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Resumo

Este trabalho apresenta o desenvolvimento do R, FUM2D, um solucionador bidimensional
de Dinamica dos Fluidos Computacional, implementado em C++ e baseado no Método dos
Volumes Finitos aplicado a malhas nao estruturadas. O principal objetivo é a simulacao
de escoamentos governados pelas equagoes de Navier—Stokes. Sao descritas as estratégias
de discretizacao das equagoes governantes e o funcionamento do algoritmo SIMPLE, am-
plamente utilizado em CFD. Adicionalmente, o trabalho aborda os principais aspectos
computacionais do ReFUMZ2D, incluindo a organizacao do codigo, o pré-processamento
das malhas, o cdlculo de grandezas geométricas e a exportacao dos resultados. A validacao
do solver é realizada por meio de benchmarks classicos da literatura, cujos resultados apre-
sentam boa concordancia com dados de referéncia, evidenciando a robustez e a acuracia

do cédigo como ferramenta didatica e de pesquisa em CFD.

Palavras-chave: Dinamica de Fluidos Computacional, Métodos Numéricos, Método dos

Volumes Finitos, Equagcoes Diferenciais Parciais, Navier-Stokes.



Abstract

This work presents the development of R.FUM2D, a two-dimensional Computational
Fluid Dynamics solver implemented in C++ and based on the Finite Volume Method
applied to unstructured meshes. The main objective is the simulation of flows governed by
the Navier—Stokes equations. The strategies adopted for the discretization of the governing
equations and the implementation of the SIMPLE algorithm, widely used in CFD, are
described. In addition, the work addresses the main computational aspects of ReFUM2D,
including code organization, mesh pre-processing, computation of geometric quantities,
and result export. The solver validation is performed through classical benchmarks from
the literature, whose results show good agreement with reference data, demonstrating the

robustness and accuracy of the code as a didactic and research tool in CFD.

Keywords: Computational Fluid Dynamics, Numerical Methods, Finite Volume Method,

Partial Differential Equations, Navier—Stokes.
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1 INTRODUCAO

Com o vertiginoso avanco dos computadores de alta velocidade e dispositivos de armaze-
namento, o desenvolvimento de algoritmos voltados a resolucao dos mais diversos tipos
de problemas tem se tornado um campo de grande interesse para centros P&D ao redor
do mundo (MALISKA, 2004). Esse progresso tem impulsionado, em especial, a drea da
Dinamica dos Fluidos Computacional (CFD), que se dedica a andlise de sistemas envol-
vendo escoamento de fluidos, transferéncia de calor e outros fenomenos correlatos que
podem ser modelados e simulados por meio de recursos computacionais (VERSTEEG;
MALALASEKERA, 2007).

Na darea de simulacao numérica, os métodos tradicionais para resolucao das Equagoes
Diferenciais Parciais (EDPs) sdo: método de Diferencas Finitas (MDF), método de Ele-
mentos Finitos (MEF) e método de Volumes Finitos (MVF). Historicamente, o MDF
foi sempre utilizado em mecanica de fluidos, enquanto o MEF foi voltado para a area
de problemas estruturais (MALISKA, 2004). Nesse sentido, até a década de 1970, o
MDF destacava-se pela sua experiéncia consolidada na simulacao de escoamentos, em-
bora apresentasse limitagoes na representagao de geometrias complexas, enquanto o MEF
mostrava-se mais adequado para tratar tais geometrias, mas ainda carecia de ferramentas
eficazes para lidar com termos nao lineares e o acoplamento de equacoes caracteristicos
da mecanica dos fluidos. Tais problemas levaram ao aprimoramento do MVF, no qual
as relagoes sao obtidas por meio de balangos de volumes elementares (MOUKALLED;
MANGANI; DARWISH, 2015).

O resultado desse balanco é conseguir expressar de forma exata a conservacao
das propriedades relevantes para cada célula. Essa relacao entre o método e o principio
fisico subjacente forma um dos principais atrativos para o MVF, tornando-o mais simples
e robusto para lidar com geometrias nao-estruturadas, o que permite o célculo dos fluxos
ao redor de regides complexas sem precisar gastar muito tempo gerando malhas (DING;
SUN, 2013). Como apontado por (MALISKA, 2004), no contexto de pacotes comerciais,

o MVF também é o mais utilizado e com ampla penetracao industrial, visto que é muito
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importante satisfazer os principios de conservacao ao nivel discreto, nao existindo pro-
blemas de geragoes/sumidouros no interior do dominio de célculo. A depuragao também
fica mais facil, visto que, como ha um balanco para todos os volumes de controle, para
qualquer tamanho de malha, todos os principios de conservacao devem ser satisfeitos,
mesmo nas malhas mais grosseiras (CHéNIER; EYMARD; TOUAZI, 2006). Nos outros
dois métodos, a solugao pode ser conferida somente em malhas bem refinadas, ja que nao
existe o conceito de balangos em volumes elementares.

Neste contexto, o presente trabalho apresenta o software R.FUM2D (REsolu-
tion of Finite-volume discretizations on Unstructured Meshes), um conjunto de cédigos
desenvolvido em C++ para a resolucao de problemas de CFD bidimensionais por meio
do método dos volumes finitos em malhas nao estruturadas. O objetivo principal do
R.FUM2D ¢ a simulacao de escoamentos governados pelas equagoes de Navier—Stokes in-
compressiveis e estacionarias, buscando reproduzir de forma robusta e confiavel resultados
e aplicagoes em problemas de interesse. Diferentemente de plataformas de grande porte
amplamente utilizadas, como OpenFOAM (WELLER et al., 1998) e Ansys (ANSYS, 2016),
o desenvolvimento de um solucionador préprio oferece maior liberdade para adaptacao,
depuragao e inovagoes, permitindo controle direto sobre todas as etapas do algoritmo.
Essa abordagem evita as limitacoes impostas por abstragoes internas e pela complexidade
inerente a softwares generalistas. Assim, o R.FUM2D tem como proposta nao ser apenas
uma ferramenta de simulagao, mas também uma base didética e de pesquisa, voltada ao
entendimento aprofundado dos métodos de CFD e a experimentacao de novas abordagens.

Este trabalho estd organizado da seguinte forma. Na Secao 2, apresenta-se a
descricao do problema fisico em estudo, com a deducao das equacoes de Navier—Stokes a
partir das leis de conservagao de massa e momento. A Secao 3 descreve a metodologia
numérica adotada, discutindo os principais aspectos matematicos envolvidos na resolucao
de problemas de CFD através do MVF. Na Secao 4, sao apresentados a organizacao e os
aspectos computacionais do R.FUM2D, incluindo a descrigao de seus principais compo-
nentes. Em seguida, a Secao 5 discute os resultados obtidos a partir de benchmarks da
literatura, com o objetivo de validar a acuracia e a robustez do solver. Por fim, a Secao 6

retne as consideracoes finais e as perspectivas para trabalhos futuros.
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2 DESCRICAO DO PROBLEMA FiSICO

2.1 Introducao

Este capitulo apresenta os fundamentos matematicos do modelo de dinamica de fluidos,
baseados nos principios de conservacao de massa e momento, que sustentam a deducao

das equagoes governantes e a analise das principais propriedades do problema.

2.2 Escoamentos

Fluidos, no qual se denotam liquidos ou gases, sao substancias que nao mudam perma-
nentemente sob a agao de forcas. Ao contrario dos solidos, que quando submetidos a
forcas conseguem resistir a deformacao, fluidos nao conseguem resistir a tais tensoes e sao
colocados em movimento. Em funcao disso, enquanto sélidos possuem um formato bem
definido, fluidos nao tem um formato definitivo e se ajustam conforme o ambiente que os
cerca (MOUKALLED; MANGANI; DARWISH, 2015).

Um primeiro ponto importante quando se analisa escoamentos de fluidos, é que o
foco esta no ponto de vista macroscopico, analisando propriedades tais como velocidade,
pressao e temperatura. Isso pode ser pensado como uma média sobre uma quantidade
consideravel de moléculas. Desse ponto de vista, um ponto no fluido seria o menor ele-
mento possivel do fluido no qual as propriedades macroscopicas nao sao influenciadas
pelas moléculas individuais que o compdem (VERSTEEG; MALALASEKERA, 2007).

Outra hipétese importante é os fluidos serem assumidos um meio “continuum”, de
tal modo que as propriedades fisicas sao definidas para todos os pontos no espaco. Através
de tal hipétese, fluidos podem ser categorizados como Newtonianos ou Nao-Newtonianos.
Fluidos Newtonianos sao caracterizados por uma relagao linear entre tensoes de cisalha-
mento e taxas de cisalhamento, com a viscosidade molecular p, a qual mede a habilidade
do fluido resistir a deformacao quando submetido a forgas externas, sendo o coeficiente

angular da relacao. Em contrapartida, fluidos Nao-Newtonianos possuem um comporta-
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mento nao linear mais complexo de ser modelado.

Os fluidos também podem ser classificados como unidimensional ou multidimen-
sional (2 ou mais dimensoes), fase inica ou multifasica, estacionario ou nao estaciondrio,
real (viscoso) ou ideal (inviscido), compressivel ou incompressivel, turbulento ou laminar,
rotacional ou irrotacional, entre outros, os quais serao melhor discutidos conforme ne-

cessidade posterior. A proposta dessas classificacoes é simplificar o processo de analise e

descrigao do fenémeno fisico (MALISKA, 2004).

2.3 Equacoes Governantes

Serda considerado para as demonstragoes das equagoes governantes o caso tridimensional.
Dessa forma, um pequeno elemento de fluido com lados Az, Ay e Az esta representado

na Figura 2.1, onde as seis faces nomeadas com W, E, S, N, B e T significam respectiva-

N
B
E
Ay W 7 *P@y.7)
| S /
i Ax

=

Figura 2.1: Elemento de fluido utilizado para derivar as equacoes.

mente: oeste (west), leste (east), sul (south), norte (north), fundo (bottom) e topo (top).
O centro do elemento é o ponto P. Todas as propriedades sao fungoes de espago e tempo,
como p(z,y, z,t), p(x,y, z,t) e i(zx,y, z,t) para densidade, pressao e vetor velocidade. Por

questoes de simplicidade, se estiver no texto apenas p, p ou u, considera-se que o valor
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ja é relacionado ao ponto (z,y,z) no tempo t. Por fim, o elemento em consideragao é
pequeno o suficiente para considerar que as propriedades nas faces sao aproximados de
forma precisa pelos primeiros dois termos da expansao de Taylor.

A seguir encontram-se as demonstragoes para as equagoes de Navier-Stokes, as
quais regem o movimento de fluidos. Tais equacoes tém como base fundamental as leis
fisicas de conservacao de massa e momento. As deducgoes seguem a abordagem proposta
por (VERSTEEG; MALALASEKERA, 2007), a qual tenta, a partir de pressupostos in-

tuitivos, deduzir cada uma das equacoes.

2.3.1 Conservacao de Massa

De acordo com Lavoisier, o principio de conservagao de massa estabelece que, na auséncia
de fontes ou sumidouros de massa, o volume devera conservar sua massa. Em outras
palavras, a taxa de variagao da massa no elemento de fluido é igual a taxa liquida do que
entra e sai no elemento de fluido. A taxa de variacao de massa no elemento de fluido pode

ser expressa por:

9p

5 AzAyAz. (2.1)

Agora, precisa-se avaliar a taxa de variagao do fluxo de massa ao longo das faces
do elemento, a qual serd dada pelo produto da densidade, area e velocidade normal as

faces. Baseado na Figura 2.1, tal taxa pode ser expressa como:

(pu — a(ap;) 1Ax> AyAz — (pu + 3gp$u) %Aw) AyAz

2
d(pv) 1 d(pv) 1
+(pv ~ oy QAy) AzAz — (pv + a9y §Ay) AzAz (2.2)
d(pw) 1 d(pw) 1
+ (pw — WaAz) AzAy — (pw + WiAw) AzxAy.

Ao qual os fluidos que tem direcao entrando no elemento produzem um aumento de
massa e tem sinal positivo e os que saem possuem um sinal negativo. A Figura 2.2 ilustra

com maiores detalhes o significado da equagao 2.2.

Portanto, a taxa de variacao de massa no elemento é agora igual a taxa de variacao do
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1
: 1-9Lpw)
E pu —+ 3 [,;y ~ Ay
la(pw)A L

L T e

2 ax s S PR -
"""""" - o (z,y,2)
P 1 d(pw
““W%
»
i
Figura 2.2: Elemento de fluido com a orientacao e direcao dos fluxos de massa.
fluxo de massa ao longo de cada uma das suas faces. Assim, tem-se que:
d(pu) 1 d(pu) 1
(pu o 2Am) AyAz (pu + e QACIZ) AyAz
d(pv) 1 d(pv) 1
-l-(pv ~ oy §Ay) AzAz — (pv + dy 2Ay> AzrAz (2.3)
I(pw) 1 I(pw) 1 _Op
+(pw W§Az) AxAy (pw + 0 2Az) AzxAy = EAxAyAz.
Simplificando alguns termos e agrupando outros, chega-se em:
0 0 0 0
_9lpu) ArAyAz — (pv)AxAyAz _ Apw) AzAyAz = —pAmAyAz. (2.4)
ox dy z ot

Dividindo ambos os lados da equacao acima por AzAyAz (volume do paralelepipedo) e

passando os termos do lado esquerdo para o lado direito:

dp , 9(pu)  9(pv)  O(pw)
p _o. 2
o T or T oy T ar (2:5)

Ao qual em formato mais compacto e usual pode ser denotada como:

ap L
5% + V- (pu) =0, (2.6)

em que @ = (u,v,w). A equacao 2.6 é a versdo nao estaciondria (por conter um termo
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dependente do tempo) da equacdo de conservagao de massa, também conhecida como
equacao da continuidade em um fluido compressivel.
Por fim, para um fluido incompressivel, a densidade p nao depende da posicao

ou tempo, sendo, portanto, uma constante. Sendo assim, a equacao 2.6 se torna:

V=0 (2.7)

A equacao acima diz: para fluidos incompressiveis a taxa de variacao do fluxo em qualquer

elemento de fluido é zero, ou seja: “quantidade que sai” = “quantidade que entra”.

2.3.2 Conservagao de Momento

O principio do balango do momento linear (ou 22 Lei de Newton) estabelece que:

“A taxa de variagdo do momento linear de um determinado conjunto de
particulas é igual a soma vetorial de todas as forcas externas atuando sobre

7

ele

As taxas de aumento do momento em z, y e z por unidade de area de uma particula de

fluido sao dadas por:

Du Dv Dw
— p—, p— 2.8
onde % de um campo ¢(t,Z(t)), o qual pode ser escalar ou vetorial, e que represente
velocidade, densidade ou temperatura; representa a derivada material. A derivada ma-
terial pode ser obtida aplicando a regra da cadeia para considerar as mudancas induzidas

por todas as variaveis independentes ao longo de um caminho:

Do _9odt  dodr  0dy
Dt otdt Oxdt Oydt

o~ 0¢  0¢
- i -~ 2.9
8t+u8x+vﬁy (2.9)
09
_8t+u Vo.

Em que a equacao 2.9 representa a taxa de variacao de ¢ quando se acompanha uma

particula de fluido em movimento. Diferente da derivada parcial, que olha a variagao
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em um ponto fixo do espacgo, a derivada material calcula a variagao na perspectiva do
referencial que viaja com o fluido.

Em uma particula de fluido, dois tipos de forcas podem atuar: forcas de superficie
(pressao, tensoes cisalhantes e tensdes normais) as quais agem diretamente na superficie
do elemento de fluido e forgas de corpo (forca elétrica e forca gravitacional) as quais
atuam diretamente na massa volumétrica do elemento de fluido (“atuam a distancia”).
Considerando a direcao x, dispoem-se em um elemento de fluido as forcas retratadas na

Figura 2.3, que servird como alicerce para derivar a equagao de momento em x.

at, 1 .
ot Tz 2% o5, 1
OTyx . % 5 / Ty - T L 1)
yx J 2 &y 2
N f_,;..
I dp 1
1 .z
p_a_p-_(?x\ | p+c7x 26X
dx 2 | ashaaa b= I
—— VAR
| f =eme== —_—
T _ arxx }SX ____________ =L T afxx %5)(
. dx 2 - \““x\ M dx 2
z ""'1" ~.
~L o
X arzx }6
9z 2

Figura 2.3: Elemento de fluido com as forcas na direcao x exibidas. Imagem retirada de
(VERSTEEG; MALALASEKERA, 2007).

As tensoes cisalhantes e tensoes normais atuam na superficie do fluido puxando
ou empurrando a superficie por meio da friccao. Exemplos das duas sao encontrados
na Figura 2.4. Em fluidos viscosos, a tensao normal é muito menor que a tensao cisa-
lhante e muitas vezes é negligenciada. Tensoes normais se tornam importantes quando o
gradiente das velocidades normais sao grandes, como experienciado em ondas de choque
(ANDERSON, 1995).

Denotando a forga de corpo que age no elemento por f e sendo f, sua componente

horizontal, a forca de corpo que atua no elemento em x é dada por:

p(AzAyAz) f,. (2.10)

Na figura 2.3, a convencao é que forcas de tensao sao denotadas por 7, em que
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YA YA

(a) (b)

Figura 2.4: (a) Tensao cisalhante, responsavel por deformar o corpo e alterar seu formato
e (b) tensdo normal a qual pode comprimir ou expandir o volume do elemento. Imagem
retirada de (ANDERSON, 1995).

7;; ¢ a tensao na direcao j exercida em um plano perpendicular a dire¢ao ¢. Com isso,
pode-se fazer um somatorio das forcas que atuam em cada um dos pares de faces. No

caso das faces E e W tem-se que:

Op Ax OTpw AT Op Ax OTpz Ax
[(p‘am) - (Tm‘ a2 2> AyAzt | = (“am) * (Tm e 2> AyAz
B Op  OTpz
= <_83: + o )AxAyAz.

(2.11)
Para as faces N e S:
aTyx Ay aTyx Ay _ aTyx
_<7-yx — 8_y?>AxAZ + (Tyx + By 7>A17Az = a—yAxAyAz. (2.12)
E por fim para T e B:
OT,e Az OT,p Az or.
_ _ zZx - zZx - — zx 2'13
( . 5 3 )AxAy+ <7’zx + 5 3 >A$Ay o AxAyAz. ( )

Ficando que a forga total na diregdo x (F,), considerando a soma das equagoes 2.10 a

2.13, ¢é igual a:

op + OTaa + Oy + T ArzAyAz + pf.AxAyAz. (2.14)

F,=1-
‘ Jor Oz dy 0z

Denotando a aceleracao do fluido em = como a,, a mesma é igual a taxa de

variacao de u ao longo do tempo. Uma vez que acompanha-se o movimento de um fluido,
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essa taxa € dada justamente pela sua derivada material. Logo:

_Du
- Dt’

Qg

(2.15)

Como, pela Segunda Lei de Newton, F, = ma,, pode-se igualar 2.14 com 2.15

para chegar em:

[_ p N OTue N 0Ty N OT.p
oxr  Ox Ay 0z
N p& _ _@ OT n 0Ty N OT
Dt Jor  Ox dy 0z

AzAyAz + pf AcAyAz = pAmAyAz%
Dt 5 16)

+pfa-

Onde estd implicito que m = pAzAyAz. Assim, a equagao obtida em 2.16 é a equagao
de momento em x para um fluido viscoso. Similarmente, equacoes para y e z podem ser

obtidas: D 5 9 5 5
Dv D Tay Tyy Tzy
"Di 8y+ ox + dy + 0z

Dw op 01y, 01y, OTe

p?t:_&+ Ox + oy + 0z LS

(2.17)

As equagoes de (2.16) e (2.17), juntamente a equacao (2.6), sdo chamadas de
Equacgoes de Navier-Stokes, descobertas de forma independente na metade do século
19. No entanto, as equagoes de momento ainda contém as componentes de tensao 7,
desconhecidas. Para torna-las mais tteis na descricao do comportamento dos fluidos, é
necessario introduzir um modelo para representar essas tensoes. Na maioria dos fluidos de
interesse, tais tensoes podem ser expressas como fungoes da taxa de deformacao. Para nao
alongar-se muito mais na discussao, e introduzir eventuais complexidades desnecessarias,
optou-se por omitir o passo-a-passo para lidar com o conjunto de tensoes.

Sendo assim, pode-se rearranjar os termos viscosos (maiores detalhes em (VERS-
TEEG; MALALASEKERA, 2007)) tomando como hipéteses o fluido ser incompressivel
e newtoniano, para tornar a formulacao mais util para o método de volumes finitos:

Du dp

Pof = —£+v- (uVu) + pfy. (2.18)

Dv  0Op
"D = "oy + V- (uV0) + pfy. (2.19)
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P—— = __Z + V- (Mvw) + sz- (2'2())

2.3.3 Conclusao

Limitando-se as equagoes (2.18) até (2.20), em conjunto com a equagao da continuidade
incompressivel (2.7), em duas dimensoes apenas e também em regime estacionario, pode-se

apresentar o conjunto de equacgoes de interesse deste trabalho:

V- (puil) = =L +V - (uVu) + S,,
V- (puil) = =L+ V- (uVv) + S, (2.21)
V-i=0

\

Em que foram explicitados os termos do operador de derivada material, e as
forcas de corpo foram tratadas apenas como um termo fonte S. No préximo capitulo,
serao abordados as estratégias adotadas para discretizar esse sistema de equagoes. Um
ultimo adendo, é a possibilidade de adimensionalizar as equagoes, deixando-as em funcao
somente de um numero adimensional, denotado por Nimero de Reynolds (R.), definido

por:

_ pul
o

R, (2.22)

Em que u [m/s] é a velocidade caracteristica do escoamento, tipicamente semelhante a
velocidade média, e L [m] é o comprimento caracteristico, que representa uma dimensao
de referéncia que depende da geometria do problema. Ademais, p [Kg/m?] é a densi-
dade do fluido e p [Pa - s] é a viscosidade dinamica. O ndmero de Reynolds representa
fisicamente a razao entre as forcas inerciais e as forgas viscosas que atuam no fluido, e
é muito 1til, ao permitir comparar sistemas que sao fundamentalmente os mesmos, vari-
ando somente suas escalas. Outra utilidade deste é poder determinar se o escoamento é
caracterizado como laminar ou turbulento. Por questoes de simplicidade, neste trabalho
o foco é apenas em escoamentos laminares, no qual os valores de Reynolds costumam ser

menores e as particulas do fluido possuem comportamento mais ordenado e previsivel.
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Para o tratamento de turbuléncia, a modelagem matematica costuma ser rigorosamente
mais complexa, além do gasto computacional ser mais acentuado, motivos impeditivos

para considera-la neste momento.



24

3 METODOLOGIA NUMERICA

Neste capitulo serd apresentado a metodologia numérica utilizada para a resolucao das
equagoes de Navier-Stokes (2.21), focando nos seus aspectos matematicos. Inicialmente,
introduz-se o método de volumes finitos para aproximacao numérica, e em seguidas sao

discutidas as etapas de discretizagao que servirao como base do solucionador desenvolvido.

3.1 Meétodo dos Volumes Finitos

De inicio, todo método que, para obter as equacoes aproximadas, satisfaz a conservacao
de uma propriedade ao nivel de volumes elementares é classificado como um método
de volumes finitos. Para se obter as equacoes desse método, existem duas abordagens
principais. Na primeira, realizam-se balancos da propriedade em questao em cada volume
elementar. Na segunda, integram-se, no espago e no tempo, as equagoes diferenciais
escritas na forma conservativa sobre o volume elementar (MALISKA, 2004). A forma
conservativa (também conhecida como forma divergente) é aquela em que, na equagao
diferencial, os fluxos aparecem dentro do operador divergente. Nisso, apds a primeira
integracao, surgem explicitamente os fluxos nas fronteiras do volume elementar, o que a
torna equivalente a um balanco de propriedade.

Para ilustrar os procedimentos apresentados, serd utilizado o exemplo de (MA-

LISKA, 2004), mostrado na Figura 3.1. O interesse é obter uma equacdo que represente

Ay

.
e puAy
e

p vf_\.\" X

x+HAx

Figura 3.1: Volume de controle utilizado para balangos de conservagao. Imagem retirada
de (MALISKA, 2004).
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a conservagao de massa. Fazendo um balanco nesse elemento, obtém-se que:

pulyle — pulyly, + prAz|, — pvAz|s =0, (3.1)

onde as letras e, w, n e s representam as diregoes leste, oeste, norte e sul. Dividindo a
equagao pelo volume do elemento AzAy (em que 2D o volume referido seria a area do

retangulo), encontra-se:

(pule — pulw)  (pvln — pvls)
pr— . .2
ot A 0 (3.2)

No limite quando Az — 0 e Ay — 0, obtém-se exatamente a equacao da continuidade

(2.6) na forma estacionaria:
d(pu)  O(pv)

o oy = (3.3)

A equacao acima estd em forma conservativa, visto que as variaveis estao dentro
dos operadores de derivada. Pode-se entao, utilizando a segunda etapa, obter de outra
forma a equagao de conservacao de massa através da integragao da equacao acima no

volume de controle elementar. Assim, isso resultaria em:

/e /n {8(8?) + 8(;;)} dydz = 0. (3.4)

w

A partir desse ponto, utiliza-se inicialmente o fato de que a integral de uma soma ¢é igual
a soma das integrais. Em seguida, aplica-se o Teorema de Fubini para inverter a ordem
de integracao na primeira parcela, permitindo integrar primeiro em e e w. Dessa forma,

obtém-se o seguinte resultado:

/n[mde — puy|dy + /e[pvln — pvlsldz = 0. (3.5)

w

Como o volume de controle analisado é infinitesimal, pode-se considerar que o fluxo de
massa avaliado no meio das faces representa a média de variagdo do mesmo ao longo de
todos os pontos. Outra forma de visualizar isso, é que o valor médio de uma propriedade

¢ em um volume é dado por:
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- 1
b=1 /V 6dV. (3.6)

onde V' denota o volume de controle sobre o qual a média é computada. Sendo assim,
consegue-se:

puly|. — pulyl, + prAz|, — pvAz|s = 0. (3.7)

Observe agora que a equagao acima é idéntica a Equagao (3.1). Desse modo, realizar o
balanco ou a integragao na forma conservativa sao processos equivalentes. No entanto,
de forma pratica, ha uma preferéncia por integrar as equacoes em forma conservativa,
visto que os balancos nao sao sempre triviais de se deduzir. Conforme relatado por
(MALISKA, 2004), para o balango da quantidade de movimento, é necessario identificar
e fazer o somatério de todas as tensoes que atuam no volume elementar, sendo tarefa

dificil para volumes irregulares.

3.2 Malhas nao estruturadas

O foco neste trabalho é gerar simulacoes para malhas nao estruturadas. Malhas nao
estruturadas (Figura 3.2) sao a forma mais geral de arranjo para geometrias mais com-
plexas.oferecem grande flexibilidade tanto na escolha dos tipos de elementos quanto na
forma de distribui-los espacialmente, permitindo refinar regices de maior interesse. Assim,
volumes de controle podem ter qualquer formato e pode-se mistura-los, formando malhas
hibridas (VERSTEEG; MALALASEKERA, 2007). Essa flexibilidade, no entanto, vem
ao custo de uma complexidade adicional. Em um sistema nao estruturado, nao ha forma
direta de conectar varias entidades juntas baseadas somente em seus indices. Assim, a
conectividade tem de ser definida explicitamente, nao havendo forma de adivinhar o indice
de nos, faces ou elementos vizinhos a partir de um indice de referéncia como pode ser feito
em malhas estruturadas (MOUKALLED; MANGANI; DARWISH, 2015).

A parte mais atrativa das malhas nao estruturadas é poder calcular o fluxo ao
redor de geometrias variadas, sem gastar muito tempo em geracao de malha e mapeamento
entre sistemas de coordenadas, gerando diversos termos adicionais na discretizacao que

acabariam por complicar a modelagem numérica.
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Figura 3.2: Exemplo de malha nao estruturada para simular o escoamento de fluidos ao
redor de um aerofélio. Imagem retirada de (HASELBACHER, 1999).

3.3 Volumes de controle em malhas nao estruturadas

Uma grande questao dentro do MVF é decidir como serao gerados os volumes de controle
a partir da malha. H& duas formas principais de se definir os volumes de controle em
malhas nao estruturadas: volumes de controle centrados na célula (cell-center) e volumes
de controle centrados nos nds/vértices (vertez-center). Tais variantes estao ilustradas na

Figura 3.3.

L 1<
& (&

(a) (b)

Figura 3.3: Volumes de controle em malhas nao estruturadas 2D: (a) centrado na célula;

(b) centrado no né. Imagem retirada de (VERSTEEG; MALALASEKERA, 2007).

Na abordagem centrada na célula, as varidveis de interesse sao colocadas no
centroide do volume de controle, previamente definido pelo gerador de malhas, como
ilustrado na Figura 3.3(a). No método centrado no né, por sua vez, as varidveis sao
associadas aos vértices do arranjo. Nesse caso, é necessario realizar um processo de
tesselacao, em que os centréides dos elementos adjacentes sao conectados de modo a

formar subvolumes em torno de cada nd, definindo assim os volumes de controle onde
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serao aplicadas as discretizagoes, conforme mostrado na Figura 3.3(b).

A abordagem cell-center destaca-se por seu entendimento mais simples e por ser
amplamente documentada na literatura.Além disso, pode reduzir o consumo de meméria,
uma vez que as varidveis primdrias sdo armazenadas por volume de controle (isto é, por
célula, no centréide), evitando o armazenamento nodal; a economia efetiva depende da
malha e do modelo considerado, mas o custo de armazenamento das incégnitas escala dire-
tamente com o nimero de volumes de controle. De forma geral, ambas as abordagens sao
utilizadas em métodos de volumes finitos; no entanto, em softwares de CFD amplamente
utilizados, como OpenFOAM e Ansys Fluent, adota-se a abordagem cell-center, razao pela

qual ela também foi escolhida neste trabalho.

3.4 Introducao ao SIMPLE

Considere novamente as Equagoes apresentadas em (2.21). Uma primeira caracteristica
importante é que elas sao nao-lineares, pois os termos nas equagoes de momento o - Vu
e U - Vv, chamados de termos advectivos, acarretarao termos que envolvem produtos de
variaveis do problema. Outra questao é a indisponibilidade de uma equacao explicita
para o calculo da pressao. Enquanto o campo de velocidades pode ser computado a par-
tir das equacgoes de momento, o campo de pressao nao pode ser computado diretamente
usando a equacgao de continuidade, o que seria necessario para uma solugao do problema
(MOUKALLED; MANGANI; DARWISH, 2015). Consequentemente, uma equagao para
a pressao é necessaria e precisa ser derivada a partir das equagoes disponiveis. Essa abor-
dagem é a esséncia do método SIMPLE (Semi Implicit Method for Pressure Correction
Linked Equations) de (PATANKAR; SPALDING, 1972), algoritmo adotado neste traba-
lho. A solucao envolve discretizar e resolver as equacoes de momento para obter uma
aproximacao para o vetor velocidade, e reformular a equacao discreta de continuidade
para obter uma equacao que envolva a pressao, de tal forma que surgirda um processo
iterativo a ser seguido.

O algoritmo segue um tipo de procedimento iterativo do tipo Método de Picard,
no qual a equagao de momento é resolvida usando o campo de pressao obtido na iteracao

anterior. O campo resultante de velocidade satisfaz a conservagao de momento, mas nao
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X

Figura 3.4: Stencil de uma malha nao estruturada com elementos triangulares. Na ima-
gem, o volume de referéncia estd com rotulo O, enquanto os numerados de 1 até 3 sao
seus vizinhos. Os vetores 77 sao as normais de cada face da célula O.

necessariamente a conservacao de massa. Esse campo de velocidade entao é usado para
construir uma equagao relacionada a pressao, cuja sua solucao possibilitara corrigir ambos
os campos para satisfazer dessa vez a equacdo de conservagao de massa (VERSTEEG,;
MALALASEKERA, 2007). Uma nova iteracao comega entao, e essa sequéncia é repetida
até que o campo de velocidade e pressao satisfacam a tolerancia desejada das equagoes
de conservacao de massa e momento. De forma preliminar, para iniciar o algoritmo, é
necessario discretizar as equagoes de momento e de continuidade. Essas discretizagoes
serao feitas considerando o volume de controle nao estruturado na Figura 3.4 quando

necessario.

3.5 Discretizacao da Equacao de Continuidade

A forma discreta da equagao de continuidade é obtida integrando a Equagao (2.7) sobre

o volume O, resultando em:

/ (V- @)dV =0, (3.8)

c
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onde V, representa o volume de controle. Agora, invoca-se o Teorema de Gauss, também
conhecido como Teorema da Divergéncia. O teorema diz que, dado um volume V no
espaco tridimensional, com superficie de contorno denotada por S e 77 sendo o campo de
vetores normais unitdrios apontando para fora de S, se ¥ for um campo vetorial definido

em V', entao:

/V (V- 5)dV = ]{ (7 71)dS. (3.9)

s
O teorema da divergéncia implica que o fluxo liquido de um campo vetorial através
de uma superficie fechada é igual ao volume total de todas as fontes e sorvedouros (isto é,
a integral de volume de sua divergéncia) sobre a regiao dentro da superficie. Sendo assim,

pode-se aplicar 0 mesmo na equagao (3.8):

7{(@. 7)dS = 0. (3.10)
S

Uma vez que a célula em questao é delimitada por um conjunto discreto de faces
planas (Figura 3.4), a integral de superficie pode ser reescrita como um somatério sobre

as faces:

Nyo

(@-7)dS =0, (3.11)
>,

onde f indica o indice que varia sobre cada face, até o nimero de faces total da célula O
dado por Nfo. Usando que a média dos valores em uma face ¢ aproximadamente igual

ao valor avaliado no centro da face multiplicado pela respectiva area da face (Equagao
(3.6)):

Nf,o

> iy - iip)A; = 0. (3.12)
f=1

Em que os subscritos f indicam os respectivos valores avaliados no centro de cada

face do volume de controle. Uma coisa interessante e valida a ser realizada ¢é reintroduzir

a densidade p na equacao discreta, multiplicando ambos os lados pelo valor constante py:
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Nf,O Nf’o
> oy -iip)Ap =y iy =0. (3.13)
F=1 F=1

Com isso, através da discretizagao surge um significado fisico. A notagao my

representa o fluxo de massa no centro da face f, e indica o quanto de massa do fluido

entra e sai em cada uma das faces da célula.

3.6 Discretizacao das Equacoes de Momento

Para a equacao de momento, serda aqui descrito seu processo de discretizacao apenas na
componente x, sendo a componente y obtida no mesmo processo. Sendo assim, a primeira

etapa ¢ integrar a equagao de momento em x sobre o volume de controle O:

/(V-(puﬁ))dV: —/VC (%) dV+/C(V-(uVu))dV+/C Sdv. (3.14)

c

Novamente, fazendo uso do Teorema da Divergéncia (3.9), pode-se trocar as in-

tegrais de volume dos termos advectivo e difusivo por integrais de superficie:

/Spu(ﬁ- 7)dS = —/Vc (%) dV+/Su((Vu) RS+ [ S.av. (3.15)

Ve

Representando novamente as integrais de superficie como somatérios ao longo das
faces do volume de controle, e tomando a média dos valores como o valor no centro da

face, tem-se que:

Nf,O a Nfﬂo
prUf(ﬁ-ﬁ)fAf = —/ (—p> dVv + Zuf((Vu) -ﬁ)fAf—i-/ S,dV. (316)
f=1 v. \0z f=1 Ve

Neste momento, ja é possivel discretizar a integral do termo fonte. Essa integral
pode ser feita de duas formas (MAZUMDER, 2015): a primeira opcao é realizar a inte-
gragao exata. Contudo, isso s6 é vidvel caso a fungao seja conhecida, tendo uma relagao
explicita, e o volume de controle tenha formato bem definido, critérios esses que na maior
parte dos casos nao sao satisfeitos. A segunda opcao é novamente considerar o valor médio

de tal forma que:
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S.dV =S,V =S, 0Vo. (3.17)

Ve
No qual a ideia principal é avaliar o termo fonte pegando a funcao em que os va-
lores sao fornecidos nos centroides dos volumes de controle, e multiplicar pelos respectivos

volumes das células. Assim, dando continuacao:

N¢o ap Nyo
> pruglii- i) s Ay = —/ <8—x> AV + Yy up(Vu-ii)jAg + S,0Vo, (3.18)
=1 Ve =1

ao avaliar a equacao (3.18), surgem alguns entraves, uma vez que os valores de uy nao
sao conhecidos, apenas os valores nos centroides. Dessa forma, nao é possivel tratar
diretamente o gradiente de pressao, nem tampouco o termo difusivo. Assim, nas secoes
subsequentes, cada uma dessas parcelas sera analisada de maneira independente, visto

que existem aspectos relevantes a serem discutidos individualmente para cada termo.

3.6.1 Discretizacao do termo difusivo
Relembrando a parcela de difusiva:

Nf’o

> (Vi) Ay (3.19)
=1

Nessa expressao, Ay ¢ a area da face, quantidade inferida a partir da malha. J& o valor de
iy ainda nao estd diretamente disponivel, pois a viscosidade v ¢ definida nos centroides
das células. Para contornar esse ponto, é necessario interpolar y na face usando os valores
disponiveis nas células vizinhas.

Em muitos problemas, sao necessarios tratamentos especiais para essa inter-
polagdo. Entretanto, o procedimento mais comum (VERSTEEG; MALALASEKERA,
2007) ¢ utilizar uma interpolacdo ponderada pelas distancias. Para uma propriedade

genérica ¢, essa interpolagao pode ser escrita como:

_ Q1/dy + o /dy

Of = dy +1/dy (3.20)
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em que as distancias d; e dy sao as distancias entre o centro das células até o meio da
face. O erro associado a esse tipo de interpolagao é de segunda ordem, quando d; = ds, e
situa-se entre primeira e segunda ordem caso as distancias sejam diferentes.

Uma forma equivalente e 1til para implementacao ¢é reescrever a Equacao 3.20

oo (garm) ot (i) e

COo1mo:

definindo o peso:

1/d,
= 22
YT dy + 1/dy (322)
obtém-se a forma compacta:
¢y = wsdr + (1 —wy)ds. (3.23)

A funcao w; pode ser pré-computada uma vez que depende somente de in-
formacgoes geométricas locais. Assim, para determinar o valor de iy, basta-se aplicar
a Equacao (3.23). O principal desafio restante estd no tratamento do termo (Vu - 1)y,

isto é, na avaliagao do gradiente de u projetado na diregao normal a face.

Sobre-relaxagao do gradiente difusivo

No caso do termo (Vu-7), hd um grande problema, visto que as malhas nao estruturadas
geralmente sao nao ortogonais, ou seja, a diregao que une os centroides nao é colinear a
dire¢ao normal. Assim, enquanto em malhas estruturadas o gradiente poderia ser encon-
trado de forma bem simples e direta; no caso de malhas nao estruturadas é necessario
realizar manipulagoes com o intuito de tratar essa diferenca. A primeira coisa que pode

ser feita entao é dividir o fluxo normal em duas componentes:
(Vu)g iy = (Vu)y - Ep + (Vu); - T, (3.24)

onde o primeiro termo representa uma contribuicao que pode ser obtida via aproximacao
com série de Taylor devido a direcao ser igual a que une os centros das células, enquanto

o segundo termo é chamado de difusao cruzada ou difusao nao ortogonal, e aparece
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devido a nao ortogonalidade da malha a ser utilizada. Diferentes opgoes para decompor a
normal existem na literatura, sendo que a escolha delas afeta convergéncia e estabilidade.
A abordagem escolhida nesse trabalho é chamada de sobre-relaxada (over-relazed), e a

figura 3.5 ilustra a sua decomposicao.

Figura 3.5: Escolha de vetores 7, e 1y para decompor o gradiente difusivo. Na imagem
também estd retratado o vetor normal a face 7. don representa a distancia entre a célula
O e seu vizinho N.

Na Figura 3.5, dividiu-se a normal em dois vetores, de forma que um deles é
ortogonal a normal da face. Assim, a importancia do termo envolvendo up e uy € forcada
a aumentar conforme a nao ortogonalidade da malha também aumentar, de tal forma que
isso evite problemas de overflow. Matematicamente, o computo de 7; é dado primeiro

calculando o cosseno do angulo 6:

cosf = ‘|—f|| & || = 7]
1

a partir da definicao de produto escalar, pode-se trocar cos 6 por:

71| do
[7ix| = [7iy] <—|an ON|> : (3.26)

2
cos@’ (3.25)

St

ng - do N
mas isso corresponde ao valor da magnitude de 77, enquanto o interesse é no vetor.
Desse modo, basta multiplicar a magnitude pela diregao do vetor doy (vetor que liga os

centroides):

de
i = || | =22 ), (3.27)
|don|
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que simplificando resulta em:

L7 iis|?
ny = don (%) . (328)

Para achar o vetor 7, basta usar o vetor normal e o vetor ny: 7y = 1 —
fiy. Assim, conforme  aumenta, a magnitude de 7i; e 7, aumentam conjuntamente,
evitando problemas numéricos. Conforme discutido e trabalhado por (JASAK, 1996), o
mesmo conseguiu executar diversos experimentos e constatar a efetividade e estabilidade
da abordagem sobre-relaxada, fundamentando a utilizacao neste trabalho pela mesma.
Para calcular o gradiente na direcao que esta alinhada aos centroides, pode-se performar

uma expansao em série de Taylor para O e N sobre f:

unN = u —i-% (z —:c)—l-@ (yn —yy)
N = uf 8xf N f Byny Yy
1 0%u 5 1 0% , 1 0%u
TS 02 (zN —xf) +§3TJ2 (yn —yr) +§8w8y (N —zp)(yn —ygp) +- -
f ! !
(3.29)
uo = u —i-% (x —:c)—i-% (Yo — vy)
o=urt+ o o—xf ayfyo yf
—i-}@ (z —a:)—i—laQ—u (o — )—i—l Ou (o —z¢)(yo — yr) +
2|, o—xf 2 0,2 Yo — Yy 2 9wy, o—xf)yo — ys
(3.30)

subtraindo a equacao (3.29) da equagao (3.30), obtém-se:

ux 0= 21 (ay —20) + 22| (45~ 30)
N —uo = — N — 20 - ~N — Yo
Ox f ayf
1 (‘3 1 0%u
1 9%
2 dxdy f[(xN_‘”f)(yN_yf) —(zo —xf)(yo —ys)l +- - (3.31)

IN—ZO YN—YO > .

truncando a série no segundo termo, e sabendo que 77; = ( o oy

¢N—<Z5o

(Vs Cdon

(3.32)

Sendo que essa aproximacao possui erro de truncamento da ordem de O(h?). J4
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para o caso da difusao cruzada, nao se consegue ainda expressar o gradiente em termos
dos valores das células diretamente. O termo do gradiente sera tratado na forma de
corregao deferida, computando o seu valor usando o campo de valores da iteracao atual
e adicionando-o como um termo fonte na equacao algébrica. O gradiente é computado
usando os proprios centroides na malha, e os valores nas interfaces podem entao ser

interpolados.

Reconstrucao do gradiente usando minimos quadrados

Para realizar o computo da difusao cruzada, é necessario entao estimar o valor do gra-
diente, a fim de incorpora-lo no sistema algébrico das equagoes discretas. O método
utilizado nesse trabalho é chamado de Minimos Quadrados (least-squares), visto que ele é

mais flexivel quanto a questao da ordem de acurécia e o stencil utilizado (MOUKALLED;

MANGANTI; DARWISH, 2015). Considere o volume de controle da Figura 3.6.

Figura 3.6: Volume de controle O, e seus vizinhos rotulados de 1 até 4.

Baseado em qualquer um dos vizinhos N de O, é plausivel aproximar o valor de uma

propriedade ¢ em N usando uma aproximacao por série de Taylor:

Ayon, (3.33)

em que Azoy e Ayon representam a variagao da distancia dos centroides de O e N nas

direcoes = e y. E possivel realizar tal aproximacao para cada um dos quatro vizinhos,
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formando o conjunto de equagoes:

(

¢1—¢o = % OA$1 +g—(§ OAyl

P2 —Po = % OA$2+g—Z) OA?JQ

3 —Po = % OAI3+3—$ OA?J:’)

b1 — 9o :% AI4+2—$ Ay,
\ (0] (0]

que pode ser representado matricialmente como:

Azy Ay ¢1— Po
do
Azy Aya| | oz ol 92— %0
p —
Axs Ays 8_¢ ¢3 — Po
Ylo
|Azy Ay | ¢4 — d0 |

Isso resulta em um sistema sobredeterminado de equacoes lineares, o qual pode
ser escrito, de forma compacta, como A (V¢)o ~ b, em que a matriz A contém as
informagoes geométricas (vetores que ligam o ponto O aos seus vizinhos) e o vetor b
reune as diferencas de propriedade A¢ entre O e seus vizinhos.

Como o sistema ¢é sobredeterminado, sua solugao é obtida no sentido de minimos
quadrados, resolvendo-se as chamadas equacoes normais, cuja solucao formal pode ser

escrita como:

(Vo)o ~ (ATA)'ATD, (3.34)

assumindo que AT A é inversivel.

Uma vez conhecido o gradiente no centro da célula O, os gradientes nas faces
podem ser obtidos por interpolagao usando a equacao (3.23). Unindo a ideia de decom-
posicao do vetor normal a face com a reconstrugao via minimos quadrados, pode-se obter

entao:

Nyo Ny.o Ny¢o

, uy —u R
> ug(Vu-ii)Ap = Nf%Af"‘ > g (V' - i) Ay, (3.35)
/=1 /=1 ON =1
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em que 75 foi calculado a partir da equacao (3.28), e Vu* representa o gradiente calculado

com base nos valores de u de uma dada iteracao. Esse procedimento sera dado de forma

explicita, passando essa componente para o vetor b do sistema de equagoes. Uma tultima
prAs

e , A ~ N .
simplicidade é expressar o produto dfO_N com a notacao Dy, tendo o significado fisico de

representar um fluxo difusivo na célula.

Exemplo numérico: Equacao de Poisson

Durante as etapas de desenvolvimento, conseguiu-se testar a eficacia dessa abordagem
de tratamento do gradiente e escolheu-se exemplificar também sua utilizacao em um
problema de Poisson, com solu¢gdo manufaturada u(z,y) = 100z(1 — z)y(1 — y). Os

dados do problema sao:

Viu=—-200x(1 —2) —200y(1 —y), emT,
(3.36)

u(z,y) =0, em I,
em que I' = [0, 1] x [0, 1] representa um dominio quadrado de lado unitario.

A malha utilizada, bem como as malhas empregadas nos testes posteriores, foi
gerada com o Gmsh, ferramenta de geragao de malhas que serd descrita com mais detalhes
no proximo capitulo. Neste caso, utilizou-se a opcao de geracao de malhas transfinite,
resultando em uma malha estruturada na qual os volumes de controle sao triangulos
retangulos, obtidos pela divisao de cada quadrilatero ao longo de uma de suas diagonais,

como ilustrado na Figura 3.7(a).

(a) (b)

Figura 3.7: Exemplo de uma malha em (a) e exemplo de um volume de controle disponivel
nessa malha em (b), retratando seus vizinhos e angulos formados.
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Na Figura 3.7(b) estao destacados os centros dos volumes de controle, e as linhas
tracejadas indicam a direcao que liga os seus centroides. Ao tragar as normais as faces,
destacadas em vermelho, observa-se que, para o triangulo cujo centro é o ponto 2, a
normal e a linha que une os centros sao colineares. O mesmo nao ocorre nos outros dois
triangulos, para os quais surgem angulos distintos, aqui denotados por a e 3. Com base
em relacoes de trigonometria e geometria plana, obtém-se aproximadamente a ~ 26,3° e
b~ 25,9°.

Visando avaliar o comportamento do erro sob refinamento de malha, foram con-
siderados os tamanhos N = 32,128, 512,2048 e 8192 volumes de controle. O erro entre a

solugdo numérica e a solugdo manufaturada é medido pela norma Ly (SILVA, 2023):

1

o — ||, = (/F(u—ﬂ)QdF>2, (3.37)

onde u representa a solugao exata. Também, para ter um comparativo, variou-se o niimero
de corregoes explicitas de nao ortogonalidade (denotado a quantidade por 6), tomando
como valores # = 5,10, 15; para verificar o impacto na solugao, comparando-a com uma
solugdo em que nao foram utilizadas corregoes (f = 0). O parametro h, que indica o

refinamento de malha, é definido como (VASCONCELLOS, 1999):

~ (3.38)

Onde o N é o numero de volumes de controle e A; é o volume da célula 7. Como o dominio
é um quadrado de lados unitarios, pode-se simplificar a conta acima para apenas h = \%N

Na Figura 3.8, estao exibidos os graficos das solugoes, comparando qualitati-
vamente os resultados obtidos. Como esperado, na Figura (b) conseguiu-se capturar o
formato da solucao, tendo a caracteristica semelhante a um pulso circular. Enquanto
isso, na Figura (a) é notério que em virtude de ignorar a difusdo cruzada, o pulso fica
achatado em uma dada direcao, sendo mais similar a uma elipse. Além disso, na Figura
3.9 estao exibidos os padroes de convergéncia para cada caso. Quando é negligenciado
totalmente a difusao cruzada, o erro praticamente nao varia, tendo um comportamento

bem constante ao longo dos refinamentos. Em contraste, é possivel notar a melhoria na
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ordem de convergéncia ja para 5 corregoes, em que a ordem sai de 0.07 para 1.74, bem
mais préoximo da convergéncia esperada de 2. Para o caso de § = 10 e § = 15 nao ha
tanta diferenca, indicando que provavelmente para 10 corre¢oes o processo ja convergiu.
O motivo de adotar um critério para nimero de corregoes ao invés de tolerancia é estar
de acordo com os softwares de CFD, que normalmente disponibilizam o controle também

com numero de correcoes.

7.7e04

(a) (b)

Figura 3.8: Graficos da solucao da equacao 3.36. A figura (a) representa a solugao com 6
= 0, enquanto a solucao da figura (b) representa a solucao com € = 15. Ambas as figuras
foram obtidas com a malha de 8192 volumes de controle.

101

€L2

10724

0 =0, O(h*7)
—— 0 =5, 07
—+— 0 =10, O(h*)
—— 0 =15 O(h)

1072 10!

Figura 3.9: Comparacao da convergéncia variando o nimero de corregoes.



3.6 Discretizacao das Equagoes de Momento 41

3.6.2 Discretizacao do termo advectivo

Dando prosseguimento, apés o tratamento do termo difusivo, passa-se a andlise do termo
advectivo. Segundo a discretizagdo apresentada na equagao (3.18), o termo de advecgao

pode ser escrito na forma:
Nyo0

> prug(i-ii)s Ay, (3.39)
f=1
onde nessa expressao, a densidade nas faces, py, pode novamente ser obtida por inter-
polacao linear, enquanto a area de cada face, Ay, é calculada a partir da geometria da
malha. De forma analoga ao tratamento da equacao de continuidade discreta, é conveni-
ente agrupar alguns termos e reescrever o somatorio da seguinte maneira:

Nyo

Z mjr ur, (340)
f=1

em que 1y = pr(u-1)sAs representa o conhecido fluxo de massa através da face f. Resta,
portanto, determinar o valor de uy, isto €, o valor da componente de velocidade u nas
faces do volume de controle associado ao ponto O. No caso do fluxo de massa s, seu
tratamento detalhado sera apresentado na préoxima subsecao.

Anteriormente, a interpolacao linear foi utilizada para obter valores nas faces
a partir de médias ponderadas pela distancia aos centros de célula. A principio, seria
natural empregar a mesma estratégia para o calculo de uy, assumindo, por exemplo, uy =
wyuop~+ (1 —wyg) uy, em que up e uy sao os valores de u nos centros das células adjacentes
a face f. No entanto, conforme discutido em (VERSTEEG; MALALASEKERA, 2007),
esse esquema apresenta limitagoes importantes.

Do ponto de vista tedrico, a solucao obtida pelos métodos numéricos pode tornar-
se indistinguivel da solucao exata, independentemente do esquema de discretizagao ado-
tado, desde que a malha seja suficientemente refinada (VERSTEEG; MALALASEKERA,
2007). Na pratica, porém, a capacidade computacional disponivel impde o uso de um
numero finito e restrito de células. Em consequéncia, a solu¢gao numérica pode deixar de
satisfazer algumas propriedades fisicas, entre as quais se destacam: conservatividade,

limitabilidade e transpositividade.
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A conservatividade exige que, para garantir a conservacao de ¢ em todo o dominio,
o fluxo que deixa um volume de controle seja exatamente igual ao fluxo que entra no
volume adjacente através da mesma face. A limitabilidade requer que o esquema satisfaca
o critério de dominancia diagonal, assegurando compatibilidade com os métodos numéricos
empregados na solucao dos sistemas lineares. Esse critério é fundamental ao garantir que,
na auséncia de termos fonte, o valor de ¢ permaneca limitado pelos valores de contorno,
além de impor que todos os coeficientes da equagao discreta possuam o mesmo sinal,
preferencialmente positivo. Por fim, a transpositividade esta relacionada a capacidade do
esquema numérico de representar corretamente o transporte de uma grandeza no sentido
do escoamento, respeitando a fisica do processo de adveccao.

Baseado nesses critérios, embora a interpolacao linear seja de segunda ordem,
também se verifica que esse esquema satisfaz apenas o requisito de conservatividade, fa-
lhando nos outros critérios a depender do nimero de Péclet do escoamento (VERSTEEG,;
MALALASEKERA, 2007)). Para contornar essas dificuldades, adotou-se neste trabalho
esquemas do tipo upwind, que incorporam explicitamente a direcao do escoamento na

definicao dos valores nas faces.

Métodos Upwind

Um dos principais problemas do esquema de interpolagao linear é o fato de nao considerar a
direcao do escoamento. Em um fluxo fortemente convectivo da esquerda para a direita, por
exemplo, o tratamento torna-se inadequado, pois os valores de ¢ localizados a montante
(2 esquerda) deveriam exercer maior influéncia sobre o valor final.

Os esquemas do tipo upwind incorporam explicitamente essa caracteristica fisica,
definindo o valor na face em funcao da direcao do fluxo de massa. Se o fluxo de massa
(ou a dire¢ao do vento) é da célula O para a célula N, o valor na face é majoritariamente
influenciado por O e, por consequéncia, atribui-se a face o valor de ¢p. No caso contrario,
isto é, quando o fluxo se da de N em direcao a O, o valor de ¢y passa a ser o dominante
na face.

Mais formalmente, assumindo que o vetor normal 7i; aponta da célula O para a

célula N, o esquema upwind differencing (UD), de primeira ordem, pode ser escrito como:
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¢o, se my > 0;
¢r = (3.41)

on, se my < 0.

Para fins de implementacao computacional, é conveniente recorrer a fungao max(vy, vy),
que retorna o maior valor entre vy e v1. Dessa forma, pode-se escrever: ¢ = ¢o max(riy, 0)—
¢n max(—rmy,0).

Do ponto de vista de suas caracteristicas numéricas, o esquema upwind é con-
sistente no calculo dos fluxos, implicando sua conservatividade. Além disso, trata-se de
um esquema limitado, com todos os coeficientes positivos, tornando a matriz resultante
diagonalmente dominante. Outra caracteristica importante é que o método incorpora ex-
plicitamente a direcao do escoamento em sua formulac¢ao, o que o torna mais realista do
ponto de vista fisico.

Por outro lado, a principal limitacao do esquema upwind é sua baixa acuracia.
Isso tende a introduzir difusdo numérica (também chamada de falsa difusdo), produzindo
um amortecimento artificial da solugdo em regides com gradientes acentuados (MAZUM-
DER, 2015; ANDERSON, 1995). Ainda assim, devido & sua simplicidade e robustez, o
esquema upwind é amplamente utilizado em CFD, oferecendo forte estabilidade numérica.
Em simulagoes que requerem maior precisao, como em LES (Large Eddy Simulation), ou
em problemas com malhas de baixa qualidade e altos ntimeros de Reynolds, é comum
empregar o upwind para obter uma solucao inicial estavel, que depois pode ser refinada
com esquemas de ordem mais elevada.

Para mitigar o problema da falsa difusao e aumentar a acurécia do método, uma
estratégia natural consiste em aumentar a ordem do esquema upwind pela inclusao de
mais termos na expansao em série de Taylor (WARMING; BEAM, 1976), resultando no
método linear upwind differencing (LUD). Em malhas nao estruturadas, pode-se expandir

a série em torno do ponto O, obtendo

¢(x,y) = ¢o + (Vo)o - AT + O(|ATP), (3.42)

onde Ar é o vetor que une O ao centro da face. Assim, o valor da propriedade ¢ pode ser
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avaliado apenas com:

op + (Vo)p - AT, se 1y > 0;
b5 = (3.43)

¢N+ (V¢)N AF, se mjr < 0.
E a adicao de um termo que envolve um gradiente traz maior precisao para a
solugao do método, deixando uma variagao linear entre o valor de ¢ nos centroides e
centro das faces. Apesar do ganho em acurécia, isso acarreta na perda de estabilidade.
De maneira andloga ao caso da difusao cruzada, o gradiente também pode ser avaliado

por meio da correcao deferida conjuntamente aos minimos quadrados.

Exemplo Numérico: Convecgao Pura

Para explicitar a diferenca e agregar maior profundidade ao tratamento da conveccao
nesse trabalho, testou-se também o impacto dos esquemas upwind e linear upwind. O
primeiro problema serviu apenas para validar a questao das ordens de convergeéncia, e a
solugao exata é dada por: ¢(z,y) = sin(mx) sin(my). As condi¢oes do problema sao dadas

entao:

U - V¢ = mcos(mz)sin(ry) + wsin(7rx) cos(ry) em I’
(3.44)

¢(x,y) =0 em OI'.

Em que o valor da velocidade @ é prescrito no dominio I' = [0, 1] x [0, 1] e vale u = v = 1.
Para obter a ordem de convergéncia dos métodos, realizou-se um refinamento de malha.
A malha considerada dessa vez é uma malha cartesiana e estruturada composta por qua-
drados, andloga as malhas estruturadas tradicionais, para facilitar o calculo da ordem de
convergéncia. Os valores de tamanho de malha foram N = 16, 64,256, 1024, 4096, 16384.
Em relacao as corregoes e aos calculos do gradiente que o linear upwind exige, foram
utilizadas apenas 10 correcoes. Os resultados estao disponiveis na Figura 3.10. Nela, é
possivel notar que o método UD apresenta uma ordem de convergéncia proxima a linear,
enquanto o LUD esta proxima a segunda ordem, estando ambos conforme o esperado.

Para avaliar caracteristicas mais qualitativas, escolheu-se outro problema pura-
mente convectivo, sendo que dessa vez o mesmo é bem conhecido (VERSTEEG; MALA-

LASEKERA, 2007). A formulagao do problema é:
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—t— UD, O(h(].S?)
LUD, O(h*%)

10714

T T
102 10!

oz =0,y) = d(z,y=1) =1, (3.45)

No qual novamente o campo de velocidade é u = v = 1. Para facilitar a vi-
sualizagao, a Figura 3.11 apresenta graficamente o problema. A solucao correta desse
problema é bem documentada, e conforme a velocidade do fluido é na direcao diagonal,
todos os valores acima da diagonal serao ¢(x,y) = 1, enquanto os valores abaixo da di-
agonal serao ¢(x,y) = 0. Para validar a qualidade dos métodos, pode-se avaliar o corte
da solugao obtida na linha vermelha. Caso a solucao seja exata, a mesma deverd ter o
formato de um degrau.

Considerando o recorte apresentado na Figura 3.11, obteve-se o grafico apresen-
tado na Figura 3.12. Nessa figura, apresentam-se a solucao exata, caracterizada pelo
degrau, bem como as solu¢oes obtidas pelos esquemas UD e LUD. Observa-se que o
esquema UD introduz um amortecimento significativo na solugao, efeito diretamente as-
sociado a difusd@o numérica inerente a esse método (ANDERSON, 1995). Em contraste, o
esquema LUD acompanha melhor a tendéncia do degrau, porém apresenta leves oscilagoes,

evidenciadas por ondulacoes nas proximidades da descontinuidade.
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Figura 3.11: Figura exibindo o dominio, retratando também a velocidade @ = (1,1).
O segmento em vermelho é utilizado para comparar as solucoes. Imagem reti-
rada de: https://www.openfoam.com/documentation/guides/latest/doc/guide-schemes-
divergence-example.html.
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Figura 3.12: Comparagao entre UD e LUD na diagonal, em que a fungao é ¢(x,1 — z).
Imagem obtida com refinamento de 16384 volumes de controle em uma malha estruturada
composta por quadrilateros.

3.6.3 Discretizacao da Pressao

Na Equagao (3.18), surge a necessidade de discretizar o termo que envolve a pressao. Para
isso, considera-se o campo vetorial ¢ definido na dire¢do x por ¢ = pi (andlogo para y),

em que p é o campo escalar de pressao. A divergéncia desse campo é dada por
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V.§= (— v 3) (vi) = 5L (3.46)

Dessa forma, integrando no volume de controle, tem-se:

/ P gy — / v - gdv. (3.47)
Vc

Pelo Teorema da Divergéncia (Equacao 3.9), obtém-se:

/ Wy - [ v gav= 7{ (7 ) dS. (3.48)
Ve Ve

Por analogia ao procedimento adotado para os demais termos, a integral de su-
perficie pode ser aproximada por um somatério sobre as faces do volume de controle

associado ao ponto O, de modo que

Nf,o Ny.o Ny.o

/ P gy ~ S UG- A=Y (i) -7ig)Ar =Y ppnays Ay, (3.49)
=1 f=1 =1
em que ng f = fif - i representa a componente 2 do vetor normal & face f.
Assim, a integral do gradiente de pressao na direcao x é escrita como um somatoério
dos valores de pressao nas faces, projetados na direcao normal correspondente. Nesse
caso, a Unica quantidade ainda desconhecida é ps, que pode ser obtida, por exemplo, por

interpolacao linear entre os valores de pressao nos centros das células adjacentes a face.

3.6.4 Forma final da equacao de momento

Nas sec¢oes anteriores deste capitulo discutiram-se os tratamentos numéricos associados a
cada termo da equacao de momento. Nesta subsecao, reinem-se esses resultados com o

objetivo de apresentar a forma final da equacao de momento discretizada.
Considerando-se as discretizagoes do termo convectivo usando o esquema linear

upwind, do termo difusivo usando difusao cruzada, além dos termos de pressao e de fonte,
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a equacao discretizada em x é sintetizada como:

Nf,o
Z [(uo + (Vu)o - A7) max(0,m¢) — (uy + (Vu) N - A7) max(0, —rng)] =
= (3.50)
Nyo Ny.0 Ny,0
- Z pfn:v,fAf + Z [Df(uN —up) + Z ,quf(Vu . n_‘g)} + S:2.0Vo.
f=1 f=1 f=1

Pode-se ainda reunir todos os termos que dependem de up ou uy no lado esquerdo,
deixando no lado direito apenas os termos que envolvem gradientes (tratados de forma

explicita) e contribui¢oes conhecidas. Assim, obtém-se:

Z (uo max (0,7 f) — uy max(0, —riny)) Z Dy¢(un — uo) Z g fAy
=1 f=1 f=1
Nfo Nfo
+ Z - Ar)max(0,1my) — ((Vu)y - A7) max(0, —my)) + Z prAp(Vu* - fia) r + Sz 0Vo,
f=1

(3.51)
em que a notacao (Vu)* indica que os gradientes sao avaliados explicitamente, por meio
de valores provenientes de iteragoes anteriores e reconstruidos via método de minimos
quadrados. Para simplificar a escrita, é conveniente agrupar os termos associados a célula
central O e as células vizinhas N, tratando todo o lado direito como um termo fonte
efetivo Q)

N¢o N¢.o

Z uo [max(0,1y) + Dy| — Z uy [max(0, —rivy) + Dy] = Q. (3.52)
f=1 f=1

tomando agora as seguintes notacgoes,

ap = Z[max(o,mf) + Dy,
=1 (3.53)

ay = [max(0, —ry) + Dy].
A equacao de balanco para a componente u pode ser escrita como
nyo
apup + Z aNunN = Qz (354)

f=1

a qual representa a forma simplificada da equacao de momento na direcao z, ja na forma
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algébrica tipica dos métodos de volumes finitos. A formulacao andloga pode ser obtida

para a componente v da velocidade.

3.7 Tratamento do acoplamento pressao-velocidade

Nesta secao, sera considerado o procedimento para lidar com o acoplamento entre pressao
e velocidade, ponto relevante do SIMPLE. A primeira caracteristica a ser analisada é o
armazenamento das variaveis « e p. A forma mais natural seria armazena-los no centroide
das células. Contudo, se o campo de pressao for altamente nao uniforme, o mesmo poderia
ser tratado como um campo uniforme na equacao discretizada. Considere o exemplo da
Figura 3.13, onde, no problema, o campo de pressao obtido é altamente irregular, tendo

a configuracdo de um tabuleiro de xadrez (checkerboarding).

N
—s L 4 L 4 4 & L
100 50 100 50 100 50
n
I_'__“7 )
W w f
— T Py | € P E 5}( ®
50 100 | 50 (P 1100 i 50 100
L _r
-ﬂ—%ﬁ-—
—® X L 2 .
100 50 1001|8 50 100 50

50| 100 50 100T 5OT 100

Figura 3.13: Ilustracao do checkerboading, onde existe oscilacao na pressao. Imagem
retirada de (VERSTEEG; MALALASEKERA, 2007).

Conforme discutido por (VERSTEEG; MALALASEKERA, 2007), o gradiente

poderia ser obtido como:

@ZPE—Z?W @ZPN—]?S

Ox 200 Oy 20y (3:55)

em que nenhuma das expressoes depende da pressao no no de referéncia P. Substituindo
os valores da Figura 3.13, prediz-se que o gradiente de pressao em todos os pontos é
zero. Mas, na realidade, isso nao é verdade, por haver oscilagoes da pressao em ambas as

direcoes. Esse comportamento, é obviamente nao fisico, e deve ser tratado no esquema
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numérico.

Um remédio para esse problema é o uso de grids escalonados (staggered grids)
(HARLOW; WELCH, 1965), cuja ideia é avaliar variaveis, tais como pressao ou tempe-
ratura, nos centroides, mas deslocar o valor das velocidades para os centros das faces,
formando um arranjo desencontrado de variaveis. Contudo, o uso desse tipo de arranjo
possui desvantagens criticas. Ha alto custo em termos de memoria, por ser necessario
armazenar o desencontro de velocidades por meio de varias representacoes das malhas
em memoria, a fim de facilitar o cédlculo e a indexacao. Além disso, o fator mais pre-
ponderante nesse caso ¢ o uso das malhas nao estruturadas, visto que nao hé a nocao de
indexacao necessaria para percorrer e encontrar os deslocamentos.

Desse modo, manter todas as variaveis armazenadas no mesmo lugar torna-se uma
necessidade pratica na abordagem com malhas nao estruturadas. Para isso, utilizou-se
a abordagem mais conhecida na literatura, chamada de Pressure Weighted Interpolation
Momentum (PWIM), popularmente conhecida como Interpolacao de Rhie-Chow (RHIE;
CHOW, 1983).

3.7.1 Interpolacao de Rhie-Chow

O grande problema na abordagem colocalizada é o uso de interpolagao linear para o
calculo das velocidades nas faces. Essa interpolacao resulta em desacoplamento entre
pressao e velocidade, o que gera o problema oscilatéorio. Para contornar isso, em seu
paper original, Rhie e Chow resolveram esse problema adicionando um novo termo a
interpolacao, que atua de forma a dissipar o comportamento oscilatério (MOUKALLED;
MANGANTI; DARWISH, 2015).

A ideia principal da interpolacao com PWIM ¢é imitar o grid escalonado, porém
em uma férmula fechada. A deducao comeca usando a forma algébrica da equacao de
momento em xz, mas com a pequena diferenga em relacao a equagao (3.54), em que se

explicita o termo de pressao:

Nf’o
0

. Z N P
aplo + aAaNuUnN = ——= VO, (356)
st Jdzlo
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no qual @ representa a velocidade predita apds a resolucao da equagao de momento, utili-
zando os valores anteriores de u, v e p. Na etapa de inicializacao do método, tais campos
geralmente assumem valores nulos. A discretizacao do termo de pressao é realizada em
um formato distinto, no qual se considera o valor médio da pressao multiplicado pelo

volume da célula. Dessa forma, pode-se isolar o valor de ©p de modo que:

N
2 1 8p

wlod V07 (3.57)

no qual a notacdo |g indica que o dado coeficiente pertence a célula 0. Pode-se replicar

a equacao anterior para uma célula vizinha com indice 1:

A 1 Ny | ) | 1 0 (3 )
Uy = —— E a u - . .58
1 |1 ~ N|[1UN|1 |1 D 1

Nesse momento, é necessario considerar uma equacao de velocidade para a face

f entre O e 1, supondo que haja uma célula f intermedidria. Isso originara:

Nl 19
N . p
Uf:— Z CLN|fUN|f——8— Vf. (359)
aoly £ aols 0|

Alguns valores da equagcao (3.59) precisarao ser obtidos por interpolagao linear. Logo:

V Ve Vi
! = Wy © +(1—U)f)—1.
aoly aolo aol1

(3.60)

Além disso, a parte envolvendo o somatorio para os vizinhos ira ser transformada em:

1 Nyol; Nyo Nya
— Z an|fin|y = w ( ZaN|OUN|O) (1—wy) ( ZaN|1uN|1) (3.61)

aols £

Substituindo as equagdes (3.57) e (3.58) em (3.61):

Nf,O\f

. . 1 0Op
> anlsinly = wy | do+

-1 CLO|O ox

1 0
Vo (1 wf) U1+——p
o aply 0z X

aols

V1>, (3.62)
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Por fim, pode-se substituir (3.60) e (3.62) em (3.59):

. . 1 Op
uf—’th[uo—i-aO| % OV()}
(3.63)
X 1 Jp Vo Vi 10p
+(1- wf) [’U«l + To‘l O 1V1} — [wf7a0|0 +(1- ’U)f)‘aoh} oz fv

para encontrar finalmente a interpolacao para a velocidade 4;. De forma similar, a

expressao para Uy €:

1 9p
br = wr|bo + Ly
! f[o aolo dy| O}
) Vi Vi 10 (364)
. 1 9Op fo) 1 190p
1— — == —wp— + (1 —wy)—— | =] .
+1—wpon+ oo 1“} s o6 * ¢ wf)aoll}(?yf

Um fato em relacao ao SIMPLE é que nao sao necessarios apenas as velocidades
Uy e Uy, mas também os valores do fluxo de massa ¢, utilizados entao para o calculo do
termo advectivo, conforme mencionado anteriormente. Para calculd-lo, precisa-se entao

calcular o produto escalar @y - 7iy. Isso resultard em:

Up -y =dpng f+0pmny

= (uy[ito + aol‘ogi OVO]

Rl 2 AR A
G

o wfons o] ) = [l 0wl ) Y

% .
+ (1 —wp)——|(Vp)s - 7ty
Clo|1

(3.66)

Vo . Wi .
+wr——(Vp)o ity + (1 —ws)——(Vp)r - fig — |wp——
aolo aol aolo

representa o computo dos valores do fluxo de massa nas faces adotado neste trabalho. A

equacao (3.66) consiste basicamente em uma interpolagao linear, mas adiciona termos que
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envolvem a pressao, o que traz estabilidade. Na equagao (3.66), os termos que envolvem

o gradiente de pressao nas células O e 1 podem ser calculados como

Vo(Vp)o iy =nay Y prrApass+nys > DirAsmyps, (3.67)
1(0) ££(0)

em que utilizou-se a notagao ff para indexar o loop nas faces e nao existir confusao com
o f da face interpolada. E o termo que envolve o gradiente de pressao, mas na face f,

pode ser determinado como

k
:pg)—po

don + ¢, (3.68)

(Vp)j - 7i

onde existiria um termo (¢ a ser contabilizado devido a nao ortogonalidade da malha.
Entretanto, o mesmo é negligencidavel, nao impactando na convergéncia do algoritmo

(MAZUMDER, 2015).

3.8 Derivacao da equacao para pressao

Conforme descrito no inicio do capitulo, é necessario derivar uma equacao especifica para
o calculo do campo de pressao. A partir dos valores obtidos na solucao das equagoes de
momento e da interpolacao de Rhie-Chow, o campo de velocidades passa a satisfazer, em
boa aproximacao, a equagao de momento, mas ainda nao satisfaz exatamente a equagao
de continuidade.

Dessa forma, torna-se necessario corrigir os campos de pressao, velocidade e fluxo
de massa, de modo a impor simultaneamente o atendimento a continuidade. Denotando-
se as correcoes por meio de um sobrescrito “[1"7, as relacoes entre o valor exato, o valor

aproximado “[J” e a correspondente correcao podem ser escritas da seguinte forma:

+ 7,

S

7=
m=1m +m'.

parte-se, entao, da Equagao (3.57). De forma andloga, os valores exatos também satisfa-
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zem essa equacao e podem ser nela substituidos. Ao se subtrair a equacao aproximada

da equagao exata, obtém-se, para a célula O, a seguinte expressao para a correcao da

velocidade: N
1 X 1 oy
u a uy — —— —=—| V. 3.70
0 aolo; ~lo Uy aolo x|, (3.70)

Nesse ponto, o algoritmo SIMPLE introduz uma simplificacao importante na
primeira parcela da correcao de velocidade: por simplicidade, o termo que envolve as
corregoes u'y € negligenciado, assumindo-se que, ao longo das iteragoes, essa contribuicao
tende a zero e que o termo associado ao gradiente de pressao passa a dominar a expressao.

Utilizando uma discretizacao andloga aquela empregada na secao de tratamento

do termo de pressao (3.49), pode-se escrever para u e v:

uh = — |Zm@%ﬁ (3.71)
aolo 1)

vy = — prArng ¢, 3.72

0 ao|oz ff ( )

em que p'f é a corregao de pressao interpolada na face f, e a soma ¢é realizada sobre as
faces do volume de controle associado a célula O. De forma andloga, pode-se derivar a
expressao da velocidade nas faces. O detalhe algébrico é omitido aqui para brevidade,

mas, apds algumas manipulagoes e o uso da Equagao (3.66), chega-se a uma relagao do

tipo:
Vo Vi o\ op
u’:—(w—+ 1—w —)— , 3.73
== (g + - o) 52| 5.73
Vo Vi op
v’:—(w——i— 1—w —)— , 3.74
== (i + -l ) 5| (3.74)

em que wy é dado por (3.23), Vp e V] sdo os volumes das células adjacentes a face, e
aolo e apl|1 sao os coeficientes diagonais correspondentes na discretizagdo das equagoes
de momento.

A equacao de continuidade discretizada é exatamente satisfeita quando se consi-
dera o campo de velocidades exato. Entretanto, no processo iterativo, dispoe-se apenas
de um campo aproximado, que, nesse estagio, satisfaz a equacao de momento, mas nao

necessariamente a continuidade. Manipulando-se a equacao de continuidade, obtém-se a
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seguinte relagao para as correcoes de velocidade:

Y opp (@ -iiy) Ap ==Y ps (id-7ip) Ay, (3.75)
f(0) 1)
em que o somatério é tomado sobre as faces do volume de controle associado a célula O, i
representa o campo de velocidade aproximado (obtido na etapa anterior) e @ é a corregao
de velocidade. O lado direito representa, portanto, o desequilibrio de massa (residuo de
continuidade) calculado com as velocidades aproximadas.
Apods substituicoes adicionais para 4’ em funcao da correcao de pressao, obtém-se

a equacao de correcao de pressao na forma:

Vo Vi | (Po—Ph) 4 _ A
> ps wfm+(1_wf)ao|l o p==> ps(a-iis) Ay, (3.76)
(0) 1(0)
Com base nessa equacdo, obtém-se os valores de p’ e o campo de pressao é atualizado;
as correcoes de velocidade sao calculadas e, em seguida, as velocidades sao corrigidas.
Ao final dessa etapa, o campo corrigido passa a satisfazer a continuidade, mas deixa
de satisfazer exatamente as equacgoes de momento, de modo que o processo é repetido

iterativamente até um determinado critério de convergéncia.

3.9 Coeficientes de relaxacao

Uma caracteristica critica do SIMPLE esté na sua convergéncia. Embora a forma algébrica
da equacao do momento seja linear, seus coeficientes dependem dos campos de velocidade
e pressao. Essa nao linearidade é tratada por um processo iterativo durante o qual os
coeficientes sao calculados no inicio de cada iteracao com base nos valores das variaveis
dependentes obtidos na iteracao anterior.

Essa mudanca nos valores dos coeficientes resulta em grandes variagoes na veloci-
dade e afeta a taxa de convergéncia, o que pode originar divergéncias. Para reduzir essas
variacoes, pode-se aplicar sub-relaxacoes. Denotando esse coeficiente de sub-relaxacgao

para a velocidade como A, a equagao do momento pode ser escrita como (MOUKAL-
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LED; MANGANI; DARWISH, 2015):

1- )\uv (n)
)\uv aoup”,

ao
/\uv

Uo+ZaNUN = Qs+
f(0)

(3.77)

em que ugl ) ¢ o valor de up na iteracao anterior do SIMPLE. Observa-se que, além

de modificar o coeficiente diagonal (efetivamente ampliando ap), o termo da iteragao
anterior é incorporado ao lado direito, contribuindo para estabilizar a evolucao do campo
de velocidades.

De modo andlogo, e em virtude das simplificacoes introduzidas pelo algoritmo
SIMPLE na deducao da equacao de correcao de pressao, é conveniente aplicar sub-
relaxacao também na atualizacao da pressao. Nao ha necessidade de sub-relaxar dire-
tamente a correcao de velocidade, uma vez que é a pressao corrigida que garante, em
ultima instancia, a conservacao de massa. Sendo assim, denotando o coeficiente de re-

laxacao para a pressao por A,, a atualizacao de p ¢ escrita como
p=p+XN71, (3.78)

em que p representa o campo de pressdo vigente e p’ é a correcao obtida a partir da
equacao de correcao de pressao. Valores de A, inferiores a 1 tornam a atualizagao mais
conservadora, melhorando a estabilidade do processo iterativo em detrimento de uma

convergencia potencialmente mais lenta.

3.10 Tratamento das condicoes de contorno

Um elemento de contorno é aquele que possui ao menos uma face localizada na fronteira
do dominio, denominada face de contorno. O tratamento das condigoes de contorno nessas
faces é fundamental para a formulagao numérica.

Na interpolagao de Rhie-Chow, os valores das faces de contorno sao utilizados
diretamente quando a condicao de contorno prescreve um valor. Ou seja: my = [, onde
o [ representa o valor informado da condi¢ao de contorno. Neste trabalho, optou-se por

tratar apenas as condicoes de contorno Wall, Inlet e Qutlet, justamente pela conveniéncia
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dessas condigoes nos problemas utilizados.

No caso de ser uma condicao do tipo Wall, ela pode ser classificada como slip
(deslizante) ou no slip (fixa). Os seus valores relacionados sao parametrizados como:
py = 7;my = 0;U = Uy, onde o simbolo de interrogacao “?” significa que o valor é
desconhecido. O fluxo de massa é zero, implicando nao haver velocidade em diregoes
ortogonais ao contorno. Além disso, a velocidade do fluido perto da parede é igual a
velocidade da parede ;. Em termos de implementacao numérica, esses valores podem
ser armazenados e substituidos sempre que necessario na avaliacao dos fluxos nas faces de
contorno, contribuindo como termos fonte nas equacgoes discretizadas.

A pressao desconhecida p, pode ser extrapolada a partir dos valores internos do
dominio por meio de uma expansao em série de Taylor. Por simplicidade, truncou-se a
série ja no primeiro termo da expansao, o que implica que p, = po (a pressao na face de
contorno é a pressao da célula vizinha).

No caso da condicao inlet, a mesma é parametrizada por: p, = 7;1m, = U; up = 0.
Nesse caso, existe um fluxo de massa, e a velocidade possui componente ortogonal a
condicao de contorno, fazendo a massa entrar no dominio. Similarmente a condigao wall,
pode-se usar a mesma expressao para aproximar o valor de p,. Na terceira e tultima
condicao, Outlet, ela é parametrizada por: p, = U;my, = 754, = 7. Neste caso, é infor-
mado agora o valor da pressao, mas o valor da velocidade nao é especificado. Também é
necessario extrapolar o valor do fluxo de massa no contorno para ser o valor da célula O.

Sobre a equacao de correcao de pressao, ha apenas os ultimos pormenores. Pri-
meiro, no caso da condi¢ao de contorno wall, como o fluxo de massa é padronizado como 0,
nao hé a necessidade de corrigir o valor no contorno durante a execugao, ou seja, my = 0.
De forma analoga, o mesmo se verifica para a condicao inlet. No caso do valor de p’, o
tratamento é consistente, e o valor é extrapolado pegando o valor da célula vizinha. Para

a condi¢ao Outlet, como ha o valor de py, a sua corregao é entao utilizada como p; = 0.
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4 DESCRICAO DO CODIGO R, FUM2D

R.FUM2D é um software escrito na linguagem C++ que permite a partir dos dados
informados pelo usudario simular problemas de escoamentos de fluidos envolvendo as
equagoes de Navier-Stokes utilizando a metodologia do MVF. O R, FUM2D ¢ dividido
em quatro partes principais: processamento das informagoes pertinentes a simulacao, pré-
processamento da malha, processamento e exportagao da solugao; todos feitos de forma
serial, ou seja, sem utilizacao de programacao multithreading ou via GPUs. O R.FUM2D
foi construido utilizando a biblioteca de algebra linear Eigen (GUENNEBAUD; JACOB,

2010), descrita melhor posteriormente. A estrutura do R.FUM2D estd exibida na Figura

/ R,FUM2D \

4.1.

N N N oYy
Processamento
das Pré- i Exportacio
informacgoes processamento Processamento da solugiio
do problema

. N \ S/

A=

Figura 4.1: Visao geral dos componentes.

Além disso, como o software foi construido seguindo uma abordagem orientada a
objetos, a Figura 4.2 retrata um diagrama de classes que exibe as classes utilizadas com

seus atributos e métodos, além dos seus respectivos relacionamentos.
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Cell

+id: int
- nsigns: vector<int>
- area: double

- centroid: pair<double, double>

- nodes: vector<Node>

- edges: vector<Edge>

PhysicalEntity

+id: int

+ name: string

Edge

+id: int
+ from: Node
+to: Node

- length: double

- df: double

- middle: pair<double, double>
- normal: pair<double, double>

- link_face_to_cell: pair<int, int>

Node

Mesh

+id: int

]+ x: double

+y: double

- edges: vector<Edge>
nodes: vector<Node>
- cells: vector<Cell>

- physicalEntities: map<int, physicalEntity> ‘

+ read_mesh(string filepath): void

- physicalGroup: string

+is_boundary_face(): bool

Orchestrator

‘ + readYamlAndRecoverVariables(string yaml_filepath): void

R,FUM2D

BoundaryCondition

- type: BoundaryType

- location: string

+ func: function<double(double,double)>

- mesh: Mesh

- A: SparseMatrix<double>
-b_mom_x: VectorXd<double>
-b_mom_y: VectorXd<double>
- b_pc: VectorXd<double>

- mu: float

+ rho: float

- gradients: MatrixXd<double>

- u_boundary: vector<pair<BoundaryType, double>>

- v_boundary: vector<pair<BoundaryType, double>>

- p_boundary: vector<pair<BoundaryType, double>>

- uc: VectorXd<double>

- ve: VectorXd<double>

- pe: VectorXd<double>

- ap: VectorXd<double>

- mdotf: VectorXd<double>

- wf: VectorXd<double>

+ mom_links_and_sources(double lambda_uv): void

+ solve_x_mom(int non_orthogonal_corrections, int maxiter, double tol): void
+ solve_y_mom(int non_orthogonal_corrections, int maxiter, double tol): void
+ face_velocity(): void

+ solve_pp(int maxiter, double tol): void

+uv_correct(): void

+ pres_correct(double lambda_p): void

Figura 4.2: Diagrama de classes do R.FUM2D.

4.1 Processamento das informacoes do problema

Nesta primeira etapa, sao feitas a leitura da malha informada pelo usuario, e também os

dados da simulacao. Como entrada, o R.FUM2D suporta malhas com extensao .msh, na

versao 2.0 ASCII. Este formato é do software Gmsh (GEUZAINE; REMACLE, 2009), um

codigo livre de geragao e visualizagao de malhas bidimensionais e tridimensionais. Para a

leitura dos dados do usuério, é necessario informar como argumento do programa o cami-

nho até um arquivo YAML (YAML Ain’t Markup Language), onde nele estarao descritas
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as propriedades fisicas do problema, detalhes de condigoes de contorno e informacgoes do

algoritmo SIMPLE. Um exemplo de arquivo esta descrito na Figura 4.3:

1 problem:

2 name: Lid-Driven Cavity Flow

3 mu: le-2

4 rho: 1.0 25 mshfile: ../inputs/lid_driven_cavity flow_8656.msh
5 reynolds: 100 26

6 boundaries: 27 simple:

7 u: 28  momentum:

8 - { type: DIRICHLET, region: TOP, value: one } 29 lambda_uv: 0.6

9 - { type: DIRICHLET, region: BOTTOM, value: zero } 30 non_corrections: 6

10 - { type: DIRICHLET, region: LEFT, value: zero } 31 iterations_bicgstab: 208
11 - { type: DIRICHLET, region: RIGHT, value: zero } 32 tolerance bicgstab: 1e-6

=
[SSI N)
<

wow
oW

pressure_correction:

14 - { type: DIRICHLET, region: TOP, value: zero } 35 lambda_p: 0.3

15 - { type: DIRICHLET, region: BOTTOM, value: zero } 36 iteratzons bicgstab: 100
16 - { type: DIRICHLET, region: LEFT, value: zero } 37 tolerance Eicgstab: le-4
17 - { type: DIRICHLET, region: RIGHT, value: zero } -

[y
2]

39 utol: le-8

40 vtol: le-8

41 ptol: 1e-8

42

43 save iterations: yes

44 exportfolder: ../outputs/

[

[aie]

b=}
'

type: NEUMANN, region: TOP, value: zero }
type: NEUMANN, region: BOTTOM, value: zero }
type: NEUMANN, region: LEFT, value: zero }
type: NEUMANN, region: RIGHT, value: zero }

NN

S N
[
e

Figura 4.3: Exemplo de um arquivo contendo as informacoes de entrada do problema.
Por praticidade, quebrou-se a visualizacao em duas partes, sendo a primeira metade na
esquerda.

em que sao fornecidos o caminho até a malha, os parametros fisicos: densidade para
a parte convectiva e viscosidade para a parte difusiva, e as condigoes de contorno para
cada uma das variaveis. Os tipos referem-se a como o valor serd aplicado, sendo as
opcoes “DIRICHLET” para um valor prescrito, ou “NEUMANN” para prescrever o valor
do gradiente. As regioes sao os respectivos locais onde a condicao de contorno sera
aplicada, valores esses definidos dentro do Gmsh, e que precisam estar em acordo. O campo
“value” corresponde ao valor da condigdo, e pode ser uma funcdo, como: one(x,y) = 1
ou zero(z,y) = 0. Tais valores, infelizmente, precisam ser definidos dentro do cédigo
e referenciados com o mesmo nome, visto que a definicao direta no arquivo exigiria um
tratamento de expressoes simbdlicas, processo que esta além do escopo deste trabalho.
Ainda hé campos contendo as informagoes para execucao do SIMPLE e detalhes para a
exportagao da solugao. Dentro do cédigo criado, o tratamento dessa etapa estd contido
na classe Orchestrator, que fica responsavel por processar todos os dados do YAML para
disponibiliza-los conforme requerido. A leitura da malha fica contida dentro da classe

Mesh.
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4.2 Pré-processamento

A malha é representada computacionalmente na classe Mesh. Esta classe é composta por
trés principais arrays: nés da malha (vértices dos volumes de controle), elementos da
malha (células) e arestas (faces dos volumes de controle). Considerar-se-4 a malha da
Figura 4.4 para exemplificar alguns detalhes nesta etapa. As inspiracoes para realizar o
pré-processamento estao detalhadas de melhor forma em (MAZUMDER, 2015). Como

principais pontos, tem-se que:

e Cada célula possui uma numeragao correspondente no array de células.

Cada face possui uma numeragao correspondente no array de faces.

Cada vértice possui uma numeracao correspondente no array de vértices.

Cada face possui uma numeracao local, que pode ir de 0 até | f| — 1, onde | f| denota

o numero de faces do volume de controle.

Em relacao a uma dada face, as células também podem possuir numeracao local

valendo 0 ou 1.

A relacao espacial que se da entre os valores globais e locais é denominada: co-
nectividade. Uma conectividade que precisa ser determinada para o MVF é chamada
de: link_face_to_cell, onde sua ideia é recuperar o id das células que compartilham uma
determinada face. Baseado na figura 4.4, as seguintes chamadas dessa fungao sao verda-
deiras: link_face_to_cell(20,0) = 8 e link_face_to_cell(20,1) = 12 ou link_face_to_cell(9,0)
= 3 e link_face_to_cell(9,1) = 2. Outra funcionalidade da mesma é permitir identificar
uma face como face de contorno, visto que quando uma aresta possui somente uma célula
compartilhando-a (situagdo do contorno), uma das numeragoes locais referencia a flag
“-17. A partir dessa relacao, pode-se usé-la para construir o Algoritmo 1. Nele, em
detrimento da conectividade entre face e células, pode-se resgatar as células adjacentes,
e interpolar na face o valor da propriedade segundo a equagao 3.23. os proximos pro-
cessamentos estao relacionados a questoes geométricas, e com isso dedicou-se subsegoes

proprias aos mesmos.
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Figura 4.4: Exemplo de malha nao estruturada bidimensional. Os vértices da malha sao
destacados em azul, os centroides dos volumes de controle em vermelho e as faces em
roxo. As regides de contorno do dominio (Top, Bottom, Left, Right) estao explicitamente
identificadas. Imagem criada com base em (MAZUMDER, 2015).

Algoritmo 1: Uso da conectividade link_face_to_cell

1 for if < 1 to nfaces do

2 icl < link_face_to_cell(iface,0);
3 ic2 < link_face_to_cell(iface, 1);
4 vf = interpolate_values(icl,ic2);
5 end for

4.2.1 Calculo do volume das células

O volume das células é uma informacao importante a ser encontrado, e nao é informado
pelo gerador de malhas. Sendo assim, considere um vetor ¢ = xi. Tomando o divergente

desse campo vetorial:

V-sz-(ﬁ)zg(m)%-%:l. (4.1)

uma vez que o divergente desse vetor ¢ é unitario, pode-se dizer entao que:
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Vo:/ av=[ v gv (4.2)
Vo Vo

nesse formato, pode-se recorrer ao Teorema de Gauss 3.9 e transformar a integral em um

somatorio nas faces, de modo que:

Nf’o

VO = Z JlfanAf. (43)
f=1

De maneira anédloga pode ser feito para ¢ = y7j, a fim de derivar uma expressao do
volume usando a direcao y, e depois extrair uma média das duas versoes para aumentar

a robustez do calculo.

4.2.2 Calculo das areas das faces e informacoes sobre as normais

Em 2D, calcular a area da face consiste apenas em calcular o comprimento de um segmento
usando a distancia euclidiana. Ja no caso do vetor normal, o mesmo pode ser obtido
usando algumas relagoes envolvendo a tangente a face. Os componentes tangentes podem

ser encontrados como:

Y2—W
AT

(4.4)

em vista de obter-se a normal, pode-se usar relagoes de geometria analitica. A primeira
delas é que a normal e tangente sao perpendiculares. A segunda, é que o produto vetorial

entre os dois vetores é um vetor ortogonal e unitario k£ na diregao z. Assim:

ng-ty =0
(4.5)
T_if X Zf_} = E
resolvendo o sistema obtém-se que: n, s = t, 5 e n,y = —t, y. Um ponto critico é que,

apesar de saber os valores das componentes da normal, algo igualmente importante é
conhecer em qual sentido ela aponta. Para aplicar o teorema da divergéncia de Gauss,
uma hipdtese importante é que todas as normais apontam para fora do volume de controle

em questao. Portanto, durante a execucao do software, precisa-se guardar qual sentido
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a normal aponta e corrigir sempre que necessario para realizar os balancos. Uma ideia
disso esta exemplificada no Algoritmo 2, no qual cada célula possuird um vetor interno
armazenando quais os sinais das normais para cada face, onde 1 indica que a normal ja

aponta para fora, e -1 nao.

Algoritmo 2: Determinacao dos sinais das normais

1 for ic < 1 to ncells do

2 for if < 1 to nfaces(ic) do

3 icl = link_face_to_cell(ic,0);
4 if (icell == icl) then

5 | nsign(ic,if) = 1;

6 else

7 ‘ nsign(ic,if) = —1;

8 end if

9 end for

10 end for

Uma vez que a direcao das normais estd bem definida, pode-se usé-las para o
computo do volume de uma célula baseado na equacao 4.3, onde o Algoritmo 3 ilustra a

sua execucao aproveitando a estrutura nsign construida anteriormente.

Algoritmo 3: Célculo do volume utilizando a informagao de nsign

1 for ic <+ 1 to ncells do

2 vol(ic) = 0;

3 for if < 1 to nfaces(ic) do

4 ‘ vol(ic) = vol(ic) 4+ nsigns(ic,ifc) * normal(ic).x x xf(if) * area(if);
5 end for

6 end for

4.3 Processamento

Apés a execucao do pré-processamento dentro da classe Mesh, que ird guardar entao
informagoes das classes Node (vértices), Cell (células) e Fdge (faces), além de informagoes
de contorno manifestadas através da classe PhyisicalEntity, a préxima etapa entao é
montar os sistemas de equacoes e resolvé-los utilizando algum método de resolugao de
sistemas. Toda a légica do processamento encontra-se dentro da classe R.FUMSolver,

que ira executar as etapas do algoritmo SIMPLE para entao resolver o problema. Nessa
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etapa, a biblioteca Eigen possui papel vital, possibilitando performar de forma mais
eficiente os calculos algébricos.

A biblioteca Eigen é uma biblioteca em C++ amplamente utilizada para operagoes
de algebra linear, oferecendo uma interface eficiente e flexivel para o manuseio de vetores
e matrizes densas e esparsas. Entre suas principais funcionalidades, destaca-se o su-
porte nativo a matrizes esparsas, o que a torna particularmente adequada para aplicagoes
cientificas e de engenharia que envolvem grandes sistemas lineares (GUENNEBAUD; JA-
COB, 2010).

Resgatando o que foi discutido na secao de Metodologia Numérica, o SIMPLE
pode ser descrito de forma algoritmica através do pseudocodigo 4, que ilustra em alto

nivel a sequéncia de chamadas que o R.FUM2D utiliza na pratica.

Algoritmo 4: Algoritmo SIMPLE
Entrada: utol, vtol, ptol, non_corrections, iter_bicgstab_mom,

tol_bicgstab_mom, iter_bicgstab_pc, tol_bicgstab_pc, Ay, Ap.

1 while uerr > utol VV verr > vtol V perr > ptol do

2 mom_links_and_sources(Ay,);

3 solve_x_mom(non_corrections, iter_bicgstab_mom, tol_bicgstab_mom);

4 solve_y_mom(non_corrections, iter_bicgstab_mom, tol_bicgstab_mom);

5 face_velocity();

6

7

8

9

solve_pp(iter_bicgstab_pc, tol bicgstab_pc);
uv_correct();

pres_correct(Ap);

end while

A primeira etapa do algoritmo consiste na inicializacao das estruturas de dados,
sendo a maior parte delas inicializada com zeros, caracterizando o chute inicial do método
iterativo. Em seguida, procede-se a montagem dos sistemas das equacoes de momento nas
direcoes x e y por meio da fungao mom._links_and_sources, onde montam-se as matrizes A e
b do sistema, sendo que a matriz A é montada com auxilio da estrutura de dados triplets,
que serve como base para montar uma matriz esparsa dentro do Eigen. A resolugao
desses sistemas ¢ realizada pelas rotinas solve_z_mom e solve_y_mom, as quais empregam
o método iterativo BiCGSTAB pré-condicionado com Jacobi.

No interior dessas rotinas, sao executados os procedimentos de correcao da nao
ortogonalidade da malha, bem como o calculo dos gradientes associados ao esquema de

discretizacao LUD. Por razoes de economia computacional, optou-se por realizar de forma
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conjunta as correcoes explicitas, em vez de aplicar separadamente a correcao de nao
ortogonalidade e, em seguida, tratar exclusivamente o esquema LUD), processo considerado
mais adequado pelos autores. O método BiCGSTAB requer a definicao do niimero maximo
de iteragoes e da tolerancia de convergéncia, parametros fornecidos pelo usuario. Com o
objetivo de acelerar a convergéncia, utiliza-se o pré-condicionador de Jacobi.

Apoés a resolucao das equacgoes de momento, realiza-se a interpolacao do fluxo de
massa nas faces dos volumes de controle com base no esquema de Rhie-Chow, procedi-
mento implementado na funcao face_velocity. Nesse estagio, o campo de velocidades sa-
tisfaz as equagoes de momento, porém ainda nao atende a equagao de continuidade. Para
corrigir essa inconsisténcia, a funcao solve_pp monta e resolve uma equagao de correcao
de pressao, cuja finalidade é forcar o campo de velocidades a satisfazer a conservacao de
massa.

Na sequeéncia, os valores de velocidade e pressao sao atualizados com base na
solugao da equagao de pressao, por meio das rotinas uv_correct e p_correct. Essas atu-
alizacoes incorporam fatores de sub-relaxacao, previamente definidos, com o objetivo de
melhorar a estabilidade numérica e favorecer a convergéncia do método.

O algoritmo ¢é executado iterativamente até que todas as tolerancias especifica-
das pelo usuario no arquivo YAML sejam satisfeitas. Para a avaliacao do erro em cada
iteragao, mantém-se um vetor auxiliar contendo os valores da iteragao anterior, permitindo
o calculo da norma do maximo e a verificacao do critério de convergéncia adotado.

Por fim, para ilustrar visualmente as etapas do algoritmo, construiu-se o fluxo-
grama disposto na figura 4.5. Como é possivel perceber, o algoritmo é composto por
diversas etapas, sendo custoso do ponto de vista computacional. Denotando a quantidade
de células por |c| e quantidade de faces por célula como |f|, grande parte dos loops para
preenchimento dos sistemas lineares sao da ordem de O(|c|-| f|). Sendo assim, desprezando
a resolucao dos sistemas, somente para a montagem dos sistemas lineares o algoritmo pos-
sui complexidade O(k - |c| - | f]), onde k é a quantidade de iteragoes no loop externo do
SIMPLE, que costumam ser da ordem de milhares, evidenciando uma demanda natural

do algoritmo para estratégias de paralelizacao.
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Figura 4.5: Fluxograma ilustrando visualmente as etapas de processamento.
4.4 Exportacao da solucao

O R.FUM2D faz a escrita da solugao utilizando o formato VTK (Visualization Toolkit)
(Kitware, 2026), utilizado para a escrita de resultados em grids nao-estruturados e baseado
na sintaxe XML, uma sintaxe voltada para formatos de conjunto de dados topologicamente
irregulares. Uma grande vantagem do formato VTK é ter suporte nativo pelo ParaView
(AHRENS; GEVECI; LAW, 2005), um c6digo open-source para visualizacao cientifica,

que foi utilizado neste trabalho para pds-processamento e visualizacao das solugoes.
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5 RESULTADOS

Os resultados sao apresentados com foco na precisao e corretude das solucoes geradas
pelo método numérico desenvolvido, iniciando-se pela analise da ordem de convergéncia
e, em seguida, pela validagao do cédigo por meio de problemas cléssicos da area de
CFD. No algoritmo SIMPLE, as tolerancias para velocidade e pressao foram fixadas em
1 x 1078, valores amplamente adotados por estarem préximos da precisao de maquina
simples, enquanto os coeficientes de sobre-relaxacao foram ajustados de acordo com o
problema considerado. Para as iteragoes explicitas, adotou-se § = 5, correspondendo
a cinco iteragoes, e o processo de avaliacao da convergéncia seguiu os mesmos critérios
descritos nas etapas de difusao e conveccao. O solucionador BiCGSTAB foi empregado na
resolucao das equacoes de momento, com tolerancia de 1 x 1076 e limite de 200 iteracoes,
ao passo que a equacao de pressao foi resolvida com tolerancia de 1 x 107* e até 100
iteracoes.

Os testes foram realizados em um laptop equipado com um processador Intel®
Core™ 15-12450HX de 122 geracao, 16 GB de memdria RAM e 512 GB de armaze-
namento interno em SSD. O ambiente de execucao adotado foi o sistema operacional
Ubuntu 22.04 LTS, e a versao da linguagem C++ utilizada foi o padrao C++17, conforme

disponibilizado pelo toolchain configurado via CMake.

5.1 Fluxo de Kovasznay

Nessa secao, testa-se o comportamento de convergéencia do esquema desenvolvido utili-
zando o problema do Fluxo de Kovasznay, um benchmark bem popular dentro da area
de CFD (CHEN et al., 2021). Esse problema é de interesse, visto que possui solugao
analitica, a qual é descrita por (KOVASZNAY, 1948; PIETRO; ERN, 2011):

A
U(z,y) = (1 — M cos(2my), ——e sin(27ry)>,
2 (5.1)

pla,y) = 51— ),
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Onde o valor de A esta relacionado ao nimero de Reynolds:

R | R?
=5 _ /== 2
A 5 1 + 472, (5.2)

Para realizar a simulagao tomou-se R, = 20, resultando em um problema com
A~ —1.81. O dominio da simula¢ao é: Q := [—0.5,0] x [1.5,2]. Ao contrério das si-
mulagoes feitas anteriormente, dessa vez utilizou-se uma malha nao estruturada composta
apenas por elementos triangulares, gerada no gmsh com o algoritmo de triangulacao de De-
launay. No caso dos valores de Ay, e A,, optou-se por serem 0.6 e 0.3, respectivamente. A
quantidade de volumes de controle na malha foram: N = 460,942, 1992, 3962, 7826, 15644;
dobrando aproximadamente a quantidade. O fator de refinamento e célculo da norma sao

calculados com as equagoes (3.38) e (3.37).

p,O() /

er,

2x 1072 3x1072 4x102 6x1072 101 2x102 3x10°2 4x10°2 6x1072 10!

Figura 5.1: Histérico de convergéncia do método SIMPLE: (a) convergéncia da velocidade
e (b) convergéncia da pressao.

Na Figura 5.1 sao apresentados os histéricos de convergéncia obtidos pelo método
SIMPLE para os campos de velocidade e pressao. A convergeéncia da velocidade foi ava-
liada a partir do médulo do vetor velocidade, definido como |u] = vu? + v2, de modo a
representar de forma global o comportamento do campo ao longo do processo iterativo.
Observa-se que, para a velocidade, a ordem de convergéncia obtida encontra-se préxima
de 2, indicando um comportamento aproximadamente de segunda ordem, consistente com
a discretizacao espacial empregada.

Para o campo de pressao, a ordem de convergéncia apresenta-se mais préxima

de 1, sugerindo um comportamento de primeira ordem. Esse resultado é coerente com
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o tratamento usual da pressao no algoritmo SIMPLE, no qual a correcao de pressao e o
acoplamento entre as variaveis tendem a limitar a ordem de convergéncia. Nota-se ainda
que, em certo momento, ocorre um aumento do erro da pressao para uma malha mais

refinada, comportamento no qual os autores nao possuem uma boa hipdtese de explicacao.

5.2 Fluxo na cavidade acionado pela tampa

Nesse problema, o dominio é definido como: Q = [0,1] x [0,1]. Detalhes sobre suas
condigoes de contorno sao dados na Figura 5.2, em que também esta ilustrada a malha

utilizada, composta por 8656 volumes de controle, e as condigoes de contorno do problema.
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Figura 5.2: Dominio, malha e informacoes de contorno do problema da cavidade.

Conforme disponivel na figura, trés das regices sao condigoes de contorno wall em
que as paredes sao fixas, enquanto a parede na parte superior se movimenta, sendo dai a
origem do nome do problema. A densidade nesse caso ¢ considerada como p =1 Kg/m?,
enquanto velocidade caracteristica serd a velocidade da tampa, isto é, & = 1. Assim, a

relacao de R, depende somente da viscosidade p:
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Re:/—l<:>,u=i. (53)

O que é comum a partir de entao é configurar os valores de R,, e o valor de pu
sera condicionado aos mesmos. Seguindo o que é comum a literatura, simulou-se para os
valores de R, = 100 e R. = 1000. No caso dos valores de A\, e A, do SIMPLE, optou-se
por serem 0,6 e 0,3. As Figuras 5.3 e 5.4 mostram o campo de velocidade e as linhas de

corrente para os respectivos numeros de Reynolds.
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Figura 5.3: Problema da cavidade Re = 100: (a) magnitude das velocidades e (b) linhas
de corrente.
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Figura 5.4: Problema da cavidade Re = 1000: (a) magnitude das velocidades e (b) linhas
de corrente.
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Como esse problema nao possui solugao exata, as solugoes obtidas foram com-
paradas com a literatura disponivel em (GHIA; GHIA; SHIN, 1982), que resolveu este
problema usando uma abordagem multigrid com diferencas finitas. Para fazer essa com-
paracao, verificou-se a variagao da velocidade u ao longo de uma linha vertical passando
pelo centro da cavidade, e a variagao da velocidade v ao longo de uma linha horizontal

também passando pelo centro. Os resultados estao dispostos nas Figuras 5.5 e 5.6.
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Figura 5.5: Comparacao com (GHIA; GHIA; SHIN, 1982) em Re = 100: (a) perfil vertical
e (b) perfil horizontal.
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Figura 5.6: Comparacao com (GHIA; GHIA; SHIN, 1982) em Re = 1000: (a) perfil
vertical e (b) perfil horizontal.

Por fim, é apresentado os graficos relacionados a convergéncia do método SIMPLE
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para ambos os Reynolds (Figura 5.7), onde se percebe que o processo converge de forma

bem estavel para todas as variaveis nos dois casos.

0 1000 2000 3000 4000 5000 6000 7000 8000

Iteragoes

(a)

0 1000 2000 3000 4000 5000 6000
Iteragdes

(b)

Figura 5.7: Comparacao da convergéencia para ambos os Reynolds, comparando o valor da
norma do méaximo e a quantidade de iteragoes para o problema da cavidade: (a) R, = 100

(b) R. = 1000.

5.3 Problema do escoamento sobre um degrau

Nesta parte, é estudado o escoamento sobre um degrau, problema também classico na

area de CFD. O dominio é retangular, possuindo altura H = 1 e comprimento L = 10. O

degrau, por sua vez, representado por uma extrusao, possui altura h = 0.5 e comprimento

[ = 2. Um importante valor relacionado a esse problema é sua taxa de expansao: H/h =

2.0, usada para poder comparar solugoes da literatura. A Figura 5.8 ilustra maiores

detalhes sobre as condigoes de contorno e malha utilizados. Dessa vez, a malha possui

8450 células triangulares.

inlet
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wall (no-slip)
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wall (no- shp) 10

u=v=0
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Figura 5.8: Dominio, malha e informacoes de contorno do problema do degrau.

Conforme definido na formulagao do problema, as superficies superior e inferior do
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canal, bem como as superficies do degrau, sao modeladas como paredes com condigao de
nao deslizamento (no-slip). Para representar o escoamento entrando no dominio, adota-
se na fronteira lateral esquerda uma condi¢cao de contorno do tipo inlet. O perfil de

velocidade prescrito é dado por

u(x,y) = —16(y — 0.75)* + 1, se y > 0.5, 54)

0, caso contrario.
Na fronteira lateral direita, impoe-se uma condigao de saida (outlet), permitindo a saida
do fluido do dominio.
O numero de Reynolds é definido a partir de uma densidade p = 1,0 kg/ m®, de um
comprimento caracteristico L = 0,5 (altura do degrau) e de uma velocidade caracteristica

U = 1,0m/s, correspondente a velocidade méxima do perfil 4. Dessa forma,

L .
-2 (55)

R

de modo que a viscosidade dinamica p pode ser especificada em fungao do valor de R..
Nessa simulagao, foram considerados os casos R, = 10, R, = 50 e R, = 100.

Para as simulagoes, adotaram-se coeficientes de relaxacao A\,, = 0.3 e A\, = 0.2,
valores relativamente baixos em razao de dificuldades de convergéncia observadas. Essas
dificuldades podem ser visualizadas na Figura 5.9, em que se notam oscilacoes marcantes
ao longo do processo iterativo: os residuos das equagoes aumentam e diminuem repetida-
mente, indicando um comportamento mais sensivel do método para esse caso.

Nas Figuras 5.10, 5.11 e 5.12 sao apresentados os campos de escoamento obtidos
para os diferentes nimeros de Reynolds. Observa-se, em todos os casos, a formacao de
uma regiao de recirculacao imediatamente a jusante do degrau. Nota-se ainda que o
comprimento dessa zona de recirculagdo aumenta progressivamente com o aumento do
nimero de Reynolds, evidenciando a maior influéncia dos efeitos inerciais no escoamento.

Na Figura 5.13 encontra-se uma comparacao do perfil da componente u da velo-
cidade em diferentes cortes no eixo x, comparado com dados experimentais retirados de

(ARMALY et al., 1983). Para essa comparagao, os resultados numéricos foram dimensi-
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Figura 5.9: Comparacao da convergéncia para R, = 100, comparando o valor da norma
do maximo e a quantidade de iteragoes para o problema do degrau.
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Figura 5.10: Magnitude da velocidade e linhas de corrente do problema do degrau para
R, = 10.
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Figura 5.11: Magnitude da velocidade e linhas de corrente do problema do degrau para
R. = 50.



5.3 Problema do escoamento sobre um degrau 76

Velocidade
1.9e-03 0.2 0.4 0.6 0.8 1.0e+00

o

*

Figura 5.12: Magnitude da velocidade e linhas de corrente do problema do degrau para
R, = 100.

onalizados conforme os dados disponibilizados na referéncia, multiplicando os eixos = e y
por 30 e 10. Os resultados evidenciam uma tendéncia similar na forma das curvas, mas os
pontos em si encontram-se distantes, indicando que talvez o refinamento da solucao ainda
nao tenha conseguido captar suficientemente bem o padrao observado em laboratoério.
Como um maior refinamento seria impeditivo computacionalmente, os autores optaram

por explorar melhor esse ponto em trabalhos futuros.

10

T T
o Armalyet. al. o Armalyet. al.
—— Este trabalho —— Este trabalho

Figura 5.13: Comparacao da qualidade da solugao comparando com (ARMALY et al.,
1983) em R, = 100: (a) x/h = 3.06 (b) x/h = 6.12.
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5.4 Problema do fluxo ao redor de um cilindro

O dultimo problema utilizado para validacao neste trabalho é o problema do escoamento de
um fluido ao redor de um cilindro. Esse é um problema também cldssico da literatura de
CFD (BAI; LI, 2011). Como referéncia principal, seguiu-se nesse trabalho a abordagem
descrita por (SCHAFER et al., 1996).

Conforme mostrado na Figura 5.14, o dominio do problema é = [0,2.2] x
[0,0.41], em que a malha possui 8382 células. No interior desse dominio ha uma regiao
solida circular, que no caso bidimensional representa a se¢ao de um cilindro tridimensional.
O circulo ilustrado na figura possui centro em (0.2,0.2) e raio r = 0.05.

As condigoes de contorno sao semelhantes as do problema do degrau, excetuando-

se a condicao de entrada (inlet), definida neste caso por

_ 4-03y(0.41 —y)

u(z,y) WIE (5.6)
wall (no-slip)
uw=1v=0
Vp=0
041 @
inlet outlet
u=1uv="0 (:)',2’0'2) Vu=Vuv=0
Vp=0 ! p=0
C O
o 2.2
wall (no-slip)
u=v=0
Vp=0

Figura 5.14: Dominio, malha e informagoes de contorno do problema do cilindro.

Além disso, impoe-se uma condi¢ao de contorno do tipo wall fixa ao longo da
superficie do cilindro. A malha empregada nesse caso, diferentemente dos exemplos ante-
riores, foi refinada adaptativamente, de modo a concentrar um nimero maior de volumes
de controle nas proximidades do cilindro, regiao de maior interesse por apresentar as
variacoes mais intensas das grandezas fisicas.

Para o algoritmo SIMPLE, adotaram-se os coeficientes de sub-relaxagao Ay, = 0,3
e A\, = 0,2. Neste problema, para obter um nimero de Reynolds igual a Re = 20,

considerando densidade unitaria, foi suficiente adotar uma viscosidade dinamica pu =
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Figura 5.15: Comparagao da convergéncia para R, = 20, comparando o valor da norma
do maximo e a quantidade de iteragoes para o problema do cilindro.

A figura 5.15 ilustra a convergéncia também para o caso do cilindro, e seu grafico é
um pouco mais estavel que no caso do degrau, mas menos estavel que no caso da cavidade.
A solugao do problema estd exibida na figura 5.16, demonstrando como o fluido que sai

da borda esquerda, atinge o obstaculo que seria o cilindro, e com isso adquire uma maior

velocidade.

Velocidade
1.8e-03 0.05 0.1 0.15 02 025 03 035 4.0e01
\

- Cee—

Figura 5.16: Magnitude da velocidade e linhas de corrente do flow over a cylinder para
R, = 20.

Por fim, para uma comparagao quantitativa da qualidade da solucao numérica,
sao analisados o comprimento da zona de recirculagao a jusante do cilindro e a diferenca

de pressao. O comprimento da zona de recirculagao, L,, é definido como: L, = z, — z.,
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em que x, = 0.25 corresponde a coordenada z da extremidade a jusante do cilindro, e z,
representa a coordenada x associada ao ponto mais extremo da zona de recirculagao do
escoamento. Por sua vez, a diferenca de pressao, Ap, é calculada a partir da diferenca
entre as pressoes medidas a montante e a jusante do cilindro, ao longo da linha central

do escoamento, sendo dada por Ap = p(0.15, 0.2) — p(0.25, 0.2).

L, Ap

Limite Inferior | 0,0842 | 0,1172
Limite Superior | 0,0852 | 0,1176
Este Trabalho | 0,095 | 0,1126

Tabela 5.1: Comparagao entre os limites inferior e maximo de diversos trabalhos repor-
tados em (SCHAFER et al., 1996) e a solugao obtida neste trabalho.

Os valores obtidos para esses parametros estao apresentados na Tabela 5.1. Nela,
os valores para L, e Ap encontram-se proximos do esperado, sendo o valor de L, com um
desvio de 11,5% e o Ap com um desvio de 4%, indicando uma boa acuracia para o cédigo

desenvolvido.
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6 CONCLUSOES E TRABALHOS
FUTUROS

Neste trabalho, foi desenvolvido um solucionador baseado no MVF, implementado em
C++, para a simulagao de escoamentos de fluidos bidimensionais. O c6digo encontra-se dis-
ponivel no repositério https://github.com/ricardo-ervilha/ReFum2D . Inicialmente,
foram apresentados os fundamentos matematicos do MVF, bem como a estratégia de
discretizacao adotada para a resolugao das equagoes governantes em malhas nao estrutu-
radas. Em seguida, discutiram-se os aspectos computacionais do método, descrevendo-se
de forma detalhada o fluxo de execucao do software, desde a leitura dos dados de en-
trada até a aplicacao do algoritmo SIMPLE e a exportacao dos resultados em formato
compativel com o ParaView.

A partir da andlise dos resultados obtidos nos benchmarks comparativos, verificou-
se que o codigo apresenta segunda ordem de convergéncia para o campo de velocidades e
primeira ordem para a pressao, sendo capaz de reproduzir de forma satisfatéria os prin-
cipais comportamentos fisicos observados em problemas classicos da literatura. Esses
resultados evidenciam a robustez da implementacao e indicam que o solucionador desen-
volvido constitui uma base para futuras aplicagoes em problemas de engenharia e pesquisa
cientifica.

Como perspectivas de trabalhos futuros, torna-se relevante investigar inicialmente
estratégias de paralelizacao visando a redugao do custo computacional associado a re-
solugao dos sistemas lineares e a natureza iterativa do algoritmo SIMPLE, ou ainda
técnicas de reordenagao nodal que permitam a obtencao de sistemas matriciais com estru-
tura de banda, possibilitando resolver os sistemas de forma mais eficiente. Nesse contexto,
a utilizacao de bibliotecas mais robustas, como a PETSc, configura-se como uma alterna-
tiva promissora para a exploracao eficiente do paralelismo. Posteriormente, pretende-se
estender o cédigo para a simulacao de problemas tridimensionais, uma vez que a maio-

ria das aplicacoes de interesse pratico envolve escoamentos em trés dimensoes. Por fim,
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destaca-se a possibilidade futura de incorporar modelos de turbuléncia, ampliando a apli-

cabilidade do software a cenarios fisicos mais complexos.
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