (p »TG) G T Starmee
(Cv CC) =G (Ca C) (C*v C) =G Ts St
alrec
(c*,cc) =a (L r2) (¢,m2) =¢ 13 Cat
S+ c"ec€ER (c*ec,cc) =a St

(57 CC) =an "

3.2 Uma Méquina de Parsing Para PEGs 25

Aplicando sucessivamente as regras Chars e Star.,q, identifica-se a falha da re-

peticao gulosa:

s, e) = L
- Charg —*((‘/) Starenq
 Chars (¢,c) =c (c,¢) (¢*,¢) =c (e,¢) Stars
(c,cc) =>q (c,¢) (c*,¢) =¢ (ce) s
ar,
(", cc) =c (cc,e) ° (c.e) =a s
Catgy
S« c*eceR (c*ec,cc) =g

(S,ec) =g .

A entrada foi consumida pela repeticao gulosa e, ao tentar reconhecer € com o

terminal ¢, ocorre falha, resultando na arvore final:

on (c,e) = L S
- ars — ~ , PlaTenpd
o (¢c,c) =¢ (c,e) (c*,e) =¢ (e,¢)
——— — Charg Starg
(¢, cc) =¢ (c,c) (¢*,¢) =¢ (c,e)
" Starg ———— CharNil
(c*, cc) =a (cc,e) (c,e) = L Cat
al
S+ c'eccR (c*oc,cc) =q L v 2
ar
(S,cc) =q L

Portanto, a entrada cc nao ¢ aceita pela PEG G, pois a repeticao opera de forma

gulosa, consumindo todos os caracteres possiveis, o que resulta na falha da regra S.

3.2 Uma Maquina de Parsing Para PEGs

A implementacao das regras definidas pelas PEGs tradicionalmente fundamenta-se em
parsers descendentes ou no algoritmo de memorizacao denominado Packrat. Embora o
Packrat ofereca complexidade de tempo linear, ele impoem uma complexidade de espaco
também linear, mas associada a uma constante consideravelmente grande. Essa carac-
teristica torna o Packrat pouco adequado ao processamento de grandes volumes de dados,
situacao comum em ferramentas de pattern matching. Além disso, implementacoes exis-
tentes necessitam da entrada completa para funcionar, demandando maior espago de
armazenamento na memoria. Essas limitagoes motivaram o desenvolvimento de aborda-
gens alternativas, como a Maquina de Parsing proposta por lerusalimschy (2009). Na
Maquina de Parsing cada padrao da PEG é compilado em um programa que é execu-
tado dinamicamente. A Mdquina apresenta um modelo de execuc¢ao mais apropriado para
contextos que demandam eficiéncia na utilizagao de recursos de memoria, se mostrando
mais apropriado para linguagens dinamicas como o Lua, visto que os programas sao cons-
truidos e compostos dinamicamente em tempo de execucgao, alinhando-se a natureza do

formalismo PEG.

3.2 Uma Méquina de Parsing Para PEGs 26

O estado de uma Méquina de Parsing, que a define formalmente, é composto por

trés componentes principais:

e Contador de Programa (pc): indice que referencia a préxima instrugao a ser

executada;
e Posicao Atual (2): registro que mantém a posi¢ao corrente na cadeia de entrada;

e Pilha (e): estrutura de dados utilizada para armazenar enderegos de retorno e
entradas de backtracking. Um endereco de retorno ¢ um novo valor para o contador
de programa, enquanto uma entrada de backtracking contém tanto um endereco

quanto uma posicao na cadeia de entrada.

Portanto, o estado da Maquina é uma tripla N x N x Stack, contendo a préxima
instrucao a ser executada (pc), a posigao atual na cadeia de entrada (i) e uma pilha
(e), ou Fail(e), um estado de falha com uma pilha e associada. As pilhas sao listas de
NUN x N, em que uma posicao da pilha da forma N representa um enderego de retorno,
enquanto uma posicao da pilha da forma N x N representa uma entrada de backtracking,
com um endereco e uma posi¢ao na entrada.

A Maquina de Parsing executa programas compostos por instrugoes atomicas que
modificam o estado da maquina. As instrucoes fundamentais executadas pela Maquina

de Parsing sao:

e Char x: tenta casar o caractere x com a posicao atual da entrada. Em caso de

sucesso, avanca uma posicao, consumindo o caractere e caso contrario, falha.

e Any: avanga uma posi¢ao na entrada, consumindo o caractere, se o fim da mesma

nao tiver sido alcancado; caso contrario, falha.

e Choice 1: adiciona uma entrada de backtracking na pilha. O parametro [é o

deslocamento para a instrucao alternativa.
e Jump I: realiza um salto relativo para a instrucao localizada no deslocamento .

e Call I: adiciona o endereco da préxima instrucao na pilha, como endereco de re-

torno, e salta para a instrucao no deslocamento [.

3.2 Uma Méquina de Parsing Para PEGs 27

e Return: remove um endereco da pilha e salta para esse endereco.

e Commit 1: compromete-se com uma escolha, descartando a entrada mais recente

da pilha e saltando para a instrucao no deslocamento [.

e Fail: forca uma falha. Em caso de falha, a Maquina desempilha entradas até
localizar uma entrada de backtracking, utilizada para restaurar o estado da Maquina

(posigao e endereco).

A Figura 3.3 apresenta a semantica operacional da Maquina de Parsing e como
os estados da maquina sao atualizados através das instrugoes. A notacao adotada em
lerusalimschy (2009) define que o programa P e a entrada 8 estao implicitos. A relagao
Instrucdo, 1 elaciona dois estados quando a instrucao enderecada por pc no estado antece-

dente corresponde ao rétulo e a condigao, se presente, é valida. O fecho transitivo dessa

relagao constitui uma execucao da maquina.

(pc,i,e) Char 7, (pc+1,i+1,€) Sli] ==z
(pc,i, e) Char z, Fail(e) Sli] # x
peie) = (pe+1,i+1€) i+1<8|
(pc,i, e) Any, Fail(e) i+1> 18|
(pc, i, e) % (pc+ 1,4, (pc+1,i) : e)
. ump :
(pc,@‘, e) ﬁ (pc+1, z., e)
(pc,iye) —— (pc+li,(pc+1):e)
(pco,i,pcy :€) feturn (pci, i, e)
(pcyiyh:e) Commit | (pc+1,i,e)
(pc,i, e) Tall, Fail(e)
Fail(pc:e) % Fail(e)
Fail((pc,iy) :e) =5 (pe,iy,e)

Figura 3.3: Semantica Operacional da Maquina de Parsing

Exemplo 3.2.1. Considere a PEG G, = ({a,b}, {P}, R, P) e que R possui a regra:

P« aePeb/c

© 0 O UL i W N+

3.2 Uma Méquina de Parsing Para PEGs 28

Com base nessa definicao, constroéi-se o programa de instrugoes para a Maquina

de Parsing que representa a PEG em questao. A Figura 3.4 ilustra esse programa.

"P": Call "C1"

Halt
"C1": Choice "C2"
Char ‘a’
Call "P"
Char ‘b’

Commit "End"
"C2": Return
"End": Return

Figura 3.4: Instrucoes da Maquina de Parsing para G,

Para aprimorar a visualizagao e a legibilidade, utilizam-se labels, isto é, nomes
atribuidos a determinadas linhas do cédigo para indicar deslocamentos. O programa inicia
pela label P, que referencia a expressao de parsing inicial. A instrucao Call ‘‘C1’’
desloca o pc para a label “Cy”. Com o desvio do programa para o novo pc, a instrucao
Choice ¢‘C2’’ adiciona a pilha uma entrada de backtracking. Essa instrucao indica o
inicio de uma escolha ordenada: caso a primeira expressao de parsing resulte em erro, a
segunda alternativa é testada. Nesse programa, a instrugao que marca o inicio da segunda
alternativa encontra-se na linha enderegada pela label “Cy”.

Apos a adicao da entrada de backtracking, executa-se a instrucao Char ‘a’, que
tenta reconhecer o caractere “a” na posicao atual da entrada. Essa instrucao foi mapeada
a partir do terminal a na expressao de parsing a e P eb. Na sequéncia, para representar a
invocacao do nao-terminal P, a instrucao subsequente é Call ¢ ‘P’’, indicando o desvio
do fluxo para a label P. Essa sequéncia prossegue até que a instrucao Char ‘a’ falhe
com a entrada, momento em que o processo de backtracking ocorre, desempilhando um
endereco e uma posicao para o retrocesso.

Ao ocorrer falha na instrugao Char ‘a’, a Maquina retrocede para a posicao de
entrada associada ao ponto de backtracking previamente empilhado pela instrucao Choice
€¢C2’’. Desse modo, efetiva-se a falha da primeira alternativa da escolha ordenada. A
segunda alternativa é mapeada para a instrucao Return, uma vez que, por definicao, a
cadeia vazia (¢) obtém sucesso independentemente da entrada. Nesse contexto, a instrugao

Return é empregada para devolver o controle ao ponto de chamada. Como a regra P é

S T W N~

3.2 Uma Méquina de Parsing Para PEGs 29

recursiva, toda a computacao retorna sequencialmente para a sua chamada inicial, o Call
€“C1°’ da linha 1. Apods esse retorno, o fluxo segue para a proxima instrucao, Halt, na
linha 2 e o programa ¢ finalizado.

Ao finalizar o programa em P, caso a invocagao tenha ocorrido na linha 5, isto
é, recursivamente durante a execucao de outra chamada, o programa prossegue com a

‘b’, que tenta reconhecer o caractere “b” na posicao atual da entrada.

instrucao Char
Obtendo-se sucesso, a instrugao Commit ¢ ‘End’’ é alcangada, consolidando a escolha
mediante o descarte da entrada mais recente da pilha e o desvio para a instrucao na
label End. Assim como na primeira escolha, executa-se a instrucao Return, devolvendo
o controle ao ponto de chamada. E novamente, como a regra P ¢ recursiva, toda a

computacao retorna sequencialmente para a sua chamada inicial, seguindo para a préxima

instrucao e finalizando o programa.

Exemplo 3.2.2. Considere a PEG Gy = ({c},{S}, R, S) e que R possui a regra:

S+ cec

Com base nessa definicao, constréi-se o programa de instrugoes para a Maquina

de Parsing que representa a PEG em questao. A Figura 3.5 ilustra esse programa.

"S": Choice "End"
Char ‘c’
Commit "Cont"
"Cont": Jump "S"
"End": Char ‘c’
Halt

Figura 3.5: Instrugoes da Maquina de Parsing para Go

Nesse exemplo, a primeira instrucao ¢é identificada pela label ‘¢S’ ’, a qual inicia
o programa com a instru¢ao Choice ‘‘End’’. Essa instrug¢ao marca o inicio de um escopo

de escolha ordenada, uma vez que empilha um enderego de backtracking. Em seguida, o

4

fluxo de execugao prossegue para a instrugao Char ‘c’, responsavel por tentar reconhecer

“,»
c

o caractere na posicao atual da entrada. Em caso de sucesso, a execucao alcanga a

instru¢ao Commit °‘Cont’’, que consolida a escolha realizada ao descartar o ponto de

3.3 Parsing Expression Grammars with Syntactic Attributes 30

backtracking mais recente da pilha e desviar o controle para a instrucao associada a label
Cont. Caso a instrugao Char ‘c’ falhe, considera-se que a primeira alternativa da escolha
ordenada nao foi satisfeita, acionando-se o mecanismo de backtracking.

Na label Cont, ocorre um desvio incondicional para a ‘‘S’’, caracterizando a
implementacao da repeticao gulosa. Quando a escolha ordenada falha em sua primeira al-
ternativa, o ponto de backtracking previamente registrado pela instrugao Choice ‘‘End’’
é recuperado. Com o fluxo de execucao redirecionado para a label ‘ ‘End’’, a instrucao

“©on

Char ‘c’ tenta novamente reconhecer o caractere “c” na posicao corrente da entrada e,

em caso de sucesso, a instrucao Halt é responsavel por encerrar a execucao do programa.

3.3 Parsing Expression Grammars with Syntactic At-
tributes

As Parsing Ezxpression Grammars with Syntactic Attributes (PEGwSA) estendem o for-
malismo tradicional das PEGs ao incorporar atributos e operadores para sua manipulagao,
permitindo que informagoes adicionais sejam acopladas ao processo de andlise sintatica.
Nessa abordagem, atributos podem ser associados a nao-terminais, possibilitando a trans-
missao e o armazenamento de informacoes relevantes durante o parsing. Tal mecanismo é
especialmente importante para lidar com caracteristicas de determinadas linguagens que
nao podem ser expressas apenas por PEGs ou por Gramaticas Livres de Contexto, em
razao da limitacao desses formalismos em descrever construcoes sintaticas presentes, por
exemplo, em linguagens extensiveis e em certos formatos de arquivo de imagem (REIS;
IORIO; BIGONHA, 2014; ZHANG; MORRISETT; TAN, 2023).

Em uma PEGwSA, os atributos estao associados aos nao-terminais e sao classifi-
cados em dois tipos. Os atributos herdados correspondem a valores cujo célculo depende
de informacoes provenientes de simbolos ancestrais; eles funcionam como parametros que
configuram o comportamento do nao-terminal a partir do ambiente sintatico vigente.
Complementarmente, os atributos sintetizados sao valores produzidos a partir dos atri-
butos de simbolos descendentes, desempenhando o papel de resultados computados pelos

nao-terminais ao término da analise.

3.3 Parsing Expression Grammars with Syntactic Attributes 31

Além disso, a PEGwSA estende a definicao padrao das PEGs, introduzindo trés
novas operacoes: o update, o bind e a constraint. O update é responsavel por atualizar
o atributo, o bind captura a entrada consumida em caso de sucesso e a constraint é
responsavel por testar uma condigao.

Utilizando a notagao definida em Ferreira (2024), a sintaxe abstrata das PEGwSA
pode ser definida como na Figura 3.6. As formalizagbes servirao de base para o desenvol-
vimento e a extensao do modelo adotado neste trabalho.

A sintaxe foi dividida em expressoes de atributos (e) e expressoes de parsing (p).
As notacoes 7 e T sao utilizadas para denotar sequéncias de zero ou mais termos, sendo
que T requer que a sequeéncia representada esteja limitada por parénteses. Ja a notacao

2y impoe que o termo encapsulado, x, possua ocorréncia tnica.

T = Bool | Integer | String | (t) | [7] | T =T
e:= true|false|i|s|(e/e)|e:e|nil|e+e
le—e|lexe|le+e|le==e|e>e|eNe|eVe

| me |V | get ee|put eee|heade|tail e

pu= pep|p/pllp|p | Ned |[I=p|d«e
[7e | a| e

G:= NJ/d:Tte—p
Figura 3.6: Sintaxe abstrata das PEGwSA.

A primeira regra, 7 , retrata os tipos de expressoes de atributos. Um tipo (7)
pode retratar booleanos (Bool), inteiros (Integer), cadeia de caracteres (String), mapas
(< 7 >), listas ([7]) e, por fim, nao-terminais 7 — 7.

Expressoes de atributos, e, podem ser literais; construtores; operacoes aritméticas,
relacionais e ldgicas; atributos (¥) e manipuladores de listas (head e e tail e) e mapas
(get ee e put eee). Um literal pode ser um booleano (true ou false), um inteiro (i) ou
uma cadeia de caracteres (s). A formalizagao apresentada em Ferreira (2024) define trés
construtores: um para tratar mapas ((7)), outro para construir listas (e : €) e um dltimo
para expressar listas vazias (nil).

Foram incluidas quatro operagoes aritméticas: adigao (e + e), subtracao (e — e),

multiplicagao (e x e) e divisao (e + e), duas operagoes relacionais: igualdade (e == e) e

3.3 Parsing Expression Grammars with Syntactic Attributes 32

maior que (e > e), e trés operagoes légicas: conjungao (e A e), disjungao (e V e) e negagao
16gica ().

As expressoes de parsing p seguem a mesma definicao das PEGs tradicionais,
sendo introduzidas adicionalmente trés novas construgoes para a manipulagao dos atribu-
tos: o bind (U = p), o update (¥ < e) e a constraint (?e).

A dltima regra, G, define que uma PEGwSA é uma sequéncia finita de produgoes.
Uma produgao, por sua vez, ¢ uma associacao entre um nao-terminal, /N, e uma tripla

formada por uma sequéncia de atributos herdados justapostos pelos seus respectivos tipos

(¥ :: 7), uma sequéncia de expressoes de atributos que serao posteriormente amarradas
aos seus atributos sintetizados (€) e uma expressao de parsing (p), que nada mais é que
o corpo da regra de producao.

Com a adigao da logica de atributos, é necessario definir dois novos conceitos:
valor e ambiente. A Figura 3.7 apresenta a sintaxe de valor e ambiente. Um valor é um
elemento de um subconjunto de expressoes bem-tipadas que engloba todos os possiveis
resultados finais das avaliacoes de expressoes de atributos. Um valor pode ser um booleano
(true ou false), um inteiro (7), uma cadeia de caracteres (s), um mapa (< s;/v >), uma
lista (v : v) e, mais especificamente, uma lista vazia (nil). E importante ressaltar que um
mapa ¢ um valor se, e somente se, ele mapeia de cadeia de caracteres (s) para valores de
um tipo arbitrario (v). De maneira semelhante, uma lista pode ser considerada um valor
se, e somente se, ambas cabeca (v: v) e cauda (v :v) também sao valores. A notacao x; na
definicao de valor de mapa m define que cada chave de um valor de mapa é tnica.

Um ambiente é uma estrutura de dados que abriga a associagao entre atributos (9)
e valores (v). Sao definidas duas operagoes sobre ambientes: consulta (A[Y]) e extensao
(A[[ﬁ:/v]]) A notagao (A[¥Y]) denota o valor associado ao atributo ¥ no ambiente A. A
notagao (A1 /v192/vad3/v3...9,, /v,] tal que n > 1) denota a amarragao de cada atributo

(91, 99,03, ..., ¥5,) ao seu respectivo valor (vy, vy, vs, ..., v,) no ambiente A.

v = true | false | i| s | (s1/0) | v : v | nil

A=10/v

Figura 3.7: Sintaxe abstrata de valor.

3.3 Parsing Expression Grammars with Syntactic Attributes 33

A semantica operacional das PEGwSA sera descrita em uma semantica big-step.
As regras que constituem a semantica big-step foram divididas em duas particoes: uma
que trata expressoes de atributos e outra que, empregando a primeira, trata expressoes
de parsing.

O julgamento da particao que trata expressoes de atributos tem a forma A +
e = v, que deve ser interpretada como: a expressao de atributos e quando avaliada no
ambiente A produz o valor v. A Figura 3.8 apresenta a semantica big-step de literais,
construtores e referéncias a atributos. As expressoes de atributos tratadas pelas regras
Booleano, Inteiro, Cadeia de Caracteres, Lista Vazia e Mapa Vazio sao valores por si s6

e, por isso, nao possuem premissa.

—— Booleano ——F— Inteiro — (Cladeia de caracteres
AFb=1b AFi=1i AFs=s
Al =wv
— Atributo - — Lista Vazia
AFY=vwv A F nil = nil
A|_61:>U1 A|_62:>U2)
Lista —— Mapa Vazio
AF e ey = v1: 0y AF()=1()

At putle; /e ... en_1/€,_Vene, = (s/v)

AF(e1/e) ... enfe_ienfel) = (5/0)

Mapa

Figura 3.8: Semantica big-step de literais, construtores e referéncias a atributos.

A regra Atributo define que uma referéncia a um atributo é avaliada para o valor
ao qual ele (o atributo) estd amarrado no ambiente de avaliacdo. A regra Lista sé é
aplicavel a listas compostas por um ou mais elementos. Essa regra define que uma lista
¢ avaliada para um valor lista, composto pelos valores para os quais cabeca e cauda da
lista original sao avaliadas.

Por fim, a regra Mapa, por sua vez, s6 é aplicavel a mapas compostos por a0 menos
um elemento. Essa regra tira proveito da semantica de put para tratar construtores de
mapas. Basicamente, o valor produzido pela avaliacao de um mapa qualquer é construido
através de uma sucessao de insergoes de pares chave-valor e,/e!. Se uma mesma chave

surgir mais de uma vez em uma mesma instancia de construtor de mapa, a regra Mapa

3.3 Parsing Expression Grammars with Syntactic Attributes 34

define que ela (a chave) deve ser amarrada ao valor que estiver mais a direita, ou seja, ao

valor “mais recente”.

A|_€1:>i1 A|_€2:>7;2 1 =1 D iy
A"@l@egﬁi

Operacao Binaria

A ey = true AFe =0 A F e; = false
Conjuncao; = Conjungao;
A}_el/\62:>b Al—el/\62:>false
A F ey = true A F e; = false AbFey=0
Disjuncao; — Disjuncgao;
At e Ve, = true AFe Ve, =b
A e = false Al e = true
Negacao Logica - Negagao Légica
A F —e = true A F —e = false

AFe =wv AlFey=wv

Tgualdade
Al e == ey = true

A|_€1:>?)1 A|_62:>U2 ’017&’02
At ey == ey = false

—Igualdade

A"€1$Z'1 A'_GQ:Z.Q 11 > 1o

Maior que
Al e > ey = true

A|_61:>i1 A'_€2:>Z'2 11 < i
At e > ey = false

—Maior que

Figura 3.9: Semantica big-step de operagoes aritméticas, logicas e relacionais.

A Figura 3.9 apresenta a semantica das expressoes de atributos. A Operacao
Binaria representa as quatro operacoes logicas: adicao, subtracao, multiplicacao e di-
visdo. A Figura 3.10 conclui a apresentacao da particao das expressoes de atributos,
apresentando as regras que atuam sobre manipuladores de listas e mapas.

A regra Head define a semantica da operacao de consulta a cabega de lista (head),
enquanto a regra Tail define a semantica da operacao de consulta a cauda de lista (tail).
Essas regras implicam que manipuladores de listas s6 podem ser aplicados a listas com-
postas por um ou mais elementos. Finalmente, sao apresentadas as semanticas big-step
dos manipuladores de mapa responsaveis por consulta (get) e inser¢ao (put) de elementos

€m mapas.

3.3 Parsing Expression Grammars with Syntactic Attributes 35

AFe= v :v9 AlFe= v :vg
Head - Tail
A+ head e = v, A tail e = vy

AF e = (s1/v) AFe=¢ (s/:v>[[s']] =

Get
At gete e =0

Al—elz><ﬁ> Abea=s AFe3=7

Al put e eg e3 = (s/v)[s' /0]

Figura 3.10: Semantica big-step de manipulacoes de listas e mapas.

Exemplo 3.3.1. O formato de arquivo de imagem Portable Network Graphics (PNG)
é uma estrutura de dados organizada da seguinte forma: 8 bytes que codificam uma
assinatura de formato, a qual corresponde, em ordem fixa, aos valores inteiros 137, 80, 78,
71, 13, 10, 26 e 10; em seguida, 4 bytes que representam um nimero natural n, indicando
o tamanho dos dados; depois, 4 bytes que codificam o tipo do bloco; na sequéncia, os
dados da imagem, constituidos por n bytes; e, por fim, 4 bytes correspondentes ao cddigo
de verificagao CRC.

Nesse contexto, o parser precisa interpretar uma estrutura de dados composta
por multiplos blocos, cada um contendo informacoes especificas e para processar correta-
mente um arquivo PNG, o parser deve identificar e analisar cada bloco na ordem correta,
validando sua integridade e extraindo as informagoes necessérias para reconstruir a ima-
gem sem perdas de qualidade. Dessa forma, pela dependéncia dos dados, a formalizagao
para um parser que interpreta um PNG nao pode ser descrita por uma Gramatica Livre
de Contexto (ZHANG; MORRISETT; TAN, 2023).

A Figura 3.11 apresenta uma formalizacao simplificada de uma PEGwSA, G3,
que incorpora a antecipagao do tamanho dos dados antes dos dados propriamente ditos,
conforme a estrutura do PNG:

A regra Char caracteriza-se pela auséncia de atributos herdados ou sintetizados,
tendo sua expressao de parsing concluida com sucesso ao reconhecer qualquer caractere.
A regra Digit, por sua vez, sintetiza o atributo digit, correspondente a representacao
numérica da cadeia que denota um digito.

A regra Data, inicialmente, converte o primeiro caractere da cadeia para sua

3.3 Parsing Expression Grammars with Syntactic Attributes 36

P/()() « Data()()
Data/ () () <« Digit () (digit) e ((7 digit > 0) Char (digit = digit — 1)) * (?digit == 0) .
Char/ () () « .

Digit/ () (digit) « ‘0’ (digit = 0)

/U (digit = 1)
/2 (digit = 2)
/3 (digit =3)
/4 (digit = 4)
/5 (digit = 5)
/6’ (digit = 6)
/7 (digit =T7)
/8 (digit = 8)
/9 (digit = 9)

Figura 3.11: PEGwSA G3

forma numérica e, em seguida, por meio de uma constraint, verifica se o atributo digit,
sintetizado pelo nao-terminal Digit, é maior que zero. Em caso afirmativo, a regra Char
¢ invocada; caso contrario, ocorre falha. Posteriormente, em caso de sucesso, a regra
Data atualiza o valor do atributo digit, decrementando-o em uma unidade. O conjunto
de operacoes responsavel pelo consumo dos caracteres é reiterado em Data em decorréncia
do uso do operador *. Por fim, emprega-se uma nova constraint com o objetivo de validar
o valor do atributo digit. Caso esse valor seja diferente de 0, conclui-se que a regra Char
nao conseguiu consumir a quantidade esperada de caracteres, caracterizando uma falha na
correspondéncia. Por outro lado, quando digit é igual a 0, garante-se que exatamente digit
caracteres foram consumidos com sucesso. A aplicacao da negacao do consumo de carac-
teres assegura, adicionalmente, que, apds esse consumo, nenhum outro simbolo da cadeia
de entrada seja aceito, mesmo que ainda existam simbolos remanescentes, preservando
assim a correcao do reconhecimento.

Ja a regra P define a expressao de parsing inicial, responsavel por iniciar o pro-
cesso de leitura dos dados.

Para a cadeia ‘3abc’, o processo de parsing tem inicio a partir da expressao
inicial P, considerando a entrada em sua totalidade. A regra P invoca a regra Data, cujo
primeiro comando consiste na chamada do nao-terminal Digit, responsdvel por associar o
valor numérico 3 ao atributo digit por meio da leitura do caractere ‘3’. Esse passo sinaliza
ao parser que sao esperados trés caracteres subsequentes na entrada.

Em seguida, a regra Data passa a controlar a leitura dos trés caracteres seguintes

por meio da repeticao definida pelo operador *. A cada iteracao, o valor do atributo digit

3.3 Parsing Expression Grammars with Syntactic Attributes 37

¢ comparado com zero; caso seja maior que zero, a derivagao prossegue com a invocagao
do nao-terminal Char, consumindo um novo caractere da entrada. Apods essa operacao,
o valor de digit é decrementado.

A regra Data é iniciada com n = 3 e, a medida que os caracteres da entrada sao
processados pela regra Char, o valor de digit é sucessivamente reduzido, até que o parser
tenha consumido exatamente trés caracteres apds o digito inicial, tendo essa corretude

validada pela constraint final.

38

4 Maquina de Parsing para PEGwSA

A adogao da Maquina de Parsing como estratégia para a implementacao de analisadores
sintaticos apresenta vantagens significativas, como a simplicidade na definicao e manu-
tencao do analisador, além da eficiéncia no processamento das entradas. Neste contexto,
propoe-se a especificacao de uma Maquina de Parsing direcionada a PEGwSA | articulada

a partir de uma fundamentacao formal precisa e passivel de reproducao.

4.1 Semantica da Maquina

A Maquina de Parsing para PEGwSA constitui uma extensao da Méaquina de Parsing
para PEGs proposta por Ierusalimschy (2009). Formalmente, sua defini¢ao fundamenta-
se na caracterizacao de seu estado, o qual amplia a definicao original a fim de possibilitar
a manipulacao de atributos por meio da incorporacao de duas novas componentes: a
memoria e um registrador que aponta para o topo da pilha.

A memoria é representada como uma lista de valores, os quais podem assumir
os tipos numero natural, booleano ou lista. A arquitetura proposta incorpora esse com-
ponente de memoria para viabilizar o acesso, a atualizacao e a recuperacao dos valores
dos atributos, uma vez que o controle e a manipulagao desses valores exclusivamente por
meio da pilha se mostram inviaveis, dada a natureza sequencial e restritiva desse tipo de
estrutura de dados.

O registrador sp guarda um nimero que aponta para o topo da pilha associada
a chamada de funcao corrente, desempenhando papel andlogo ao de um stack pointer em
arquiteturas de baixo nivel, indicando a area de memoria atual. Esse mecanismo permite
delimitar o contexto ativo de execucao, facilitando o acesso aos dados locais e o controle
do fluxo durante chamadas e retornos de nao-terminais. Tal organizacao é amplamente
adotada em linguagens de montagem e arquiteturas classicas de processadores, nas quais
o uso explicito de registradores para gerenciamento da pilha é fundamental para a imple-

mentagao eficiente de chamadas de procedimento e escopo de varidveis (PATTERSON;

4.1 Semantica da Maquina 39

HENNESSY, 2017; AHO et al., 2008).

Assim, o estado de uma Maquina de Parsing é representado por uma quintupla
(pc,i,e,sp, M), na qual pc denota o contador de programa, i indica o indice da posigao
corrente na cadeia de entrada, e representa a pilha, sp corresponde ao indice da regiao de
memoria ativa e M designa a memoria.

A Méquina de Parsing para PEGwSA formalizada neste trabalho incorpora um
conjunto de operagoes e mecanismos voltados a manipulagao de atributos. A sintaxe abs-
trata de uma PEGwSA tradicional é apresentada formalmente na Figura 3.6. Por sua vez,
a sintaxe abstrata da PEGwSA simplificada, adotada como base para o desenvolvimento
deste trabalho, encontra-se descrita na Figura 4.1, na qual se destacam, em vermelho, as
operagoes nao contempladas pela PEGwSA atualmente formalizada, a saber: a estrutura

de mapas e suas respectivas operacoes, get e put, bem como a operagao de bind.

T = Bool | Integer | String | (7) | [7] |T =T

e:= true|false|i|s|(¢/e)|e:e|nil|e+e
le—elexe|lere|le==e|le>e|leNe|eVe|e++e
| me | ¥ |get ee|puteee|head e]tail e

pu= pep|p/pllplp [INED [V =p|J«e
|7e |a e

G:= N/IduTe—p
Figura 4.1: Sintaxe abstrata das PEGwSA.

Além das instrucoes herdadas da definicao da maquina proposta por Ierusalims-
chy (2009), a Maquina de Parsing para PEGwSA introduz novas instrugoes. A Figura
4.2 apresenta a semantica operacional da Maquina de Parsing para PEGwSA referente
as instrugoes Char, Any, Jump, Commit e Fail. Foi mantida a notacao adotada por Ieru-
salimschy (2009), na qual o programa P e a entrada S sao considerados implicitos. Essas
instrugoes preservam a semantica originalmente definida para a Maquina de Parsing de
PEGs descrita em Ierusalimschy (2009). No entanto, os estados inicial e final passam
a incorporar as novas componentes M e sp, as quais permanecem inalteradas durante a
execucao dessas instrugoes. Dessa forma, a introducao dessas componentes nao implica

alteracoes na semantica original.

4.1 Semantica da Maquina 40

Estado Inicial Instrucao Estado final Condicao
(pc,i, e, sp, M) Charz, (pc+1,i+1,e,sp, M) S[i] ==
(pc,i, e, sp, M) Charz, Fail(e, sp, M) Sli| # x
(pc,i, e, sp, M) Any, (pc+1,i+1,e,sp, M) i+1<|S]
(pc,i, e, sp, M) Any, Fail(e, sp, M) i+1>15]
(pc,i, e, sp, M) Jumpl, (pc+1,i,e,sp, M)

(pc,i,h: e, sp, M) Commit! (pc+1,i,e,sp, M)
(pc,i, e, sp, M) Fail Fail(e, sp, M)
any

Fail((pc : e), sp, M) Fail(e, sp, M)

Figura 4.2: Semantica Operacional da Maquina de Parsing para PEGwSA 1

A instrucao Call, representada na Figura 4.3, é responsavel por redirecionar o
fluxo de execugao para outro ponto do programa, de maneira analoga a uma chamada de
funcao. Para isso, o contador de programa pc é incrementado pelo valor integer, indicando
o deslocamento relativo para a nova posi¢ao. Simultaneamente, o sp é atualizado de forma
a iniciar um novo escopo de memoria, passando a apontar para a posicao correspondente
ao tamanho corrente da memoria, de modo a preservar os dados previamente armazenados.
Além disso, a pilha sao adicionados, como na méaquina tradicional, o valor de pc acrescido
de uma unidade, indicando o ponto de retorno da execucao, e o valor atual de sp, que
permite restaurar o escopo de memoria apropriado quando a chamada é finalizada.

Estado Inicial Instrucao Estado final

(pe,i, e, sp, M) Calll, (pc+1,i,({pc+1,7) : sp:e), M.lenght, M)
. Return n .
(pco, iy (pey eqto ey sp' i e), sp, M) [Return n, (peryiy (eq o .. tep),sp', M)

Figura 4.3: Semantica Operacional da Maquina de Parsing para PEGwSA 2

A instrugao Return, ilustrada na Figura 4.3, modela o retorno de uma chamada
ao encerrar o escopo corrente de execucao e restaurar o contexto previamente ativo. Di-
ferentemente da instrugdo homonima definida em lerusalimschy (2009), essa operagao é
parametrizada por um valor natural, o qual indica a quantidade de elementos da pilha
que devem ser retornados a chamada atual, indicando os atributos sintetizados. O valor
n corresponde aos n primeiros elementos da pilha, isto é, aos n parametros de retorno da
funcao invocada pela instrucao Call I. A execucao da instrucao Return promove, assim,

a restauracao do contexto de execucao previamente salvo. Para tanto, a pilha é particio-

4.1 Semantica da Maquina 41

nada, em funcao de n, de modo a recuperar o valor do contador de programa armazenado
no momento da chamada, que determina o ponto para o qual a execucao deve retornar,
bem como o valor anterior do sp, responsavel por delimitar o escopo de meméria do cha-
mador. O fluxo de execugao é entao redirecionado para o ponto imediatamente posterior
a chamada por meio da atualizacao do contador de programa, cujo deslocamento é calcu-
lado relativamente a posicao corrente, garantindo a continuidade adequada da execucao.
Ao longo desse processo, a cadeia de entrada e o conteudo da meméria M permanecem
inalterados, uma vez que a instrucao de retorno nao interfere diretamente na leitura da
entrada nem na manipulagao de atributos consolidados fora do escopo local.

A instrugao Choice [, definida na Figura 4.4, é responséavel por delimitar o escopo
de execucao de uma escolha ordenada. Essa instrucao empilha uma quadrupla composta
pelo valor do contador de programa pc acrescido de [, que indica o ponto para o qual o
fluxo de execucao deve retornar em caso de backtracking, bem como pelo valor do indice
de entrada i, necessario para a restauracao da posicao de leitura. Adicionalmente, os
valores de sp e da memoria M também sao empilhados, possibilitando a recuperacao do

escopo correto de meméria quando ocorre o backtracking.

Estado Inicial Instrucao Estado final
(pesise,sp, M) =25 (pe+ L, ((pe+ L, sp, M) < €), sp, M)

Figura 4.4: Semantica Operacional da Maquina de Parsing para PEGwSA 3

A Figura 4.5 apresenta a instrucdo Load que transfere para o topo da pilha o
valor armazenado na posicao sp + [. Dessa forma, o acesso é realizado no contexto do
escopo atual de execucao, exigindo que a posicao calculada seja um indice véalido no
dominio de M; caso contrario, a execucao falha. De maneira andloga, a instrucao Store
remove o valor do topo da pilha e o armazena na posi¢ao sp 4 [da memoria, assegurando
que a escrita ocorra no escopo corrente. As instrugoes Pop e Push retiram e empilham,
respectivamente, um valor no topo da pilha, nao alterando outros parametros.

Para manipular atributos do tipo niimero natural, definem-se as instrugoes aritméticas
Add, Sub, Mult e Div, descritas na Figura 4.6. Cada uma remove os dois valores supe-
riores da pilha (ny e ng, respectivamente), aplica a operagao correspondente e empilha o

resultado, falhando caso os operandos nao sejam inteiros. Para Div, exige-se adicional-

4.1 Semantica da Maquina 42

Estado Inicial Instrucao Estado final Condicao
(pc,i, e, sp, M) Loadl, (pc+ 1,4, (M[sp+1] :e),sp, M) sp+1 € dom(M)
(pc, i, (value : e), sp, M) Storel, (pc+1,1,e,sp, [sp + | = value] M)
(pc,i, (v:e),sp, M) Lov, (pc+ 1,i,e,sp, M)
(pc,i, e, sp, M) Lush v, (pc+ 1,4, (v :e),sp, M)

Figura 4.5: Semantica Operacional da Maquina de Parsing para PEGwSA 4

mente que n; # 0. As instrugoes Fq e Lt retiram igualmente os dois valores superiores,
empilhando um booleano que indica, respectivamente, se value; = values ou se ny < no,

falhando quando os operandos nao sao inteiros em Lt.

Estado Inicial Instrugao Estado final Condigao
(pe,i, (ny :ny :e), sp, M) Add, (pe+1,i,(n1 +ng : €), sp, M) nez
(pc,i, (ny i ng :e),sp, M) Sub, (pc+1,i,(ny —mnq :€),sp, M) nez
(pe,i, (ng :ng :e), sp, M) Mult, (pc+ 1,4, (na *ny : e), sp, M) nezl
(pe,i, (ng :ng :e), sp, M) Div, (pc+ 1,4, (na/ny =€), sp, M) ne€Zeny #0
(pc, i, (value; : values : €), sp, M) Ea, (pc+ 1,14, (value; == value, : e), sp, M)
(peyi, (ny :ng :e), sp, M) EN (pc+1,i,(n1 > ng : €), sp, M) n inteiro

Figura 4.6: Semantica Operacional da Maquina de Parsing para PEGwSA 5

Para atributos booleanos, definem-se as instrucoes logicas And, Or e Not, ilus-
tradas na Figura 4.7. As instrugoes And e Or retiram os dois valores superiores da pilha
(by e by), aplicam a operacao légica correspondente e empilham o resultado booleano,
falhando caso os operandos nao sejam booleanos. A instrugao Not retira o valor superior
(b), aplica a negacao légica e empilha o resultado, falhando caso nao seja booleano. A
instrucao Assert verifica se o valor no topo da pilha é o booleano verdadeiro, prosseguindo

com sucesso nessa condi¢ao, no caso contrario, ocorre uma falha.

Estado Inicial Instrucao Estado final Condicao
(pc,iy (by = bo :€),sp, M) And, (pc+ 1,4, (01& by : €),sp, M) by e by booleanos
(pc,i, (by = by :€),sp, M) o, (pc+ 1,4, (b1 bg : €),sp, M) by e by booleanos
(pc,i,(b:e),sp, M) Mot (pc+ 1,4, (b : e), sp, M) b é booleano
(peyi, (#t 2 e), sp, M) Assert, (pc+1,i,e,sp, M) b booleano
(pc,i, (#f :e),sp, M) Assert, Fail{e, sp, M)

Figura 4.7: Semantica Operacional da Maquina de Parsing para PEGwSA 6

As instrucées de manipulacao de listas da maquina operam diretamente sobre
a pilha e esta descritas em 4.8. A instrugao Concat consome as duas listas do topo da

pilha, concatena-as e empilha a lista resultante, falhando caso algum dos operandos nao

4.2 Compilando para PEGwSA 43

seja uma lista. As instrucoes Head e Tail extraem, respectivamente, a cabeca e a cauda
da lista no topo da pilha, empilhando o resultado e falhando quando o valor no topo nao
¢ uma lista. Por fim, a instrucao Cons toma o valor no topo da pilha e o insere na cabeca
da lista presente na posicao imediatamente inferior, empilhando a nova lista construida e

falhando se esse segundo elemento nao for uma lista.

Estado Inicial Instrucao Estado final Condigao
(pe,i, (Iy : 1y 2 e), sp, M) Coneal, (pc+ 1,0, (Iy ++ ls s €),sp, M) lie Iy listas
(pe,i, (v ws) s e), sp, M) (pe+1,i, (x : €), sp, M)
(pe,i, (v 2 ws) s €),sp, M) = (pe+ 1,1, (ws : €), sp, M)
(pc, i, (value : 1 : e), sp, M) Cons, (pc+ 1,1, ((value : 1) : e),sp, M) [lista

Figura 4.8: Semantica Operacional da Maquina de Parsing para PEGwSA 7

A Figura 4.9 apresenta a semantica da instru¢ao no caso em que o estado inicial
corresponde a um Fail com uma quadrupla no topo da pilha. Essa quadrupla representa
um ponto de backtracking a ser restaurado, especificando os valores de pc e ¢ para o novo
estado, bem como restabelecendo o valor de sp e o conteido da memoria, de modo a

recuperar o escopo de execucao apropriado.

Estado Inicial Instrugao Estado final Condicao
any

Fail{((pc, i, spri, My) : e),sp, M) — (pc,i, e, spr, My)

Figura 4.9: Semantica Operacional da Maquina de Parsing para PEGwSA 8

4.2 Compilando para PEGwSA

Nesta secao, com fins ilustrativos, apresenta-se o processo de traducao de alguns padroes

em programas para a Maquina de Parsing.

4.2.1 Definicao

Uma defini¢ao genérica A(vy, ..., v,) (w1, ..., wy,) < (e,) de um nao-terminal é traduzida
para o programa definido em 4.10.
Na definicao de um nao-terminal A, o procedimento inicial consiste no armazena-

mento em memoria dos atributos vy, ..., v,, caracterizados como atributos herdados, isto

CO O UL i W N+

4.2 Compilando para PEGwSA 44

Store <Addr v_1>

Store <Addr v_n>
<e_a>

<w_1>

<w_m>

Return m

Figura 4.10: Codigo para defini¢ao

é, valores recebidos que serao empregados durante a computacao da expressao de parsing
do nao-terminal. A instrucdo Store executa esta etapa, inserindo o valor do atributo
na posicao especifica da memoria. Posteriormente ao armazenamento desses valores, as
instrugoes relativas a computacgao da expressao de parsing e, sao seguidas pelas instrugoes
responsaveis pela sintetizagao e insercao na pilha dos atributos sintetizados wy, ..., w,,. A
ultima instrucao do programa referente a definicao constitui-se da instrucao Return m,
encarregada de restaurar o programa ao fluxo original subsequente a chamada do nao-
terminal. O valor natural m que acompanha a instrucao indica a quantidade de retornos

sintetizados pelo nao-terminal que se encontram armazenados na pilha.

4.2.2 Constraint

Uma constraint (?e) é traduzida para o programa definido em 4.11.

<e>
Assert

Figura 4.11: Coédigo para constraint

Apoés a computacao das instrugoes referente a expressao de parsing e, a instrugao
Assert verifica se o topo da pilha corresponde ao valor booleano true. Caso a verificagao
seja positiva, a execugao prossegue para a instrugao subsequente; caso contrario, ocorre
falha. Este comportamento modela precisamente o carater de condicao imposto pela

operacao constraint.

4.2.3 Update

Um update (v; = (e)) é traduzida para o programa definido em 4.12.

O U R W N

4.2 Compilando para PEGwSA 45

<e>
Store <Addr v_i>

Figura 4.12: Cédigo para update

Posteriormente a computacao das instrucgoes referentes a expressao de parsing
e, a instrugao Store insere na memoria o novo valor sintetizado. Este comportamento

modela a atualizacao do atributo.

4.2.4 Chamada de nao-terminal

A chamada de um nao-terminal A(vy,...,v,)(ws,...,w,,) é traduzida para o programa

definido em 4.13.

<v_n>
<v_1>
Call "A"

Store <Addr w_m>

Store <Addr w_1>

Figura 4.13: Cédigo para chamada de nao-terminal

A chamada de um nao-terminal é representada pela instrucao Call, a qual redi-
reciona o fluxo de execugao para um novo ponto do programa, de forma analoga a uma
chamada de funcao. Para tal, o contador de programa ¢é atualizado com o valor da linha
indicada pela label A, linha do programa que representa a computagao do nao-terminal
A. Simultaneamente, o registrador sp é ajustado de modo a iniciar um novo escopo de
memoria, passando a apontar para a posicao correspondente ao tamanho corrente da
memoria. Esta atualizacao efetivamente isola o escopo de memoria em uso e inicia um
novo escopo a partir da préxima posicao disponivel, determinada pelo préprio tamanho
da memoria.

Adicionalmente, sao empilhados, conforme a definicao da maquina tradicional, o
valor do contador de programa pc acrescido de uma unidade, que indica o ponto de retorno
da execugao apods a conclusao da chamada, bem como o valor corrente do registrador sp,
o qual permite a restauracao do escopo de memoria apropriado ao término da chamada.

Quando ha a nocao de passagem de parametros para o nao-terminal invocado, os n valores

T W N =

4.2 Compilando para PEGwSA 46

correspondentes aos parametros sao sintetizados e empilhados, de modo a possibilitar sua
utilizagao durante a execugao da chamada.

Apés a execucao da instrucao Call, as instrugoes Store asseguram que, pos-
teriormente ao retorno da chamada de nao-terminal realizada pelo Call, os atributos
sintetizados pelo nao-terminal sejam atualizados na memoria de acordo com os valores

empilhados e o valor de m.

4.2.5 Escolha ordenada

A escolha ordenada e;/es é traduzida para o programa definido em 4.14.

Choice "L1"
<e_1>
Commit "L2"
"L1": <e_2>
IILQII:

Figura 4.14: Cédigo para escolha ordenada

O programa inicia salvando o estado corrente da maquina por meio da instrucao
Choice, a qual empilha uma quadrupla composta pelos valores pc + [, pelo indice 7 da
entrada, pelo registrador sp e pela memoéria M. O armazenamento dessas informacoes é
essencial para possibilitar a restauracao completa do estado da Maquina em caso de falha
da primeira alternativa da escolha ordenada. Diferentemente da instrucao homonima defi-
nida em lerusalimschy (2009), a instru¢ao Choice passa a incluir explicitamente a memoria
e o registrador sp na pilha. Essa extensao é necessaria para garantir a recuperacao do
escopo correto de memoria, uma vez que a alternativa (e;) pode realizar modificagdes no
estado da memoria antes de falhar; nesse caso, tais modificagoes devem ser devidamente
revertidas durante o processo de backtracking.

Apods a execucao da instrucao Choice, o programa prossegue com as instrugoes
correspondentes a (eq), expressao de parsing associada & primeira alternativa da escolha
ordenada. Caso (e;) seja bem-sucedida e a execugao se complete sem falhas, a instrugao
Commit L2 é entao acionada, removendo da pilha o estado previamente salvo e desviando
o fluxo de execucao para o final do padrao, identificado pela label L2.

A instrugao Commit tem por finalidade consolidar a escolha realizada, indicando

4.2 Compilando para PEGwSA 47

que todas as instrugoes relativas a (e;) foram executadas com sucesso e que a primeira
alternativa foi selecionada. Para tanto, essa instrucao descarta a quadrupla empilhada
pela instrugao Choice. Além disso, o Commit é parametrizado por um valor natural, que
especifica o endereco para o qual o fluxo de execucao deve ser redirecionado, permitindo
ignorar integralmente o escopo associado a alternativa (es).

Caso (e1) falhe, a avaliagdo prossegue para a segunda alternativa da escolha
ordenada. Para isso, a maquina realiza o processo de backtracking, restaurando o estado
previamente salvo pela instrucao Choice e redirecionando o fluxo de execucao para a label
L1, cujo endereco foi determinado a partir do valor sp + [associado a referida instrucao.
Nesse ponto, a expressao (es) é entdo avaliada. Se (e;) também resultar em falha, toda
a escolha ordenada é considerada mal-sucedida, uma vez que nao existem alternativas
adicionais registradas na pilha. Por outro lado, caso a segunda alternativa seja bem-
sucedida, a execucao alcanca a instrucao identificada pela label L2, encerrando-se, assim,

o escopo da escolha ordenada.

0O O UL W N+

— s e e e
Tk W N~ OO

48

5 Formalizacao de PEGwSA em PLT Redex

Para a formalizagao, foi utilizada a ferramenta PLT Redex. A formalizacao completa
encontra-se disponivel no repositério https://github.com/lives-group/PEGwSA-parsing-
machine. Este capitulo concentra-se nos aspectos mais relevantes da formalizacao em PLT

Redex.

5.1 Definicao da linguagem

O primeiro passo desse processo consiste na modelagem da linguagem da Maquina. Con-
forme mencionado anteriormente, o PLT Redex disponibiliza a fun¢ao define-language

para a realizacao dessa tarefa. A Figura 5.1 apresenta a definigao formal dessa linguagem.

(define-language ParsingMachinelLanguage

[T ::= Any
Fail
(Char natural)
(Choice integer) (Commit integer)
(Jump integer)
(Call integer) (Return natural)
(Load natural) (Store natural)
(Push Value) Pop
Add Sub Mult Div Eq Lt
And Or VNot
Head Tail Cons Concat
Assert
Halt])

Figura 5.1: Especificacdo em PLT Reder da Linguagem da Maquina de Parsing para
PEGwSA

Essa definicao estabelece que o nao-terminal I pode assumir a forma de uma ins-
trucao pertencente a um conjunto, cujos elementos correspondem as instrugoes homonimas
definidas pela semantica. A utilizacdo dessas instrugoes torna-se mais evidente no con-

texto da descricao das reducoes.

https://github.com/lives-group/PEGwSA-parsing-machine
https://github.com/lives-group/PEGwSA-parsing-machine

TR W N =

5.2 Representacao do Programa e da Entrada 49

5.2 Representacao do Programa e da Entrada

Na Méquina de Parsing descrita por Terusalimschy (2009), o programa P e a entrada S
sao tratados como implicitos na descrigao semantica. No entanto, para viabilizar a leitura
do programa e o consumo da entrada, torna-se necessario que ambos sejam explicitamente
incorporados ao estado da maquina.

O nao-terminal Program, representa o programa de entrada, isto é, o programa
que descreve a PEGwSA através das instrugoes. Esse programa é modelado como uma
lista composta por duas sublistas, que representam, respectivamente, a sequéncia de ins-
trucoes ja processadas e a sequéncia de instrugoes ainda nao processadas. Por definicao,
a instrugao corrente corresponde a cabeca da segunda sublista.

De forma analoga, o nao-terminal Input segue a mesma estrutura, sendo repre-
sentado por uma lista composta por duas sublistas: a primeira corresponde a sequéncia de
numeros naturais que ja foram lidos da entrada, enquanto a segunda representa a porcao
da entrada que ainda deve ser consumida. Por definicao, a posicao atual de leitura da

entrada ¢ determinada pela cabeca da segunda sublista.

(define-language ParsingMachinelLanguage
[Program ::= ((I ...) (I ...))]

[Input ::= ((natural ...) (natural ...))])

Figura 5.2: Especificacao em PLT Reder da Linguagem da Maquina de Parsing para
PEGwSA

5.3 Valores dos Atributos

O nao-terminal Value, descrito na Figura 5.3, representa o conjunto de valores aceitos no
contexto da Maquina. Esse nao-terminal pode assumir valores do tipo ntimero natural,
booleano ou lista. Além disso, Value é utilizado para definir os valores permitidos nas
demais estruturas da linguagem.

O nao-terminal List, ilustrado na Figura 5.3, por sua vez, define o valores lista, o
qual pode ser vazio, representado pelo terminal nil, ou uma lista construida pelo terminal

cons contendo o valor da cabeca e a cauda da lista.

CO O UL i W N+

O O U W N+

5.4 Defini¢ao da pilha 50

(define-language ParsingMachinelanguage

[Value ::= natural
boolean
List]

[List ::= nill

(cons Value List)])

Figura 5.3: Especificagao em PLT Redexr da Linguagem da Maquina de Parsing para
PEGwSA

5.4 Definicao da pilha

O nao-terminal Stack define a estrutura de pilha, a qual é modelada como uma lista de
elementos do tipo StackEntry. Esses elementos representam os tipos de valores admitidos
na pilha, podendo corresponder a um nimero natural ou a uma tupla de niimeros naturais,
utilizados no tratamento do backtracking, bem como a uma entrada do tipo Value ou a
uma memoria, estruturas destinadas a manipulagao de atributos. Além disso, admite-se

ainda uma lista do proprio tipo StackEntry.

(define-language ParsingMachinelanguage

[Stack ::= (StackEntry ...)]
[StackEntry ::= natural
(natural natural)
(StackEntry ...)
Value

M1)

Figura 5.4: Especificacao em PLT Reder da Linguagem da Maquina de Parsing para
PEGwSA

5.5 Representacao da Memoria

A memoria, ilustrada na Figura 5.5, é modelada pelo nao-terminal M, o qual representa
uma lista de entradas do tipo Value. O endereco de memoria associado a cada atributo
¢ definido pelo desenvolvedor no momento da construgao do programa de instrucoes, de
modo que, durante a execucgao, a posicao correspondente a cada atributo é previamente
conhecida quando se faz necessario acessa-lo. O registrador SPR, por sua vez, é represen-

tado por um ntimero natural.

ENEGCR NI

5.6 Semantica 51

A organizacao da memoria inspira-se em arquiteturas de mais baixo nivel, nas
quais o registrador sp desempenha um papel analogo ao de um stack pointer, sendo
responsavel por indicar a regiao de memoria atualmente ativa. Esse mecanismo permite
delimitar o contexto de execucao corrente, facilitando o acesso a dados locais e o controle

do fluxo de execugao durante chamadas e retornos de nao-terminais.

(define-language ParsingMachinelanguage

[M ::= (Value ...)]
[SPR ::= natural])

Figura 5.5: Especificagao em PLT Redexr da Linguagem da Maquina de Parsing para
PEGwSA

5.6 Semantica

Com o prop¢sito de definir a semantica da linguagem, utiliza-se a fung¢ao reduction-
relation para especificar o conjunto de regras de reescrita, as quais determinam como
um termo deve ser transformado nessa linguagem. A clausula :domain é utilizada para
especificar o conjunto de configuragoes validas sobre as quais a relacao de reducao esta
definida. Em outras palavras, ela determina a forma geral dos estados da maquina que
podem participar das transicoes descritas pela semantica operacional.

No caso da Maquina de Parsing apresentada, o dominio é definido como uma
tupla composta por sete elementos: o resultado da execucao (R), o programa (Program),
a entrada (Input), o contador de programa (natural), o indice da entrada (natural), a
pilha de execucao (Stack) e a memdria (M). Essa defini¢ao explicita a estrutura completa
de um estado da méquina, garantindo que cada regra de reducao opere apenas sobre
configuragoes bem-formadas.

As reducgoes mais relevantes para o desenvolvimento e a compreensao deste tra-
balho foram distribuidas em figuras distintas, com o objetivo de facilitar sua visualizagao;
contudo, todas essas regras compoem um unico programa semantico.

A Figura 5.6 apresenta a redugao denominada

‘choice-match’’. Essa reducao
estabelece que, quando a instrucao corrente. ou seja, a instrucao localizada na cabeca

da segunda lista, corresponde a um comando Choice seguido de um numero inteiro, o

O O Ui W N+

[I NI o I N B N R R e e i T R e R e
B WNE O W0 Uk W~ O

5.6 Semantica 52

programa ¢ transformado da seguinte forma: a instrugao consumida é movida para a
cauda da primeira lista, o indice pc é incrementado em uma unidade, indicando que a

proxima instrugao a ser lida é a subsequente, e a entrada permanece inalterada.

(define PM
(reduction-relation
ParsingMachinelanguage
#:domain (R Program Input natural natural Stack M)

(--> (suc
((I_1 ...) ((Choice integer) I_2 ...))
Input
natural_pc
natural_i
(StackEntry ...)
SPR
M)

(suc
((I_1 ... (Choice integer)) (I_2 ...))
Input
,(+ (term natural_pc) 1)
natural_i
((,(+ (term natural_pc) (term integer)) natural_i
SPR ,(drop (term M) (term SPR))) StackEntry ...)
SPR
M)
"choice-match")))

Figura 5.6: Relacao de reducao da instrucao Choice da Maquina de Parsing para
PEGwSA

Além disso, uma quadrupla é empilhada no topo da pilha, na qual o primeiro
nimero natural corresponde a soma do valor corrente do contador de programa pc com
o deslocamento especificado pelo nimero inteiro fornecido. O segundo elemento da
quadrupla ¢ um numero natural que representa o indice i, indicando a posi¢ao atual
da entrada. Os dois elementos restantes correspondem ao valor corrente do registrador sp
e a memoria.

Na implementacao, a meméria nao é armazenada de forma integral. Em vez disso,
ela é particionada por meio da funcao drop, a qual remove da meméria M os primeiros
SPR elementos, preservando apenas o sufixo restante. Essa redugao tem por finalidade
registrar o estado de retorno necessario ao mecanismo de backtracking, especificando tanto
o ponto do programa para o qual a execucao deve retornar quanto a posi¢ao da entrada

a partir da qual o processamento deve ser retomado, bem como os valores do registrador

0O ~J O UL W N+

[SR I N R e e N el i e e s i
N — O OO0 Uik W~ OO

5.6 Semantica 53

sp e da particao da memoria M correspondentes ao escopo ativo.

A redugao call-match, ilustrada da Figura 5.7, caracteriza o comportamento
semantico quando a instrugao corrente corresponde a um comando Call integer. Essa
instrucao é responsavel por alterar o fluxo do programa, operacao modelada pela funcao
auxiliar move-program, que recebe como parametros uma estrutura do tipo Program e
um numero inteiro integer, produzindo um novo Program resultante do deslocamento
de integer posicoes ao longo das listas que compoem o programa. Esse deslocamento
pode ser positivo ou negativo, indicando, respectivamente, avango ou retrocesso no fluxo

de execucao.

(define PM
(reduction-relation
ParsingMachinelanguage
#:domain (R Program Input natural natural Stack M)

(--> (suc ((I_1 ...) ((Call integer) I_2 ...))
Input
natural_pc
natural_i
(StackEntry ...)
SPR
M)

(suc
(moveProgram((I_1 ...) ((Call integer) I_2 ...)) integer)
Input
,(+ (term natural_pc) (term integer))
natural_i
(,(+ (term natural_pc) 1) SPR StackEntry ...)
,(length (term M))
M)
"call-match")))

Figura 5.7: Relacao de reducao da instrugao Call da Méaquina de Parsing para PEGwSA

No contexto da reducao, o valor do contador de programa pc é atualizado pela
soma com o valor integer, refletindo o desvio explicito no fluxo de execucao. Simul-
taneamente, a pilha é estendida com dois valores: o endere¢o da proxima instrucao a
ser executada apds o retorno da chamada, correspondente ao valor de pc acrescido de
uma unidade, e o valor corrente do sp, que permite a posterior restauragao do escopo de
memoria. Além disso, o sp é atualizado para o tamanho atual da memdria, passando a
delimitar um novo escopo de memoria associado a chamada. Ao longo da execucao dessa

instrucao, a cadeia de entrada e o conteido da memoéria M permanecem inalterados.

CO O UL i W N+

[N R o R e e e el i el e e i
N = O OO0 Uik WNHOO©

5.6 Semantica 54

Dessa forma, a instrucao Call modela a chamada a um novo ponto do programa, pro-
movendo o desvio do fluxo de execugao e registrando, tanto o ponto de retorno quanto o
contexto de memoria anterior, de modo a garantir a correta restauragao do estado quando
da execugao da instrucao de retorno.

A reducao load, ilustrada na Figura 5.8, é aplicada quando a instrucao localizada
na cabeca da segunda lista do programa corresponde a um comando Load natural. Essa
reducgao promove o avanco do fluxo de execucao por meio do incremento do valor de pc em
uma unidade e insere, no topo da pilha, o valor armazenado na memoria. Diferentemente
de um acesso absoluto, a posicao efetiva da memoria é calculada como um deslocamento
relativo ao valor corrente do sp, que delimita o escopo de memoria ativo. Assim, o valor é
obtido na posicao natural + sp. Para viabilizar essa operacao, utiliza-se a funcao auxi-
liar readMem, a qual recebe como parametros um valor do tipo natural e uma memoria

M, retornando a estrutura do tipo Value armazenada no indice correspondente.

(define PM
(reduction-relation
ParsingMachinelanguage
#:domain (R Program Input natural natural Stack M)

(--> (suc ((I_1 ...) ((Load natural) I_2 ...))
Input
natural_pc
natural_i

(StackEntry ...)

SPR

M)

(suc ((I_1 ... (Load natural)) (I_2 ...))
Input

,(+ (term natural_pc) 1)
natural_i
((readMem ,(+ (term natural) (term SPR)) M)
StackEntry ...)
SPR
M)
"load")))

Figura 5.8: Relacao de redugao da instrucao Load da Maquina de Parsing para PEGwSA

A redugao store, ilustrada na Figura 5.9, altera o fluxo de execugao, incremen-
tando o valor de pc em uma unidade. Nessa redugao, o valor localizado no topo da pilha,
representado por Value;, é removido e armazenado na memoria. O acesso a memoria é

realizado de forma relativa ao escopo corrente, utilizando o deslocamento natural + sp

O O Ui W N+

DO N = = = = e e e s e
— O © 00O Uik WD - OO

5.6 Semantica 55

para determinar a posicao efetiva de escrita. Essa atualizagao é realizada por meio da
funcao auxiliar writeMem, que recebe como parametros um valor do tipo natural, uma
estrutura do tipo Value e uma memoria M, produzindo uma nova memoria na qual o valor

Value; é armazenado na posicao natural + sp.

(define PM
(reduction-relation
ParsingMachinelLanguage
#:domain (R Program Input natural natural Stack M)

(--> (suc ((I_1 ...) ((Store natural) I_2 ...))
Input
natural_pc
natural_i

(Value_1 StackEntry ...)

SPR

M)

(suc ((I_1 ... (Store natural)) (I_2 ...))
Input

,(+ (term natural_pc) 1)
natural_i

(StackEntry ...)

SPR

(writeMem ,(+ (term natural) (term SPR)) Value_1 M))
"store")))

Figura 5.9: Relagao de redugao da instrugao Store da Méquina de Parsing para PEGwSA

A Figura 5.10 ilustra a reducao add, a qual, além de promover o avanc¢o no fluxo
de execucao do programa, remove os dois valores posicionados no topo da pilha, realiza
a operacao de soma entre eles e empilha o resultado obtido. As demais operacoes defi-
nidas sobre pares de atributos numéricos, booleanos e listas apresentam comportamento
analogo, diferindo apenas no tipo de operacao aplicada, sendo que suas respectivas imple-
mentagoes podem ser consultadas em https://github.com/lives-group/PEGwSA-parsing-
machine.

A redugao associada a instrugao Return, apresentada na Figura 5.11, modela o
mecanismo de retorno de um procedimento, sendo responsavel por restaurar corretamente
o contexto de execugao previamente armazenado na pilha. Essa reducao é aplicada quando
a instrucao corrente, localizada na cabeca da segunda lista do programa, corresponde a
um comando Return natural,. O valor natural, indica a quantidade de entradas da

pilha que foram sintetizadas e que devem ser disponibilizadas ao contexto responsavel

https://github.com/lives-group/PEGwSA-parsing-machine
https://github.com/lives-group/PEGwSA-parsing-machine

CO O UL i W N+

5.6 Semantica 56

(define PM
(reduction-relation
ParsingMachinelanguage
#:domain (R Program Input natural natural Stack M)

(-=-> (suc ((I_1 ...) (Add I_2 ...))
Input
natural_pc
natural_i

(natural_1 natural_2 StackEntry ...)
SPR

M)

(suc ((I_1 ... Add) (I_2 ...))
Input

,(+ (term natural_pc) 1)
natural_i
(,(+ (term natural_1) (term natural_2)) StackEntry ...)
SPR
M)
"add")))

Figura 5.10: Relacao de reducao da instrucao Add da Maquina de Parsing para PEGwSA

pela chamada do procedimento.

A reducao return-match altera explicitamente o contador de programa. O novo
valor de pc, denotado por natural pcl, é recuperado diretamente da pilha de execucao,
juntamente com o valor atualizado do registrador de ponteiro de escopo, SPR_1. Esses
valores correspondem ao contexto previamente salvo no momento da chamada do proce-
dimento. A reorganizacao da pilha é realizada por meio da fungao auxiliar splitStack,
a qual recebe como parametros o valor natural n e a pilha corrente (StackEntry ...).
Como resultado, essa funcao particiona a pilha em trés segmentos: o primeiro, repre-
sentado por (StackEntry_1 ...), corresponde as entradas que permanecem ativas apos
o retorno; o segundo segmento contém explicitamente os valores natural pcl e SPR_1,
responsaveis por restaurar o fluxo de execucao e o escopo; por fim, o terceiro segmento,
denotado por (StackEntry_3 ...), representa os valores sintetizados, associadas ao am-
biente local do procedimento encerrado. Apéds a aplicacao da reducao, o programa é
reposicionado por meio da funcao moveProgram, que ajusta o fluxo de execugao de acordo
com o valor restaurado do contador de programa. A pilha passa a conter apenas as entra-
das relevantes ao contexto anterior, o valor do sp é atualizado para SPR_1, e a meméria

M permanece inalterada. Dessa forma, a instrucao Return garante a correta restauracao

CO O UL i W N+

16
17
18
19
20
21
22
23

24

5.6 Semantica 57

(define PM
(reduction-relation
ParsingMachinelanguage
#:domain (R Program Input natural natural Stack M)

(--> (suc ((I_1 ...) ((Return natural_n) I_2 ...))
Input
natural_pcO
natural_i
(StackEntry ...)
SPR
M)

(suc

(moveProgram ((I_1 ...) ((Return natural_n) I_2 ...)) ,(- (term
natural_pcl) (term natural_pc0)))

Input

natural_pcl

natural_i

(StackEntry_1 ... StackEntry_3 ...)

SPR_1

M)

(where ((StackEntry_1 ...) (natural_pcl SPR_1 StackEntry_3 ...))
(splitStack natural_n (StackEntry ...)))

"return-match")))

Figura 5.11: Relacao de reducao da instrucao Return da Maquina de Parsing para
PEGwSA

do estado de execucao, assegurando a continuidade do programa no ponto imediatamente
posterior a chamada do procedimento.

A reducao responsavel pelo mecanismo de backtracking é apresentada na Figura
5.12. Essa reducao é aplicada a um termo cujo estado indica falha e tem como obje-
tivo restaurar a maquina a um estado consistente, a partir de informagoes previamente
armazenadas. Sua aplicacao ocorre quando o topo da pilha contém uma quadrupla com-
posta por trés niimeros naturais e uma estrutura de memoria. Tal quadrupla é empilhada
pela instrucao Choice, sendo utilizada para registrar o contexto necessario a retomada da
execucao em caso de insucesso de uma escolha ordenada.

Quando uma falha é detectada — isto é, quando a primeira alternativa de uma
escolha ordenada nao é bem-sucedida — a maquina, por meio da reducao fail-restore,
retorna ao escopo previamente salvo pela instru¢ao Choice. O programa é reposicionado
com o auxilio da fungao auxiliar moveProgram, de modo a alcangar o deslocamento cor-

respondente a natural newPC - natural pc, em que natural newPC representa o valor

O O UL W N+

NN NNNDNRFR P, RFPR PR 2 BF2 222
= W N~ OO0 Uik Wwhh— OO

5.7 Limitacoes da Formalizacao 58

do contador de programa armazenado na quadrupla. De maneira analoga, a entrada
é ajustada pela funcao moveInput, passando a refletir o deslocamento natural newI -
natural i.

Adicionalmente, os valores de pc e i sdo atualizados com os valores recuperados
da pilha, efetivando o retorno tanto no fluxo do programa quanto na posicao da entrada,
revertendo, assim, os efeitos das instrugoes que conduziram ao estado de falha. O re-
gistrador sp também é restaurado a partir do valor armazenado na quadrupla. Por fim,
a memoria é reconstruida por meio da fung¢ao mcopy, a qual gera uma nova memoria a
partir da cépia seletiva das memorias envolvidas, controlada por um ntmero natural que
determina quantos elementos iniciais da primeira memoria devem ser preservados antes

que a copia passe a considerar a segunda.

(define PM
(reduction-relation
ParsingMachinelLanguage
#:domain (R Program Input natural natural Stack M)

(--> (fail
Program
Input
natural_pc
natural_i
((natural_newPC natural_newI SPR_new M_sfx)
StackEntry ...)
SPR
M)

(suc
(moveProgram Program ,(-(term natural_newPC) (term natural_pc)))
(moveInput Input ,(- (term natural_newI) (term natural_i)))
natural_newPC
natural _newl
(StackEntry ...)
SPR_new
(mcopy SPR_new M M_sfx))
"fail-restore")))

Figura 5.12: Relacao de reducao da instrugao Fail da Maquina de Parsing para PEGwSA

5.7 Limitacoes da Formalizacgao

Apesar dos resultados obtidos, algumas limitacoes devem ser reconhecidas. Primeira-

mente, nem todas as operacoes previstas na definicao formal de PEGwSA apresentada

5.7 Limitacoes da Formalizacao 59

em FERREIRA (2024) foram integralmente contempladas na implementagao desenvol-
vida. Em particular, onvalor mapa, bem como as operacoes a ele associadas, nao foram
incluidos. De modo semelhante, a operagao de bind nao foi implementada. Embora es-
sas auséncias representem lacunas em relacao a definicao completa do formalismo, elas
nao comprometem significativamente os objetivos centrais do trabalho, uma vez que tais
operacoes nao sao essenciais para a validagao do mecanismo principal de execucao e con-
trole da Maquina de Parsing proposta.

Outra limitagao refere-se ao processo de validacao experimental. Os testes rea-
lizados restringiram-se a testes unitarios, o que impossibilitou a cobertura exaustiva de
todos os comportamentos e combinagoes possiveis das instrucoes e reducoes definidas.
Consequentemente, nao se pode afirmar que todos os cendrios de execucao foram devi-
damente explorados, embora os testes efetuados tenham sido suficientes para verificar o
funcionamento dos casos representativos considerados.

Por fim, destaca-se a auséncia de uma prova formal de equivaléncia semantica
entre a descricao abstrata de uma PEGwSA e o programa da Maquina de Parsing que a
representa. A relagao entre ambos foi estabelecida de maneira intuitiva e operacional, por
meio da correspondéncia entre construgoes e redugoes, mas nao foi formalizada por meio
de um argumento matematico rigoroso. Assim, embora os resultados obtidos indiquem
uma aderéncia consistente entre os modelos, a equivaléncia semantica plena permanece

como um aspecto em aberto para trabalhos futuros.

60

6 Conclusao

Este trabalho apresentou a definicao semantica e a formalizacao de uma Mdquina de
Parsing para PEGwSA, utilizando a ferramenta PLT Redez. A abordagem adotada pos-
sibilitou a descricao precisa do comportamento operacional da maquina, bem como a
mecanizacao de suas regras semanticas, contribuindo para uma compreensao mais rigo-
rosa do modelo proposto.

A principal contribuicao deste estudo consiste na extensao do modelo de maquina
originalmente apresentado em lerusalimschy (2009), de modo a torné-lo compativel com
as PEGwSA. Essa extensao foi viabilizada pela introdugao explicita da no¢ao de meméria
e pelo desenvolvimento de uma semantica operacional capaz de lidar com instrucoes de
manipulacao de atributos, operacoes logicas e estruturas de dados, como listas, ampli-
ando significativamente o poder expressivo da maquina. A formalizacao em PLT Redex
permitiu a mecanizacao do modelo semantico, possibilitando a verificacao sistematica das
regras de reducao e a andlise do comportamento da maquina em cendrios concretos de
€xecugao.

Nao obstante, algumas limitagoes devem ser consideradas. Nem todas as operacoes
previstas na defini¢ao completa de PEGwSA foram implementadas, destacando-se a auséncia
do tipo de valor mapa, de suas operacoes associadas e da operacao de bind. Além disso,
a validacao do modelo restringiu-se a realizacao de testes unitarios, o que impossibilitou
a cobertura exaustiva de todos os comportamentos possiveis da maquina. Por fim, nao
foi estabelecida uma prova formal de equivaléncia seméantica entre a descrigao abstrata de
uma PEGwSA e o programa correspondente na Maquina de Parsing, permanecendo essa
relagao fundamentada em uma correspondéncia operacional intuitiva.

Como trabalhos futuros, destacam-se a incorporacao das operagoes ausentes da
PEGwSA, a ampliagao da bateria de testes para incluir cenarios mais complexos e abran-
gentes, bem como o desenvolvimento de uma prova formal de equivaléncia semantica entre
as duas representacgoes. Adicionalmente, investigacoes voltadas a otimizagao da méaquina

podem contribuir para o modelo formal desenvolvido.

6 Conclusao 61

Em sintese, as especificacoes apresentadas constituem uma base tedrica para o
desenvolvimento de analisadores sintaticos que conciliam o determinismo das PEGs com a
expressividade dos atributos sintaticos, preservando a eficiéncia operacional caracteristica

das maquinas de parsing.

BIBLIOGRAFIA 62

Bibliografia

AHO, A. V. et al. Compilers: Principles, Techniques, and Tools. 2. ed. [S.l.]: Pearson,
2008.

DAHER, G. et al. Pest control: A formal model of the pest parser generator. In: SBC.
Proceedings of the XXIII Brazilian Symposium on Programming Languages (SBLP’25).
Recife, PE, 2025. p. 1-9.

FERREIRA, G. P. Parsing FExpression Grammar with Syntactic Attributes.
Tese (Doutorado) — Federal University of Juiz de Fora, 2024. Available at
http://monografias.ice.ufjf.br /tce-web/tcc?id=871.

FERREIRA, G. P. Parsing Ezxpression Grammar with Syntactic Attributes: Uma Forma-
lizagao em PLT Redex. Dissertacao (Mestrado) — Universidade Federal de Juiz de Fora,
2024. Fonte.

FORD, B. Parsing expression grammars: A recognition-based syntactic foundation. In:
Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of Program-
ming Languages. [S.1.]: ACM, 2004. (POPL ’04), p. 111-122. Fonte.

IERUSALIMSCHY, R. A text pattern-matching tool based on parsing expression gram-
mars. Software: Practice and Experience, John Wiley and Sons, v. 39, p. 221-258, 2009.
ISSN 0038-0644. Fonte.

NIELSON, H. R.; NIELSON, F. Semantics with Applications: An Appetizer. London:
Springer, 2007. (Undergraduate Topics in Computer Science). ISBN 1846286913. Dis-
ponivel em: (https://doi.org/10.1007/978-1-84628-692-6).

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design: The
Hardware/Software Interface. 5. ed. [S.1.]: Morgan Kaufmann, 2017.

PIERCE, B. C. Types and Programming Languages. 1st. ed. Cambridge, Massachusetts:
The MIT Press, 2002. ISBN 0262162091, 9780262162098.

REIS, L. V. S. et al. The formalization and implementation of adaptable parsing expres-
sion grammars. Science of Computer Programming, v. 96, p. 191-210, 2014. Fonte.

REIS, L. V. S.; IORIO, V. O. D.; BIGONHA, R. S. Defining the syntax of extensible
languages. In: Proceedings of the 2014 ACM Symposium on Applied Computing (SAC).
Gyeongju, Korea: ACM, 2014. p. 1569-1576. ACM Copyright 2014, ISBN 978-1-4503-
2469-4/14/03.

ZHANG, J.; MORRISETT, G.; TAN, G. Interval parsing grammars for file format par-
sing. Proceedings of the ACM on Programming Languages, v. 7, n. PLDI, p. 1073-1095,
2023.

https://doi.org/10.1007/978-1-84628-692-6

	Lista de Figuras
	Lista de Abreviações
	Introdução
	Semântica Formal
	Semântica Operacional
	PLT Redex

	Análise Sintática
	Parsing Expression Grammars
	Uma Máquina de Parsing Para PEGs
	Parsing Expression Grammars with Syntactic Attributes

	Máquina de Parsing para PEGwSA
	Semântica da Máquina
	Compilando para PEGwSA
	Definição
	Constraint
	Update
	Chamada de não-terminal
	Escolha ordenada

	Formalização de PEGwSA em PLT Redex
	Definição da linguagem
	Representação do Programa e da Entrada
	Valores dos Atributos
	Definição da pilha
	Representação da Memória
	Semântica
	Limitações da Formalização

	Conclusão
	Bibliografia

