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Resumo

Este trabalho apresenta o desenvolvimento do ReFUM2D, um solucionador bidimensional

de Dinâmica dos Fluidos Computacional, implementado em C++ e baseado no Método dos

Volumes Finitos aplicado a malhas não estruturadas. O principal objetivo é a simulação

de escoamentos governados pelas equações de Navier–Stokes. São descritas as estratégias

de discretização das equações governantes e o funcionamento do algoritmo SIMPLE, am-

plamente utilizado em CFD. Adicionalmente, o trabalho aborda os principais aspectos

computacionais do ReFUM2D, incluindo a organização do código, o pré-processamento

das malhas, o cálculo de grandezas geométricas e a exportação dos resultados. A validação

do solver é realizada por meio de benchmarks clássicos da literatura, cujos resultados apre-

sentam boa concordância com dados de referência, evidenciando a robustez e a acurácia

do código como ferramenta didática e de pesquisa em CFD.

Palavras-chave: Dinâmica de Fluidos Computacional, Métodos Numéricos, Método dos

Volumes Finitos, Equações Diferenciais Parciais, Navier-Stokes.



Abstract

This work presents the development of ReFUM2D, a two-dimensional Computational

Fluid Dynamics solver implemented in C++ and based on the Finite Volume Method

applied to unstructured meshes. The main objective is the simulation of flows governed by

the Navier–Stokes equations. The strategies adopted for the discretization of the governing

equations and the implementation of the SIMPLE algorithm, widely used in CFD, are

described. In addition, the work addresses the main computational aspects of ReFUM2D,

including code organization, mesh pre-processing, computation of geometric quantities,

and result export. The solver validation is performed through classical benchmarks from

the literature, whose results show good agreement with reference data, demonstrating the

robustness and accuracy of the code as a didactic and research tool in CFD.

Keywords: Computational Fluid Dynamics, Numerical Methods, Finite Volume Method,

Partial Differential Equations, Navier–Stokes.
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1 INTRODUÇÃO

Com o vertiginoso avanço dos computadores de alta velocidade e dispositivos de armaze-

namento, o desenvolvimento de algoritmos voltados à resolução dos mais diversos tipos

de problemas tem se tornado um campo de grande interesse para centros P&D ao redor

do mundo (MALISKA, 2004). Esse progresso tem impulsionado, em especial, a área da

Dinâmica dos Fluidos Computacional (CFD), que se dedica à análise de sistemas envol-

vendo escoamento de fluidos, transferência de calor e outros fenômenos correlatos que

podem ser modelados e simulados por meio de recursos computacionais (VERSTEEG;

MALALASEKERA, 2007).

Na área de simulação numérica, os métodos tradicionais para resolução das Equações

Diferenciais Parciais (EDPs) são: método de Diferenças Finitas (MDF), método de Ele-

mentos Finitos (MEF) e método de Volumes Finitos (MVF). Historicamente, o MDF

foi sempre utilizado em mecânica de fluidos, enquanto o MEF foi voltado para a área

de problemas estruturais (MALISKA, 2004). Nesse sentido, até a década de 1970, o

MDF destacava-se pela sua experiência consolidada na simulação de escoamentos, em-

bora apresentasse limitações na representação de geometrias complexas, enquanto o MEF

mostrava-se mais adequado para tratar tais geometrias, mas ainda carecia de ferramentas

eficazes para lidar com termos não lineares e o acoplamento de equações caracteŕısticos

da mecânica dos fluidos. Tais problemas levaram ao aprimoramento do MVF, no qual

as relações são obtidas por meio de balanços de volumes elementares (MOUKALLED;

MANGANI; DARWISH, 2015).

O resultado desse balanço é conseguir expressar de forma exata a conservação

das propriedades relevantes para cada célula. Essa relação entre o método e o prinćıpio

f́ısico subjacente forma um dos principais atrativos para o MVF, tornando-o mais simples

e robusto para lidar com geometrias não-estruturadas, o que permite o cálculo dos fluxos

ao redor de regiões complexas sem precisar gastar muito tempo gerando malhas (DING;

SUN, 2013). Como apontado por (MALISKA, 2004), no contexto de pacotes comerciais,

o MVF também é o mais utilizado e com ampla penetração industrial, visto que é muito
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importante satisfazer os prinćıpios de conservação ao ńıvel discreto, não existindo pro-

blemas de gerações/sumidouros no interior do domı́nio de cálculo. A depuração também

fica mais fácil, visto que, como há um balanço para todos os volumes de controle, para

qualquer tamanho de malha, todos os prinćıpios de conservação devem ser satisfeitos,

mesmo nas malhas mais grosseiras (CHéNIER; EYMARD; TOUAZI, 2006). Nos outros

dois métodos, a solução pode ser conferida somente em malhas bem refinadas, já que não

existe o conceito de balanços em volumes elementares.

Neste contexto, o presente trabalho apresenta o software ReFUM2D (REsolu-

tion of Finite-volume discretizations on Unstructured Meshes), um conjunto de códigos

desenvolvido em C++ para a resolução de problemas de CFD bidimensionais por meio

do método dos volumes finitos em malhas não estruturadas. O objetivo principal do

ReFUM2D é a simulação de escoamentos governados pelas equações de Navier–Stokes in-

compresśıveis e estacionárias, buscando reproduzir de forma robusta e confiável resultados

e aplicações em problemas de interesse. Diferentemente de plataformas de grande porte

amplamente utilizadas, como OpenFOAM (WELLER et al., 1998) e Ansys (ANSYS, 2016),

o desenvolvimento de um solucionador próprio oferece maior liberdade para adaptação,

depuração e inovações, permitindo controle direto sobre todas as etapas do algoritmo.

Essa abordagem evita as limitações impostas por abstrações internas e pela complexidade

inerente a softwares generalistas. Assim, o ReFUM2D tem como proposta não ser apenas

uma ferramenta de simulação, mas também uma base didática e de pesquisa, voltada ao

entendimento aprofundado dos métodos de CFD e à experimentação de novas abordagens.

Este trabalho está organizado da seguinte forma. Na Seção 2, apresenta-se a

descrição do problema f́ısico em estudo, com a dedução das equações de Navier–Stokes a

partir das leis de conservação de massa e momento. A Seção 3 descreve a metodologia

numérica adotada, discutindo os principais aspectos matemáticos envolvidos na resolução

de problemas de CFD através do MVF. Na Seção 4, são apresentados a organização e os

aspectos computacionais do ReFUM2D, incluindo a descrição de seus principais compo-

nentes. Em seguida, a Seção 5 discute os resultados obtidos a partir de benchmarks da

literatura, com o objetivo de validar a acurácia e a robustez do solver. Por fim, a Seção 6

reúne as considerações finais e as perspectivas para trabalhos futuros.
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2 DESCRIÇÃO DO PROBLEMA FÍSICO

2.1 Introdução

Este caṕıtulo apresenta os fundamentos matemáticos do modelo de dinâmica de fluidos,

baseados nos prinćıpios de conservação de massa e momento, que sustentam a dedução

das equações governantes e a análise das principais propriedades do problema.

2.2 Escoamentos

Fluidos, no qual se denotam ĺıquidos ou gases, são substâncias que não mudam perma-

nentemente sob a ação de forças. Ao contrário dos sólidos, que quando submetidos a

forças conseguem resistir a deformação, fluidos não conseguem resistir a tais tensões e são

colocados em movimento. Em função disso, enquanto sólidos possuem um formato bem

definido, fluidos não tem um formato definitivo e se ajustam conforme o ambiente que os

cerca (MOUKALLED; MANGANI; DARWISH, 2015).

Um primeiro ponto importante quando se analisa escoamentos de fluidos, é que o

foco está no ponto de vista macroscópico, analisando propriedades tais como velocidade,

pressão e temperatura. Isso pode ser pensado como uma média sobre uma quantidade

considerável de moléculas. Desse ponto de vista, um ponto no fluido seria o menor ele-

mento posśıvel do fluido no qual as propriedades macroscópicas não são influenciadas

pelas moléculas individuais que o compõem (VERSTEEG; MALALASEKERA, 2007).

Outra hipótese importante é os fluidos serem assumidos um meio “continuum”, de

tal modo que as propriedades f́ısicas são definidas para todos os pontos no espaço. Através

de tal hipótese, fluidos podem ser categorizados como Newtonianos ou Não-Newtonianos.

Fluidos Newtonianos são caracterizados por uma relação linear entre tensões de cisalha-

mento e taxas de cisalhamento, com a viscosidade molecular µ, a qual mede a habilidade

do fluido resistir à deformação quando submetido a forças externas, sendo o coeficiente

angular da relação. Em contrapartida, fluidos Não-Newtonianos possuem um comporta-
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mento não linear mais complexo de ser modelado.

Os fluidos também podem ser classificados como unidimensional ou multidimen-

sional (2 ou mais dimensões), fase única ou multifásica, estacionário ou não estacionário,

real (viscoso) ou ideal (inv́ıscido), compresśıvel ou incompresśıvel, turbulento ou laminar,

rotacional ou irrotacional, entre outros, os quais serão melhor discutidos conforme ne-

cessidade posterior. A proposta dessas classificações é simplificar o processo de análise e

descrição do fenômeno f́ısico (MALISKA, 2004).

2.3 Equações Governantes

Será considerado para as demonstrações das equações governantes o caso tridimensional.

Dessa forma, um pequeno elemento de fluido com lados ∆x, ∆y e ∆z está representado

na Figura 2.1, onde as seis faces nomeadas com W , E, S, N , B e T significam respectiva-

Figura 2.1: Elemento de fluido utilizado para derivar as equações.

mente: oeste (west), leste (east), sul (south), norte (north), fundo (bottom) e topo (top).

O centro do elemento é o ponto P . Todas as propriedades são funções de espaço e tempo,

como ρ(x, y, z, t), p(x, y, z, t) e u⃗(x, y, z, t) para densidade, pressão e vetor velocidade. Por

questões de simplicidade, se estiver no texto apenas p, ρ ou u⃗, considera-se que o valor
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já é relacionado ao ponto (x, y, z) no tempo t. Por fim, o elemento em consideração é

pequeno o suficiente para considerar que as propriedades nas faces são aproximados de

forma precisa pelos primeiros dois termos da expansão de Taylor.

A seguir encontram-se as demonstrações para as equações de Navier-Stokes, as

quais regem o movimento de fluidos. Tais equações têm como base fundamental as leis

f́ısicas de conservação de massa e momento. As deduções seguem a abordagem proposta

por (VERSTEEG; MALALASEKERA, 2007), a qual tenta, a partir de pressupostos in-

tuitivos, deduzir cada uma das equações.

2.3.1 Conservação de Massa

De acordo com Lavoisier, o prinćıpio de conservação de massa estabelece que, na ausência

de fontes ou sumidouros de massa, o volume deverá conservar sua massa. Em outras

palavras, a taxa de variação da massa no elemento de fluido é igual à taxa ĺıquida do que

entra e sai no elemento de fluido. A taxa de variação de massa no elemento de fluido pode

ser expressa por:

∂ρ

∂t
∆x∆y∆z. (2.1)

Agora, precisa-se avaliar a taxa de variação do fluxo de massa ao longo das faces

do elemento, a qual será dada pelo produto da densidade, área e velocidade normal as

faces. Baseado na Figura 2.1, tal taxa pode ser expressa como:

(
ρu− ∂(ρu)

∂x

1

2
∆x
)
∆y∆z −

(
ρu+

∂(ρu)

∂x

1

2
∆x
)
∆y∆z

+
(
ρv − ∂(ρv)

∂y

1

2
∆y
)
∆x∆z −

(
ρv +

∂(ρv)

∂y

1

2
∆y
)
∆x∆z

+
(
ρw − ∂(ρw)

∂z

1

2
∆z
)
∆x∆y −

(
ρw +

∂(ρw)

∂z

1

2
∆w
)
∆x∆y.

(2.2)

Ao qual os fluidos que tem direção entrando no elemento produzem um aumento de

massa e tem sinal positivo e os que saem possuem um sinal negativo. A Figura 2.2 ilustra

com maiores detalhes o significado da equação 2.2.

Portanto, a taxa de variação de massa no elemento é agora igual à taxa de variação do
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Figura 2.2: Elemento de fluido com a orientação e direção dos fluxos de massa.

fluxo de massa ao longo de cada uma das suas faces. Assim, tem-se que:

(
ρu− ∂(ρu)

∂x

1

2
∆x
)
∆y∆z −

(
ρu+

∂(ρu)

∂x

1

2
∆x
)
∆y∆z

+
(
ρv − ∂(ρv)

∂y

1

2
∆y
)
∆x∆z −

(
ρv +

∂(ρv)

∂y

1

2
∆y
)
∆x∆z

+
(
ρw − ∂(ρw)

∂z

1

2
∆z
)
∆x∆y −

(
ρw +

∂(ρw)

∂z

1

2
∆z
)
∆x∆y =

∂ρ

∂t
∆x∆y∆z.

(2.3)

Simplificando alguns termos e agrupando outros, chega-se em:

−∂(ρu)

∂x
∆x∆y∆z − ∂(ρv)

∂y
∆x∆y∆z − ∂(ρw)

∂z
∆x∆y∆z =

∂ρ

∂t
∆x∆y∆z. (2.4)

Dividindo ambos os lados da equação acima por ∆x∆y∆z (volume do paraleleṕıpedo) e

passando os termos do lado esquerdo para o lado direito:

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
= 0. (2.5)

Ao qual em formato mais compacto e usual pode ser denotada como:

∂ρ

∂t
+∇ · (ρu⃗) = 0, (2.6)

em que u⃗ = (u, v, w). A equação 2.6 é a versão não estacionária (por conter um termo
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dependente do tempo) da equação de conservação de massa, também conhecida como

equação da continuidade em um fluido compresśıvel.

Por fim, para um fluido incompresśıvel, a densidade ρ não depende da posição

ou tempo, sendo, portanto, uma constante. Sendo assim, a equação 2.6 se torna:

∇ · u⃗ = 0. (2.7)

A equação acima diz: para fluidos incompresśıveis a taxa de variação do fluxo em qualquer

elemento de fluido é zero, ou seja: “quantidade que sai” = “quantidade que entra”.

2.3.2 Conservação de Momento

O prinćıpio do balanço do momento linear (ou 2ª Lei de Newton) estabelece que:

“A taxa de variação do momento linear de um determinado conjunto de

part́ıculas é igual à soma vetorial de todas as forças externas atuando sobre

ele.”

As taxas de aumento do momento em x, y e z por unidade de área de uma part́ıcula de

fluido são dadas por:

ρ
Du

Dt
, ρ

Dv

Dt
, ρ

Dw

Dt
(2.8)

onde Dϕ
Dt

de um campo ϕ(t, x⃗(t)), o qual pode ser escalar ou vetorial, e que represente

velocidade, densidade ou temperatura; representa a derivada material. A derivada ma-

terial pode ser obtida aplicando a regra da cadeia para considerar as mudanças induzidas

por todas as variáveis independentes ao longo de um caminho:

Dϕ

Dt
=

∂ϕ

∂t

dt

dt
+

∂ϕ

∂x

dx

dt
+

∂ϕ

∂y

dy

dt

=
∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y

=
∂ϕ

∂t
+ u⃗ · ∇ϕ.

(2.9)

Em que a equação 2.9 representa a taxa de variação de ϕ quando se acompanha uma

part́ıcula de fluido em movimento. Diferente da derivada parcial, que olha a variação
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em um ponto fixo do espaço, a derivada material calcula a variação na perspectiva do

referencial que viaja com o fluido.

Em uma part́ıcula de fluido, dois tipos de forças podem atuar: forças de superf́ıcie

(pressão, tensões cisalhantes e tensões normais) as quais agem diretamente na superf́ıcie

do elemento de fluido e forças de corpo (força elétrica e força gravitacional) as quais

atuam diretamente na massa volumétrica do elemento de fluido (“atuam a distância”).

Considerando a direção x, dispõem-se em um elemento de fluido as forças retratadas na

Figura 2.3, que servirá como alicerce para derivar a equação de momento em x.

Figura 2.3: Elemento de fluido com as forças na direção x exibidas. Imagem retirada de
(VERSTEEG; MALALASEKERA, 2007).

As tensões cisalhantes e tensões normais atuam na superf́ıcie do fluido puxando

ou empurrando a superf́ıcie por meio da fricção. Exemplos das duas são encontrados

na Figura 2.4. Em fluidos viscosos, a tensão normal é muito menor que a tensão cisa-

lhante e muitas vezes é negligenciada. Tensões normais se tornam importantes quando o

gradiente das velocidades normais são grandes, como experienciado em ondas de choque

(ANDERSON, 1995).

Denotando a força de corpo que age no elemento por f⃗ e sendo fx sua componente

horizontal, a força de corpo que atua no elemento em x é dada por:

ρ(∆x∆y∆z)fx. (2.10)

Na figura 2.3, a convenção é que forças de tensão são denotadas por τ , em que
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Figura 2.4: (a) Tensão cisalhante, responsável por deformar o corpo e alterar seu formato
e (b) tensão normal a qual pode comprimir ou expandir o volume do elemento. Imagem
retirada de (ANDERSON, 1995).

τij é a tensão na direção j exercida em um plano perpendicular a direção i. Com isso,

pode-se fazer um somatório das forças que atuam em cada um dos pares de faces. No

caso das faces E e W tem-se que:

[(
p− ∂p

∂x

∆x

2

)
−
(
τxx −

∂τxx
∂x

∆x

2

)]
∆y∆z +

[
−
(
p+

∂p

∂x

∆x

2

)
+

(
τxx +

∂τxx
∂x

∆x

2

)]
∆y∆z

=

(
−∂p

∂x
+

∂τxx
∂x

)
∆x∆y∆z.

(2.11)

Para as faces N e S:

−
(
τyx −

∂τyx
∂y

∆y

2

)
∆x∆z +

(
τyx +

∂τyx
∂y

∆y

2

)
∆x∆z =

∂τyx
∂y

∆x∆y∆z. (2.12)

E por fim para T e B:

−
(
τzx −

∂τzx
∂z

∆z

2

)
∆x∆y +

(
τzx +

∂τzx
∂z

∆z

2

)
∆x∆y =

∂τzx
∂z

∆x∆y∆z. (2.13)

Ficando que a força total na direção x (Fx), considerando a soma das equações 2.10 a

2.13, é igual a:

Fx =
[
− ∂p

∂x
+

∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

]
∆x∆y∆z + ρfx∆x∆y∆z. (2.14)

Denotando a aceleração do fluido em x como ax, a mesma é igual à taxa de

variação de u ao longo do tempo. Uma vez que acompanha-se o movimento de um fluido,
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essa taxa é dada justamente pela sua derivada material. Logo:

ax =
Du

Dt
. (2.15)

Como, pela Segunda Lei de Newton, Fx = max, pode-se igualar 2.14 com 2.15

para chegar em:

[
− ∂p

∂x
+

∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

]
∆x∆y∆z + ρfx∆x∆y∆z = ρ∆x∆y∆z

Du

Dt

⇒ ρ
Du

Dt
= −∂p

∂x
+

∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx.

(2.16)

Onde está impĺıcito que m = ρ∆x∆y∆z. Assim, a equação obtida em 2.16 é a equação

de momento em x para um fluido viscoso. Similarmente, equações para y e z podem ser

obtidas:

ρ
Dv

Dt
= −∂p

∂y
+

∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρfy,

ρ
Dw

Dt
= −∂p

∂z
+

∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρfz.

(2.17)

As equações de (2.16) e (2.17), juntamente à equação (2.6), são chamadas de

Equações de Navier-Stokes, descobertas de forma independente na metade do século

19. No entanto, as equações de momento ainda contêm as componentes de tensão τij,

desconhecidas. Para torná-las mais úteis na descrição do comportamento dos fluidos, é

necessário introduzir um modelo para representar essas tensões. Na maioria dos fluidos de

interesse, tais tensões podem ser expressas como funções da taxa de deformação. Para não

alongar-se muito mais na discussão, e introduzir eventuais complexidades desnecessárias,

optou-se por omitir o passo-a-passo para lidar com o conjunto de tensões.

Sendo assim, pode-se rearranjar os termos viscosos (maiores detalhes em (VERS-

TEEG; MALALASEKERA, 2007)) tomando como hipóteses o fluido ser incompresśıvel

e newtoniano, para tornar a formulação mais útil para o método de volumes finitos:

ρ
Du

Dt
= −∂p

∂x
+∇ · (µ∇u) + ρfx. (2.18)

ρ
Dv

Dt
= −∂p

∂y
+∇ · (µ∇v) + ρfy. (2.19)
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ρ
Dw

Dt
= −∂p

∂z
+∇ · (µ∇w) + ρfz. (2.20)

2.3.3 Conclusão

Limitando-se às equações (2.18) até (2.20), em conjunto com a equação da continuidade

incompresśıvel (2.7), em duas dimensões apenas e também em regime estacionário, pode-se

apresentar o conjunto de equações de interesse deste trabalho:


∇ · (ρuu⃗) = − ∂p

∂x
+∇ · (µ∇u) + Sx,

∇ · (ρvu⃗) = −∂p
∂y

+∇ · (µ∇v) + Sy,

∇ · u⃗ = 0.

(2.21)

Em que foram explicitados os termos do operador de derivada material, e as

forças de corpo foram tratadas apenas como um termo fonte S. No próximo caṕıtulo,

serão abordados as estratégias adotadas para discretizar esse sistema de equações. Um

último adendo, é a possibilidade de adimensionalizar as equações, deixando-as em função

somente de um número adimensional, denotado por Número de Reynolds (Re), definido

por:

Re =
ρuL

µ
. (2.22)

Em que u [m/s] é a velocidade caracteŕıstica do escoamento, tipicamente semelhante à

velocidade média, e L [m] é o comprimento caracteŕıstico, que representa uma dimensão

de referência que depende da geometria do problema. Ademais, ρ [Kg/m3] é a densi-

dade do fluido e µ [Pa · s] é a viscosidade dinâmica. O número de Reynolds representa

fisicamente a razão entre as forças inerciais e as forças viscosas que atuam no fluido, e

é muito útil, ao permitir comparar sistemas que são fundamentalmente os mesmos, vari-

ando somente suas escalas. Outra utilidade deste é poder determinar se o escoamento é

caracterizado como laminar ou turbulento. Por questões de simplicidade, neste trabalho

o foco é apenas em escoamentos laminares, no qual os valores de Reynolds costumam ser

menores e as part́ıculas do fluido possuem comportamento mais ordenado e previśıvel.
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Para o tratamento de turbulência, a modelagem matemática costuma ser rigorosamente

mais complexa, além do gasto computacional ser mais acentuado, motivos impeditivos

para considerá-la neste momento.



24

3 METODOLOGIA NUMÉRICA

Neste caṕıtulo será apresentado a metodologia numérica utilizada para a resolução das

equações de Navier-Stokes (2.21), focando nos seus aspectos matemáticos. Inicialmente,

introduz-se o método de volumes finitos para aproximação numérica, e em seguidas são

discutidas as etapas de discretização que servirão como base do solucionador desenvolvido.

3.1 Método dos Volumes Finitos

De ińıcio, todo método que, para obter as equações aproximadas, satisfaz a conservação

de uma propriedade ao ńıvel de volumes elementares é classificado como um método

de volumes finitos. Para se obter as equações desse método, existem duas abordagens

principais. Na primeira, realizam-se balanços da propriedade em questão em cada volume

elementar. Na segunda, integram-se, no espaço e no tempo, as equações diferenciais

escritas na forma conservativa sobre o volume elementar (MALISKA, 2004). A forma

conservativa (também conhecida como forma divergente) é aquela em que, na equação

diferencial, os fluxos aparecem dentro do operador divergente. Nisso, após a primeira

integração, surgem explicitamente os fluxos nas fronteiras do volume elementar, o que a

torna equivalente a um balanço de propriedade.

Para ilustrar os procedimentos apresentados, será utilizado o exemplo de (MA-

LISKA, 2004), mostrado na Figura 3.1. O interesse é obter uma equação que represente

Figura 3.1: Volume de controle utilizado para balanços de conservação. Imagem retirada
de (MALISKA, 2004).
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a conservação de massa. Fazendo um balanço nesse elemento, obtém-se que:

ρu∆y|e − ρu∆y|w + ρv∆x|n − ρv∆x|s = 0, (3.1)

onde as letras e, w, n e s representam as direções leste, oeste, norte e sul. Dividindo a

equação pelo volume do elemento ∆x∆y (em que 2D o volume referido seria a área do

retângulo), encontra-se:

(ρu|e − ρu|w)
∆x

+
(ρv|n − ρv|s)

∆y
= 0. (3.2)

No limite quando ∆x → 0 e ∆y → 0, obtém-se exatamente a equação da continuidade

(2.6) na forma estacionária:

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0. (3.3)

A equação acima está em forma conservativa, visto que as variáveis estão dentro

dos operadores de derivada. Pode-se então, utilizando a segunda etapa, obter de outra

forma a equação de conservação de massa através da integração da equação acima no

volume de controle elementar. Assim, isso resultaria em:

∫ e

w

∫ n

s

[
∂(ρu)

∂x
+

∂(ρv)

∂y

]
dydx = 0. (3.4)

A partir desse ponto, utiliza-se inicialmente o fato de que a integral de uma soma é igual

à soma das integrais. Em seguida, aplica-se o Teorema de Fubini para inverter a ordem

de integração na primeira parcela, permitindo integrar primeiro em e e w. Dessa forma,

obtém-se o seguinte resultado:

∫ n

s

[ρu|e − ρuw]dy +

∫ e

w

[ρv|n − ρv|s]dx = 0. (3.5)

Como o volume de controle analisado é infinitesimal, pode-se considerar que o fluxo de

massa avaliado no meio das faces representa a média de variação do mesmo ao longo de

todos os pontos. Outra forma de visualizar isso, é que o valor médio de uma propriedade

ϕ em um volume é dado por:



3.2 Malhas não estruturadas 26

ϕ̄ =
1

V

∫
V

ϕdV, (3.6)

onde V denota o volume de controle sobre o qual a média é computada. Sendo assim,

consegue-se:

ρu∆y|e − ρu∆y|w + ρv∆x|n − ρv∆x|s = 0. (3.7)

Observe agora que a equação acima é idêntica à Equação (3.1). Desse modo, realizar o

balanço ou a integração na forma conservativa são processos equivalentes. No entanto,

de forma prática, há uma preferência por integrar as equações em forma conservativa,

visto que os balanços não são sempre triviais de se deduzir. Conforme relatado por

(MALISKA, 2004), para o balanço da quantidade de movimento, é necessário identificar

e fazer o somatório de todas as tensões que atuam no volume elementar, sendo tarefa

dif́ıcil para volumes irregulares.

3.2 Malhas não estruturadas

O foco neste trabalho é gerar simulações para malhas não estruturadas. Malhas não

estruturadas (Figura 3.2) são a forma mais geral de arranjo para geometrias mais com-

plexas.oferecem grande flexibilidade tanto na escolha dos tipos de elementos quanto na

forma de distribúı-los espacialmente, permitindo refinar regiões de maior interesse. Assim,

volumes de controle podem ter qualquer formato e pode-se misturá-los, formando malhas

h́ıbridas (VERSTEEG; MALALASEKERA, 2007). Essa flexibilidade, no entanto, vem

ao custo de uma complexidade adicional. Em um sistema não estruturado, não há forma

direta de conectar várias entidades juntas baseadas somente em seus ı́ndices. Assim, a

conectividade tem de ser definida explicitamente, não havendo forma de adivinhar o ı́ndice

de nós, faces ou elementos vizinhos a partir de um ı́ndice de referência como pode ser feito

em malhas estruturadas (MOUKALLED; MANGANI; DARWISH, 2015).

A parte mais atrativa das malhas não estruturadas é poder calcular o fluxo ao

redor de geometrias variadas, sem gastar muito tempo em geração de malha e mapeamento

entre sistemas de coordenadas, gerando diversos termos adicionais na discretização que

acabariam por complicar a modelagem numérica.
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Figura 3.2: Exemplo de malha não estruturada para simular o escoamento de fluidos ao
redor de um aerofólio. Imagem retirada de (HASELBACHER, 1999).

3.3 Volumes de controle em malhas não estruturadas

Uma grande questão dentro do MVF é decidir como serão gerados os volumes de controle

a partir da malha. Há duas formas principais de se definir os volumes de controle em

malhas não estruturadas: volumes de controle centrados na célula (cell-center) e volumes

de controle centrados nos nós/vértices (vertex-center). Tais variantes estão ilustradas na

Figura 3.3.

Figura 3.3: Volumes de controle em malhas não estruturadas 2D: (a) centrado na célula;
(b) centrado no nó. Imagem retirada de (VERSTEEG; MALALASEKERA, 2007).

Na abordagem centrada na célula, as variáveis de interesse são colocadas no

centroide do volume de controle, previamente definido pelo gerador de malhas, como

ilustrado na Figura 3.3(a). No método centrado no nó, por sua vez, as variáveis são

associadas aos vértices do arranjo. Nesse caso, é necessário realizar um processo de

tesselação, em que os centróides dos elementos adjacentes são conectados de modo a

formar subvolumes em torno de cada nó, definindo assim os volumes de controle onde
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serão aplicadas as discretizações, conforme mostrado na Figura 3.3(b).

A abordagem cell-center destaca-se por seu entendimento mais simples e por ser

amplamente documentada na literatura.Além disso, pode reduzir o consumo de memória,

uma vez que as variáveis primárias são armazenadas por volume de controle (isto é, por

célula, no centróide), evitando o armazenamento nodal; a economia efetiva depende da

malha e do modelo considerado, mas o custo de armazenamento das incógnitas escala dire-

tamente com o número de volumes de controle. De forma geral, ambas as abordagens são

utilizadas em métodos de volumes finitos; no entanto, em softwares de CFD amplamente

utilizados, como OpenFOAM e Ansys Fluent, adota-se a abordagem cell-center, razão pela

qual ela também foi escolhida neste trabalho.

3.4 Introdução ao SIMPLE

Considere novamente as Equações apresentadas em (2.21). Uma primeira caracteŕıstica

importante é que elas são não-lineares, pois os termos nas equações de momento u⃗ · ∇u

e u⃗ · ∇v, chamados de termos advectivos, acarretarão termos que envolvem produtos de

variáveis do problema. Outra questão é a indisponibilidade de uma equação expĺıcita

para o cálculo da pressão. Enquanto o campo de velocidades pode ser computado a par-

tir das equações de momento, o campo de pressão não pode ser computado diretamente

usando a equação de continuidade, o que seria necessário para uma solução do problema

(MOUKALLED; MANGANI; DARWISH, 2015). Consequentemente, uma equação para

a pressão é necessária e precisa ser derivada a partir das equações dispońıveis. Essa abor-

dagem é a essência do método SIMPLE (Semi Implicit Method for Pressure Correction

Linked Equations) de (PATANKAR; SPALDING, 1972), algoritmo adotado neste traba-

lho. A solução envolve discretizar e resolver as equações de momento para obter uma

aproximação para o vetor velocidade, e reformular a equação discreta de continuidade

para obter uma equação que envolva a pressão, de tal forma que surgirá um processo

iterativo a ser seguido.

O algoritmo segue um tipo de procedimento iterativo do tipo Método de Picard,

no qual a equação de momento é resolvida usando o campo de pressão obtido na iteração

anterior. O campo resultante de velocidade satisfaz a conservação de momento, mas não
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Figura 3.4: Stencil de uma malha não estruturada com elementos triangulares. Na ima-
gem, o volume de referência está com rótulo O, enquanto os numerados de 1 até 3 são
seus vizinhos. Os vetores n⃗ são as normais de cada face da célula O.

necessariamente a conservação de massa. Esse campo de velocidade então é usado para

construir uma equação relacionada à pressão, cuja sua solução possibilitará corrigir ambos

os campos para satisfazer dessa vez a equação de conservação de massa (VERSTEEG;

MALALASEKERA, 2007). Uma nova iteração começa então, e essa sequência é repetida

até que o campo de velocidade e pressão satisfaçam a tolerância desejada das equações

de conservação de massa e momento. De forma preliminar, para iniciar o algoritmo, é

necessário discretizar as equações de momento e de continuidade. Essas discretizações

serão feitas considerando o volume de controle não estruturado na Figura 3.4 quando

necessário.

3.5 Discretização da Equação de Continuidade

A forma discreta da equação de continuidade é obtida integrando a Equação (2.7) sobre

o volume O, resultando em:

∫
Vc

(∇ · u⃗)dV = 0, (3.8)
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onde Vc representa o volume de controle. Agora, invoca-se o Teorema de Gauss, também

conhecido como Teorema da Divergência. O teorema diz que, dado um volume V no

espaço tridimensional, com superf́ıcie de contorno denotada por S e n⃗ sendo o campo de

vetores normais unitários apontando para fora de S, se v⃗ for um campo vetorial definido

em V , então:

∫
V

(∇ · v⃗)dV =

∮
S

(v⃗ · n⃗)dS. (3.9)

O teorema da divergência implica que o fluxo ĺıquido de um campo vetorial através

de uma superf́ıcie fechada é igual ao volume total de todas as fontes e sorvedouros (isto é,

a integral de volume de sua divergência) sobre a região dentro da superf́ıcie. Sendo assim,

pode-se aplicar o mesmo na equação (3.8):

∮
S

(u⃗ · n⃗)dS = 0. (3.10)

Uma vez que a célula em questão é delimitada por um conjunto discreto de faces

planas (Figura 3.4), a integral de superf́ıcie pode ser reescrita como um somatório sobre

as faces:

Nf,O∑
f=1

∮
S

(u⃗ · n⃗)dS = 0, (3.11)

onde f indica o ı́ndice que varia sobre cada face, até o número de faces total da célula O

dado por Nf,O. Usando que a média dos valores em uma face é aproximadamente igual

ao valor avaliado no centro da face multiplicado pela respectiva área da face (Equação

(3.6)):

Nf,O∑
f=1

(u⃗f · n⃗f )Af = 0. (3.12)

Em que os subscritos f indicam os respectivos valores avaliados no centro de cada

face do volume de controle. Uma coisa interessante e válida a ser realizada é reintroduzir

a densidade ρ na equação discreta, multiplicando ambos os lados pelo valor constante ρf :
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Nf,O∑
f=1

ρf (u⃗f · n⃗f )Af =

Nf,O∑
f=1

ṁf = 0. (3.13)

Com isso, através da discretização surge um significado f́ısico. A notação ṁf

representa o fluxo de massa no centro da face f , e indica o quanto de massa do fluido

entra e sai em cada uma das faces da célula.

3.6 Discretização das Equações de Momento

Para a equação de momento, será aqui descrito seu processo de discretização apenas na

componente x, sendo a componente y obtida no mesmo processo. Sendo assim, a primeira

etapa é integrar a equação de momento em x sobre o volume de controle O:

∫
Vc

(∇ · (ρuu⃗))dV = −
∫
Vc

(
∂p

∂x

)
dV +

∫
Vc

(∇ · (µ∇u))dV +

∫
Vc

SxdV. (3.14)

Novamente, fazendo uso do Teorema da Divergência (3.9), pode-se trocar as in-

tegrais de volume dos termos advectivo e difusivo por integrais de superf́ıcie:

∫
S

ρu(u⃗ · n⃗)dS = −
∫
Vc

(
∂p

∂x

)
dV +

∫
S

µ((∇u) · n⃗)dS +

∫
Vc

SxdV. (3.15)

Representando novamente as integrais de superf́ıcie como somatórios ao longo das

faces do volume de controle, e tomando a média dos valores como o valor no centro da

face, tem-se que:

Nf,O∑
f=1

ρfuf (u⃗ · n⃗)fAf = −
∫
Vc

(
∂p

∂x

)
dV +

Nf,O∑
f=1

µf ((∇u) · n⃗)fAf +

∫
Vc

SxdV. (3.16)

Neste momento, já é posśıvel discretizar a integral do termo fonte. Essa integral

pode ser feita de duas formas (MAZUMDER, 2015): a primeira opção é realizar a inte-

gração exata. Contudo, isso só é viável caso a função seja conhecida, tendo uma relação

expĺıcita, e o volume de controle tenha formato bem definido, critérios esses que na maior

parte dos casos não são satisfeitos. A segunda opção é novamente considerar o valor médio

de tal forma que:
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∫
Vc

SxdV = S̄xV = Sx,OVO. (3.17)

No qual a ideia principal é avaliar o termo fonte pegando a função em que os va-

lores são fornecidos nos centroides dos volumes de controle, e multiplicar pelos respectivos

volumes das células. Assim, dando continuação:

Nf,O∑
f=1

ρfuf (u⃗ · n⃗)fAf = −
∫
Vc

(
∂p

∂x

)
dV +

Nf,O∑
f=1

µf (∇u · n⃗)fAf + Sx,OVO, (3.18)

ao avaliar a equação (3.18), surgem alguns entraves, uma vez que os valores de uf não

são conhecidos, apenas os valores nos centroides. Dessa forma, não é posśıvel tratar

diretamente o gradiente de pressão, nem tampouco o termo difusivo. Assim, nas seções

subsequentes, cada uma dessas parcelas será analisada de maneira independente, visto

que existem aspectos relevantes a serem discutidos individualmente para cada termo.

3.6.1 Discretização do termo difusivo

Relembrando a parcela de difusiva:

Nf,O∑
f=1

µf (∇u · n⃗)fAf . (3.19)

Nessa expressão, Af é a área da face, quantidade inferida a partir da malha. Já o valor de

µf ainda não está diretamente dispońıvel, pois a viscosidade µ é definida nos centroides

das células. Para contornar esse ponto, é necessário interpolar µ na face usando os valores

dispońıveis nas células vizinhas.

Em muitos problemas, são necessários tratamentos especiais para essa inter-

polação. Entretanto, o procedimento mais comum (VERSTEEG; MALALASEKERA,

2007) é utilizar uma interpolação ponderada pelas distâncias. Para uma propriedade

genérica ϕ, essa interpolação pode ser escrita como:

ϕf =
ϕ1/d1 + ϕ2/d2
1/d1 + 1/d2

, (3.20)
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em que as distâncias d1 e d2 são as distâncias entre o centro das células até o meio da

face. O erro associado a esse tipo de interpolação é de segunda ordem, quando d1 = d2, e

situa-se entre primeira e segunda ordem caso as distâncias sejam diferentes.

Uma forma equivalente e útil para implementação é reescrever a Equação 3.20

como:

ϕf =

(
1/d1

1/d1 + 1/d2

)
ϕ1 +

(
1− 1/d1

1/d1 + 1/d2

)
ϕ2, (3.21)

definindo o peso:

wf =
1/d1

1/d1 + 1/d2
, (3.22)

obtém-se a forma compacta:

ϕf = wfϕ1 + (1− wf )ϕ2. (3.23)

A função wf pode ser pré-computada uma vez que depende somente de in-

formações geométricas locais. Assim, para determinar o valor de µf , basta-se aplicar

a Equação (3.23). O principal desafio restante está no tratamento do termo (∇u · n⃗)f ,

isto é, na avaliação do gradiente de u projetado na direção normal à face.

Sobre-relaxação do gradiente difusivo

No caso do termo (∇u · n⃗), há um grande problema, visto que as malhas não estruturadas

geralmente são não ortogonais, ou seja, a direção que une os centroides não é colinear a

direção normal. Assim, enquanto em malhas estruturadas o gradiente poderia ser encon-

trado de forma bem simples e direta; no caso de malhas não estruturadas é necessário

realizar manipulações com o intuito de tratar essa diferença. A primeira coisa que pode

ser feita então é dividir o fluxo normal em duas componentes:

(∇u)f · n⃗f = (∇u)f · E⃗f + (∇u)f · T⃗ , (3.24)

onde o primeiro termo representa uma contribuição que pode ser obtida via aproximação

com série de Taylor devido à direção ser igual a que une os centros das células, enquanto

o segundo termo é chamado de difusão cruzada ou difusão não ortogonal, e aparece
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devido a não ortogonalidade da malha a ser utilizada. Diferentes opções para decompor a

normal existem na literatura, sendo que a escolha delas afeta convergência e estabilidade.

A abordagem escolhida nesse trabalho é chamada de sobre-relaxada (over-relaxed), e a

figura 3.5 ilustra a sua decomposição.

Figura 3.5: Escolha de vetores n⃗1 e n⃗2 para decompor o gradiente difusivo. Na imagem
também está retratado o vetor normal a face n⃗f . dON representa a distância entre a célula
O e seu vizinho N .

Na Figura 3.5, dividiu-se a normal em dois vetores, de forma que um deles é

ortogonal a normal da face. Assim, a importância do termo envolvendo uO e uN é forçada

a aumentar conforme a não ortogonalidade da malha também aumentar, de tal forma que

isso evite problemas de overflow. Matematicamente, o cômputo de n⃗1 é dado primeiro

calculando o cosseno do ângulo θ:

cos θ =
|n⃗f |
|n⃗1|
⇔ |n⃗1| =

|n⃗f |
cos θ

, (3.25)

a partir da definição de produto escalar, pode-se trocar cos θ por:

|n⃗1| = |n⃗f |
(
|n⃗f ||d⃗ON |
n⃗f · d⃗ON

)
, (3.26)

mas isso corresponde ao valor da magnitude de n⃗1, enquanto o interesse é no vetor.

Desse modo, basta multiplicar a magnitude pela direção do vetor d⃗ON (vetor que liga os

centroides):

n⃗1 = |n⃗1|
(

d⃗ON

|d⃗ON |

)
, (3.27)
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que simplificando resulta em:

n⃗1 = d⃗ON

(
|n⃗f |2

n⃗f · d⃗ON

)
. (3.28)

Para achar o vetor n⃗2, basta usar o vetor normal e o vetor n⃗1: n⃗2 = n⃗1 −
n⃗f . Assim, conforme θ aumenta, a magnitude de n⃗1 e n⃗2 aumentam conjuntamente,

evitando problemas numéricos. Conforme discutido e trabalhado por (JASAK, 1996), o

mesmo conseguiu executar diversos experimentos e constatar a efetividade e estabilidade

da abordagem sobre-relaxada, fundamentando a utilização neste trabalho pela mesma.

Para calcular o gradiente na direção que está alinhada aos centroides, pode-se performar

uma expansão em série de Taylor para O e N sobre f :

uN = uf +
∂u

∂x

∣∣∣∣
f

(xN − xf ) +
∂u

∂y

∣∣∣∣
f

(yN − yf )

+
1

2

∂2u

∂x2

∣∣∣∣
f

(xN − xf )
2 +

1

2

∂2u

∂y2

∣∣∣∣
f

(yN − yf )
2 +

1

2

∂2u

∂x∂y

∣∣∣∣
f

(xN − xf )(yN − yf ) + . . .

(3.29)

uO = uf +
∂u

∂x

∣∣∣∣
f

(xO − xf ) +
∂u

∂y

∣∣∣∣
f

(yO − yf )

+
1

2

∂2u

∂x2

∣∣∣∣
f

(xO − xf )
2 +

1

2

∂2u

∂y2

∣∣∣∣
f

(yO − yf )
2 +

1

2

∂2u

∂x∂y

∣∣∣∣
f

(xO − xf )(yO − yf ) + . . .

(3.30)

subtraindo a equação (3.29) da equação (3.30), obtém-se:

uN − uO =
∂u

∂x

∣∣∣∣
f

(xN − xO) +
∂u

∂y

∣∣∣∣
f

(yN − yO)

+
1

2

∂2u

∂x2

∣∣∣∣
f

[
(xN − xf )

2 − (xO − xf )
2
]
+

1

2

∂2u

∂y2

∣∣∣∣
f

[
(yN − yf )

2 − (yO − yf )
2
]

+
1

2

∂2u

∂x∂y

∣∣∣∣
f

[(xN − xf )(yN − yf )− (xO − xf )(yO − yf )] + . . . (3.31)

truncando a série no segundo termo, e sabendo que n⃗1 =
(

xN−xO

dON
, yN−yO

dON

)
:

(∇u)f · n⃗1 ≈
ϕN − ϕO

dON

. (3.32)

Sendo que essa aproximação possui erro de truncamento da ordem de O(h2). Já
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para o caso da difusão cruzada, não se consegue ainda expressar o gradiente em termos

dos valores das células diretamente. O termo do gradiente será tratado na forma de

correção deferida, computando o seu valor usando o campo de valores da iteração atual

e adicionando-o como um termo fonte na equação algébrica. O gradiente é computado

usando os próprios centroides na malha, e os valores nas interfaces podem então ser

interpolados.

Reconstrução do gradiente usando mı́nimos quadrados

Para realizar o cômputo da difusão cruzada, é necessário então estimar o valor do gra-

diente, a fim de incorporá-lo no sistema algébrico das equações discretas. O método

utilizado nesse trabalho é chamado de Mı́nimos Quadrados (least-squares), visto que ele é

mais flex́ıvel quanto a questão da ordem de acurácia e o stencil utilizado (MOUKALLED;

MANGANI; DARWISH, 2015). Considere o volume de controle da Figura 3.6.

Figura 3.6: Volume de controle O, e seus vizinhos rotulados de 1 até 4.

Baseado em qualquer um dos vizinhos N de O, é plauśıvel aproximar o valor de uma

propriedade ϕ em N usando uma aproximação por série de Taylor:

ϕN = ϕO +
∂ϕ

∂x

∣∣∣∣
O

∆xON +
∂ϕ

∂y

∣∣∣∣
O

∆yON , (3.33)

em que ∆xON e ∆yON representam a variação da distância dos centroides de O e N nas

direções x e y. É posśıvel realizar tal aproximação para cada um dos quatro vizinhos,
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formando o conjunto de equações:



ϕ1 − ϕO = ∂ϕ
∂x

∣∣∣∣
O

∆x1 +
∂ϕ
∂y

∣∣∣∣
O

∆y1

ϕ2 − ϕO = ∂ϕ
∂x

∣∣∣∣
O

∆x2 +
∂ϕ
∂y

∣∣∣∣
O

∆y2

ϕ3 − ϕO = ∂ϕ
∂x

∣∣∣∣
O

∆x3 +
∂ϕ
∂y

∣∣∣∣
O

∆y3

ϕ4 − ϕO = ∂ϕ
∂x

∣∣∣∣
O

∆x4 +
∂ϕ
∂y

∣∣∣∣
O

∆y4

que pode ser representado matricialmente como:



∆x1 ∆y1

∆x2 ∆y2

∆x3 ∆y3

∆x4 ∆y4



∂ϕ

∂x

∣∣∣∣
O

∂ϕ

∂y

∣∣∣∣
O

 =



ϕ1 − ϕO

ϕ2 − ϕO

ϕ3 − ϕO

ϕ4 − ϕO


Isso resulta em um sistema sobredeterminado de equações lineares, o qual pode

ser escrito, de forma compacta, como A (∇ϕ)O ≈ b, em que a matriz A contém as

informações geométricas (vetores que ligam o ponto O aos seus vizinhos) e o vetor b

reúne as diferenças de propriedade ∆ϕ entre O e seus vizinhos.

Como o sistema é sobredeterminado, sua solução é obtida no sentido de mı́nimos

quadrados, resolvendo-se as chamadas equações normais, cuja solução formal pode ser

escrita como:

(∇ϕ)O ≈ (ATA)−1ATb, (3.34)

assumindo que ATA é inverśıvel.

Uma vez conhecido o gradiente no centro da célula O, os gradientes nas faces

podem ser obtidos por interpolação usando a equação (3.23). Unindo a ideia de decom-

posição do vetor normal à face com a reconstrução via mı́nimos quadrados, pode-se obter

então:

Nf,O∑
f=1

µf (∇u · n⃗)fAf =

Nf,O∑
f=1

µf
uN − uO

dON

Af +

Nf,O∑
f=1

µf (∇u∗ · n⃗2)Af , (3.35)
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em que n⃗2 foi calculado a partir da equação (3.28), e ∇u∗ representa o gradiente calculado

com base nos valores de u de uma dada iteração. Esse procedimento será dado de forma

expĺıcita, passando essa componente para o vetor b do sistema de equações. Uma última

simplicidade é expressar o produto
µfAf

dON
com a notação Df , tendo o significado f́ısico de

representar um fluxo difusivo na célula.

Exemplo numérico: Equação de Poisson

Durante as etapas de desenvolvimento, conseguiu-se testar a eficácia dessa abordagem

de tratamento do gradiente e escolheu-se exemplificar também sua utilização em um

problema de Poisson, com solução manufaturada u(x, y) = 100x(1 − x)y(1 − y). Os

dados do problema são:


∇2u = −200 x(1− x)− 200 y(1− y), em Γ,

u(x, y) = 0, em ∂Γ,

(3.36)

em que Γ = [0, 1]× [0, 1] representa um domı́nio quadrado de lado unitário.

A malha utilizada, bem como as malhas empregadas nos testes posteriores, foi

gerada com o Gmsh, ferramenta de geração de malhas que será descrita com mais detalhes

no próximo caṕıtulo. Neste caso, utilizou-se a opção de geração de malhas transfinite,

resultando em uma malha estruturada na qual os volumes de controle são triângulos

retângulos, obtidos pela divisão de cada quadrilátero ao longo de uma de suas diagonais,

como ilustrado na Figura 3.7(a).

(a) (b)

Figura 3.7: Exemplo de uma malha em (a) e exemplo de um volume de controle dispońıvel
nessa malha em (b), retratando seus vizinhos e ângulos formados.
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Na Figura 3.7(b) estão destacados os centros dos volumes de controle, e as linhas

tracejadas indicam a direção que liga os seus centroides. Ao traçar as normais às faces,

destacadas em vermelho, observa-se que, para o triângulo cujo centro é o ponto 2, a

normal e a linha que une os centros são colineares. O mesmo não ocorre nos outros dois

triângulos, para os quais surgem ângulos distintos, aqui denotados por α e β. Com base

em relações de trigonometria e geometria plana, obtém-se aproximadamente α ≈ 26,3◦ e

β ≈ 25,9◦.

Visando avaliar o comportamento do erro sob refinamento de malha, foram con-

siderados os tamanhos N = 32, 128, 512, 2048 e 8192 volumes de controle. O erro entre a

solução numérica e a solução manufaturada é medido pela norma L2 (SILVA, 2023):

||u− ū||L2 =
(∫

Γ

(u− ū)2dΓ
) 1

2
, (3.37)

onde ū representa a solução exata. Também, para ter um comparativo, variou-se o número

de correções expĺıcitas de não ortogonalidade (denotado a quantidade por θ), tomando

como valores θ = 5, 10, 15; para verificar o impacto na solução, comparando-a com uma

solução em que não foram utilizadas correções (θ = 0). O parâmetro h, que indica o

refinamento de malha, é definido como (VASCONCELLOS, 1999):

h =

√∑N
i=1 Ai

N
. (3.38)

Onde o N é o número de volumes de controle e Ai é o volume da célula i. Como o domı́nio

é um quadrado de lados unitários, pode-se simplificar a conta acima para apenas h = 1√
N
.

Na Figura 3.8, estão exibidos os gráficos das soluções, comparando qualitati-

vamente os resultados obtidos. Como esperado, na Figura (b) conseguiu-se capturar o

formato da solução, tendo a caracteŕıstica semelhante a um pulso circular. Enquanto

isso, na Figura (a) é notório que em virtude de ignorar a difusão cruzada, o pulso fica

achatado em uma dada direção, sendo mais similar a uma elipse. Além disso, na Figura

3.9 estão exibidos os padrões de convergência para cada caso. Quando é negligenciado

totalmente a difusão cruzada, o erro praticamente não varia, tendo um comportamento

bem constante ao longo dos refinamentos. Em contraste, é posśıvel notar a melhoria na
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ordem de convergência já para 5 correções, em que a ordem sai de 0.07 para 1.74, bem

mais próximo da convergência esperada de 2. Para o caso de θ = 10 e θ = 15 não há

tanta diferença, indicando que provavelmente para 10 correções o processo já convergiu.

O motivo de adotar um critério para número de correções ao invés de tolerância é estar

de acordo com os softwares de CFD, que normalmente disponibilizam o controle também

com número de correções.

(a) (b)

Figura 3.8: Gráficos da solução da equação 3.36. A figura (a) representa a solução com θ
= 0, enquanto a solução da figura (b) representa a solução com θ = 15. Ambas as figuras
foram obtidas com a malha de 8192 volumes de controle.

10−2 10−1

h

10−2

10−1

e L
2

θ = 0, O(h0.07)

θ = 5, O(h1.74)

θ = 10, O(h1.90)

θ = 15, O(h1.90)

Figura 3.9: Comparação da convergência variando o número de correções.
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3.6.2 Discretização do termo advectivo

Dando prosseguimento, após o tratamento do termo difusivo, passa-se à análise do termo

advectivo. Segundo a discretização apresentada na equação (3.18), o termo de advecção

pode ser escrito na forma:
Nf,O∑
f=1

ρf uf (u⃗ · n⃗)f Af , (3.39)

onde nessa expressão, a densidade nas faces, ρf , pode novamente ser obtida por inter-

polação linear, enquanto a área de cada face, Af , é calculada a partir da geometria da

malha. De forma análoga ao tratamento da equação de continuidade discreta, é conveni-

ente agrupar alguns termos e reescrever o somatório da seguinte maneira:

Nf,O∑
f=1

ṁf uf , (3.40)

em que ṁf = ρf (u⃗ · n⃗)fAf representa o conhecido fluxo de massa através da face f . Resta,

portanto, determinar o valor de uf , isto é, o valor da componente de velocidade u nas

faces do volume de controle associado ao ponto O. No caso do fluxo de massa ṁf , seu

tratamento detalhado será apresentado na próxima subseção.

Anteriormente, a interpolação linear foi utilizada para obter valores nas faces

a partir de médias ponderadas pela distância aos centros de célula. A prinćıpio, seria

natural empregar a mesma estratégia para o cálculo de uf , assumindo, por exemplo, uf =

wf uO+(1−wf )uN , em que uO e uN são os valores de u nos centros das células adjacentes

à face f . No entanto, conforme discutido em (VERSTEEG; MALALASEKERA, 2007),

esse esquema apresenta limitações importantes.

Do ponto de vista teórico, a solução obtida pelos métodos numéricos pode tornar-

se indistingúıvel da solução exata, independentemente do esquema de discretização ado-

tado, desde que a malha seja suficientemente refinada (VERSTEEG; MALALASEKERA,

2007). Na prática, porém, a capacidade computacional dispońıvel impõe o uso de um

número finito e restrito de células. Em consequência, a solução numérica pode deixar de

satisfazer algumas propriedades f́ısicas, entre as quais se destacam: conservatividade,

limitabilidade e transpositividade.
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A conservatividade exige que, para garantir a conservação de ϕ em todo o domı́nio,

o fluxo que deixa um volume de controle seja exatamente igual ao fluxo que entra no

volume adjacente através da mesma face. A limitabilidade requer que o esquema satisfaça

o critério de dominância diagonal, assegurando compatibilidade com os métodos numéricos

empregados na solução dos sistemas lineares. Esse critério é fundamental ao garantir que,

na ausência de termos fonte, o valor de ϕ permaneça limitado pelos valores de contorno,

além de impor que todos os coeficientes da equação discreta possuam o mesmo sinal,

preferencialmente positivo. Por fim, a transpositividade está relacionada à capacidade do

esquema numérico de representar corretamente o transporte de uma grandeza no sentido

do escoamento, respeitando a f́ısica do processo de advecção.

Baseado nesses critérios, embora a interpolação linear seja de segunda ordem,

também se verifica que esse esquema satisfaz apenas o requisito de conservatividade, fa-

lhando nos outros critérios a depender do número de Péclet do escoamento (VERSTEEG;

MALALASEKERA, 2007)). Para contornar essas dificuldades, adotou-se neste trabalho

esquemas do tipo upwind, que incorporam explicitamente a direção do escoamento na

definição dos valores nas faces.

Métodos Upwind

Um dos principais problemas do esquema de interpolação linear é o fato de não considerar a

direção do escoamento. Em um fluxo fortemente convectivo da esquerda para a direita, por

exemplo, o tratamento torna-se inadequado, pois os valores de ϕ localizados a montante

(à esquerda) deveriam exercer maior influência sobre o valor final.

Os esquemas do tipo upwind incorporam explicitamente essa caracteŕıstica f́ısica,

definindo o valor na face em função da direção do fluxo de massa. Se o fluxo de massa

(ou a direção do vento) é da célula O para a célula N , o valor na face é majoritariamente

influenciado por O e, por consequência, atribui-se à face o valor de ϕO. No caso contrário,

isto é, quando o fluxo se dá de N em direção a O, o valor de ϕN passa a ser o dominante

na face.

Mais formalmente, assumindo que o vetor normal n⃗f aponta da célula O para a

célula N , o esquema upwind differencing (UD), de primeira ordem, pode ser escrito como:
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ϕf =


ϕO, se ṁf > 0;

ϕN , se ṁf < 0.

(3.41)

Para fins de implementação computacional, é conveniente recorrer à função max(v0, v1),

que retorna o maior valor entre v0 e v1. Dessa forma, pode-se escrever: ϕf = ϕO max(ṁf , 0)−

ϕN max(−ṁf , 0).

Do ponto de vista de suas caracteŕısticas numéricas, o esquema upwind é con-

sistente no cálculo dos fluxos, implicando sua conservatividade. Além disso, trata-se de

um esquema limitado, com todos os coeficientes positivos, tornando a matriz resultante

diagonalmente dominante. Outra caracteŕıstica importante é que o método incorpora ex-

plicitamente a direção do escoamento em sua formulação, o que o torna mais realista do

ponto de vista f́ısico.

Por outro lado, a principal limitação do esquema upwind é sua baixa acurácia.

Isso tende a introduzir difusão numérica (também chamada de falsa difusão), produzindo

um amortecimento artificial da solução em regiões com gradientes acentuados (MAZUM-

DER, 2015; ANDERSON, 1995). Ainda assim, devido à sua simplicidade e robustez, o

esquema upwind é amplamente utilizado em CFD, oferecendo forte estabilidade numérica.

Em simulações que requerem maior precisão, como em LES (Large Eddy Simulation), ou

em problemas com malhas de baixa qualidade e altos números de Reynolds, é comum

empregar o upwind para obter uma solução inicial estável, que depois pode ser refinada

com esquemas de ordem mais elevada.

Para mitigar o problema da falsa difusão e aumentar a acurácia do método, uma

estratégia natural consiste em aumentar a ordem do esquema upwind pela inclusão de

mais termos na expansão em série de Taylor (WARMING; BEAM, 1976), resultando no

método linear upwind differencing (LUD). Em malhas não estruturadas, pode-se expandir

a série em torno do ponto O, obtendo

ϕ(x, y) = ϕO + (∇ϕ)O ·∆r⃗ + O(|∆r⃗|2), (3.42)

onde ∆⃗r é o vetor que une O ao centro da face. Assim, o valor da propriedade ϕ pode ser
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avaliado apenas com:

ϕf =


ϕP + (∇ϕ)P ·∆r⃗, se ṁf > 0;

ϕN + (∇ϕ)N ·∆r⃗, se ṁf < 0.

(3.43)

E a adição de um termo que envolve um gradiente traz maior precisão para a

solução do método, deixando uma variação linear entre o valor de ϕ nos centroides e

centro das faces. Apesar do ganho em acurácia, isso acarreta na perda de estabilidade.

De maneira análoga ao caso da difusão cruzada, o gradiente também pode ser avaliado

por meio da correção deferida conjuntamente aos mı́nimos quadrados.

Exemplo Numérico: Convecção Pura

Para explicitar a diferença e agregar maior profundidade ao tratamento da convecção

nesse trabalho, testou-se também o impacto dos esquemas upwind e linear upwind. O

primeiro problema serviu apenas para validar a questão das ordens de convergência, e a

solução exata é dada por: ϕ(x, y) = sin(πx) sin(πy). As condições do problema são dadas

então: 
u⃗ · ∇ϕ = π cos(πx) sin(πy) + π sin(πx) cos(πy) em Γ

ϕ(x, y) = 0 em ∂Γ.

(3.44)

Em que o valor da velocidade u⃗ é prescrito no domı́nio Γ = [0, 1]× [0, 1] e vale u = v = 1.

Para obter a ordem de convergência dos métodos, realizou-se um refinamento de malha.

A malha considerada dessa vez é uma malha cartesiana e estruturada composta por qua-

drados, análoga às malhas estruturadas tradicionais, para facilitar o cálculo da ordem de

convergência. Os valores de tamanho de malha foram N = 16, 64, 256, 1024, 4096, 16384.

Em relação às correções e aos cálculos do gradiente que o linear upwind exige, foram

utilizadas apenas 10 correções. Os resultados estão dispońıveis na Figura 3.10. Nela, é

posśıvel notar que o método UD apresenta uma ordem de convergência próxima à linear,

enquanto o LUD está próxima à segunda ordem, estando ambos conforme o esperado.

Para avaliar caracteŕısticas mais qualitativas, escolheu-se outro problema pura-

mente convectivo, sendo que dessa vez o mesmo é bem conhecido (VERSTEEG; MALA-

LASEKERA, 2007). A formulação do problema é:
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Figura 3.10: Comparação de convergência entre UD e LUD.


u⃗ · ∇ϕ = 0, em Γ,

ϕ(x = 0, y) = ϕ(x, y = 1) = 1,

ϕ(x = 1, y) = ϕ(x, y = 0) = 0.

(3.45)

No qual novamente o campo de velocidade é u = v = 1. Para facilitar a vi-

sualização, a Figura 3.11 apresenta graficamente o problema. A solução correta desse

problema é bem documentada, e conforme a velocidade do fluido é na direção diagonal,

todos os valores acima da diagonal serão ϕ(x, y) = 1, enquanto os valores abaixo da di-

agonal serão ϕ(x, y) = 0. Para validar a qualidade dos métodos, pode-se avaliar o corte

da solução obtida na linha vermelha. Caso a solução seja exata, a mesma deverá ter o

formato de um degrau.

Considerando o recorte apresentado na Figura 3.11, obteve-se o gráfico apresen-

tado na Figura 3.12. Nessa figura, apresentam-se a solução exata, caracterizada pelo

degrau, bem como as soluções obtidas pelos esquemas UD e LUD. Observa-se que o

esquema UD introduz um amortecimento significativo na solução, efeito diretamente as-

sociado à difusão numérica inerente a esse método (ANDERSON, 1995). Em contraste, o

esquema LUD acompanha melhor a tendência do degrau, porém apresenta leves oscilações,

evidenciadas por ondulações nas proximidades da descontinuidade.



3.6 Discretização das Equações de Momento 46

Figura 3.11: Figura exibindo o domı́nio, retratando também a velocidade u⃗ = (1, 1).
O segmento em vermelho é utilizado para comparar as soluções. Imagem reti-
rada de: https://www.openfoam.com/documentation/guides/latest/doc/guide-schemes-
divergence-example.html.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

φ
(x

,1
−

x)

UD
LUD
Exata

Figura 3.12: Comparação entre UD e LUD na diagonal, em que a função é ϕ(x, 1 − x).
Imagem obtida com refinamento de 16384 volumes de controle em uma malha estruturada
composta por quadriláteros.

3.6.3 Discretização da Pressão

Na Equação (3.18), surge a necessidade de discretizar o termo que envolve a pressão. Para

isso, considera-se o campo vetorial q⃗ definido na direção x por q⃗ = p î (análogo para y),

em que p é o campo escalar de pressão. A divergência desse campo é dada por
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∇ · q⃗ =
( ∂

∂x
î+

∂

∂y
ĵ
)
· (p̂i) = ∂p

∂x
. (3.46)

Dessa forma, integrando no volume de controle, tem-se:

∫
Vc

∂p

∂x
dV =

∫
Vc

∇ · q⃗ dV. (3.47)

Pelo Teorema da Divergência (Equação 3.9), obtém-se:

∫
Vc

∂p

∂x
dV =

∫
Vc

∇ · q⃗ dV =

∮
∂Vc

(q⃗ · n⃗) dS. (3.48)

Por analogia ao procedimento adotado para os demais termos, a integral de su-

perf́ıcie pode ser aproximada por um somatório sobre as faces do volume de controle

associado ao ponto O, de modo que

∫
Vc

∂p

∂x
dV ≈

Nf,O∑
f=1

(q⃗ · n⃗)fAf =

Nf,O∑
f=1

(
(p̂i) · n⃗f

)
Af =

Nf,O∑
f=1

pf nx,f Af , (3.49)

em que nx,f = n⃗f · î representa a componente x do vetor normal à face f .

Assim, a integral do gradiente de pressão na direção x é escrita como um somatório

dos valores de pressão nas faces, projetados na direção normal correspondente. Nesse

caso, a única quantidade ainda desconhecida é pf , que pode ser obtida, por exemplo, por

interpolação linear entre os valores de pressão nos centros das células adjacentes à face.

3.6.4 Forma final da equação de momento

Nas seções anteriores deste caṕıtulo discutiram-se os tratamentos numéricos associados a

cada termo da equação de momento. Nesta subseção, reúnem-se esses resultados com o

objetivo de apresentar a forma final da equação de momento discretizada.

Considerando-se as discretizações do termo convectivo usando o esquema linear

upwind, do termo difusivo usando difusão cruzada, além dos termos de pressão e de fonte,
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a equação discretizada em x é sintetizada como:

Nf,O∑
f=1

[(uO + (∇u)O ·∆r⃗)max(0, ṁf )− (uN + (∇u)N ·∆r⃗)max(0,−ṁf )] =

−
Nf,O∑
f=1

pfnx,fAf +

Nf,O∑
f=1

[
Df (uN − uO) +

Nf,O∑
f=1

µfAf (∇u · n⃗2)
]
+ Sx,OVO.

(3.50)

Pode-se ainda reunir todos os termos que dependem de uO ou uN no lado esquerdo,

deixando no lado direito apenas os termos que envolvem gradientes (tratados de forma

expĺıcita) e contribuições conhecidas. Assim, obtém-se:

Nf,O∑
f=1

(uO max(0, ṁf )− uN max(0,−ṁf ))−
Nf,O∑
f=1

Df (uN − uO) = −
Nf,O∑
f=1

pfnx,fAf

+

Nf,O∑
f=1

(((∇u)∗O ·∆r⃗)max(0, ṁf )− ((∇u)∗N ·∆r⃗)max(0,−ṁf )) +

Nf,O∑
f=1

µfAf (∇u∗ · n⃗2)f + Sx,OVO,

(3.51)

em que a notação (∇u)∗ indica que os gradientes são avaliados explicitamente, por meio

de valores provenientes de iterações anteriores e reconstrúıdos via método de mı́nimos

quadrados. Para simplificar a escrita, é conveniente agrupar os termos associados à célula

central O e às células vizinhas N , tratando todo o lado direito como um termo fonte

efetivo Qx:

Nf,O∑
f=1

uO

[
max(0, ṁf ) +Df

]
−

Nf,O∑
f=1

uN

[
max(0,−ṁf ) +Df

]
= Qx. (3.52)

tomando agora as seguintes notações,

aO =
∑
f=1

[max(0, ṁf ) +Df ],

aN = [max(0,−ṁf ) +Df ].

(3.53)

A equação de balanço para a componente u pode ser escrita como

aOuO +

Nf,O∑
f=1

aNuN = Qx. (3.54)

a qual representa a forma simplificada da equação de momento na direção x, já na forma
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algébrica t́ıpica dos métodos de volumes finitos. A formulação análoga pode ser obtida

para a componente v da velocidade.

3.7 Tratamento do acoplamento pressão-velocidade

Nesta seção, será considerado o procedimento para lidar com o acoplamento entre pressão

e velocidade, ponto relevante do SIMPLE. A primeira caracteŕıstica a ser analisada é o

armazenamento das variáveis u⃗ e p. A forma mais natural seria armazená-los no centroide

das células. Contudo, se o campo de pressão for altamente não uniforme, o mesmo poderia

ser tratado como um campo uniforme na equação discretizada. Considere o exemplo da

Figura 3.13, onde, no problema, o campo de pressão obtido é altamente irregular, tendo

a configuração de um tabuleiro de xadrez (checkerboarding).

Figura 3.13: Ilustração do checkerboading, onde existe oscilação na pressão. Imagem
retirada de (VERSTEEG; MALALASEKERA, 2007).

Conforme discutido por (VERSTEEG; MALALASEKERA, 2007), o gradiente

poderia ser obtido como:

∂p

∂x
=

pE − pW
2δx

,
∂p

∂y
=

pN − pS
2δy

, (3.55)

em que nenhuma das expressões depende da pressão no nó de referência P . Substituindo

os valores da Figura 3.13, prediz-se que o gradiente de pressão em todos os pontos é

zero. Mas, na realidade, isso não é verdade, por haver oscilações da pressão em ambas as

direções. Esse comportamento, é obviamente não f́ısico, e deve ser tratado no esquema
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numérico.

Um remédio para esse problema é o uso de grids escalonados (staggered grids)

(HARLOW; WELCH, 1965), cuja ideia é avaliar variáveis, tais como pressão ou tempe-

ratura, nos centroides, mas deslocar o valor das velocidades para os centros das faces,

formando um arranjo desencontrado de variáveis. Contudo, o uso desse tipo de arranjo

possui desvantagens cŕıticas. Há alto custo em termos de memória, por ser necessário

armazenar o desencontro de velocidades por meio de várias representações das malhas

em memória, a fim de facilitar o cálculo e a indexação. Além disso, o fator mais pre-

ponderante nesse caso é o uso das malhas não estruturadas, visto que não há a noção de

indexação necessária para percorrer e encontrar os deslocamentos.

Desse modo, manter todas as variáveis armazenadas no mesmo lugar torna-se uma

necessidade prática na abordagem com malhas não estruturadas. Para isso, utilizou-se

a abordagem mais conhecida na literatura, chamada de Pressure Weighted Interpolation

Momentum (PWIM), popularmente conhecida como Interpolação de Rhie-Chow (RHIE;

CHOW, 1983).

3.7.1 Interpolação de Rhie-Chow

O grande problema na abordagem colocalizada é o uso de interpolação linear para o

cálculo das velocidades nas faces. Essa interpolação resulta em desacoplamento entre

pressão e velocidade, o que gera o problema oscilatório. Para contornar isso, em seu

paper original, Rhie e Chow resolveram esse problema adicionando um novo termo à

interpolação, que atua de forma a dissipar o comportamento oscilatório (MOUKALLED;

MANGANI; DARWISH, 2015).

A ideia principal da interpolação com PWIM é imitar o grid escalonado, porém

em uma fórmula fechada. A dedução começa usando a forma algébrica da equação de

momento em x, mas com a pequena diferença em relação à equação (3.54), em que se

explicita o termo de pressão:

aOûO +

Nf,O∑
f=1

aN ûN = −∂p

∂x

∣∣∣
O
VO, (3.56)
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no qual û representa a velocidade predita após a resolução da equação de momento, utili-

zando os valores anteriores de u, v e p. Na etapa de inicialização do método, tais campos

geralmente assumem valores nulos. A discretização do termo de pressão é realizada em

um formato distinto, no qual se considera o valor médio da pressão multiplicado pelo

volume da célula. Dessa forma, pode-se isolar o valor de ûO de modo que:

ûO = − 1

aO|O

Nf,O∑
f=1

aN |OûN |O −
1

aO|O
∂p

∂x

∣∣∣∣∣
O

VO, (3.57)

no qual a notação |□ indica que o dado coeficiente pertence à célula □. Pode-se replicar

a equação anterior para uma célula vizinha com ı́ndice 1:

û1 = −
1

aO|1

Nf,1∑
f=1

aN |1ûN |1 −
1

aO|1
∂p

∂x

∣∣∣∣∣
1

V1. (3.58)

Nesse momento, é necessário considerar uma equação de velocidade para a face

f entre O e 1, supondo que haja uma célula f intermediária. Isso originará:

ûf = − 1

aO|f

Nf,O|f∑
f ′=1

aN |f ûN |f −
1

aO|f
∂p

∂x

∣∣∣∣∣
f

Vf . (3.59)

Alguns valores da equação (3.59) precisarão ser obtidos por interpolação linear. Logo:

Vf

aO|f
= wf

VO

aO|O
+ (1− wf )

V1

aO|1
. (3.60)

Além disso, a parte envolvendo o somatório para os vizinhos irá ser transformada em:

1

aO|f

Nf,O|f∑
f ′=1

aN |f ûN |f = wf

(
1

aO|O

Nf,O∑
f=1

aN |OûN |O
)
+(1−wf )

(
1

aO|1

Nf,1∑
f=1

aN |1ûN |1
)
, (3.61)

Substituindo as equações (3.57) e (3.58) em (3.61):

− 1

aO|f

Nf,O|f∑
f ′=1

aN |f ûN |f = wf

(
ûO+

1

aO|O
∂p

∂x

∣∣∣∣∣
O

VO

)
+(1−wf )

(
û1+

1

aO|1
∂p

∂x

∣∣∣∣∣
1

V1

)
, (3.62)
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Por fim, pode-se substituir (3.60) e (3.62) em (3.59):

ûf = wf

[
ûO +

1

aO|O
∂p

∂x

∣∣∣∣∣
O

VO

]
+ (1− wf )

[
û1 +

1

aO|1
∂p

∂x

∣∣∣∣∣
1

V1

]
−
[
wf

VO

aO|O
+ (1− wf )

V1

aO|1

]∂p
∂x

∣∣∣∣∣
f

,

(3.63)

para encontrar finalmente a interpolação para a velocidade ûf . De forma similar, a

expressão para v̂f é:

v̂f = wf

[
v̂O +

1

aO|O
∂p

∂y

∣∣∣∣∣
O

VO

]
+ (1− wf )

[
v̂1 +

1

aO|1
∂p

∂y

∣∣∣∣∣
1

V1

]
−
[
wf

VO

aO|O
+ (1− wf )

V1

aO|1

]∂p
∂y

∣∣∣∣∣
f

.

(3.64)

Um fato em relação ao SIMPLE é que não são necessários apenas as velocidades

ûf e v̂f , mas também os valores do fluxo de massa ṁf , utilizados então para o cálculo do

termo advectivo, conforme mencionado anteriormente. Para calculá-lo, precisa-se então

calcular o produto escalar u⃗f · n⃗f . Isso resultará em:

u⃗f · n⃗f = ûfnx,f + v̂fny,f

=
(
wf

[
ûO +

1

aO|O
∂p

∂x

∣∣∣∣∣
O

VO

]
+ (1− wf )

[
û1 +

1

aO|1
∂p

∂x

∣∣∣∣∣
1

V1

]
−
[
wf

VO

aO|O
+ (1− wf )

V1

aO|1

]∂p
∂x

∣∣∣∣∣
f

)
nx,f

+
(
wf

[
v̂O +

1

aO|O
∂p

∂y

∣∣∣∣∣
O

VO

]
+ (1− wf )

[
v̂1 +

1

aO|1
∂p

∂y

∣∣∣∣∣
1

V1

]
−
[
wf

VO

aO|O
+ (1− wf )

V1

aO|1

]∂p
∂y

∣∣∣∣∣
f

)
ny,f

(3.65)

Que finalmente, em formato vetorial:

u⃗f · n⃗f = wf u⃗O · n⃗f + (1− wf )u⃗1 · n⃗f

+ wf
VO

aO|O
(∇p)O · n⃗f + (1− wf )

V1

aO|1
(∇p)1 · n⃗f −

[
wf

VO

aO|O
+ (1− wf )

V1

aO|1

]
(∇p)f · n⃗f

(3.66)

representa o cômputo dos valores do fluxo de massa nas faces adotado neste trabalho. A

equação (3.66) consiste basicamente em uma interpolação linear, mas adiciona termos que
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envolvem a pressão, o que traz estabilidade. Na equação (3.66), os termos que envolvem

o gradiente de pressão nas células O e 1 podem ser calculados como

VO(∇p)O · n⃗f = nx,f

∑
ff(O)

pffAffnx,ff + ny,f

∑
ff(O)

pffAffny,ff , (3.67)

em que utilizou-se a notação ff para indexar o loop nas faces e não existir confusão com

o f da face interpolada. E o termo que envolve o gradiente de pressão, mas na face f ,

pode ser determinado como

(∇p)f · n⃗f =
p
(k)
1 − pO
dO1

+ ζ, (3.68)

onde existiria um termo ζ a ser contabilizado devido a não ortogonalidade da malha.

Entretanto, o mesmo é negligenciável, não impactando na convergência do algoritmo

(MAZUMDER, 2015).

3.8 Derivação da equação para pressão

Conforme descrito no ińıcio do caṕıtulo, é necessário derivar uma equação espećıfica para

o cálculo do campo de pressão. A partir dos valores obtidos na solução das equações de

momento e da interpolação de Rhie-Chow, o campo de velocidades passa a satisfazer, em

boa aproximação, a equação de momento, mas ainda não satisfaz exatamente a equação

de continuidade.

Dessa forma, torna-se necessário corrigir os campos de pressão, velocidade e fluxo

de massa, de modo a impor simultaneamente o atendimento à continuidade. Denotando-

se as correções por meio de um sobrescrito “□′”, as relações entre o valor exato, o valor

aproximado “□̂” e a correspondente correção podem ser escritas da seguinte forma:

v⃗ = ˆ⃗v + v⃗′,

p = p̂+ p′,

ṁ = ˆ̇m+ ṁ′.

(3.69)

parte-se, então, da Equação (3.57). De forma análoga, os valores exatos também satisfa-
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zem essa equação e podem ser nela substitúıdos. Ao se subtrair a equação aproximada

da equação exata, obtém-se, para a célula O, a seguinte expressão para a correção da

velocidade:

u′
O = − 1

aO|O

Nf,O∑
f=1

aN |O u′
N −

1

aO|O
∂p′

∂x

∣∣∣∣
O

VO. (3.70)

Nesse ponto, o algoritmo SIMPLE introduz uma simplificação importante na

primeira parcela da correção de velocidade: por simplicidade, o termo que envolve as

correções u′
N é negligenciado, assumindo-se que, ao longo das iterações, essa contribuição

tende a zero e que o termo associado ao gradiente de pressão passa a dominar a expressão.

Utilizando uma discretização análoga àquela empregada na seção de tratamento

do termo de pressão (3.49), pode-se escrever para u e v:

u′
O = − 1

aO|O
∑
f(O)

p′f Af nx,f , (3.71)

v′O = − 1

aO|O
∑
f(O)

p′f Af ny,f , (3.72)

em que p′f é a correção de pressão interpolada na face f , e a soma é realizada sobre as

faces do volume de controle associado à célula O. De forma análoga, pode-se derivar a

expressão da velocidade nas faces. O detalhe algébrico é omitido aqui para brevidade,

mas, após algumas manipulações e o uso da Equação (3.66), chega-se a uma relação do

tipo:

u′
f = −

(
wf

VO

aO|O
+ (1− wf )

V1

aO|1

)
∂p′

∂x

∣∣∣∣
f

, (3.73)

v′f = −
(
wf

VO

aO|O
+ (1− wf )

V1

aO|1

)
∂p′

∂y

∣∣∣∣
f

, (3.74)

em que wf é dado por (3.23), VO e V1 são os volumes das células adjacentes à face, e

aO|O e aO|1 são os coeficientes diagonais correspondentes na discretização das equações

de momento.

A equação de continuidade discretizada é exatamente satisfeita quando se consi-

dera o campo de velocidades exato. Entretanto, no processo iterativo, dispõe-se apenas

de um campo aproximado, que, nesse estágio, satisfaz a equação de momento, mas não

necessariamente a continuidade. Manipulando-se a equação de continuidade, obtém-se a
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seguinte relação para as correções de velocidade:

∑
f(O)

ρf
(
u⃗′ · n⃗f

)
Af = −

∑
f(O)

ρf
(
ˆ⃗u · n⃗f

)
Af , (3.75)

em que o somatório é tomado sobre as faces do volume de controle associado à célula O, ˆ⃗u

representa o campo de velocidade aproximado (obtido na etapa anterior) e u⃗′ é a correção

de velocidade. O lado direito representa, portanto, o desequiĺıbrio de massa (reśıduo de

continuidade) calculado com as velocidades aproximadas.

Após substituições adicionais para u⃗′ em função da correção de pressão, obtém-se

a equação de correção de pressão na forma:

∑
f(O)

ρf

[
wf

VO

aO|O
+ (1− wf )

V1

aO|1

](
p′O − p′N

dO1

)
Af = −

∑
f(O)

ρf
(
ˆ⃗u · n⃗f

)
Af , (3.76)

Com base nessa equação, obtêm-se os valores de p′ e o campo de pressão é atualizado;

as correções de velocidade são calculadas e, em seguida, as velocidades são corrigidas.

Ao final dessa etapa, o campo corrigido passa a satisfazer a continuidade, mas deixa

de satisfazer exatamente as equações de momento, de modo que o processo é repetido

iterativamente até um determinado critério de convergência.

3.9 Coeficientes de relaxação

Uma caracteŕıstica cŕıtica do SIMPLE está na sua convergência. Embora a forma algébrica

da equação do momento seja linear, seus coeficientes dependem dos campos de velocidade

e pressão. Essa não linearidade é tratada por um processo iterativo durante o qual os

coeficientes são calculados no ińıcio de cada iteração com base nos valores das variáveis

dependentes obtidos na iteração anterior.

Essa mudança nos valores dos coeficientes resulta em grandes variações na veloci-

dade e afeta a taxa de convergência, o que pode originar divergências. Para reduzir essas

variações, pode-se aplicar sub-relaxações. Denotando esse coeficiente de sub-relaxação

para a velocidade como λuv, a equação do momento pode ser escrita como (MOUKAL-
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LED; MANGANI; DARWISH, 2015):

aO
λuv

uO +
∑
f(O)

aNuN = Qx +
1− λuv

λuv

aOu
(n)
O , (3.77)

em que u
(n)
O é o valor de uO na iteração anterior do SIMPLE. Observa-se que, além

de modificar o coeficiente diagonal (efetivamente ampliando aO), o termo da iteração

anterior é incorporado ao lado direito, contribuindo para estabilizar a evolução do campo

de velocidades.

De modo análogo, e em virtude das simplificações introduzidas pelo algoritmo

SIMPLE na dedução da equação de correção de pressão, é conveniente aplicar sub-

relaxação também na atualização da pressão. Não há necessidade de sub-relaxar dire-

tamente a correção de velocidade, uma vez que é a pressão corrigida que garante, em

última instância, a conservação de massa. Sendo assim, denotando o coeficiente de re-

laxação para a pressão por λp, a atualização de p é escrita como

p = p̂+ λp p
′, (3.78)

em que p̂ representa o campo de pressão vigente e p′ é a correção obtida a partir da

equação de correção de pressão. Valores de λp inferiores a 1 tornam a atualização mais

conservadora, melhorando a estabilidade do processo iterativo em detrimento de uma

convergência potencialmente mais lenta.

3.10 Tratamento das condições de contorno

Um elemento de contorno é aquele que possui ao menos uma face localizada na fronteira

do domı́nio, denominada face de contorno. O tratamento das condições de contorno nessas

faces é fundamental para a formulação numérica.

Na interpolação de Rhie-Chow, os valores das faces de contorno são utilizados

diretamente quando a condição de contorno prescreve um valor. Ou seja: ṁf = □, onde

o □ representa o valor informado da condição de contorno. Neste trabalho, optou-se por

tratar apenas as condições de contorno Wall, Inlet e Outlet, justamente pela conveniência
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dessas condições nos problemas utilizados.

No caso de ser uma condição do tipo Wall, ela pode ser classificada como slip

(deslizante) ou no slip (fixa). Os seus valores relacionados são parametrizados como:

pb = ?; ṁb = 0; u⃗ = u⃗wall, onde o śımbolo de interrogação “?” significa que o valor é

desconhecido. O fluxo de massa é zero, implicando não haver velocidade em direções

ortogonais ao contorno. Além disso, a velocidade do fluido perto da parede é igual à

velocidade da parede u⃗wall. Em termos de implementação numérica, esses valores podem

ser armazenados e substitúıdos sempre que necessário na avaliação dos fluxos nas faces de

contorno, contribuindo como termos fonte nas equações discretizadas.

A pressão desconhecida pb pode ser extrapolada a partir dos valores internos do

domı́nio por meio de uma expansão em série de Taylor. Por simplicidade, truncou-se a

série já no primeiro termo da expansão, o que implica que pb = pO (a pressão na face de

contorno é a pressão da célula vizinha).

No caso da condição inlet, a mesma é parametrizada por: pb = ?; ṁb = □; u⃗b = □.

Nesse caso, existe um fluxo de massa, e a velocidade possui componente ortogonal à

condição de contorno, fazendo a massa entrar no domı́nio. Similarmente à condição wall,

pode-se usar a mesma expressão para aproximar o valor de pb. Na terceira e última

condição, Outlet, ela é parametrizada por: pb = □; ṁb = ?; u⃗b = ?. Neste caso, é infor-

mado agora o valor da pressão, mas o valor da velocidade não é especificado. Também é

necessário extrapolar o valor do fluxo de massa no contorno para ser o valor da célula O.

Sobre a equação de correção de pressão, há apenas os últimos pormenores. Pri-

meiro, no caso da condição de contorno wall, como o fluxo de massa é padronizado como 0,

não há a necessidade de corrigir o valor no contorno durante a execução, ou seja, ṁ′
b = 0.

De forma análoga, o mesmo se verifica para a condição inlet. No caso do valor de p′, o

tratamento é consistente, e o valor é extrapolado pegando o valor da célula vizinha. Para

a condição Outlet, como há o valor de pb, a sua correção é então utilizada como p′b = 0.
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4 DESCRIÇÃO DO CÓDIGO ReFUM2D

ReFUM2D é um software escrito na linguagem C++ que permite a partir dos dados

informados pelo usuário simular problemas de escoamentos de fluidos envolvendo as

equações de Navier-Stokes utilizando a metodologia do MVF. O ReFUM2D é dividido

em quatro partes principais: processamento das informações pertinentes à simulação, pré-

processamento da malha, processamento e exportação da solução; todos feitos de forma

serial, ou seja, sem utilização de programação multithreading ou via GPUs. O ReFUM2D

foi constrúıdo utilizando a biblioteca de álgebra linear Eigen (GUENNEBAUD; JACOB,

2010), descrita melhor posteriormente. A estrutura do ReFUM2D está exibida na Figura

4.1.

Figura 4.1: Visão geral dos componentes.

Além disso, como o software foi constrúıdo seguindo uma abordagem orientada a

objetos, a Figura 4.2 retrata um diagrama de classes que exibe as classes utilizadas com

seus atributos e métodos, além dos seus respectivos relacionamentos.
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BoundaryCondition

- type: BoundaryType
- location: string
+ func: function<double(double,double)>

Cell

+ id: int
- nsigns: vector<int>
- area: double
- centroid: pair<double, double>

- nodes: vector<Node>

- edges: vector<Edge>

Edge

+ id: int
+ from: Node
+ to: Node
- length: double
- df: double
- middle: pair<double, double>

- normal: pair<double, double>

- link_face_to_cell: pair<int, int>

- physicalGroup: string

+ is_boundary_face(): bool

Node

+ id: int
+ x: double
+ y: double

PhysicalEntity

+ id: int
+ name: string

Mesh

- edges: vector<Edge>
- nodes: vector<Node>
- cells: vector<Cell>
- physicalEntities: map<int, physicalEntity>
+ read_mesh(string filepath): void

Orchestrator

+ readYamlAndRecoverVariables(string yaml_filepath): void

FUM2D

- mesh: Mesh
- A: SparseMatrix<double>
- b_mom_x: VectorXd<double>
- b_mom_y: VectorXd<double>
- b_pc: VectorXd<double>
- mu: float

+ rho: float

- gradients: MatrixXd<double>

- u_boundary: vector<pair<BoundaryType, double>>

- v_boundary: vector<pair<BoundaryType, double>>

- p_boundary: vector<pair<BoundaryType, double>>

- uc: VectorXd<double>

- vc: VectorXd<double>

- pc: VectorXd<double>

- ap: VectorXd<double>

- mdotf: VectorXd<double>

- wf: VectorXd<double>

+ mom_links_and_sources(double lambda_uv): void

+ solve_x_mom(int non_orthogonal_corrections, int maxiter, double tol): void

+ solve_y_mom(int non_orthogonal_corrections, int maxiter, double tol): void

+ face_velocity(): void

+ solve_pp(int maxiter, double tol): void

+ uv_correct(): void

+ pres_correct(double lambda_p): void

Figura 4.2: Diagrama de classes do ReFUM2D.

4.1 Processamento das informações do problema

Nesta primeira etapa, são feitas a leitura da malha informada pelo usuário, e também os

dados da simulação. Como entrada, o ReFUM2D suporta malhas com extensão .msh, na

versão 2.0 ASCII. Este formato é do software Gmsh (GEUZAINE; REMACLE, 2009), um

código livre de geração e visualização de malhas bidimensionais e tridimensionais. Para a

leitura dos dados do usuário, é necessário informar como argumento do programa o cami-

nho até um arquivo YAML (YAML Ain’t Markup Language), onde nele estarão descritas
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as propriedades f́ısicas do problema, detalhes de condições de contorno e informações do

algoritmo SIMPLE. Um exemplo de arquivo está descrito na Figura 4.3:

Figura 4.3: Exemplo de um arquivo contendo as informações de entrada do problema.
Por praticidade, quebrou-se a visualização em duas partes, sendo a primeira metade na
esquerda.

em que são fornecidos o caminho até a malha, os parâmetros f́ısicos: densidade para

a parte convectiva e viscosidade para a parte difusiva, e as condições de contorno para

cada uma das variáveis. Os tipos referem-se a como o valor será aplicado, sendo as

opções “DIRICHLET” para um valor prescrito, ou “NEUMANN” para prescrever o valor

do gradiente. As regiões são os respectivos locais onde a condição de contorno será

aplicada, valores esses definidos dentro do Gmsh, e que precisam estar em acordo. O campo

“value” corresponde ao valor da condição, e pode ser uma função, como: one(x, y) = 1

ou zero(x, y) = 0. Tais valores, infelizmente, precisam ser definidos dentro do código

e referenciados com o mesmo nome, visto que a definição direta no arquivo exigiria um

tratamento de expressões simbólicas, processo que está além do escopo deste trabalho.

Ainda há campos contendo as informações para execução do SIMPLE e detalhes para a

exportação da solução. Dentro do código criado, o tratamento dessa etapa está contido

na classe Orchestrator, que fica responsável por processar todos os dados do YAML para

disponibilizá-los conforme requerido. A leitura da malha fica contida dentro da classe

Mesh.
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4.2 Pré-processamento

A malha é representada computacionalmente na classe Mesh. Esta classe é composta por

três principais arrays : nós da malha (vértices dos volumes de controle), elementos da

malha (células) e arestas (faces dos volumes de controle). Considerar-se-á a malha da

Figura 4.4 para exemplificar alguns detalhes nesta etapa. As inspirações para realizar o

pré-processamento estão detalhadas de melhor forma em (MAZUMDER, 2015). Como

principais pontos, tem-se que:

• Cada célula possui uma numeração correspondente no array de células.

• Cada face possui uma numeração correspondente no array de faces.

• Cada vértice possui uma numeração correspondente no array de vértices.

• Cada face possui uma numeração local, que pode ir de 0 até |f |−1, onde |f | denota

o número de faces do volume de controle.

• Em relação a uma dada face, as células também podem possuir numeração local

valendo 0 ou 1.

A relação espacial que se dá entre os valores globais e locais é denominada: co-

nectividade. Uma conectividade que precisa ser determinada para o MVF é chamada

de: link face to cell, onde sua ideia é recuperar o id das células que compartilham uma

determinada face. Baseado na figura 4.4, as seguintes chamadas dessa função são verda-

deiras: link face to cell(20,0) = 8 e link face to cell(20,1) = 12 ou link face to cell(9,0)

= 3 e link face to cell(9,1) = 2. Outra funcionalidade da mesma é permitir identificar

uma face como face de contorno, visto que quando uma aresta possui somente uma célula

compartilhando-a (situação do contorno), uma das numerações locais referencia a flag

“-1”. A partir dessa relação, pode-se usá-la para construir o Algoritmo 1. Nele, em

detrimento da conectividade entre face e células, pode-se resgatar as células adjacentes,

e interpolar na face o valor da propriedade segundo a equação 3.23. os próximos pro-

cessamentos estão relacionados à questões geométricas, e com isso dedicou-se subseções

próprias aos mesmos.
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Figura 4.4: Exemplo de malha não estruturada bidimensional. Os vértices da malha são
destacados em azul, os centroides dos volumes de controle em vermelho e as faces em
roxo. As regiões de contorno do domı́nio (Top, Bottom, Left, Right) estão explicitamente
identificadas. Imagem criada com base em (MAZUMDER, 2015).

Algoritmo 1: Uso da conectividade link face to cell

1 for if ← 1 to nfaces do
2 ic1← link face to cell(iface, 0);
3 ic2← link face to cell(iface, 1);
4 vf = interpolate values(ic1, ic2);

5 end for

4.2.1 Cálculo do volume das células

O volume das células é uma informação importante a ser encontrado, e não é informado

pelo gerador de malhas. Sendo assim, considere um vetor q⃗ = xî. Tomando o divergente

desse campo vetorial:

∇ · q⃗ = ∇ · (xî) = ∂

∂x
(x)̂i · î = 1. (4.1)

uma vez que o divergente desse vetor q⃗ é unitário, pode-se dizer então que:
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VO =

∫
VO

dV =

∫
VO

∇ · q⃗dV, (4.2)

nesse formato, pode-se recorrer ao Teorema de Gauss 3.9 e transformar a integral em um

somatório nas faces, de modo que:

VO =

Nf,O∑
f=1

xfnx,fAf . (4.3)

De maneira análoga pode ser feito para q⃗ = yĵ, a fim de derivar uma expressão do

volume usando a direção y, e depois extrair uma média das duas versões para aumentar

a robustez do cálculo.

4.2.2 Cálculo das áreas das faces e informações sobre as normais

Em 2D, calcular a área da face consiste apenas em calcular o comprimento de um segmento

usando a distância euclidiana. Já no caso do vetor normal, o mesmo pode ser obtido

usando algumas relações envolvendo a tangente à face. Os componentes tangentes podem

ser encontrados como:

tx,f =
x2 − x1

Af

, ty,f =
y2 − y1
Af

(4.4)

em vista de obter-se a normal, pode-se usar relações de geometria anaĺıtica. A primeira

delas é que a normal e tangente são perpendiculares. A segunda, é que o produto vetorial

entre os dois vetores é um vetor ortogonal e unitário k̂ na direção z. Assim:


n⃗f · t⃗f = 0

n⃗f × t⃗f = k⃗

(4.5)

resolvendo o sistema obtém-se que: nx,f = ty,f e ny,f = −tx,f . Um ponto cŕıtico é que,

apesar de saber os valores das componentes da normal, algo igualmente importante é

conhecer em qual sentido ela aponta. Para aplicar o teorema da divergência de Gauss,

uma hipótese importante é que todas as normais apontam para fora do volume de controle

em questão. Portanto, durante a execução do software, precisa-se guardar qual sentido
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a normal aponta e corrigir sempre que necessário para realizar os balanços. Uma ideia

disso está exemplificada no Algoritmo 2, no qual cada célula possuirá um vetor interno

armazenando quais os sinais das normais para cada face, onde 1 indica que a normal já

aponta para fora, e -1 não.

Algoritmo 2: Determinação dos sinais das normais

1 for ic← 1 to ncells do
2 for if ← 1 to nfaces(ic) do
3 ic1 = link face to cell(ic, 0);
4 if (icell == ic1) then
5 nsign(ic, if) = 1;
6 else
7 nsign(ic, if) = −1;
8 end if

9 end for

10 end for

Uma vez que a direção das normais está bem definida, pode-se usá-las para o

cômputo do volume de uma célula baseado na equação 4.3, onde o Algoritmo 3 ilustra a

sua execução aproveitando a estrutura nsign constrúıda anteriormente.

Algoritmo 3: Cálculo do volume utilizando a informação de nsign

1 for ic← 1 to ncells do
2 vol(ic) = 0;
3 for if ← 1 to nfaces(ic) do
4 vol(ic) = vol(ic) + nsigns(ic, ifc) ∗ normal(ic).x ∗ xf(if) ∗ area(if);
5 end for

6 end for

4.3 Processamento

Após a execução do pré-processamento dentro da classe Mesh, que irá guardar então

informações das classes Node (vértices), Cell (células) e Edge (faces), além de informações

de contorno manifestadas através da classe PhyisicalEntity, a próxima etapa então é

montar os sistemas de equações e resolvê-los utilizando algum método de resolução de

sistemas. Toda a lógica do processamento encontra-se dentro da classe ReFUMSolver,

que irá executar as etapas do algoritmo SIMPLE para então resolver o problema. Nessa
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etapa, a biblioteca Eigen possui papel vital, possibilitando performar de forma mais

eficiente os cálculos algébricos.

A biblioteca Eigen é uma biblioteca em C++ amplamente utilizada para operações

de álgebra linear, oferecendo uma interface eficiente e flex́ıvel para o manuseio de vetores

e matrizes densas e esparsas. Entre suas principais funcionalidades, destaca-se o su-

porte nativo a matrizes esparsas, o que a torna particularmente adequada para aplicações

cient́ıficas e de engenharia que envolvem grandes sistemas lineares (GUENNEBAUD; JA-

COB, 2010).

Resgatando o que foi discutido na seção de Metodologia Numérica, o SIMPLE

pode ser descrito de forma algoŕıtmica através do pseudocódigo 4, que ilustra em alto

ńıvel a sequência de chamadas que o ReFUM2D utiliza na prática.

Algoritmo 4: Algoritmo SIMPLE

Entrada: utol, vtol, ptol, non corrections, iter bicgstab mom,
tol bicgstab mom, iter bicgstab pc, tol bicgstab pc, λuv, λp.

1 while uerr > utol ∨ verr > vtol ∨ perr > ptol do
2 mom links and sources(λuv);
3 solve x mom(non corrections, iter bicgstab mom, tol bicgstab mom);
4 solve y mom(non corrections, iter bicgstab mom, tol bicgstab mom);
5 face velocity();
6 solve pp(iter bicgstab pc, tol bicgstab pc);
7 uv correct();
8 pres correct(λp);

9 end while

A primeira etapa do algoritmo consiste na inicialização das estruturas de dados,

sendo a maior parte delas inicializada com zeros, caracterizando o chute inicial do método

iterativo. Em seguida, procede-se à montagem dos sistemas das equações de momento nas

direções x e y por meio da função mom links and sources, onde montam-se as matrizes A e

b do sistema, sendo que a matriz A é montada com aux́ılio da estrutura de dados triplets,

que serve como base para montar uma matriz esparsa dentro do Eigen. A resolução

desses sistemas é realizada pelas rotinas solve x mom e solve y mom, as quais empregam

o método iterativo BiCGSTAB pré-condicionado com Jacobi.

No interior dessas rotinas, são executados os procedimentos de correção da não

ortogonalidade da malha, bem como o cálculo dos gradientes associados ao esquema de

discretização LUD. Por razões de economia computacional, optou-se por realizar de forma
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conjunta as correções expĺıcitas, em vez de aplicar separadamente a correção de não

ortogonalidade e, em seguida, tratar exclusivamente o esquema LUD, processo considerado

mais adequado pelos autores. O método BiCGSTAB requer a definição do número máximo

de iterações e da tolerância de convergência, parâmetros fornecidos pelo usuário. Com o

objetivo de acelerar a convergência, utiliza-se o pré-condicionador de Jacobi.

Após a resolução das equações de momento, realiza-se a interpolação do fluxo de

massa nas faces dos volumes de controle com base no esquema de Rhie–Chow, procedi-

mento implementado na função face velocity. Nesse estágio, o campo de velocidades sa-

tisfaz as equações de momento, porém ainda não atende à equação de continuidade. Para

corrigir essa inconsistência, a função solve pp monta e resolve uma equação de correção

de pressão, cuja finalidade é forçar o campo de velocidades a satisfazer a conservação de

massa.

Na sequência, os valores de velocidade e pressão são atualizados com base na

solução da equação de pressão, por meio das rotinas uv correct e p correct. Essas atu-

alizações incorporam fatores de sub-relaxação, previamente definidos, com o objetivo de

melhorar a estabilidade numérica e favorecer a convergência do método.

O algoritmo é executado iterativamente até que todas as tolerâncias especifica-

das pelo usuário no arquivo YAML sejam satisfeitas. Para a avaliação do erro em cada

iteração, mantém-se um vetor auxiliar contendo os valores da iteração anterior, permitindo

o cálculo da norma do máximo e a verificação do critério de convergência adotado.

Por fim, para ilustrar visualmente as etapas do algoritmo, construiu-se o fluxo-

grama disposto na figura 4.5. Como é posśıvel perceber, o algoritmo é composto por

diversas etapas, sendo custoso do ponto de vista computacional. Denotando a quantidade

de células por |c| e quantidade de faces por célula como |f |, grande parte dos loops para

preenchimento dos sistemas lineares são da ordem de O(|c|·|f |). Sendo assim, desprezando

a resolução dos sistemas, somente para a montagem dos sistemas lineares o algoritmo pos-

sui complexidade O(k · |c| · |f |), onde k é a quantidade de iterações no loop externo do

SIMPLE, que costumam ser da ordem de milhares, evidenciando uma demanda natural

do algoritmo para estratégias de paralelização.
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Inicialização de ,  e 

Montagem das matrizes  e  de momento
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Não Sim

Figura 4.5: Fluxograma ilustrando visualmente as etapas de processamento.

4.4 Exportação da solução

O ReFUM2D faz a escrita da solução utilizando o formato VTK (Visualization Toolkit)

(Kitware, 2026), utilizado para a escrita de resultados em grids não-estruturados e baseado

na sintaxe XML, uma sintaxe voltada para formatos de conjunto de dados topologicamente

irregulares. Uma grande vantagem do formato VTK é ter suporte nativo pelo ParaView

(AHRENS; GEVECI; LAW, 2005), um código open-source para visualização cient́ıfica,

que foi utilizado neste trabalho para pós-processamento e visualização das soluções.
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5 RESULTADOS

Os resultados são apresentados com foco na precisão e corretude das soluções geradas

pelo método numérico desenvolvido, iniciando-se pela análise da ordem de convergência

e, em seguida, pela validação do código por meio de problemas clássicos da área de

CFD. No algoritmo SIMPLE, as tolerâncias para velocidade e pressão foram fixadas em

1 × 10−8, valores amplamente adotados por estarem próximos da precisão de máquina

simples, enquanto os coeficientes de sobre-relaxação foram ajustados de acordo com o

problema considerado. Para as iterações expĺıcitas, adotou-se θ = 5, correspondendo

a cinco iterações, e o processo de avaliação da convergência seguiu os mesmos critérios

descritos nas etapas de difusão e convecção. O solucionador BiCGSTAB foi empregado na

resolução das equações de momento, com tolerância de 1× 10−6 e limite de 200 iterações,

ao passo que a equação de pressão foi resolvida com tolerância de 1 × 10−4 e até 100

iterações.

Os testes foram realizados em um laptop equipado com um processador Intel®

Core™ i5-12450HX de 12ª geração, 16 GB de memória RAM e 512 GB de armaze-

namento interno em SSD. O ambiente de execução adotado foi o sistema operacional

Ubuntu 22.04 LTS, e a versão da linguagem C++ utilizada foi o padrão C++17, conforme

disponibilizado pelo toolchain configurado via CMake.

5.1 Fluxo de Kovasznay

Nessa seção, testa-se o comportamento de convergência do esquema desenvolvido utili-

zando o problema do Fluxo de Kovasznay, um benchmark bem popular dentro da área

de CFD (CHEN et al., 2021). Esse problema é de interesse, visto que possui solução

anaĺıtica, a qual é descrita por (KOVASZNAY, 1948; PIETRO; ERN, 2011):

u⃗(x, y) =
(
1− eλx cos(2πy),

λ

2π
eλx sin(2πy)

)
,

p(x, y) =
1

2
(1− e2λx).

(5.1)
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Onde o valor de λ está relacionado ao número de Reynolds:

λ =
Re

2
−
√

R2
e

4
+ 4π2. (5.2)

Para realizar a simulação tomou-se Re = 20, resultando em um problema com

λ ≈ −1.81. O domı́nio da simulação é: Ω := [−0.5, 0] × [1.5, 2]. Ao contrário das si-

mulações feitas anteriormente, dessa vez utilizou-se uma malha não estruturada composta

apenas por elementos triangulares, gerada no gmsh com o algoritmo de triangulação de De-

launay. No caso dos valores de λuv e λp, optou-se por serem 0.6 e 0.3, respectivamente. A

quantidade de volumes de controle na malha foram: N = 460, 942, 1992, 3962, 7826, 15644;

dobrando aproximadamente a quantidade. O fator de refinamento e cálculo da norma são

calculados com as equações (3.38) e (3.37).

10−12× 10−2 3× 10−2 4× 10−2 6× 10−2

h

10−2

e L
2

~u, O(h1.85)

(a)

10−12× 10−2 3× 10−2 4× 10−2 6× 10−2

h

10−1

e L
2

p, O(h1.19)

(b)

Figura 5.1: Histórico de convergência do método SIMPLE: (a) convergência da velocidade
e (b) convergência da pressão.

Na Figura 5.1 são apresentados os históricos de convergência obtidos pelo método

SIMPLE para os campos de velocidade e pressão. A convergência da velocidade foi ava-

liada a partir do módulo do vetor velocidade, definido como |u⃗| =
√
u2 + v2, de modo a

representar de forma global o comportamento do campo ao longo do processo iterativo.

Observa-se que, para a velocidade, a ordem de convergência obtida encontra-se próxima

de 2, indicando um comportamento aproximadamente de segunda ordem, consistente com

a discretização espacial empregada.

Para o campo de pressão, a ordem de convergência apresenta-se mais próxima

de 1, sugerindo um comportamento de primeira ordem. Esse resultado é coerente com



5.2 Fluxo na cavidade acionado pela tampa 70

o tratamento usual da pressão no algoritmo SIMPLE, no qual a correção de pressão e o

acoplamento entre as variáveis tendem a limitar a ordem de convergência. Nota-se ainda

que, em certo momento, ocorre um aumento do erro da pressão para uma malha mais

refinada, comportamento no qual os autores não possuem uma boa hipótese de explicação.

5.2 Fluxo na cavidade acionado pela tampa

Nesse problema, o domı́nio é definido como: Ω = [0, 1] × [0, 1]. Detalhes sobre suas

condições de contorno são dados na Figura 5.2, em que também está ilustrada a malha

utilizada, composta por 8656 volumes de controle, e as condições de contorno do problema.

Figura 5.2: Domı́nio, malha e informações de contorno do problema da cavidade.

Conforme dispońıvel na figura, três das regiões são condições de contorno wall em

que as paredes são fixas, enquanto a parede na parte superior se movimenta, sendo dáı a

origem do nome do problema. A densidade nesse caso é considerada como ρ = 1 Kg/m3,

enquanto velocidade caracteŕıstica será a velocidade da tampa, isto é, u⃗ = 1. Assim, a

relação de Re depende somente da viscosidade µ:
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Re =
1

µ
⇔ µ =

1

Re

. (5.3)

O que é comum a partir de então é configurar os valores de Re, e o valor de µ

será condicionado aos mesmos. Seguindo o que é comum à literatura, simulou-se para os

valores de Re = 100 e Re = 1000. No caso dos valores de λuv e λp do SIMPLE, optou-se

por serem 0,6 e 0,3. As Figuras 5.3 e 5.4 mostram o campo de velocidade e as linhas de

corrente para os respectivos números de Reynolds.

(a) (b)

Figura 5.3: Problema da cavidade Re = 100: (a) magnitude das velocidades e (b) linhas
de corrente.

(a) (b)

Figura 5.4: Problema da cavidade Re = 1000: (a) magnitude das velocidades e (b) linhas
de corrente.
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Como esse problema não possui solução exata, as soluções obtidas foram com-

paradas com a literatura dispońıvel em (GHIA; GHIA; SHIN, 1982), que resolveu este

problema usando uma abordagem multigrid com diferenças finitas. Para fazer essa com-

paração, verificou-se a variação da velocidade u ao longo de uma linha vertical passando

pelo centro da cavidade, e a variação da velocidade v ao longo de uma linha horizontal

também passando pelo centro. Os resultados estão dispostos nas Figuras 5.5 e 5.6.
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Figura 5.5: Comparação com (GHIA; GHIA; SHIN, 1982) em Re = 100: (a) perfil vertical
e (b) perfil horizontal.
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Figura 5.6: Comparação com (GHIA; GHIA; SHIN, 1982) em Re = 1000: (a) perfil
vertical e (b) perfil horizontal.

Por fim, é apresentado os gráficos relacionados à convergência do método SIMPLE
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para ambos os Reynolds (Figura 5.7), onde se percebe que o processo converge de forma

bem estável para todas as variáveis nos dois casos.
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Figura 5.7: Comparação da convergência para ambos os Reynolds, comparando o valor da
norma do máximo e a quantidade de iterações para o problema da cavidade: (a) Re = 100
(b) Re = 1000.

5.3 Problema do escoamento sobre um degrau

Nesta parte, é estudado o escoamento sobre um degrau, problema também clássico na

área de CFD. O domı́nio é retangular, possuindo altura H = 1 e comprimento L = 10. O

degrau, por sua vez, representado por uma extrusão, possui altura h = 0.5 e comprimento

l = 2. Um importante valor relacionado a esse problema é sua taxa de expansão: H/h =

2.0, usada para poder comparar soluções da literatura. A Figura 5.8 ilustra maiores

detalhes sobre as condições de contorno e malha utilizados. Dessa vez, a malha possui

8450 células triangulares.

Figura 5.8: Domı́nio, malha e informações de contorno do problema do degrau.

Conforme definido na formulação do problema, as superf́ıcies superior e inferior do
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canal, bem como as superf́ıcies do degrau, são modeladas como paredes com condição de

não deslizamento (no-slip). Para representar o escoamento entrando no domı́nio, adota-

se na fronteira lateral esquerda uma condição de contorno do tipo inlet. O perfil de

velocidade prescrito é dado por


ū(x, y) = −16(y − 0.75)2 + 1, se y > 0.5,

0, caso contrário.

(5.4)

Na fronteira lateral direita, impõe-se uma condição de sáıda (outlet), permitindo a sáıda

do fluido do domı́nio.

O número de Reynolds é definido a partir de uma densidade ρ = 1,0 kg/m3, de um

comprimento caracteŕıstico L = 0,5 (altura do degrau) e de uma velocidade caracteŕıstica

U = 1,0m/s, correspondente à velocidade máxima do perfil ū. Dessa forma,

Re =
ρUL

µ
=

0.5

µ
, (5.5)

de modo que a viscosidade dinâmica µ pode ser especificada em função do valor de Re.

Nessa simulação, foram considerados os casos Re = 10, Re = 50 e Re = 100.

Para as simulações, adotaram-se coeficientes de relaxação λuv = 0.3 e λp = 0.2,

valores relativamente baixos em razão de dificuldades de convergência observadas. Essas

dificuldades podem ser visualizadas na Figura 5.9, em que se notam oscilações marcantes

ao longo do processo iterativo: os reśıduos das equações aumentam e diminuem repetida-

mente, indicando um comportamento mais senśıvel do método para esse caso.

Nas Figuras 5.10, 5.11 e 5.12 são apresentados os campos de escoamento obtidos

para os diferentes números de Reynolds. Observa-se, em todos os casos, a formação de

uma região de recirculação imediatamente a jusante do degrau. Nota-se ainda que o

comprimento dessa zona de recirculação aumenta progressivamente com o aumento do

número de Reynolds, evidenciando a maior influência dos efeitos inerciais no escoamento.

Na Figura 5.13 encontra-se uma comparação do perfil da componente u da velo-

cidade em diferentes cortes no eixo x, comparado com dados experimentais retirados de

(ARMALY et al., 1983). Para essa comparação, os resultados numéricos foram dimensi-
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Figura 5.9: Comparação da convergência para Re = 100, comparando o valor da norma
do máximo e a quantidade de iterações para o problema do degrau.

Figura 5.10: Magnitude da velocidade e linhas de corrente do problema do degrau para
Re = 10.

Figura 5.11: Magnitude da velocidade e linhas de corrente do problema do degrau para
Re = 50.



5.3 Problema do escoamento sobre um degrau 76

Figura 5.12: Magnitude da velocidade e linhas de corrente do problema do degrau para
Re = 100.

onalizados conforme os dados disponibilizados na referência, multiplicando os eixos x e y

por 30 e 10. Os resultados evidenciam uma tendência similar na forma das curvas, mas os

pontos em si encontram-se distantes, indicando que talvez o refinamento da solução ainda

não tenha conseguido captar suficientemente bem o padrão observado em laboratório.

Como um maior refinamento seria impeditivo computacionalmente, os autores optaram

por explorar melhor esse ponto em trabalhos futuros.
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Figura 5.13: Comparação da qualidade da solução comparando com (ARMALY et al.,
1983) em Re = 100: (a) x/h = 3.06 (b) x/h = 6.12.
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5.4 Problema do fluxo ao redor de um cilindro

O último problema utilizado para validação neste trabalho é o problema do escoamento de

um fluido ao redor de um cilindro. Esse é um problema também clássico da literatura de

CFD (BAI; LI, 2011). Como referência principal, seguiu-se nesse trabalho a abordagem

descrita por (SCHÄFER et al., 1996).

Conforme mostrado na Figura 5.14, o domı́nio do problema é Ω = [0, 2.2] ×

[0, 0.41], em que a malha possui 8382 células. No interior desse domı́nio há uma região

sólida circular, que no caso bidimensional representa a seção de um cilindro tridimensional.

O ćırculo ilustrado na figura possui centro em (0.2, 0.2) e raio r = 0.05.

As condições de contorno são semelhantes às do problema do degrau, excetuando-

se a condição de entrada (inlet), definida neste caso por

ū(x, y) =
4 · 0.3 y (0.41− y)

0.412
. (5.6)

Figura 5.14: Domı́nio, malha e informações de contorno do problema do cilindro.

Além disso, impõe-se uma condição de contorno do tipo wall fixa ao longo da

superf́ıcie do cilindro. A malha empregada nesse caso, diferentemente dos exemplos ante-

riores, foi refinada adaptativamente, de modo a concentrar um número maior de volumes

de controle nas proximidades do cilindro, região de maior interesse por apresentar as

variações mais intensas das grandezas f́ısicas.

Para o algoritmo SIMPLE, adotaram-se os coeficientes de sub-relaxação λuv = 0, 3

e λp = 0, 2. Neste problema, para obter um número de Reynolds igual a Re = 20,

considerando densidade unitária, foi suficiente adotar uma viscosidade dinâmica µ =
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1× 10−3.
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Figura 5.15: Comparação da convergência para Re = 20, comparando o valor da norma
do máximo e a quantidade de iterações para o problema do cilindro.

A figura 5.15 ilustra a convergência também para o caso do cilindro, e seu gráfico é

um pouco mais estável que no caso do degrau, mas menos estável que no caso da cavidade.

A solução do problema está exibida na figura 5.16, demonstrando como o fluido que sai

da borda esquerda, atinge o obstáculo que seria o cilindro, e com isso adquire uma maior

velocidade.

Figura 5.16: Magnitude da velocidade e linhas de corrente do flow over a cylinder para
Re = 20.

Por fim, para uma comparação quantitativa da qualidade da solução numérica,

são analisados o comprimento da zona de recirculação a jusante do cilindro e a diferença

de pressão. O comprimento da zona de recirculação, La, é definido como: La = xr − xe,
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em que xe = 0.25 corresponde à coordenada x da extremidade a jusante do cilindro, e xr

representa a coordenada x associada ao ponto mais extremo da zona de recirculação do

escoamento. Por sua vez, a diferença de pressão, ∆p, é calculada a partir da diferença

entre as pressões medidas a montante e a jusante do cilindro, ao longo da linha central

do escoamento, sendo dada por ∆p = p(0.15, 0.2)− p(0.25, 0.2).

La ∆p
Limite Inferior 0,0842 0,1172
Limite Superior 0,0852 0,1176
Este Trabalho 0,095 0,1126

Tabela 5.1: Comparação entre os limites inferior e máximo de diversos trabalhos repor-
tados em (SCHÄFER et al., 1996) e a solução obtida neste trabalho.

Os valores obtidos para esses parâmetros estão apresentados na Tabela 5.1. Nela,

os valores para La e ∆p encontram-se próximos do esperado, sendo o valor de La com um

desvio de 11,5% e o ∆p com um desvio de 4%, indicando uma boa acurácia para o código

desenvolvido.
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6 CONCLUSÕES E TRABALHOS

FUTUROS

Neste trabalho, foi desenvolvido um solucionador baseado no MVF, implementado em

C++, para a simulação de escoamentos de fluidos bidimensionais. O código encontra-se dis-

pońıvel no repositório https://github.com/ricardo-ervilha/ReFum2D . Inicialmente,

foram apresentados os fundamentos matemáticos do MVF, bem como a estratégia de

discretização adotada para a resolução das equações governantes em malhas não estrutu-

radas. Em seguida, discutiram-se os aspectos computacionais do método, descrevendo-se

de forma detalhada o fluxo de execução do software, desde a leitura dos dados de en-

trada até a aplicação do algoritmo SIMPLE e a exportação dos resultados em formato

compat́ıvel com o ParaView.

A partir da análise dos resultados obtidos nos benchmarks comparativos, verificou-

se que o código apresenta segunda ordem de convergência para o campo de velocidades e

primeira ordem para a pressão, sendo capaz de reproduzir de forma satisfatória os prin-

cipais comportamentos f́ısicos observados em problemas clássicos da literatura. Esses

resultados evidenciam a robustez da implementação e indicam que o solucionador desen-

volvido constitui uma base para futuras aplicações em problemas de engenharia e pesquisa

cient́ıfica.

Como perspectivas de trabalhos futuros, torna-se relevante investigar inicialmente

estratégias de paralelização visando à redução do custo computacional associado à re-

solução dos sistemas lineares e à natureza iterativa do algoritmo SIMPLE, ou ainda

técnicas de reordenação nodal que permitam a obtenção de sistemas matriciais com estru-

tura de banda, possibilitando resolver os sistemas de forma mais eficiente. Nesse contexto,

a utilização de bibliotecas mais robustas, como a PETSc, configura-se como uma alterna-

tiva promissora para a exploração eficiente do paralelismo. Posteriormente, pretende-se

estender o código para a simulação de problemas tridimensionais, uma vez que a maio-

ria das aplicações de interesse prático envolve escoamentos em três dimensões. Por fim,



6 CONCLUSÕES E TRABALHOS FUTUROS 81

destaca-se a possibilidade futura de incorporar modelos de turbulência, ampliando a apli-

cabilidade do software a cenários f́ısicos mais complexos.
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⟨http://repositorio.ufsc.br/xmlui/handle/123456789/81010⟩.

VERSTEEG, H.; MALALASEKERA, W. An Introduction to Computational
Fluid Dynamics: The Finite Volume Method. Pearson Education Limited, 2007.
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