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Resumo

A análise sintática constitui um elemento fundamental na construção de linguagens e sis-

temas computacionais, sendo tradicionalmente baseada em modelos como as Gramáticas

Livres de Contexto (CFGs) e, mais recentemente, nas Parsing Expression Grammars

(PEGs). Embora as PEGs ofereçam um modelo determińıstico e livre de ambiguida-

des, apresentam limitações na descrição de construções que dependem de informações

contextuais, como aquelas envolvidas no processamento de formatos de arquivos com-

plexos, a exemplo do PNG. As Parsing Expression Grammars with Syntactic Attributes

(PEGwSA) estendem esse formalismo ao incorporar atributos herdados e sintetizados ao

processo de reconhecimento, possibilitando a modelagem de tais dependências contextu-

ais. Uma abordagem para a implementação de PEGs consiste no uso de Máquinas de

Parsing, como a proposta por Ierusalimschy (2009). Neste trabalho, é proposta e formali-

zada uma Máquina de Parsing para PEGwSA, que estende o modelo original ao introduzir

a noção de memória, bem como um conjunto de instruções espećıficas para a manipulação

de atributos, operações aritméticas e processamento de listas. A proposta foi mecanizada

por meio da ferramenta PLT Redex, permitindo a verificação da semântica operacional

pela execução do modelo.

Palavras-chave: Parsing Expression Grammars (PEG). Atributos Sintáticos. Máquina

de Parsing. PLT Redex. Semântica Formal



Abstract

Syntactic analysis is a fundamental component in the construction of programming lan-

guages and computational systems, traditionally grounded in models such as Context-Free

Grammars (CFGs) and, more recently, Parsing Expression Grammars (PEGs). Although

PEGs provide a deterministic and unambiguous formalism, they present limitations in

describing constructions that depend on contextual information, such as those involved in

the processing of complex file formats, for example, PNG. Parsing Expression Grammars

with Syntactic Attributes (PEGwSA) extend this formalism by incorporating inherited

and synthesized attributes into the recognition process, enabling the modeling of such con-

textual dependencies. One approach to implementing PEGs is through Parsing Machines,

such as the one proposed by Ierusalimschy (2009). This work proposes and formalizes a

Parsing Machine for PEGwSA, extending the original model by introducing the notion

of memory, as well as a set of specific instructions for attribute manipulation, arithmetic

operations, and list processing. The proposal was mechanized using the PLT Redex tool,

allowing the verification of the operational semantics through the execution of the model.

Keywords: Parsing Expression Grammars (PEG). Syntactic Attributes. Parsing Ma-

chine. PLT Redex. Formal Semantics
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faltar amor e carinho e nunca duvidou de que eu poderia ser aquilo que desejasse. Às
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4 Máquina de Parsing para PEGwSA 38
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5.5 Representação da Memória . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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2.3 Semântica big-step da expressão if true then pred suc pred zero else

zero zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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1 Introdução

A análise sintática é um componente central na construção de linguagens e sistemas com-

putacionais, envolvendo o reconhecimento e a decomposição estrutural de sequências de

śımbolos. Tradicionalmente, essa área fundamentou-se em sistemas generativos, como

as Gramáticas Livres de Contexto (AHO et al., 2008). Contudo, o surgimento do for-

malismo das Parsing Expression Grammars (PEGs) introduziu um modelo baseado no

reconhecimento de cadeias, oferecendo uma base formal rigorosa para o parsing descen-

dente (top-down) e eliminando ambiguidades comuns em gramáticas generativas (FORD,

2004).

Apesar de sua precisão, as PEGs tradicionais apresentam limitações na descrição

de construções sintáticas que dependem de informações contextuais, como aquelas en-

contradas em linguagens extenśıveis ou em formatos de arquivos complexos, a exemplo

do PNG, nos quais o tamanho dos dados deve ser determinado previamente (REIS; IO-

RIO; BIGONHA, 2014; ZHANG; MORRISETT; TAN, 2023). Para suprir essa lacuna,

surgiram as Parsing Expression Grammars with Syntactic Attributes (PEGwSA), que es-

tendem o formalismo original ao incorporar atributos herdados e sintetizados, bem como

operadores para a manipulação dessas informações durante o processo de análise (REIS

et al., 2014; FERREIRA, 2024).

No que se refere à implementação de PEGs, algoritmos como o Packrat garantem

tempo de execução linear, à custa de um consumo elevado de memória, o que pode torná-

los impraticáveis em cenários que envolvem grandes volumes de dados. Como alternativa

a essa abordagem, Ierusalimschy (2009) propôs a Máquina de Parsing, um modelo de

execução baseado em instruções atômicas e no uso de uma pilha, concebido originalmente

para PEGs e caracterizado por um uso mais eficiente dos recursos de memória.

O objetivo deste trabalho é propor e formalizar uma Máquina de Parsing para

PEGwSA. A proposta estende o modelo original da Máquina de Parsing para PEGs,

incorporando a noção de memória e um conjunto de instruções espećıficas para o trata-

mento da lógica associada aos atributos. A máquina proposta é introduzida por meio de
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sua formalização e implementação na ferramenta PLT Redex, fornecendo uma base teórica

para a construção de analisadores sintáticos mais expressivos e eficientes.

Este trabalho está organizado da seguinte forma. No Caṕıtulo 2, são apresentados

os conceitos fundamentais relacionados à semântica operacional e à ferramenta PLT Redex.

O Caṕıtulo 3 apresenta os conceitos fundamentais relacionados à análise sintática, às

Parsing Expression Grammars (PEGs), às extensões introduzidas pelas PEGwSA e a

descrição da Máquina de Parsing original para PEGs. No Caṕıtulo 4, é apresentada a

proposta de extensão da Máquina de Parsing para suportar atributos sintáticos, incluindo

sua formalização operacional. O Caṕıtulo 5 detalha a implementação da máquina proposta

na ferramenta PLT Redex. Por fim, o Caṕıtulo 6 apresenta as conclusões do trabalho e

posśıveis direções para pesquisas futuras.
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2 Semântica Formal

A semântica corresponde ao significado de śımbolos e sentenças. Em Ciência da Com-

putação, a semântica formal é entendida como a especificação rigorosa do significado

ou do comportamento de programas. O emprego de métodos formais na definição da

semântica de linguagens de programação permite evidenciar ambiguidades presentes em

especificações informais, além de fornecer uma base sólida para a implementação e para

a prova de correção de programas. Ressalta-se que a semântica é atribúıda apenas a

programas sintaticamente válidos e bem tipados, uma vez que programas inválidos não

devem possuir significado. Distinguem-se, de modo geral, três abordagens principais de

semântica formal: operacional, denotacional e axiomática.

A semântica denotacional constitui uma abordagem na qual o significado de pro-

gramas é expresso mediante objetos matemáticos que descrevem abstratamente o com-

portamento de cada construção da linguagem. A semântica axiomática, por sua vez,

configura-se como uma abordagem em que o significado de programas é especificado in-

diretamente, por meio de axiomas e regras de inferência que relacionam programas a

propriedades lógicas sobre seus estados (NIELSON; NIELSON, 2007). Este trabalho usa

exclusivamente a semântica operacional, cuja descrição é apresentada na seção seguinte.

2.1 Semântica Operacional

A abordagem operacional concentra-se em definir como as computações são realizadas em

uma determinada máquina abstrata e, a partir dessa caracterização, estabelecer o seu sig-

nificado. Nesse contexto, a semântica operacional facilita a implementação de um interpre-

tador para a linguagem, uma vez que descreve explicitamente os passos de execução. Tra-

dicionalmente, essa abordagem é subdividida em semântica big-step e semâmtica small-

step, que diferem principalmente no ńıvel de detalhamento e na forma de especificar as

transições de execução.

A semântica operacional big-step, também denominada semântica natural, relaci-
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ona diretamente programas ou expressões aos seus resultados finais, abstraindo os passos

intermediários de computação. Já a semântica small-step descreve o comportamento de

programas como uma sequência de passos de execução elementares, em vez de relacionar

diretamente cada programa ao seu resultado final.

A linguagem de expressões aritméticas A, originalmente definida em Pierce (2002)

e apresentada na Figura 2.1 será utilizada para exemplificar a abordagem operacional.

e ::= zero | true | false | suc e

| pred e | iszero e | if e then e else e

Figura 2.1: Sintaxe Abstrata de A

A primeira parte (e) declara um conjunto de elementos sintáticos, indicando que

a letra e os representa. Cada regra subsequente fornece uma forma sintática alternativa

para tais elementos. Em cada posição onde o śımbolo e aparece, pode-se substitúı-lo por

qualquer construção válida. A linguagem A contém um conjunto de formas sintáticas: as

constantes booleanas true e false, uma expressão condicional, a constante numérica zero,

os operadores aritméticos suc (sucessor) e pred (predecessor), e uma operação de teste

iszero, que retorna true quando aplicada a zero e false quando aplicada a qualquer outro

número.

A semântica operacional define como as computações são realizadas a partir de

um conjunto de regras que descrevem o funcionamento de uma determinada máquina

abstrata. Essas regras são especificadas em um estilo de dedução natural, conforme o

modelo apresentado a seguir.

premissas

conclusão
nome

Cada regra é apresentada no formato de uma inferência, composta por um con-

junto de premissas, dispostas acima da linha, e uma conclusão, posicionada abaixo dela.

A regra expressa que, sempre que todas as premissas forem satisfeitas, a conclusão cor-

respondente pode ser validamente derivada. O nome associado à regra identifica o tipo

de inferência realizada e facilita sua referência ao longo da definição semântica.

A semântica big-step descreve como os resultados finais são obtidos, relacionando
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as construções da linguagem com o valor final ou efeito que produzem. A Figura 2.2

apresenta uma semântica big-step para A. O julgamento e ⇓ v significa que a expressão e

avalia para o valor final v.

v ⇓ v

e ⇓ v

suc e ⇓ suc v

e ⇓ suc v

pred e ⇓ v

e ⇓ zero

pred e ⇓ zero

e ⇓ zero

iszero e ⇓ true

e ⇓ suc v

iszero e ⇓ false

e1 ⇓ true e2 ⇓ v

if e1 then e2 else e3 ⇓ v

e1 ⇓ false e3 ⇓ v

if e1 then e2 else e3 ⇓ v

Figura 2.2: Semântica big-step de A

A Figura 2.3 apresenta uma derivação da semântica big-step que demonstra que a

expressão if true then (pred (suc (pred zero))) else zero é avaliada para zero.

true ⇓ true

zero ⇓ zero

pred zero ⇓ zero

suc (pred zero) ⇓ suc zero

pred (suc (pred zero)) ⇓ zero

if true then (pred (suc (pred zero))) else zero ⇓ zero

Figura 2.3: Semântica big-step da expressão if true then pred suc pred zero else

zero zero

A semântica small-step descreve como os passos individuais de uma computação

são realizados, detalhando de que forma cada construção atinge seu valor ou efeito final.

A Figura 2.4 apresenta a semântica small-step para a linguagem A.

O julgamento e → e′ indica que a expressão e é reduzida a e′ em um único

passo, enquanto →∗ representa o fecho reflexivo e transitivo da relação → .

Embora as regras apresentadas na Figura 2.4 sejam escritas na formatação de

um sistema de dedução natural, elas geralmente não são utilizadas dessa forma. Em vez

disso, parte-se de um termo inicial, que é reescrito passo a passo por meio da aplicação

das regras. Uma outra maneira de interpretar esse processo é como uma sequência de

transições de estado: inicia-se em um estado representado por um termo inicial e, a cada

passo, alcança-se um novo estado no qual o termo foi modificado de acordo com a regra
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pred (suc v)→ v
E-Pred-Suc

iszero zero→ true
E-Iszero-Zero

e→ e′

iszero e→ iszero e′
E-Iszero

iszero (suc v)→ false
E-Iszero-Suc

pred zero→ zero
E-Pred-Zero

e1 → e′1
if e1 then e2 else e3 → if e′1 then e2 else e3

E-If

e→ e′

suc e→ suc e′
E-Suc

if true then e2 else e3 → e2
E-If-True

e→ e′

pred e→ pred e′
E-Pred

if false then e2 else e3 → e3
E-If-False

Figura 2.4: Semântica small-step de A

aplicada. A Figura 2.5 ilustra esse processo ao mostrar como a expressão if true then

(pred (suc (pred zero))) else zero é reduzida a zero.

→∗ if true then pred (suc (pred zero)) else zero

→∗ if true then pred (suc zero) else zero ⟨pred zero→ zero⟩
→∗ if true then zero else zero ⟨pred suc v → v⟩
→∗ zero

Figura 2.5: Semâmtica small-step da expressão if true then (pred (suc (pred

zero))) else zero

É posśıvel definir as semânticas big-step e small-step para uma mesma linguagem

e, posteriormente, demonstrar que ambas são equivalentes no sentido de que todo pro-

grama que termina com um valor em uma delas necessariamente termina com o mesmo

valor na outra. No entanto, essas abordagens apresentam diferenças conceituais e meto-

dológicas relevantes, cuja discussão detalhada pode ser encontrada em (NIELSON; NI-

ELSON, 2007; PIERCE, 2002).

2.2 PLT Redex

Desenvolvido como uma linguagem de domı́nio espećıfico executável dentro do ecossistema

Racket, o PLT Redex destina-se à mecanização de modelos semânticos. A ferramenta

permite que engenheiros semânticos construam especificações formais que compreendem

gramáticas, regras de redução e meta-funções caracteŕısticas de semânticas operacionais.
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O ambiente oferece diversos recursos para operacionalizar definições semânticas, tais como:

mecanismos de depuração passo a passo aplicáveis a semânticas small-step, visualizadores

de grafos de redução, infraestrutura para criação de testes unitários e capacidades de

execução automatizada de testes, dentre outras funcionalidades. A fim de introduzir o

PLT Redex, a linguagem A foi especificada na Figura 2.6.

1 (define -language A

2 [e ::= true

3 false

4 zero

5 (suc e)

6 (pred e)

7 (iszero e)

8 (if e then e else e)])

Figura 2.6: Especificação em PLT Redex da linguagem A

A modelagem de linguagens no PLT Redex é realizada mediante a função define-

language, responsável por estabelecer uma gramática livre de contexto que caracteriza

a sintaxe da linguagem em questão. A invocação dessa função requer a especificação de

dois elementos fundamentais: a identificação da linguagem e a definição dos não-terminais

que a constituem. A linguagem, ilustrada na Figura 2.6, é identificada por A e um único

não-terminal e, cujas formas válidas incluem: valores booleanos (true e false), números

naturais (representados por zero, (suc e) e (pred e)), construções condicionais (if e

then e else e) e operações relacionais (iszero e).

1 (reduction relation A

2 (--> (if true then e_1 else e_2) e_1 "if -true")

3 (--> (if false then e_1 else e_2) e_2 "if -false")

4 (--> (iszero zero) true "=0")

5 (--> (iszero (suc e)) false "/=0")

6 (--> (pred zero) zero "pred0")

7 (--> (pred (suc e)) e "pred -suc"))

Figura 2.7: Relação de redução da linguagem A

Com o intuito de definir a semântica da linguagem A, empregamos a função

reduction-relation, apresentada na Figura 2.7, para descrever o conjunto de regras de

reescrita que especificam a evolução dos termos da linguagem. Um termo corresponde

a uma expressão sintaticamente válida de A, constrúıda de acordo com sua gramática

e representando um estado posśıvel de computação. Em PLT Redex, tais termos são
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descritos por padrões da linguagem e manipulados diretamente pelas regras semânticas,

sem a necessidade de uma implementação expĺıcita de um avaliador.

Nesse contexto, uma regra de reescrita possui a forma (-> <termo> <termo

reescrito> <nome da regra>), indicando que, sempre que um termo correspondente

ao padrão <termo> for identificado, ele pode ser substitúıdo pelo <termo reescrito>,

conforme a regra nomeada. Essa substituição modela um único passo de execução da

linguagem, permitindo descrever o comportamento computacional de forma declarativa e

incremental. O parâmetro facultativo <nome da regra> é uma cadeia de caracteres que

nomeia a regra de reescrita.

As regras "if-true" e "if-else" definem, respectivamente, que uma expressão

condicional (if e then e1 else e2) deve ser reduzida para e1 se e é true e para e2 se e

é false. As regras "=0" e "/=0" determinam, respectivamente, que a operação (iszero

e) reduz para true se t é zero e para false se t é (suc e1), ou seja, se t é o sucessor de

um número natural. Por fim, as regras "pred0" e "pred-suc" definem que o predecessor

de um número natural (pred e) reduz para zero se t é zero e para e1 se t é (suc e1).

A Figura 2.8 apresenta uma captura de tela do visualizador de redução de PLT Re-

dex do termo if true then (if false then (iszero (suc zero) else (pred zero))

else (suc (suc zero)))).

Figura 2.8: Captura de tela do visualizador de redução de Redex
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3 Análise Sintática

A análise sintática, responsável pelo reconhecimento e pela decomposição estrutural de

sequências de śımbolos, constitui um componente central na construção de linguagens e

sistemas computacionais. Por meio dela, cadeias de śımbolos passam a ser interpretadas

como estruturas organizadas, viabilizando etapas posteriores do processamento, como a

análise semântica e a execução de programas. Historicamente, a teoria e a prática da

sintaxe têm sido predominantemente alicerçadas em sistemas generativos, nos quais uma

linguagem é formalmente definida por um conjunto de regras aplicadas recursivamente

para produzir cadeias válidas, como ocorre nas Gramáticas Livre de Contexto (AHO et

al., 2008).

Entretanto, a evolução das linguagens de programação e das técnicas de parsing

evidenciou limitações práticas desses modelos, especialmente no que diz respeito à ambi-

guidade e ao controle do processo de reconhecimento sintático. Nesse contexto, surgem

abordagens alternativas que deslocam o foco da geração para o reconhecimento de cadeias,

oferecendo mecanismos mais diretos e determińısticos para a análise sintática.

3.1 Parsing Expression Grammars

Em contraste com a tradição generativa predominante na teoria formal de linguagens,

o formalismo das Parsing Expression Grammars (PEGs) propõe um modelo baseado no

reconhecimento de cadeias, estabelecendo regras e predicados que decidem se uma string

pertence ou não a linguagem (FORD, 2004). As PEGs revitalizaram o interesse pelas

abordagens de parsing descendente (top-down parsing), ao oferecer uma fundamentação

formal rigorosa para o problema de reconhecimento sintático.

O formalismo das PEGs estabelece regras que determinam se uma sequência

de śımbolos de entrada pertence à linguagem especificada. Dessa forma, as PEGs atuam

como reconhecedoras que validam prefixos da entrada sem necessariamente consumir toda

a string de entrada, caracteŕıstica fundamental para sua aplicação em análise sintática
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descendente. As PEGs são particularmente adequadas para a descrição de linguagens ori-

entadas a máquinas, as quais, por concepção, devem ser precisas e não amb́ıguas (FORD,

2004).

Formalmente, uma Parsing Expression Grammar G é definida como uma quádrupla

G = (VN , VT , R, eS) em que:

• VN é o conjunto finito de śımbolos não-terminais;

• VT é o conjunto finito de śımbolos terminais;

• R é a função que mapeia cada não-terminal em VN para uma parsing expression,

denotada como A← e;

• eS é a expressão de parsing inicial

Dessa forma, a sintaxe abstrata das PEGs pode ser definida como na Figura

3.1. Uma expressão de parsing e pode ser um terminal (a), uma cadeia vazia (ε), uma

sequência (e • e), uma escolha ordenada (e/e), uma repetição (e∗), uma negação (!e) ou

uma chamada de não-terminal (A). A aplicação de uma expressão de parsing a uma

entrada pode resultar estritamente em sucesso ou falha.

e ::= a | ε | e • e | e/e | e∗ | !e | A

Figura 3.1: Sintaxe abstrata das PEGs.

Já a semântica operacional das PEGs é definida através de uma relação entre

expressões de parsing e strings de entrada. Utilizando a convenção de notação empregada

em Daher et al. (2025), (e, s) ⇒G (sp, sr) denota que a expressão e consome o prefixo sp

da entrada s, deixando o sufixo sr, enquanto (e, s)⇒G ⊥ indica falha no reconhecimento.

Uma expressão é considerada bem-sucedida quando não produz ⊥ como resultado. A

Figura 3.2 define a semântica operacional das PEGs.

A regra Eps estabelece que a expressão vazia, ε, sempre é bem-sucedida in-

dependentemente da entrada s, não consumindo nenhum caractere e deixando a string

inalterada. A regra ChrS especifica que um terminal a consome com sucesso o primeiro
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caractere da entrada quando este corresponde ao śımbolo a. Por outro lado, as regras

ChrF e CharNil estabelecem que o reconhecimento falha quando o primeiro caractere

da entrada não corresponde ao terminal esperado ou quando a entrada está vazia, respec-

tivamente.

A regra V ar realiza a análise sintática a partir da expressão associada à variável

presente na gramática G. No caso de uma expressão sequencial e1 • e2, o resultado é

constrúıdo pela concatenação dos prefixos reconhecidos por e1 e e2, enquanto o restante

da entrada corresponde ao que permanece após a aplicação de e2. As regras CatF1 e

CatF2 estabelecem que, se qualquer uma das expressões e1 ou e2 falhar durante a análise,

então toda a expressão sequencial deve ser considerada mal sucedida.

Para operadores de escolha, aplica-se a condição de que a expressão alternativa

e2 somente é avaliada quando e1 falha, garantindo assim a semântica determińıstica do

operador de escolha em PEGs. Já a análise de uma expressão e⋆ consiste na execução

repetida de e sobre a cadeia de entrada. Esse processo continua enquanto e obtiver sucesso;

quando e eventualmente falha, a expressão e⋆ é considerada bem–sucedida, sem consumir

nenhum śımbolo adicional da entrada.

Por fim, as regras da expressão de predicado de negação !e determinam que, caso

e seja bem–sucedida sobre a entrada s, a expressão !e deve falhar. Em contrapartida,

quando e falha sobre s, !e é considerada bem–sucedida, também sem consumir qualquer

parte da entrada.

Exemplo 3.1.1. Considere a PEG G1 = ⟨{a, b}, {P}, R, P ⟩ e que R possui a regra:

P ← a • P • b/ε

Com essa definição é posśıvel construir a árvore de reconhecimento da string ab.

O processo começa com a expressão de parsing inicial P e a entrada ab. Uma vez que P

é um não-terminal, utiliza-se a regra Var para substitúı-lo por sua expressão de parsing

associada, resultando no par (a•P •b/ε, ab), que representa a expressão de parsing corrente

e a entrada a ser reconhecida. Atingindo, assim a seguinte configuração:
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(ε, s)⇒G (ε, s)
Eps

(a, asr)⇒G (a, sr)
ChrS

a ̸= b

(a, bsr)⇒G ⊥
ChrF

A← e ∈ R (e, s)⇒G r

(A, s)⇒G r
V ar

(e1, sp1sp2sr)⇒G (sp1 , sp2sr) (e2, sp2sr)⇒G (sp2 , sr)

(e1 • e2, sp1sp2sr)⇒G (sp1sp2 , sr)
CatS1

(e1, s)⇒G ⊥
(e1 • e2, s)⇒G ⊥

CatF1

(e1, sp1sr)⇒G (sp1 , sr) (e2, sr)⇒G ⊥
(e1 • e2, sp1sr)⇒G ⊥

CatF2

(e1, spsr)⇒G (sp, sr)

(e1/e2, spsr)⇒G (sp, sr)
AltS1

(e1, s)⇒G ⊥ (e2, s)⇒G r

(e1/e2, s)⇒G r
AltS2

(e, sp1sp2sr)⇒G (sp1 , sp2sr) (e∗, sp2sr)⇒G (sp2 , sr)

(e∗, sp1sp2sr)⇒G (sp1sp2 , sr)
Starrec

(e, s)⇒G ⊥
(e∗, s)⇒G (ε, s)

Starend
(e, spsr)⇒G (sp, sr)

(!e, spsr)⇒G ⊥
NotF

(e, s)⇒G ⊥
(!e, s)⇒G (ε, s)

NotS

(a, ε)⇒G ⊥
ChrNil

Figura 3.2: Semântica operacional de expressões de parsing.
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P ← a • P • b/ε ∈ R (a • P • b/ε, ab)⇒G r1
Var

(P, ab)⇒G r1

Como a premissa ainda não teve seu resultado r1 avaliado, a hipótese inicial

permanece com resultado indefinido. A expressão de parsing a •P • b/ε constitui uma es-

colha priorizada e dessa forma, tenta-se primeiramente combinar a entrada com a primeira

alternativa, o que resulta na configuração:

P ← a • P • b/ε ∈ R

(a • P • b, ab)⇒G r1
Alts1

(a • P • b/ε, ab)⇒G r1
Var

(P, ab)⇒G r1

Dado que a • P • b constitui uma sequência de expressões de parsing, o reconhe-

cimento da entrada é realizado de forma segmentada. Como a precedência nas PEGs é

à esquerda, a expressão de parsing a • P é avaliada primeiro, e a entrada remanescente

é então combinada com a expressão de parsing b. De modo análogo, a sequência a • P

é decomposta nas expressões a e P , obtendo-se sucesso no terminal a, que consome o

prefixo “a” da entrada.

P ← a • P • b/ε ∈ R

CharS
(a, ab)⇒G (a, b) (P, b)⇒G r4

Cats1
(a • P, ab)⇒G r2 (b, r2)⇒G r3

Cats1
(a • P • b, ab)⇒G r1

Alts1
(a • P • b/ε, ab)⇒G r1

Var
(P, ab)⇒G r1

Nesse ponto, os resultado r2, r3 e r4 são associados às regras CatS1, indicando

que os valores a serem determinado são independente entre si e em relação a r1, ainda

que r2 dependa logicamente de r4 e r1 dependa de r2 e r3. A expressão de parsing P

é novamente substituida pela sua regra determinada em R, para melhor visualização da

árvore de reconhecimento, as primeiras premissas e hipóteses foram ocultadas:

CharS
(a, ab)⇒G (a, b)

P ← a • P • b/ε ∈ R

(a • P • b, b)⇒G r5
AltS1

(a • P • b/ε, b)⇒G r5
Var1

(P, b)⇒G r4
Cats1

...

A sequência a•P •b é novamente decomposta de forma sucessiva, dessa vez, resul-

tando em falha na avaliação do terminal “a”diante da entrada “b”. Essa falha propaga-se
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pelas demais sequências, ocasionando o retorno ao ponto correspondente da escolha orde-

nada:

P ← a • P • b/ε ∈ R

a ̸= b
CharF

(a, b)⇒G ⊥
CatF1

(a • P, b)⇒G ⊥
CatF1

(a • P • b, b)⇒G ⊥
AltS1

(a • P • b/ε, b)⇒G ⊥
Var1

...

Contudo, a regra AltS1 pressupõe que a primeira premissa não resulte em falha.

Nesse caso, aplica-se a lógica da escolha ordenada: ao obter falha na primeira expressão de

parsing, a PEG busca sucesso na segunda expressão. Ao adaptar a árvore para substituir

a regra AltS1 pela regra AltS2, obtém-se:

P ← a • P • b/ε ∈ R

a ̸= b
CharF

(a, b)⇒G ⊥
CatF1

(a • P, b)⇒G ⊥
CatF1

(a • P • b, b)⇒G ⊥ (ε, b)⇒G r5
AltS2

(a • P • b/ε, b)⇒G r5
Var1

...

O resultado r5 é obtido mediante a aplicação da regra Eps :

P ← a • P • b/ε ∈ R

a ̸= b
CharF

(a, b)⇒G ⊥
CatF1

(a • P, b)⇒G ⊥
CatF1

(a • P • b, b)⇒G ⊥
Eps

(ε, b)⇒G (ε, b)
AltS2

(a • P • b/ε, b)⇒G (ε, b)
Var1

...

A árvore de reconhecimento atinge a seguinte configuração:

P ← a • P • b/ε ∈ R

CharS
(a, ab)⇒G (a, b)

P ← a • P • b/ε ∈ R

a ̸= b
CharF

(a, b)⇒G ⊥
CatF1

(a • P, b)⇒G ⊥
CatF1

(a • P • b, b)⇒G ⊥
Eps

(ε, b)⇒G (ε, b)
AltS2

(a • P • b/ε, b)⇒G (ε, b)
Var

(P, b)⇒G r4
Cats1

(a • P, ab)⇒G r2 (b, r2)⇒G r3
Cats1

(a • P • b, ab)⇒G r1
Alts1

(a • P • b/ε, ab)⇒G r1
Var

(P, ab)⇒G r1
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Os resultados r2 e r4 são atualizados:

P ← a • P • b/ε ∈ R

CharS
(a, ab)⇒G (a, b)

P ← a • P • b/ε ∈ R

a ̸= b
CharF

(a, b)⇒G ⊥
CatF1

(a • P, b)⇒G ⊥
CatF1

(a • P • b, b)⇒G ⊥
Eps

(ε, b)⇒G (ε, b)
AltS2

(a • P • b/ε, b)⇒G (ε, b)
Var

(P, b)⇒G (ε, b)
Cats1

(a • P, ab)⇒G (a, b) (b, b)⇒G r3
Cats1

(a • P • b, ab)⇒G r1
Alts1

(a • P • b/ε, ab)⇒G r1
Var

(P, ab)⇒G r1

Por fim, aplicando a regra CharS à entrada “b”com o terminal b, obtém-se a

árvore de reconhecimento final que demonstra a geração da cadeia ab pela PEG G1:

P ← a • P • b/ε ∈ R

CharS
(a, ab)⇒G (a, b)

P ← a • P • b/ε ∈ R

a ̸= b
CharF

(a, b)⇒G ⊥
CatF1

(a • P, b)⇒G ⊥
CatF1

(a • P • b, b)⇒G ⊥
Eps

(ε, b)⇒G (ε, b)
AltS2

(a • P • b/ε, b)⇒G (ε, b)

(P, b)⇒G (ε, b)
Cats1

(a • P, ab)⇒G (a, b)
CharS

(b, b)⇒G (b, ε)
Cats1

(a • P • b, ab)⇒G (ab, ε)
Alts1

(a • P • b/ε, ab)⇒G (ab, ε)
Var

(P, ab)⇒G (ab, ε)

À primeira vista, a PEG G1 parece reconhecer exclusivamente strings da lingua-

gem {anbn | n ≥ 0}. Contudo, ao analisar a árvore de reconhecimento para a entrada bb,

verifica-se que a string também é aceita:

P ← a • P • b/ε ∈ R

a ̸= b
CharF

(a, bb)⇒G ⊥
...

CatF1

(a • P • b, bb)⇒G ⊥
Eps

(ε, bb)⇒G (ε, bb)
AltS2

(a • P • b/ε, bb)⇒G (ε, bb)
Var

(P, bb)⇒G (ε, bb)

Esse comportamento decorre de uma caracteŕıstica fundamental que distingue as

PEGs das Gramáticas Livres de Contexto: nas PEGs, o parsing pode alcançar sucesso

sem consumir qualquer entrada. Dessa forma, na PEG G1, em virtude da presença da

alternativa ε na escolha ordenada da regra de P , a entrada bb é considerada válida.

Exemplo 3.1.2. Considere a PEG G2 = ⟨{c}, {S}, R, S⟩ e que R possui a regra:

S ← c∗ • c
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A partir dessa definição, queremos reconhecer a entrada cc. Utilizando a árvore

de reconhecimento, o primeiro passo é substituir o não-terminal S pela sua expressão de

parsing correspondente utilizando a regra Var :

S ← c∗ • c ∈ R (c∗ • c, cc)⇒G r1
Var

(S, cc)⇒G r1

Assim, o passo seguinte consiste na decomposição da sequência c∗ • c. De acordo

com a regra CatS1, a segunda premissa é definida a partir da entrada remanescente resul-

tante do processamento da primeira expressão de parsing. Desse modo, na notação ( , r2)

empregada, o conteúdo consumido não é relevante, sendo considerado apenas o sufixo

restante r2:

S ← c∗ • c ∈ R

(c∗, cc)⇒G ( , r2) (c, r2)⇒G r3
CatS1

(c∗ • c, cc)⇒G r1
Var

(S, cc)⇒G r1

A expressão de parsing da repetição é derivada da seguinte forma:

S ← c∗ • c ∈ R

(c, cc)⇒G ( , r4) (c∗, r4)⇒G r5
Starrec

(c∗, cc)⇒G ( , r2) (c, r2)⇒G r3
CatS1

(c∗ • c, cc)⇒G r1
Var

(S, cc)⇒G r1

Aplicando a regra CharS e substituindo o par resultante na segunda premissa,

obtém-se:

S ← c∗ • c ∈ R

CharS
(c, cc)⇒G (c, c) (c∗, c)⇒G r5

Starrec
(c∗, cc)⇒G ( , r2) (c, r2)⇒G r3

CatS1

(c∗ • c, cc)⇒G r1
Var

(S, cc)⇒G r1

Utilizando novamente a regra da repetição:

S ← c∗ • c ∈ R

CharS
(c, cc)⇒G (c, c)

(c, c)⇒G ( , r6) (c∗, r6)⇒G r7
Starrec

(c∗, c)⇒G r5
Starrec

(c∗, cc)⇒G ( , r2) (c, r2)⇒G r3
CatS1

(c∗ • c, cc)⇒G r1
Var

(S, cc)⇒G r1
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Aplicando sucessivamente as regras CharS e Starend, identifica-se a falha da re-

petição gulosa:

S ← c∗ • c ∈ R

CharS
(c, cc)⇒G (c, c)

CharS
(c, c)⇒G (c, ε)

(c, ε)⇒ ⊥
Starend

(c∗, ε)⇒G (ε, ε)
StarS

(c∗, c)⇒G (c, ε)
StarS

(c∗, cc)⇒G (cc, ε) (c, ε)⇒G r3
CatS1

(c∗ • c, cc)⇒G r1
Var

(S, cc)⇒G r1

A entrada foi consumida pela repetição gulosa e, ao tentar reconhecer ε com o

terminal c, ocorre falha, resultando na árvore final:

S ← c∗ • c ∈ R

CharS
(c, cc)⇒G (c, c)

CharS
(c, c)⇒G (c, ε)

(c, ε)⇒ ⊥
Starend

(c∗, ε)⇒G (ε, ε)
StarS

(c∗, c)⇒G (c, ε)
StarS

(c∗, cc)⇒G (cc, ε)
CharNil

(c, ε)⇒G ⊥
CatF2

(c∗ • c, cc)⇒G ⊥
Var

(S, cc)⇒G ⊥

Portanto, a entrada cc não é aceita pela PEG G2, pois a repetição opera de forma

gulosa, consumindo todos os caracteres posśıveis, o que resulta na falha da regra S.

3.2 Uma Máquina de Parsing Para PEGs

A implementação das regras definidas pelas PEGs tradicionalmente fundamenta-se em

parsers descendentes ou no algoritmo de memorização denominado Packrat. Embora o

Packrat ofereça complexidade de tempo linear, ele impõem uma complexidade de espaço

também linear, mas associada a uma constante consideravelmente grande. Essa carac-

teŕıstica torna o Packrat pouco adequado ao processamento de grandes volumes de dados,

situação comum em ferramentas de pattern matching. Além disso, implementações exis-

tentes necessitam da entrada completa para funcionar, demandando maior espaço de

armazenamento na memória. Essas limitações motivaram o desenvolvimento de aborda-

gens alternativas, como a Máquina de Parsing proposta por Ierusalimschy (2009). Na

Máquina de Parsing cada padrão da PEG é compilado em um programa que é execu-

tado dinamicamente. A Máquina apresenta um modelo de execução mais apropriado para

contextos que demandam eficiência na utilização de recursos de memória, se mostrando

mais apropriado para linguagens dinâmicas como o Lua, visto que os programas são cons-

trúıdos e compostos dinamicamente em tempo de execução, alinhando-se à natureza do

formalismo PEG.
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O estado de uma Máquina de Parsing, que a define formalmente, é composto por

três componentes principais:

• Contador de Programa (pc): ı́ndice que referencia a próxima instrução a ser

executada;

• Posição Atual (i): registro que mantém a posição corrente na cadeia de entrada;

• Pilha (e): estrutura de dados utilizada para armazenar endereços de retorno e

entradas de backtracking. Um endereço de retorno é um novo valor para o contador

de programa, enquanto uma entrada de backtracking contém tanto um endereço

quanto uma posição na cadeia de entrada.

Portanto, o estado da Máquina é uma tripla N ×N ×Stack, contendo a próxima

instrução a ser executada (pc), a posição atual na cadeia de entrada (i) e uma pilha

(e), ou Fail⟨e⟩, um estado de falha com uma pilha e associada. As pilhas são listas de

N ∪N ×N , em que uma posição da pilha da forma N representa um endereço de retorno,

enquanto uma posição da pilha da forma N ×N representa uma entrada de backtracking,

com um endereço e uma posição na entrada.

A Máquina de Parsing executa programas compostos por instruções atômicas que

modificam o estado da máquina. As instruções fundamentais executadas pela Máquina

de Parsing são:

• Char x: tenta casar o caractere x com a posição atual da entrada. Em caso de

sucesso, avança uma posição, consumindo o caractere e caso contrário, falha.

• Any: avança uma posição na entrada, consumindo o caractere, se o fim da mesma

não tiver sido alcançado; caso contrário, falha.

• Choice l: adiciona uma entrada de backtracking na pilha. O parâmetro l é o

deslocamento para a instrução alternativa.

• Jump l: realiza um salto relativo para a instrução localizada no deslocamento l.

• Call l: adiciona o endereço da próxima instrução na pilha, como endereço de re-

torno, e salta para a instrução no deslocamento l.
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• Return: remove um endereço da pilha e salta para esse endereço.

• Commit l: compromete-se com uma escolha, descartando a entrada mais recente

da pilha e saltando para a instrução no deslocamento l.

• Fail: força uma falha. Em caso de falha, a Máquina desempilha entradas até

localizar uma entrada de backtracking, utilizada para restaurar o estado da Máquina

(posição e endereço).

A Figura 3.3 apresenta a semântica operacional da Máquina de Parsing e como

os estados da máquina são atualizados através das instruções. A notação adotada em

Ierusalimschy (2009) define que o programa P e a entrada S estão impĺıcitos. A relação

Instrução−−−−−→ relaciona dois estados quando a instrução endereçada por pc no estado antece-

dente corresponde ao rótulo e a condição, se presente, é válida. O fecho transitivo dessa

relação constitui uma execução da máquina.

⟨pc, i, e⟩ Char x−−−−→ ⟨pc+ 1, i+ 1, e⟩ S[i] = x

⟨pc, i, e⟩ Char x−−−−→ Fail⟨e⟩ S[i] ̸= x

⟨pc, i, e⟩ Any−−→ ⟨pc+ 1, i+ 1, e⟩ i+ 1 ≤ |S|
⟨pc, i, e⟩ Any−−→ Fail⟨e⟩ i+ 1 > |S|
⟨pc, i, e⟩ Choice l−−−−→ ⟨pc+ 1, i, (pc+ l, i) : e⟩
⟨pc, i, e⟩ Jump l−−−−→ ⟨pc+ l, i, e⟩
⟨pc, i, e⟩ Call l−−−→ ⟨pc+ l, i, (pc+ 1) : e⟩

⟨pc0, i, pc1 : e⟩
Return−−−−→ ⟨pc1, i, e⟩

⟨pc, i, h : e⟩ Commit l−−−−−→ ⟨pc+ l, i, e⟩
⟨pc, i, e⟩ Fail−−→ Fail⟨e⟩

Fail⟨pc : e⟩ any−−→ Fail⟨e⟩
Fail⟨(pc, i1) : e⟩

any−−→ ⟨pc, i1, e⟩

Figura 3.3: Semântica Operacional da Máquina de Parsing

Exemplo 3.2.1. Considere a PEG G1 = ⟨{a, b}, {P}, R, P ⟩ e que R possui a regra:

P ← a • P • b/ε
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Com base nessa definição, constrói-se o programa de instruções para a Máquina

de Parsing que representa a PEG em questão. A Figura 3.4 ilustra esse programa.

1 "P": Call "C1"

2 Halt

3 "C1": Choice "C2"

4 Char ‘a’

5 Call "P"

6 Char ‘b’

7 Commit "End"

8 "C2": Return

9 "End": Return

Figura 3.4: Instruções da Máquina de Parsing para G1

Para aprimorar a visualização e a legibilidade, utilizam-se labels, isto é, nomes

atribúıdos a determinadas linhas do código para indicar deslocamentos. O programa inicia

pela label P , que referencia a expressão de parsing inicial. A instrução Call ‘‘C1’’

desloca o pc para a label “C1”. Com o desvio do programa para o novo pc, a instrução

Choice ‘‘C2’’ adiciona à pilha uma entrada de backtracking. Essa instrução indica o

ińıcio de uma escolha ordenada: caso a primeira expressão de parsing resulte em erro, a

segunda alternativa é testada. Nesse programa, a instrução que marca o ińıcio da segunda

alternativa encontra-se na linha endereçada pela label “C2”.

Após a adição da entrada de backtracking, executa-se a instrução Char ‘a’, que

tenta reconhecer o caractere “a” na posição atual da entrada. Essa instrução foi mapeada

a partir do terminal a na expressão de parsing a •P • b. Na sequência, para representar a

invocação do não-terminal P , a instrução subsequente é Call ‘‘P’’, indicando o desvio

do fluxo para a label P . Essa sequência prossegue até que a instrução Char ‘a’ falhe

com a entrada, momento em que o processo de backtracking ocorre, desempilhando um

endereço e uma posição para o retrocesso.

Ao ocorrer falha na instrução Char ‘a’, a Máquina retrocede para a posição de

entrada associada ao ponto de backtracking previamente empilhado pela instrução Choice

‘‘C2’’. Desse modo, efetiva-se a falha da primeira alternativa da escolha ordenada. A

segunda alternativa é mapeada para a instrução Return, uma vez que, por definição, a

cadeia vazia (ε) obtém sucesso independentemente da entrada. Nesse contexto, a instrução

Return é empregada para devolver o controle ao ponto de chamada. Como a regra P é



3.2 Uma Máquina de Parsing Para PEGs 29

recursiva, toda a computação retorna sequencialmente para a sua chamada inicial, o Call

‘‘C1’’ da linha 1. Após esse retorno, o fluxo segue para a próxima instrução, Halt, na

linha 2 e o programa é finalizado.

Ao finalizar o programa em P , caso a invocação tenha ocorrido na linha 5, isto

é, recursivamente durante a execução de outra chamada, o programa prossegue com a

instrução Char ‘b’, que tenta reconhecer o caractere “b” na posição atual da entrada.

Obtendo-se sucesso, a instrução Commit ‘‘End’’ é alcançada, consolidando a escolha

mediante o descarte da entrada mais recente da pilha e o desvio para a instrução na

label End. Assim como na primeira escolha, executa-se a instrução Return, devolvendo

o controle ao ponto de chamada. E novamente, como a regra P é recursiva, toda a

computação retorna sequencialmente para a sua chamada inicial, seguindo para a próxima

instrução e finalizando o programa.

Exemplo 3.2.2. Considere a PEG G2 = ⟨{c}, {S}, R, S⟩ e que R possui a regra:

S ← c∗ • c

Com base nessa definição, constrói-se o programa de instruções para a Máquina

de Parsing que representa a PEG em questão. A Figura 3.5 ilustra esse programa.

1 "S": Choice "End"

2 Char ‘c’

3 Commit "Cont"

4 "Cont": Jump "S"

5 "End": Char ‘c’

6 Halt

Figura 3.5: Instruções da Máquina de Parsing para G2

Nesse exemplo, a primeira instrução é identificada pela label ‘‘S’’, a qual inicia

o programa com a instrução Choice ‘‘End’’. Essa instrução marca o ińıcio de um escopo

de escolha ordenada, uma vez que empilha um endereço de backtracking. Em seguida, o

fluxo de execução prossegue para a instrução Char ‘c’, responsável por tentar reconhecer

o caractere “c” na posição atual da entrada. Em caso de sucesso, a execução alcança a

instrução Commit ‘‘Cont’’, que consolida a escolha realizada ao descartar o ponto de
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backtracking mais recente da pilha e desviar o controle para a instrução associada à label

Cont. Caso a instrução Char ‘c’ falhe, considera-se que a primeira alternativa da escolha

ordenada não foi satisfeita, acionando-se o mecanismo de backtracking.

Na label Cont, ocorre um desvio incondicional para a ‘‘S’’, caracterizando a

implementação da repetição gulosa. Quando a escolha ordenada falha em sua primeira al-

ternativa, o ponto de backtracking previamente registrado pela instrução Choice ‘‘End’’

é recuperado. Com o fluxo de execução redirecionado para a label ‘‘End’’, a instrução

Char ‘c’ tenta novamente reconhecer o caractere “c” na posição corrente da entrada e,

em caso de sucesso, a instrução Halt é responsável por encerrar a execução do programa.

3.3 Parsing Expression Grammars with Syntactic At-

tributes

As Parsing Expression Grammars with Syntactic Attributes (PEGwSA) estendem o for-

malismo tradicional das PEGs ao incorporar atributos e operadores para sua manipulação,

permitindo que informações adicionais sejam acopladas ao processo de análise sintática.

Nessa abordagem, atributos podem ser associados a não-terminais, possibilitando a trans-

missão e o armazenamento de informações relevantes durante o parsing. Tal mecanismo é

especialmente importante para lidar com caracteŕısticas de determinadas linguagens que

não podem ser expressas apenas por PEGs ou por Gramáticas Livres de Contexto, em

razão da limitação desses formalismos em descrever construções sintáticas presentes, por

exemplo, em linguagens extenśıveis e em certos formatos de arquivo de imagem (REIS;

IORIO; BIGONHA, 2014; ZHANG; MORRISETT; TAN, 2023).

Em uma PEGwSA, os atributos estão associados aos não-terminais e são classifi-

cados em dois tipos. Os atributos herdados correspondem a valores cujo cálculo depende

de informações provenientes de śımbolos ancestrais; eles funcionam como parâmetros que

configuram o comportamento do não-terminal a partir do ambiente sintático vigente.

Complementarmente, os atributos sintetizados são valores produzidos a partir dos atri-

butos de śımbolos descendentes, desempenhando o papel de resultados computados pelos

não-terminais ao término da análise.
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Além disso, a PEGwSA estende a definição padrão das PEGs, introduzindo três

novas operações: o update, o bind e a constraint. O update é responsável por atualizar

o atributo, o bind captura a entrada consumida em caso de sucesso e a constraint é

responsável por testar uma condição.

Utilizando a notação definida em Ferreira (2024), a sintaxe abstrata das PEGwSA

pode ser definida como na Figura 3.6. As formalizações servirão de base para o desenvol-

vimento e a extensão do modelo adotado neste trabalho.

A sintaxe foi dividida em expressões de atributos (e) e expressões de parsing (p).

As notações x e x são utilizadas para denotar sequências de zero ou mais termos, sendo

que x requer que a sequência representada esteja limitada por parênteses. Já a notação

x! impõe que o termo encapsulado, x, possua ocorrência única.

τ ::= Bool | Integer | String | ⟨τ⟩ | [τ ] | τ → τ

e ::= true | false | i | s | ⟨e/e⟩ | e : e | nil | e+ e
| e− e | e× e | e÷ e | e == e | e > e | e ∧ e | e ∨ e
| ¬e | ϑ | get e e | put e e e | head e | tail e

p ::= p • p | p/p |!p | p∗ | N e ϑ | ϑ = p | ϑ← e
|?e | a | ε

G ::= N!/ϑ :: τ e→ p

Figura 3.6: Sintaxe abstrata das PEGwSA.

A primeira regra, τ , retrata os tipos de expressões de atributos. Um tipo (τ)

pode retratar booleanos (Bool), inteiros (Integer), cadeia de caracteres (String), mapas

(< τ >), listas ([τ ]) e, por fim, não-terminais τ → τ .

Expressões de atributos, e, podem ser literais; construtores; operações aritméticas,

relacionais e lógicas; atributos (ϑ) e manipuladores de listas (head e e tail e) e mapas

(get ee e put eee). Um literal pode ser um booleano (true ou false), um inteiro (i) ou

uma cadeia de caracteres (s). A formalização apresentada em Ferreira (2024) define três

construtores: um para tratar mapas (⟨τ⟩), outro para construir listas (e : e) e um último

para expressar listas vazias (nil).

Foram inclúıdas quatro operações aritméticas: adição (e+ e), subtração (e− e),

multiplicação (e × e) e divisão (e ÷ e), duas operações relacionais: igualdade (e == e) e
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maior que (e > e), e três operações lógicas: conjunção (e∧ e), disjunção (e∨ e) e negação

lógica (¬).

As expressões de parsing p seguem a mesma definição das PEGs tradicionais,

sendo introduzidas adicionalmente três novas construções para a manipulação dos atribu-

tos: o bind (ϑ = p), o update (ϑ← e) e a constraint (?e).

A última regra, G, define que uma PEGwSA é uma sequência finita de produções.

Uma produção, por sua vez, é uma associação entre um não-terminal, N , e uma tripla

formada por uma sequência de atributos herdados justapostos pelos seus respectivos tipos

(ϑ :: τ), uma sequência de expressões de atributos que serão posteriormente amarradas

aos seus atributos sintetizados (e) e uma expressão de parsing (p), que nada mais é que

o corpo da regra de produção.

Com a adição da lógica de atributos, é necessário definir dois novos conceitos:

valor e ambiente. A Figura 3.7 apresenta a sintaxe de valor e ambiente. Um valor é um

elemento de um subconjunto de expressões bem-tipadas que engloba todos os posśıveis

resultados finais das avaliações de expressões de atributos. Um valor pode ser um booleano

(true ou false), um inteiro (i), uma cadeia de caracteres (s), um mapa (< s!/v >), uma

lista (v : v) e, mais especificamente, uma lista vazia (nil). É importante ressaltar que um

mapa é um valor se, e somente se, ele mapeia de cadeia de caracteres (s) para valores de

um tipo arbitrário (v). De maneira semelhante, uma lista pode ser considerada um valor

se, e somente se, ambas cabeça (v: v) e cauda (v :v) também são valores. A notação x! na

definição de valor de mapa < s!/v > define que cada chave de um valor de mapa é única.

Um ambiente é uma estrutura de dados que abriga a associação entre atributos (ϑ)

e valores (v). São definidas duas operações sobre ambientes: consulta (∆JϑK) e extensão

(∆Jϑ/vK). A notação (∆JϑK) denota o valor associado ao atributo ϑ no ambiente ∆. A

notação (∆[ϑ1/v1ϑ2/v2ϑ3/v3...ϑn/vn] tal que n ≥ 1) denota a amarração de cada atributo

(ϑ1, ϑ2, ϑ3, ..., ϑn) ao seu respectivo valor (v1, v2, v3, ..., vn) no ambiente ∆.

v ::= true | false | i | s | ⟨s!/v⟩ | v : v | nil

∆ ::= ϑ!/v

Figura 3.7: Sintaxe abstrata de valor.
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A semântica operacional das PEGwSA será descrita em uma semântica big-step.

As regras que constituem a semântica big-step foram divididas em duas partições: uma

que trata expressões de atributos e outra que, empregando a primeira, trata expressões

de parsing.

O julgamento da partição que trata expressões de atributos tem a forma ∆ ⊢

e ⇒ v, que deve ser interpretada como: a expressão de atributos e quando avaliada no

ambiente ∆ produz o valor v. A Figura 3.8 apresenta a semântica big-step de literais,

construtores e referências a atributos. As expressões de atributos tratadas pelas regras

Booleano, Inteiro, Cadeia de Caracteres, Lista Vazia e Mapa Vazio são valores por si só

e, por isso, não possuem premissa.

∆ ⊢ b⇒ b
Booleano

∆ ⊢ i⇒ i
Inteiro

∆ ⊢ s⇒ s
Cadeia de caracteres

∆[ϑ] = v

∆ ⊢ ϑ⇒ v
Atributo

∆ ⊢ nil⇒ nil
Lista V azia

∆ ⊢ e1 ⇒ v1 ∆ ⊢ e2 ⇒ v2

∆ ⊢ e1 : e2 ⇒ v1 : v2
Lista

∆ ⊢ ⟨ ⟩ ⇒ ⟨ ⟩
Mapa V azio

∆ ⊢ put⟨e1/e′1 . . . en−1/e
′
n−1⟩ene′n ⇒ ⟨s/v

m

⟩

∆ ⊢ ⟨e1/e′1 . . . en−1/e
′
n−1en/e

′
n⟩ ⇒ ⟨s/v

m

⟩
Mapa

Figura 3.8: Semântica big-step de literais, construtores e referências a atributos.

A regra Atributo define que uma referência a um atributo é avaliada para o valor

ao qual ele (o atributo) está amarrado no ambiente de avaliação. A regra Lista só é

aplicável a listas compostas por um ou mais elementos. Essa regra define que uma lista

é avaliada para um valor lista, composto pelos valores para os quais cabeça e cauda da

lista original são avaliadas.

Por fim, a regraMapa, por sua vez, só é aplicável a mapas compostos por ao menos

um elemento. Essa regra tira proveito da semântica de put para tratar construtores de

mapas. Basicamente, o valor produzido pela avaliação de um mapa qualquer é constrúıdo

através de uma sucessão de inserções de pares chave-valor en/e
′
n. Se uma mesma chave

surgir mais de uma vez em uma mesma instância de construtor de mapa, a regra Mapa
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define que ela (a chave) deve ser amarrada ao valor que estiver mais à direita, ou seja, ao

valor “mais recente”.

∆ ⊢ e1 ⇒ i1 ∆ ⊢ e2 ⇒ i2 i = i1 ⊕ i2

∆ ⊢ e1 ⊕ e2 ⇒ i
Operação Binária

∆ ⊢ e1 ⇒ true ∆ ⊢ e2 ⇒ b

∆ ⊢ e1 ∧ e2 ⇒ b
Conjunção1

∆ ⊢ e1 ⇒ false

∆ ⊢ e1 ∧ e2 ⇒ false
¬ Conjunção1

∆ ⊢ e1 ⇒ true

∆ ⊢ e1 ∨ e2 ⇒ true
Disjunção1

∆ ⊢ e1 ⇒ false ∆ ⊢ e2 ⇒ b

∆ ⊢ e1 ∨ e2 ⇒ b
¬ Disjunção1

∆ ⊢ e⇒ false

∆ ⊢ ¬e⇒ true
Negação Lógica

∆ ⊢ e⇒ true

∆ ⊢ ¬e⇒ false
¬ Negação Lógica

∆ ⊢ e1 ⇒ v ∆ ⊢ e2 ⇒ v

∆ ⊢ e1 == e2 ⇒ true
Igualdade

∆ ⊢ e1 ⇒ v1 ∆ ⊢ e2 ⇒ v2 v1 ̸= v2

∆ ⊢ e1 == e2 ⇒ false
¬Igualdade

∆ ⊢ e1 ⇒ i1 ∆ ⊢ e2 ⇒ i2 i1 > i2

∆ ⊢ e1 > e2 ⇒ true
Maior que

∆ ⊢ e1 ⇒ i1 ∆ ⊢ e2 ⇒ i2 i1 ≤ i2

∆ ⊢ e1 > e2 ⇒ false
¬Maior que

Figura 3.9: Semântica big-step de operações aritméticas, lógicas e relacionais.

A Figura 3.9 apresenta a semântica das expressões de atributos. A Operação

Binária representa as quatro operações lógicas: adição, subtração, multiplicação e di-

visão. A Figura 3.10 conclui a apresentação da partição das expressões de atributos,

apresentando as regras que atuam sobre manipuladores de listas e mapas.

A regra Head define a semântica da operação de consulta à cabeça de lista (head),

enquanto a regra Tail define a semântica da operação de consulta à cauda de lista (tail).

Essas regras implicam que manipuladores de listas só podem ser aplicados a listas com-

postas por um ou mais elementos. Finalmente, são apresentadas as semânticas big-step

dos manipuladores de mapa responsáveis por consulta (get) e inserção (put) de elementos

em mapas.
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∆ ⊢ e⇒ v1 : v2

∆ ⊢ head e⇒ v1
Head

∆ ⊢ e⇒ v1 : v2

∆ ⊢ tail e⇒ v2
Tail

∆ ⊢ e1 ⇒ ⟨s!/v⟩ ∆ ⊢ e2 ⇒ s′ ⟨s/v⟩Js′K = v′

∆ ⊢ get e1 e2 ⇒ v′
Get

∆ ⊢ e1 ⇒ ⟨s!/v⟩ ∆ ⊢ e2 ⇒ s′ ∆ ⊢ e3 ⇒ v′

∆ ⊢ put e1 e2 e3 ⇒ ⟨s/v⟩[s′/v′]
Put

Figura 3.10: Semântica big-step de manipulações de listas e mapas.

Exemplo 3.3.1. O formato de arquivo de imagem Portable Network Graphics (PNG)

é uma estrutura de dados organizada da seguinte forma: 8 bytes que codificam uma

assinatura de formato, a qual corresponde, em ordem fixa, aos valores inteiros 137, 80, 78,

71, 13, 10, 26 e 10; em seguida, 4 bytes que representam um número natural n, indicando

o tamanho dos dados; depois, 4 bytes que codificam o tipo do bloco; na sequência, os

dados da imagem, constitúıdos por n bytes ; e, por fim, 4 bytes correspondentes ao código

de verificação CRC.

Nesse contexto, o parser precisa interpretar uma estrutura de dados composta

por múltiplos blocos, cada um contendo informações espećıficas e para processar correta-

mente um arquivo PNG, o parser deve identificar e analisar cada bloco na ordem correta,

validando sua integridade e extraindo as informações necessárias para reconstruir a ima-

gem sem perdas de qualidade. Dessa forma, pela dependência dos dados, a formalização

para um parser que interpreta um PNG não pode ser descrita por uma Gramática Livre

de Contexto (ZHANG; MORRISETT; TAN, 2023).

A Figura 3.11 apresenta uma formalização simplificada de uma PEGwSA, G3,

que incorpora a antecipação do tamanho dos dados antes dos dados propriamente ditos,

conforme a estrutura do PNG:

A regra Char caracteriza-se pela ausência de atributos herdados ou sintetizados,

tendo sua expressão de parsing conclúıda com sucesso ao reconhecer qualquer caractere.

A regra Digit, por sua vez, sintetiza o atributo digit, correspondente à representação

numérica da cadeia que denota um d́ıgito.

A regra Data, inicialmente, converte o primeiro caractere da cadeia para sua
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P/ () () ← Data () ()
Data/ () () ← Digit () (digit) • ( (? digit > 0) Char (digit = digit− 1)) ∗ (?digit == 0) !.
Char/ () () ← .

Digit/ () (digit) ← ‘0’ (digit = 0)
/ ‘1’ (digit = 1)
/ ‘2’ (digit = 2)
/ ‘3’ (digit = 3)
/ ‘4’ (digit = 4)
/ ‘5’ (digit = 5)
/ ‘6’ (digit = 6)
/ ‘7’ (digit = 7)
/ ‘8’ (digit = 8)
/ ‘9’ (digit = 9)

Figura 3.11: PEGwSA G3

forma numérica e, em seguida, por meio de uma constraint, verifica se o atributo digit,

sintetizado pelo não-terminal Digit, é maior que zero. Em caso afirmativo, a regra Char

é invocada; caso contrário, ocorre falha. Posteriormente, em caso de sucesso, a regra

Data atualiza o valor do atributo digit, decrementando-o em uma unidade. O conjunto

de operações responsável pelo consumo dos caracteres é reiterado emData em decorrência

do uso do operador *. Por fim, emprega-se uma nova constraint com o objetivo de validar

o valor do atributo digit. Caso esse valor seja diferente de 0, conclui-se que a regra Char

não conseguiu consumir a quantidade esperada de caracteres, caracterizando uma falha na

correspondência. Por outro lado, quando digit é igual a 0, garante-se que exatamente digit

caracteres foram consumidos com sucesso. A aplicação da negação do consumo de carac-

teres assegura, adicionalmente, que, após esse consumo, nenhum outro śımbolo da cadeia

de entrada seja aceito, mesmo que ainda existam śımbolos remanescentes, preservando

assim a correção do reconhecimento.

Já a regra P define a expressão de parsing inicial, responsável por iniciar o pro-

cesso de leitura dos dados.

Para a cadeia ‘3abc’, o processo de parsing tem ińıcio a partir da expressão

inicial P, considerando a entrada em sua totalidade. A regra P invoca a regra Data, cujo

primeiro comando consiste na chamada do não-terminal Digit, responsável por associar o

valor numérico 3 ao atributo digit por meio da leitura do caractere ‘3’. Esse passo sinaliza

ao parser que são esperados três caracteres subsequentes na entrada.

Em seguida, a regra Data passa a controlar a leitura dos três caracteres seguintes

por meio da repetição definida pelo operador *. A cada iteração, o valor do atributo digit
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é comparado com zero; caso seja maior que zero, a derivação prossegue com a invocação

do não-terminal Char, consumindo um novo caractere da entrada. Após essa operação,

o valor de digit é decrementado.

A regra Data é iniciada com n = 3 e, à medida que os caracteres da entrada são

processados pela regra Char, o valor de digit é sucessivamente reduzido, até que o parser

tenha consumido exatamente três caracteres após o d́ıgito inicial, tendo essa corretude

validada pela constraint final.



38

4 Máquina de Parsing para PEGwSA

A adoção da Máquina de Parsing como estratégia para a implementação de analisadores

sintáticos apresenta vantagens significativas, como a simplicidade na definição e manu-

tenção do analisador, além da eficiência no processamento das entradas. Neste contexto,

propõe-se a especificação de uma Máquina de Parsing direcionada à PEGwSA, articulada

a partir de uma fundamentação formal precisa e pasśıvel de reprodução.

4.1 Semântica da Máquina

A Máquina de Parsing para PEGwSA constitui uma extensão da Máquina de Parsing

para PEGs proposta por Ierusalimschy (2009). Formalmente, sua definição fundamenta-

se na caracterização de seu estado, o qual amplia a definição original a fim de possibilitar

a manipulação de atributos por meio da incorporação de duas novas componentes: a

memória e um registrador que aponta para o topo da pilha.

A memória é representada como uma lista de valores, os quais podem assumir

os tipos número natural, booleano ou lista. A arquitetura proposta incorpora esse com-

ponente de memória para viabilizar o acesso, a atualização e a recuperação dos valores

dos atributos, uma vez que o controle e a manipulação desses valores exclusivamente por

meio da pilha se mostram inviáveis, dada a natureza sequencial e restritiva desse tipo de

estrutura de dados.

O registrador sp guarda um número que aponta para o topo da pilha associada

à chamada de função corrente, desempenhando papel análogo ao de um stack pointer em

arquiteturas de baixo ńıvel, indicando a área de memória atual. Esse mecanismo permite

delimitar o contexto ativo de execução, facilitando o acesso aos dados locais e o controle

do fluxo durante chamadas e retornos de não-terminais. Tal organização é amplamente

adotada em linguagens de montagem e arquiteturas clássicas de processadores, nas quais

o uso expĺıcito de registradores para gerenciamento da pilha é fundamental para a imple-

mentação eficiente de chamadas de procedimento e escopo de variáveis (PATTERSON;



4.1 Semântica da Máquina 39

HENNESSY, 2017; AHO et al., 2008).

Assim, o estado de uma Máquina de Parsing é representado por uma qúıntupla

⟨pc, i, e, sp,M⟩, na qual pc denota o contador de programa, i indica o ı́ndice da posição

corrente na cadeia de entrada, e representa a pilha, sp corresponde ao ı́ndice da região de

memória ativa e M designa a memória.

A Máquina de Parsing para PEGwSA formalizada neste trabalho incorpora um

conjunto de operações e mecanismos voltados à manipulação de atributos. A sintaxe abs-

trata de uma PEGwSA tradicional é apresentada formalmente na Figura 3.6. Por sua vez,

a sintaxe abstrata da PEGwSA simplificada, adotada como base para o desenvolvimento

deste trabalho, encontra-se descrita na Figura 4.1, na qual se destacam, em vermelho, as

operações não contempladas pela PEGwSA atualmente formalizada, a saber: a estrutura

de mapas e suas respectivas operações, get e put, bem como a operação de bind.

τ ::= Bool | Integer | String | ⟨τ⟩ | [τ ] | τ → τ

e ::= true | false | i | s | ⟨e/e⟩ | e : e | nil | e+ e
| e− e | e× e | e÷ e | e == e | e > e | e ∧ e | e ∨ e | e++e
| ¬e | ϑ | get e e | put e e e | head e | tail e

p ::= p • p | p/p |!p | p∗ | N e ϑ | ϑ = p | ϑ← e
|?e | a | ε

G ::= N!/ϑ :: τ e→ p

Figura 4.1: Sintaxe abstrata das PEGwSA.

Além das instruções herdadas da definição da máquina proposta por Ierusalims-

chy (2009), a Máquina de Parsing para PEGwSA introduz novas instruções. A Figura

4.2 apresenta a semântica operacional da Máquina de Parsing para PEGwSA referente

às instruções Char, Any, Jump, Commit e Fail. Foi mantida a notação adotada por Ieru-

salimschy (2009), na qual o programa P e a entrada S são considerados impĺıcitos. Essas

instruções preservam a semântica originalmente definida para a Máquina de Parsing de

PEGs descrita em Ierusalimschy (2009). No entanto, os estados inicial e final passam

a incorporar as novas componentes M e sp, as quais permanecem inalteradas durante a

execução dessas instruções. Dessa forma, a introdução dessas componentes não implica

alterações na semântica original.
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Estado Inicial Instrução Estado final Condição

⟨pc, i, e, sp,M⟩ Charx−−−−→ ⟨pc+ 1, i+ 1, e, sp,M⟩ S[i] = x

⟨pc, i, e, sp,M⟩ Charx−−−→ Fail⟨e, sp,M⟩ S[i] ̸= x

⟨pc, i, e, sp,M⟩ Any−−→ ⟨pc+ 1, i+ 1, e, sp,M⟩ i+ 1 ≤ |S|
⟨pc, i, e, sp,M⟩ Any−−→ Fail⟨e, sp,M⟩ i+ 1 ≥ |S|
⟨pc, i, e, sp,M⟩ Jump l−−−−→ ⟨pc+ l, i, e, sp,M⟩

⟨pc, i, h : e, sp,M⟩ Commit l−−−−−→ ⟨pc+ l, i, e, sp,M⟩
⟨pc, i, e, sp,M⟩ Fail−−→ Fail⟨e, sp,M⟩

Fail⟨(pc : e), sp,M⟩ any−−→ Fail⟨e, sp,M⟩
Figura 4.2: Semântica Operacional da Máquina de Parsing para PEGwSA 1

A instrução Call, representada na Figura 4.3, é responsável por redirecionar o

fluxo de execução para outro ponto do programa, de maneira análoga a uma chamada de

função. Para isso, o contador de programa pc é incrementado pelo valor integer, indicando

o deslocamento relativo para a nova posição. Simultaneamente, o sp é atualizado de forma

a iniciar um novo escopo de memória, passando a apontar para a posição correspondente

ao tamanho corrente da memória, de modo a preservar os dados previamente armazenados.

Além disso, à pilha são adicionados, como na máquina tradicional, o valor de pc acrescido

de uma unidade, indicando o ponto de retorno da execução, e o valor atual de sp, que

permite restaurar o escopo de memória apropriado quando a chamada é finalizada.

Estado Inicial Instrução Estado final

⟨pc, i, e, sp,M⟩ Call l−−−→ ⟨pc+ l, i, (⟨pc+ 1, i⟩ : sp : e),M.lenght,M⟩
⟨pc0, i, (pc1 : e1 : ... : en : sp′ : e), sp,M⟩ Return n−−−−−→ ⟨pc1, i, (e1 : .. : en), sp′,M⟩

Figura 4.3: Semântica Operacional da Máquina de Parsing para PEGwSA 2

A instrução Return, ilustrada na Figura 4.3, modela o retorno de uma chamada

ao encerrar o escopo corrente de execução e restaurar o contexto previamente ativo. Di-

ferentemente da instrução homônima definida em Ierusalimschy (2009), essa operação é

parametrizada por um valor natural, o qual indica a quantidade de elementos da pilha

que devem ser retornados à chamada atual, indicando os atributos sintetizados. O valor

n corresponde aos n primeiros elementos da pilha, isto é, aos n parâmetros de retorno da

função invocada pela instrução Call l. A execução da instrução Return promove, assim,

a restauração do contexto de execução previamente salvo. Para tanto, a pilha é particio-
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nada, em função de n, de modo a recuperar o valor do contador de programa armazenado

no momento da chamada, que determina o ponto para o qual a execução deve retornar,

bem como o valor anterior do sp, responsável por delimitar o escopo de memória do cha-

mador. O fluxo de execução é então redirecionado para o ponto imediatamente posterior

à chamada por meio da atualização do contador de programa, cujo deslocamento é calcu-

lado relativamente à posição corrente, garantindo a continuidade adequada da execução.

Ao longo desse processo, a cadeia de entrada e o conteúdo da memória M permanecem

inalterados, uma vez que a instrução de retorno não interfere diretamente na leitura da

entrada nem na manipulação de atributos consolidados fora do escopo local.

A instrução Choice l, definida na Figura 4.4, é responsável por delimitar o escopo

de execução de uma escolha ordenada. Essa instrução empilha uma quádrupla composta

pelo valor do contador de programa pc acrescido de l, que indica o ponto para o qual o

fluxo de execução deve retornar em caso de backtracking, bem como pelo valor do ı́ndice

de entrada i, necessário para a restauração da posição de leitura. Adicionalmente, os

valores de sp e da memória M também são empilhados, possibilitando a recuperação do

escopo correto de memória quando ocorre o backtracking.

Estado Inicial Instrução Estado final

⟨pc, i, e, sp,M⟩ Choice l−−−−→ ⟨pc+ 1, i, (⟨pc+ l, i, sp,M⟩ : e), sp,M⟩
Figura 4.4: Semântica Operacional da Máquina de Parsing para PEGwSA 3

A Figura 4.5 apresenta a instrução Load que transfere para o topo da pilha o

valor armazenado na posição sp + l. Dessa forma, o acesso é realizado no contexto do

escopo atual de execução, exigindo que a posição calculada seja um ı́ndice válido no

domı́nio de M ; caso contrário, a execução falha. De maneira análoga, a instrução Store

remove o valor do topo da pilha e o armazena na posição sp+ l da memória, assegurando

que a escrita ocorra no escopo corrente. As instruções Pop e Push retiram e empilham,

respectivamente, um valor no topo da pilha, não alterando outros parâmetros.

Para manipular atributos do tipo número natural, definem-se as instruções aritméticas

Add, Sub, Mult e Div, descritas na Figura 4.6. Cada uma remove os dois valores supe-

riores da pilha (n1 e n2, respectivamente), aplica a operação correspondente e empilha o

resultado, falhando caso os operandos não sejam inteiros. Para Div, exige-se adicional-
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Estado Inicial Instrução Estado final Condição

⟨pc, i, e, sp,M⟩ Load l−−−→ ⟨pc+ 1, i, (M [sp+ l] : e), sp,M⟩ sp+ l ∈ dom(M)

⟨pc, i, (value : e), sp,M⟩ Store l−−−−→ ⟨pc+ 1, i, e, sp, [sp+ l = value]M⟩
⟨pc, i, (v : e), sp,M⟩ Pop−−→ ⟨pc+ 1, i, e, sp,M⟩

⟨pc, i, e, sp,M⟩ Push v−−−−→ ⟨pc+ 1, i, (v : e), sp,M⟩

Figura 4.5: Semântica Operacional da Máquina de Parsing para PEGwSA 4

mente que n1 ̸= 0. As instruções Eq e Lt retiram igualmente os dois valores superiores,

empilhando um booleano que indica, respectivamente, se value1 = value2 ou se n1 < n2,

falhando quando os operandos não são inteiros em Lt.

Estado Inicial Instrução Estado final Condição

⟨pc, i, (n1 : n2 : e), sp,M⟩
Add−−→ ⟨pc+ 1, i, (n1 + n2 : e), sp,M⟩ n ∈ Z

⟨pc, i, (n1 : n2 : e), sp,M⟩
Sub−−→ ⟨pc+ 1, i, (n2 − n1 : e), sp,M⟩ n ∈ Z

⟨pc, i, (n1 : n2 : e), sp,M⟩
Mult−−−→ ⟨pc+ 1, i, (n2 ∗ n1 : e), sp,M⟩ n ∈ Z

⟨pc, i, (n1 : n2 : e), sp,M⟩
Div−−→ ⟨pc+ 1, i, (n2/n1 : e), sp,M⟩ n ∈ Z e n1 ̸= 0

⟨pc, i, (value1 : value2 : e), sp,M⟩
Eq−→ ⟨pc+ 1, i, (value1 == value2 : e), sp,M⟩

⟨pc, i, (n1 : n2 : e), sp,M⟩
Lt−→ ⟨pc+ 1, i, (n1 > n2 : e), sp,M⟩ n inteiro

Figura 4.6: Semântica Operacional da Máquina de Parsing para PEGwSA 5

Para atributos booleanos, definem-se as instruções lógicas And, Or e Not, ilus-

tradas na Figura 4.7. As instruções And e Or retiram os dois valores superiores da pilha

(b1 e b2), aplicam a operação lógica correspondente e empilham o resultado booleano,

falhando caso os operandos não sejam booleanos. A instrução Not retira o valor superior

(b), aplica a negação lógica e empilha o resultado, falhando caso não seja booleano. A

instrução Assert verifica se o valor no topo da pilha é o booleano verdadeiro, prosseguindo

com sucesso nessa condição, no caso contrário, ocorre uma falha.

Estado Inicial Instrução Estado final Condição

⟨pc, i, (b1 : b2 : e), sp,M⟩
And−−→ ⟨pc+ 1, i, (b1& b2 : e), sp,M⟩ b1 e b2 booleanos

⟨pc, i, (b1 : b2 : e), sp,M⟩
Or−→ ⟨pc+ 1, i, (b1∥ b2 : e), sp,M⟩ b1 e b2 booleanos

⟨pc, i, (b : e), sp,M⟩ Not−−→ ⟨pc+ 1, i, (!b : e), sp,M⟩ b é booleano

⟨pc, i, (#t : e), sp,M⟩ Assert−−−→ ⟨pc+ 1, i, e, sp,M⟩ b booleano

⟨pc, i, (#f : e), sp,M⟩ Assert−−−→ Fail⟨e, sp,M⟩

Figura 4.7: Semântica Operacional da Máquina de Parsing para PEGwSA 6

As instruções de manipulação de listas da máquina operam diretamente sobre

a pilha e está descritas em 4.8. A instrução Concat consome as duas listas do topo da

pilha, concatena-as e empilha a lista resultante, falhando caso algum dos operandos não
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seja uma lista. As instruções Head e Tail extraem, respectivamente, a cabeça e a cauda

da lista no topo da pilha, empilhando o resultado e falhando quando o valor no topo não

é uma lista. Por fim, a instrução Cons toma o valor no topo da pilha e o insere na cabeça

da lista presente na posição imediatamente inferior, empilhando a nova lista constrúıda e

falhando se esse segundo elemento não for uma lista.

Estado Inicial Instrução Estado final Condição

⟨pc, i, (l1 : l2 : e), sp,M⟩
Concat−−−−→ ⟨pc+ 1, i, (l1 ++ l2 : e), sp,M⟩ l1e l2 listas

⟨pc, i, ((x : xs) : e), sp,M⟩ Head−−−→ ⟨pc+ 1, i, (x : e), sp,M⟩
⟨pc, i, ((x : xs) : e), sp,M⟩ Tail−−→ ⟨pc+ 1, i, (xs : e), sp,M⟩
⟨pc, i, (value : l : e), sp,M⟩ Cons−−−→ ⟨pc+ 1, i, ((value : l) : e), sp,M⟩ l lista

Figura 4.8: Semântica Operacional da Máquina de Parsing para PEGwSA 7

A Figura 4.9 apresenta a semântica da instrução no caso em que o estado inicial

corresponde a um Fail com uma quádrupla no topo da pilha. Essa quádrupla representa

um ponto de backtracking a ser restaurado, especificando os valores de pc e i para o novo

estado, bem como restabelecendo o valor de sp e o conteúdo da memória, de modo a

recuperar o escopo de execução apropriado.

Estado Inicial Instrução Estado final Condição

Fail⟨((pc, i, spr1,M1) : e), sp,M⟩
any−−→ ⟨pc, i, e, sp1,M1⟩

Figura 4.9: Semântica Operacional da Máquina de Parsing para PEGwSA 8

4.2 Compilando para PEGwSA

Nesta seção, com fins ilustrativos, apresenta-se o processo de tradução de alguns padrões

em programas para a Máquina de Parsing.

4.2.1 Definição

Uma definição genérica A(v1, ..., vn)(w1, ..., wm) ← ⟨ea⟩ de um não-terminal é traduzida

para o programa definido em 4.10.

Na definição de um não-terminal A, o procedimento inicial consiste no armazena-

mento em memória dos atributos v1, ..., vn, caracterizados como atributos herdados, isto
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1 Store <Addr v_1 >

2 ...

3 Store <Addr v_n >

4 <e_a >

5 <w_1 >

6 ...

7 <w_m >

8 Return m

Figura 4.10: Código para definição

é, valores recebidos que serão empregados durante a computação da expressão de parsing

do não-terminal. A instrução Store executa esta etapa, inserindo o valor do atributo

na posição espećıfica da memória. Posteriormente ao armazenamento desses valores, as

instruções relativas à computação da expressão de parsing ea são seguidas pelas instruções

responsáveis pela sintetização e inserção na pilha dos atributos sintetizados w1, ..., wm. A

última instrução do programa referente à definição constitui-se da instrução Return m,

encarregada de restaurar o programa ao fluxo original subsequente à chamada do não-

terminal. O valor natural m que acompanha a instrução indica a quantidade de retornos

sintetizados pelo não-terminal que se encontram armazenados na pilha.

4.2.2 Constraint

Uma constraint (?e) é traduzida para o programa definido em 4.11.

1 <e>

2 Assert

Figura 4.11: Código para constraint

Após a computação das instruções referente a expressão de parsing e, a instrução

Assert verifica se o topo da pilha corresponde ao valor booleano true. Caso a verificação

seja positiva, a execução prossegue para a instrução subsequente; caso contrário, ocorre

falha. Este comportamento modela precisamente o caráter de condição imposto pela

operação constraint.

4.2.3 Update

Um update (vi = ⟨e⟩) é traduzida para o programa definido em 4.12.
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1 <e>

2 Store <Addr v_i >

Figura 4.12: Código para update

Posteriormente à computação das instruções referentes à expressão de parsing

e, a instrução Store insere na memória o novo valor sintetizado. Este comportamento

modela a atualização do atributo.

4.2.4 Chamada de não-terminal

A chamada de um não-terminal A(v1, ..., vn)(w1, ..., wm) é traduzida para o programa

definido em 4.13.

1 <v_n >

2 ...

3 <v_1 >

4 Call "A"

5 Store <Addr w_m >

6 ...

7 Store <Addr w_1 >

Figura 4.13: Código para chamada de não-terminal

A chamada de um não-terminal é representada pela instrução Call, a qual redi-

reciona o fluxo de execução para um novo ponto do programa, de forma análoga a uma

chamada de função. Para tal, o contador de programa é atualizado com o valor da linha

indicada pela label A, linha do programa que representa a computação do não-terminal

A. Simultaneamente, o registrador sp é ajustado de modo a iniciar um novo escopo de

memória, passando a apontar para a posição correspondente ao tamanho corrente da

memória. Esta atualização efetivamente isola o escopo de memória em uso e inicia um

novo escopo a partir da próxima posição dispońıvel, determinada pelo próprio tamanho

da memória.

Adicionalmente, são empilhados, conforme a definição da máquina tradicional, o

valor do contador de programa pc acrescido de uma unidade, que indica o ponto de retorno

da execução após a conclusão da chamada, bem como o valor corrente do registrador sp,

o qual permite a restauração do escopo de memória apropriado ao término da chamada.

Quando há a noção de passagem de parâmetros para o não-terminal invocado, os n valores
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correspondentes aos parâmetros são sintetizados e empilhados, de modo a possibilitar sua

utilização durante a execução da chamada.

Após a execução da instrução Call, as instruções Store asseguram que, pos-

teriormente ao retorno da chamada de não-terminal realizada pelo Call, os atributos

sintetizados pelo não-terminal sejam atualizados na memória de acordo com os valores

empilhados e o valor de m.

4.2.5 Escolha ordenada

A escolha ordenada e1/e2 é traduzida para o programa definido em 4.14.

1 Choice "L1"

2 <e_1 >

3 Commit "L2"

4 "L1": <e_2 >

5 "L2": ...

Figura 4.14: Código para escolha ordenada

O programa inicia salvando o estado corrente da máquina por meio da instrução

Choice, a qual empilha uma quádrupla composta pelos valores pc + l, pelo ı́ndice i da

entrada, pelo registrador sp e pela memória M. O armazenamento dessas informações é

essencial para possibilitar a restauração completa do estado da Máquina em caso de falha

da primeira alternativa da escolha ordenada. Diferentemente da instrução homônima defi-

nida em Ierusalimschy (2009), a instrução Choice passa a incluir explicitamente a memória

e o registrador sp na pilha. Essa extensão é necessária para garantir a recuperação do

escopo correto de memória, uma vez que a alternativa ⟨e1⟩ pode realizar modificações no

estado da memória antes de falhar; nesse caso, tais modificações devem ser devidamente

revertidas durante o processo de backtracking.

Após a execução da instrução Choice, o programa prossegue com as instruções

correspondentes a ⟨e1⟩, expressão de parsing associada à primeira alternativa da escolha

ordenada. Caso ⟨e1⟩ seja bem-sucedida e a execução se complete sem falhas, a instrução

Commit L2 é então acionada, removendo da pilha o estado previamente salvo e desviando

o fluxo de execução para o final do padrão, identificado pela label L2.

A instrução Commit tem por finalidade consolidar a escolha realizada, indicando
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que todas as instruções relativas a ⟨e1⟩ foram executadas com sucesso e que a primeira

alternativa foi selecionada. Para tanto, essa instrução descarta a quádrupla empilhada

pela instrução Choice. Além disso, o Commit é parametrizado por um valor natural, que

especifica o endereço para o qual o fluxo de execução deve ser redirecionado, permitindo

ignorar integralmente o escopo associado à alternativa ⟨e2⟩.

Caso ⟨e1⟩ falhe, a avaliação prossegue para a segunda alternativa da escolha

ordenada. Para isso, a máquina realiza o processo de backtracking, restaurando o estado

previamente salvo pela instrução Choice e redirecionando o fluxo de execução para a label

L1, cujo endereço foi determinado a partir do valor sp+ l associado à referida instrução.

Nesse ponto, a expressão ⟨e2⟩ é então avaliada. Se ⟨e2⟩ também resultar em falha, toda

a escolha ordenada é considerada mal-sucedida, uma vez que não existem alternativas

adicionais registradas na pilha. Por outro lado, caso a segunda alternativa seja bem-

sucedida, a execução alcança a instrução identificada pela label L2, encerrando-se, assim,

o escopo da escolha ordenada.
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5 Formalização de PEGwSA em PLT Redex

Para a formalização, foi utilizada a ferramenta PLT Redex. A formalização completa

encontra-se dispońıvel no repositório https://github.com/lives-group/PEGwSA-parsing-

machine. Este caṕıtulo concentra-se nos aspectos mais relevantes da formalização em PLT

Redex.

5.1 Definição da linguagem

O primeiro passo desse processo consiste na modelagem da linguagem da Máquina. Con-

forme mencionado anteriormente, o PLT Redex disponibiliza a função define-language

para a realização dessa tarefa. A Figura 5.1 apresenta a definição formal dessa linguagem.

1 (define -language ParsingMachineLanguage

2
3 [I ::= Any

4 Fail

5 (Char natural)

6 (Choice integer) (Commit integer)

7 (Jump integer)

8 (Call integer) (Return natural)

9 (Load natural) (Store natural)

10 (Push Value) Pop

11 Add Sub Mult Div Eq Lt

12 And Or Not

13 Head Tail Cons Concat

14 Assert

15 Halt])

Figura 5.1: Especificação em PLT Redex da Linguagem da Máquina de Parsing para
PEGwSA

Essa definição estabelece que o não-terminal I pode assumir a forma de uma ins-

trução pertencente a um conjunto, cujos elementos correspondem às instruções homônimas

definidas pela semântica. A utilização dessas instruções torna-se mais evidente no con-

texto da descrição das reduções.

https://github.com/lives-group/PEGwSA-parsing-machine
https://github.com/lives-group/PEGwSA-parsing-machine
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5.2 Representação do Programa e da Entrada

Na Máquina de Parsing descrita por Ierusalimschy (2009), o programa P e a entrada S

são tratados como impĺıcitos na descrição semântica. No entanto, para viabilizar a leitura

do programa e o consumo da entrada, torna-se necessário que ambos sejam explicitamente

incorporados ao estado da máquina.

O não-terminal Program, representa o programa de entrada, isto é, o programa

que descreve a PEGwSA através das instruções. Esse programa é modelado como uma

lista composta por duas sublistas, que representam, respectivamente, a sequência de ins-

truções já processadas e a sequência de instruções ainda não processadas. Por definição,

a instrução corrente corresponde à cabeça da segunda sublista.

De forma análoga, o não-terminal Input segue a mesma estrutura, sendo repre-

sentado por uma lista composta por duas sublistas: a primeira corresponde à sequência de

números naturais que já foram lidos da entrada, enquanto a segunda representa a porção

da entrada que ainda deve ser consumida. Por definição, a posição atual de leitura da

entrada é determinada pela cabeça da segunda sublista.

1 (define -language ParsingMachineLanguage

2
3 [Program ::= ((I ...) (I ...))]

4
5 [Input ::= (( natural ...) (natural ...))])

Figura 5.2: Especificação em PLT Redex da Linguagem da Máquina de Parsing para
PEGwSA

5.3 Valores dos Atributos

O não-terminal Value, descrito na Figura 5.3, representa o conjunto de valores aceitos no

contexto da Máquina. Esse não-terminal pode assumir valores do tipo número natural,

booleano ou lista. Além disso, Value é utilizado para definir os valores permitidos nas

demais estruturas da linguagem.

O não-terminal List, ilustrado na Figura 5.3, por sua vez, define o valores lista, o

qual pode ser vazio, representado pelo terminal nil, ou uma lista constrúıda pelo terminal

cons contendo o valor da cabeça e a cauda da lista.
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1 (define -language ParsingMachineLanguage

2
3 [Value ::= natural

4 boolean

5 List]

6
7 [List ::= nill

8 (cons Value List)])

Figura 5.3: Especificação em PLT Redex da Linguagem da Máquina de Parsing para
PEGwSA

5.4 Definição da pilha

O não-terminal Stack define a estrutura de pilha, a qual é modelada como uma lista de

elementos do tipo StackEntry. Esses elementos representam os tipos de valores admitidos

na pilha, podendo corresponder a um número natural ou a uma tupla de números naturais,

utilizados no tratamento do backtracking, bem como a uma entrada do tipo Value ou a

uma memória, estruturas destinadas à manipulação de atributos. Além disso, admite-se

ainda uma lista do próprio tipo StackEntry.

1 (define -language ParsingMachineLanguage

2
3 [Stack ::= (StackEntry ...)]

4 [StackEntry ::= natural

5 (natural natural)

6 (StackEntry ...)

7 Value

8 M])

Figura 5.4: Especificação em PLT Redex da Linguagem da Máquina de Parsing para
PEGwSA

5.5 Representação da Memória

A memória, ilustrada na Figura 5.5, é modelada pelo não-terminal M, o qual representa

uma lista de entradas do tipo Value. O endereço de memória associado a cada atributo

é definido pelo desenvolvedor no momento da construção do programa de instruções, de

modo que, durante a execução, a posição correspondente a cada atributo é previamente

conhecida quando se faz necessário acessá-lo. O registrador SPR, por sua vez, é represen-

tado por um número natural.
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A organização da memória inspira-se em arquiteturas de mais baixo ńıvel, nas

quais o registrador sp desempenha um papel análogo ao de um stack pointer, sendo

responsável por indicar a região de memória atualmente ativa. Esse mecanismo permite

delimitar o contexto de execução corrente, facilitando o acesso a dados locais e o controle

do fluxo de execução durante chamadas e retornos de não-terminais.

1 (define -language ParsingMachineLanguage

2
3 [M ::= (Value ...)]

4 [SPR ::= natural ])

Figura 5.5: Especificação em PLT Redex da Linguagem da Máquina de Parsing para
PEGwSA

5.6 Semântica

Com o propósito de definir a semântica da linguagem, utiliza-se a função reduction-

relation para especificar o conjunto de regras de reescrita, as quais determinam como

um termo deve ser transformado nessa linguagem. A cláusula :domain é utilizada para

especificar o conjunto de configurações válidas sobre as quais a relação de redução está

definida. Em outras palavras, ela determina a forma geral dos estados da máquina que

podem participar das transições descritas pela semântica operacional.

No caso da Máquina de Parsing apresentada, o domı́nio é definido como uma

tupla composta por sete elementos: o resultado da execução (R), o programa (Program),

a entrada (Input), o contador de programa (natural), o ı́ndice da entrada (natural), a

pilha de execução (Stack) e a memória (M). Essa definição explicita a estrutura completa

de um estado da máquina, garantindo que cada regra de redução opere apenas sobre

configurações bem-formadas.

As reduções mais relevantes para o desenvolvimento e a compreensão deste tra-

balho foram distribúıdas em figuras distintas, com o objetivo de facilitar sua visualização;

contudo, todas essas regras compõem um único programa semântico.

A Figura 5.6 apresenta a redução denominada ‘‘choice-match’’. Essa redução

estabelece que, quando a instrução corrente. ou seja, a instrução localizada na cabeça

da segunda lista, corresponde a um comando Choice seguido de um número inteiro, o
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programa é transformado da seguinte forma: a instrução consumida é movida para a

cauda da primeira lista, o ı́ndice pc é incrementado em uma unidade, indicando que a

próxima instrução a ser lida é a subsequente, e a entrada permanece inalterada.

1 (define PM

2 (reduction -relation

3 ParsingMachineLanguage

4 #: domain (R Program Input natural natural Stack M)

5
6 (--> (suc

7 ((I_1 ...) (( Choice integer) I_2 ...))

8 Input

9 natural_pc

10 natural_i

11 (StackEntry ...)

12 SPR

13 M)

14
15 (suc

16 ((I_1 ... (Choice integer)) (I_2 ...))

17 Input

18 ,(+ (term natural_pc) 1)

19 natural_i

20 ((,(+ (term natural_pc) (term integer)) natural_i

21 SPR ,(drop (term M) (term SPR)) ) StackEntry ...)

22 SPR

23 M)

24 "choice -match")))

Figura 5.6: Relação de redução da instrução Choice da Máquina de Parsing para
PEGwSA

Além disso, uma quádrupla é empilhada no topo da pilha, na qual o primeiro

número natural corresponde à soma do valor corrente do contador de programa pc com

o deslocamento especificado pelo número inteiro fornecido. O segundo elemento da

quádrupla é um número natural que representa o ı́ndice i, indicando a posição atual

da entrada. Os dois elementos restantes correspondem ao valor corrente do registrador sp

e à memória.

Na implementação, a memória não é armazenada de forma integral. Em vez disso,

ela é particionada por meio da função drop, a qual remove da memória M os primeiros

SPR elementos, preservando apenas o sufixo restante. Essa redução tem por finalidade

registrar o estado de retorno necessário ao mecanismo de backtracking, especificando tanto

o ponto do programa para o qual a execução deve retornar quanto a posição da entrada

a partir da qual o processamento deve ser retomado, bem como os valores do registrador
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sp e da partição da memória M correspondentes ao escopo ativo.

A redução call-match, ilustrada da Figura 5.7, caracteriza o comportamento

semântico quando a instrução corrente corresponde a um comando Call integer. Essa

instrução é responsável por alterar o fluxo do programa, operação modelada pela função

auxiliar move-program, que recebe como parâmetros uma estrutura do tipo Program e

um número inteiro integer, produzindo um novo Program resultante do deslocamento

de integer posições ao longo das listas que compõem o programa. Esse deslocamento

pode ser positivo ou negativo, indicando, respectivamente, avanço ou retrocesso no fluxo

de execução.

1 (define PM

2 (reduction -relation

3 ParsingMachineLanguage

4 #: domain (R Program Input natural natural Stack M)

5
6 (--> (suc ((I_1 ...) ((Call integer) I_2 ...))

7 Input

8 natural_pc

9 natural_i

10 (StackEntry ...)

11 SPR

12 M)

13
14 (suc

15 (moveProgram ((I_1 ...) ((Call integer) I_2 ...)) integer)

16 Input

17 ,(+ (term natural_pc) (term integer))

18 natural_i

19 (,(+ (term natural_pc) 1) SPR StackEntry ...)

20 ,(length (term M))

21 M)

22 "call -match")))

Figura 5.7: Relação de redução da instrução Call da Máquina de Parsing para PEGwSA

No contexto da redução, o valor do contador de programa pc é atualizado pela

soma com o valor integer, refletindo o desvio expĺıcito no fluxo de execução. Simul-

taneamente, a pilha é estendida com dois valores: o endereço da próxima instrução a

ser executada após o retorno da chamada, correspondente ao valor de pc acrescido de

uma unidade, e o valor corrente do sp, que permite a posterior restauração do escopo de

memória. Além disso, o sp é atualizado para o tamanho atual da memória, passando a

delimitar um novo escopo de memória associado à chamada. Ao longo da execução dessa

instrução, a cadeia de entrada e o conteúdo da memória M permanecem inalterados.



5.6 Semântica 54

Dessa forma, a instrução Call modela a chamada a um novo ponto do programa, pro-

movendo o desvio do fluxo de execução e registrando, tanto o ponto de retorno quanto o

contexto de memória anterior, de modo a garantir a correta restauração do estado quando

da execução da instrução de retorno.

A redução load, ilustrada na Figura 5.8, é aplicada quando a instrução localizada

na cabeça da segunda lista do programa corresponde a um comando Load natural. Essa

redução promove o avanço do fluxo de execução por meio do incremento do valor de pc em

uma unidade e insere, no topo da pilha, o valor armazenado na memória. Diferentemente

de um acesso absoluto, a posição efetiva da memória é calculada como um deslocamento

relativo ao valor corrente do sp, que delimita o escopo de memória ativo. Assim, o valor é

obtido na posição natural + sp. Para viabilizar essa operação, utiliza-se a função auxi-

liar readMem, a qual recebe como parâmetros um valor do tipo natural e uma memória

M, retornando a estrutura do tipo Value armazenada no ı́ndice correspondente.

1 (define PM

2 (reduction -relation

3 ParsingMachineLanguage

4 #: domain (R Program Input natural natural Stack M)

5
6 (--> (suc ((I_1 ...) ((Load natural) I_2 ...))

7 Input

8 natural_pc

9 natural_i

10 (StackEntry ...)

11 SPR

12 M)

13
14 (suc ((I_1 ... (Load natural)) ( I_2 ...))

15 Input

16 ,(+ (term natural_pc) 1)

17 natural_i

18 (( readMem ,(+ (term natural) (term SPR)) M)

19 StackEntry ...)

20 SPR

21 M)

22 "load")))

Figura 5.8: Relação de redução da instrução Load da Máquina de Parsing para PEGwSA

A redução store, ilustrada na Figura 5.9, altera o fluxo de execução, incremen-

tando o valor de pc em uma unidade. Nessa redução, o valor localizado no topo da pilha,

representado por V alue1, é removido e armazenado na memória. O acesso à memória é

realizado de forma relativa ao escopo corrente, utilizando o deslocamento natural + sp
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para determinar a posição efetiva de escrita. Essa atualização é realizada por meio da

função auxiliar writeMem, que recebe como parâmetros um valor do tipo natural, uma

estrutura do tipo Value e uma memória M, produzindo uma nova memória na qual o valor

V alue1 é armazenado na posição natural + sp.

1 (define PM

2 (reduction -relation

3 ParsingMachineLanguage

4 #: domain (R Program Input natural natural Stack M)

5
6 (--> (suc ((I_1 ...) (( Store natural) I_2 ...))

7 Input

8 natural_pc

9 natural_i

10 (Value_1 StackEntry ...)

11 SPR

12 M)

13
14 (suc ((I_1 ... (Store natural)) ( I_2 ...))

15 Input

16 ,(+ (term natural_pc) 1)

17 natural_i

18 (StackEntry ...)

19 SPR

20 (writeMem ,(+ (term natural) (term SPR)) Value_1 M))

21 "store")))

Figura 5.9: Relação de redução da instrução Store da Máquina de Parsing para PEGwSA

A Figura 5.10 ilustra a redução add, a qual, além de promover o avanço no fluxo

de execução do programa, remove os dois valores posicionados no topo da pilha, realiza

a operação de soma entre eles e empilha o resultado obtido. As demais operações defi-

nidas sobre pares de atributos numéricos, booleanos e listas apresentam comportamento

análogo, diferindo apenas no tipo de operação aplicada, sendo que suas respectivas imple-

mentações podem ser consultadas em https://github.com/lives-group/PEGwSA-parsing-

machine.

A redução associada à instrução Return, apresentada na Figura 5.11, modela o

mecanismo de retorno de um procedimento, sendo responsável por restaurar corretamente

o contexto de execução previamente armazenado na pilha. Essa redução é aplicada quando

a instrução corrente, localizada na cabeça da segunda lista do programa, corresponde a

um comando Return naturaln. O valor naturaln indica a quantidade de entradas da

pilha que foram sintetizadas e que devem ser disponibilizadas ao contexto responsável

https://github.com/lives-group/PEGwSA-parsing-machine
https://github.com/lives-group/PEGwSA-parsing-machine
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1 (define PM

2 (reduction -relation

3 ParsingMachineLanguage

4 #: domain (R Program Input natural natural Stack M)

5
6 (--> (suc ((I_1 ...) (Add I_2 ...))

7 Input

8 natural_pc

9 natural_i

10 (natural_1 natural_2 StackEntry ...)

11 SPR

12 M)

13
14 (suc ((I_1 ... Add ) ( I_2 ...))

15 Input

16 ,(+ (term natural_pc) 1)

17 natural_i

18 (,(+ (term natural_1) (term natural_2)) StackEntry ...)

19 SPR

20 M)

21 "add")))

Figura 5.10: Relação de redução da instrução Add da Máquina de Parsing para PEGwSA

pela chamada do procedimento.

A redução return-match altera explicitamente o contador de programa. O novo

valor de pc, denotado por natural pc1, é recuperado diretamente da pilha de execução,

juntamente com o valor atualizado do registrador de ponteiro de escopo, SPR 1. Esses

valores correspondem ao contexto previamente salvo no momento da chamada do proce-

dimento. A reorganização da pilha é realizada por meio da função auxiliar splitStack,

a qual recebe como parâmetros o valor natural n e a pilha corrente (StackEntry ...).

Como resultado, essa função particiona a pilha em três segmentos: o primeiro, repre-

sentado por (StackEntry 1 . . . ), corresponde às entradas que permanecem ativas após

o retorno; o segundo segmento contém explicitamente os valores natural pc1 e SPR 1,

responsáveis por restaurar o fluxo de execução e o escopo; por fim, o terceiro segmento,

denotado por (StackEntry 3 . . . ), representa os valores sintetizados, associadas ao am-

biente local do procedimento encerrado. Após a aplicação da redução, o programa é

reposicionado por meio da função moveProgram, que ajusta o fluxo de execução de acordo

com o valor restaurado do contador de programa. A pilha passa a conter apenas as entra-

das relevantes ao contexto anterior, o valor do sp é atualizado para SPR 1, e a memória

M permanece inalterada. Dessa forma, a instrução Return garante a correta restauração
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1 (define PM

2 (reduction -relation

3 ParsingMachineLanguage

4 #: domain (R Program Input natural natural Stack M)

5
6 (--> (suc ((I_1 ...) (( Return natural_n) I_2 ...))

7 Input

8 natural_pc0

9 natural_i

10 (StackEntry ...)

11 SPR

12 M)

13
14 (suc

15 (moveProgram ((I_1 ...) (( Return natural_n) I_2 ...)) ,(- (term

natural_pc1) (term natural_pc0)))

16 Input

17 natural_pc1

18 natural_i

19 (StackEntry_1 ... StackEntry_3 ...)

20 SPR_1

21 M)

22
23 (where (( StackEntry_1 ...) (natural_pc1 SPR_1 StackEntry_3 ...))

(splitStack natural_n (StackEntry ...)))

24 "return -match")))

Figura 5.11: Relação de redução da instrução Return da Máquina de Parsing para
PEGwSA

do estado de execução, assegurando a continuidade do programa no ponto imediatamente

posterior à chamada do procedimento.

A redução responsável pelo mecanismo de backtracking é apresentada na Figura

5.12. Essa redução é aplicada a um termo cujo estado indica falha e tem como obje-

tivo restaurar a máquina a um estado consistente, a partir de informações previamente

armazenadas. Sua aplicação ocorre quando o topo da pilha contém uma quádrupla com-

posta por três números naturais e uma estrutura de memória. Tal quádrupla é empilhada

pela instrução Choice, sendo utilizada para registrar o contexto necessário à retomada da

execução em caso de insucesso de uma escolha ordenada.

Quando uma falha é detectada — isto é, quando a primeira alternativa de uma

escolha ordenada não é bem-sucedida — a máquina, por meio da redução fail-restore,

retorna ao escopo previamente salvo pela instrução Choice. O programa é reposicionado

com o aux́ılio da função auxiliar moveProgram, de modo a alcançar o deslocamento cor-

respondente a natural newPC - natural pc, em que natural newPC representa o valor
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do contador de programa armazenado na quádrupla. De maneira análoga, a entrada

é ajustada pela função moveInput, passando a refletir o deslocamento natural newI -

natural i.

Adicionalmente, os valores de pc e i são atualizados com os valores recuperados

da pilha, efetivando o retorno tanto no fluxo do programa quanto na posição da entrada,

revertendo, assim, os efeitos das instruções que conduziram ao estado de falha. O re-

gistrador sp também é restaurado a partir do valor armazenado na quádrupla. Por fim,

a memória é reconstrúıda por meio da função mcopy, a qual gera uma nova memória a

partir da cópia seletiva das memórias envolvidas, controlada por um número natural que

determina quantos elementos iniciais da primeira memória devem ser preservados antes

que a cópia passe a considerar a segunda.

1 (define PM

2 (reduction -relation

3 ParsingMachineLanguage

4 #: domain (R Program Input natural natural Stack M)

5
6 (--> (fail

7 Program

8 Input

9 natural_pc

10 natural_i

11 (( natural_newPC natural_newI SPR_new M_sfx)

12 StackEntry ...)

13 SPR

14 M)

15
16 (suc

17 (moveProgram Program ,(-(term natural_newPC) (term natural_pc)))

18 (moveInput Input ,(- (term natural_newI) (term natural_i)))

19 natural_newPC

20 natural_newI

21 (StackEntry ...)

22 SPR_new

23 (mcopy SPR_new M M_sfx))

24 "fail -restore ")))

Figura 5.12: Relação de redução da instrução Fail da Máquina de Parsing para PEGwSA

5.7 Limitações da Formalização

Apesar dos resultados obtidos, algumas limitações devem ser reconhecidas. Primeira-

mente, nem todas as operações previstas na definição formal de PEGwSA apresentada
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em FERREIRA (2024) foram integralmente contempladas na implementação desenvol-

vida. Em particular, onvalor mapa, bem como as operações a ele associadas, não foram

inclúıdos. De modo semelhante, a operação de bind não foi implementada. Embora es-

sas ausências representem lacunas em relação à definição completa do formalismo, elas

não comprometem significativamente os objetivos centrais do trabalho, uma vez que tais

operações não são essenciais para a validação do mecanismo principal de execução e con-

trole da Máquina de Parsing proposta.

Outra limitação refere-se ao processo de validação experimental. Os testes rea-

lizados restringiram-se a testes unitários, o que impossibilitou a cobertura exaustiva de

todos os comportamentos e combinações posśıveis das instruções e reduções definidas.

Consequentemente, não se pode afirmar que todos os cenários de execução foram devi-

damente explorados, embora os testes efetuados tenham sido suficientes para verificar o

funcionamento dos casos representativos considerados.

Por fim, destaca-se a ausência de uma prova formal de equivalência semântica

entre a descrição abstrata de uma PEGwSA e o programa da Máquina de Parsing que a

representa. A relação entre ambos foi estabelecida de maneira intuitiva e operacional, por

meio da correspondência entre construções e reduções, mas não foi formalizada por meio

de um argumento matemático rigoroso. Assim, embora os resultados obtidos indiquem

uma aderência consistente entre os modelos, a equivalência semântica plena permanece

como um aspecto em aberto para trabalhos futuros.
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Este trabalho apresentou a definição semântica e a formalização de uma Máquina de

Parsing para PEGwSA, utilizando a ferramenta PLT Redex. A abordagem adotada pos-

sibilitou a descrição precisa do comportamento operacional da máquina, bem como a

mecanização de suas regras semânticas, contribuindo para uma compreensão mais rigo-

rosa do modelo proposto.

A principal contribuição deste estudo consiste na extensão do modelo de máquina

originalmente apresentado em Ierusalimschy (2009), de modo a torná-lo compat́ıvel com

as PEGwSA. Essa extensão foi viabilizada pela introdução expĺıcita da noção de memória

e pelo desenvolvimento de uma semântica operacional capaz de lidar com instruções de

manipulação de atributos, operações lógicas e estruturas de dados, como listas, ampli-

ando significativamente o poder expressivo da máquina. A formalização em PLT Redex

permitiu a mecanização do modelo semântico, possibilitando a verificação sistemática das

regras de redução e a análise do comportamento da máquina em cenários concretos de

execução.

Não obstante, algumas limitações devem ser consideradas. Nem todas as operações

previstas na definição completa de PEGwSA foram implementadas, destacando-se a ausência

do tipo de valor mapa, de suas operações associadas e da operação de bind. Além disso,

a validação do modelo restringiu-se à realização de testes unitários, o que impossibilitou

a cobertura exaustiva de todos os comportamentos posśıveis da máquina. Por fim, não

foi estabelecida uma prova formal de equivalência semântica entre a descrição abstrata de

uma PEGwSA e o programa correspondente na Máquina de Parsing, permanecendo essa

relação fundamentada em uma correspondência operacional intuitiva.

Como trabalhos futuros, destacam-se a incorporação das operações ausentes da

PEGwSA, a ampliação da bateria de testes para incluir cenários mais complexos e abran-

gentes, bem como o desenvolvimento de uma prova formal de equivalência semântica entre

as duas representações. Adicionalmente, investigações voltadas à otimização da máquina

podem contribuir para o modelo formal desenvolvido.
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Em śıntese, as especificações apresentadas constituem uma base teórica para o

desenvolvimento de analisadores sintáticos que conciliam o determinismo das PEGs com a

expressividade dos atributos sintáticos, preservando a eficiência operacional caracteŕıstica

das máquinas de parsing.
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