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Resumo

A garantia da qualidade de vida da população idosa é um tema central diante do enve-

lhecimento global, e os sistemas de Ambiente de Vida Assistida (Ambient Assisted Living

– AAL) têm se mostrado essenciais para o monitoramento de atividades diárias. Esses

sistemas integram diferentes tecnologias para apoiar a autonomia, segurança e bem-estar

de idosos em seus ambientes domésticos, permitindo detectar atividades, comportamentos

de risco e situações de emergência. Neste trabalho, aplica-se o framework PoseConv3D

ao conjunto de dados Toyota Smarthome Trimmed, composto por v́ıdeos de atividades

de vida diária de idosos em ambientes reais, para o reconhecimento de ações a partir de

v́ıdeos. O modelo utiliza a estimativa de pose humana para gerar mapas de calor 2D das

articulações ao longo do tempo, que são então processados por uma rede neural convolu-

cional tridimensional, permitindo capturar padrões espaciais e temporais das ações. Nos

experimentos, o modelo alcançou 72,2% de acurácia global e 54,5% de acurácia média

por classe, superando em acurácia média o desempenho do modelo proposto no trabalho

original do conjunto Toyota Smarthome Trimmed. Considerando a alta granularidade do

conjunto, que inclui 31 classes de ações com variações posturais e atividades visualmente

semelhantes, foi adotada uma estratégia adicional de agrupamento semântico, reduzindo

as classes para 19 categorias-base, permitindo avaliar o desempenho do modelo em ter-

mos de padrões mais amplos de comportamento de idosos. O modelo sobre o conjunto

agrupado apresentou uma acurácia global de 77,7% e uma acurácia média por classe de

67,9%.

Palavras-chave: Reconhecimento de Ações Humanas, Aprendizado Profundo, Redes

Neurais Convolucionais, Visão Computacional, Ambiente de Vida Assistida, Monitora-

mento de Idosos.



Abstract

Ensuring the quality of life for the elderly population is a central theme in the face of

global aging, and Ambient Assisted Living (AAL) systems have proven essential for mo-

nitoring daily activities. These systems integrate different technologies to support the

autonomy, safety, and well-being of older adults in their home environments, allowing

the detection of activities, risky behaviors, and emergency situations. In this work, the

PoseConv3D framework is applied to the Toyota Smarthome Trimmed dataset, compo-

sed of videos of daily living activities of older adults in real environments, for action

recognition from videos. The model uses human pose estimation to generate 2D heat

maps of joints over time, which are then processed by a three-dimensional convolutional

neural network, allowing the capture of spatial and temporal patterns of actions. In the

experiments, the model achieved 72.2% overall accuracy and 54.5% average accuracy per

class, surpassing the performance on mean class accuracy of model proposed in the origi-

nal Toyota Smarthome Trimmed study. Considering the high granularity of the dataset,

which includes 31 classes of actions with postural variations and visually similar activities,

an additional semantic clustering strategy was adopted, reducing the classes to 19 base

categories, allowing the model’s performance to be evaluated in terms of broader patterns

of older adult behavior. The model on the grouped set showed an overall accuracy of

77.7% and an average accuracy per class of 67.9%.

Keywords: Human Action Recognition, Deep Learning, Convolutional Neural Networks,

Computer Vision, Ambient Assisted Living, Elderly Monitoring.
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1 Introdução

De acordo com o relatório de Perspectivas da População Mundial 2024 das Nações Unidas

(ONU, 2024), a transição demográfica global caminha para um marco histórico: até me-

ados da década de 2050, as pessoas com 65 anos ou mais representarão cerca de 18% da

população mundial. No Brasil, essa realidade é ainda mais imediata; segundo o Censo 2022

do IBGE (IBGE, 2022), a população com 60 anos ou mais já representa 15,8% do total do

páıs, com projeções do Ministério da Saúde indicando que, até 2030, o número de idosos

deverá ultrapassar o de jovens na faixa de zero a 14 anos (BRASIL, 2022). O envelheci-

mento demanda serviços e benef́ıcios que garantam uma vida condigna, diferenciando-se

do restante da sociedade devido ao caráter degenerativo de certas condições, conforme

destacado pela Rede Interagencial de Informações para Saúde (RIPSA) (RISPA, 2009).

Estima-se, ainda, que até 80% da população idosa possua ao menos uma condição crônica,

projetando um contingente de 50 milhões de pessoas com necessidades permanentes de

saúde até 2050. Diante disso, o sistema exige não apenas investimentos vultosos, mas

uma readequação em infraestrutura e capital humano, focando na formação geriátrica

integrada e no fortalecimento das redes sociais de suporte.

Um exemplo de ação diante de desafios como os mencionados, realizado pelo go-

verno brasileiro, foi o lançamento em 2018 da Estratégia Brasil Amigo da Pessoa Idosa

(BRASIL, 2018), cujas iniciativas incluem a promoção de ambientes seguros, adaptação

de residências, lazer e medidas de prevenção de quedas. Mais recentemente, poĺıticas

como o Programa Envelhecer nos Territórios e o Viva Mais Cidadania (BRASIL, 2024)

têm focado no combate ao idadismo e na garantia de direitos nos locais de residência.

Nesse contexto, a inovação tecnológica surge como o pilar estratégico para otimizar re-

cursos e garantir a autonomia e inclusão social da população que envelhece. Assim, a

Computação desempenha um papel fundamental seja através do letramento digital ou

pelo desenvolvimento de tecnologias assistivas e telessaúde.

A Visão Computacional é uma área da Ciência da Computação dedicada à ex-

tração e à interpretação de informações a partir de imagens e v́ıdeos, com o objetivo de
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representar e compreender o mundo real por meio de dados visuais (SZELISKI, 2022).

Entre os problemas centrais dessa área, destaca-se o reconhecimento de ações humanas,

no qual modelos computacionais buscam identificar e classificar atividades a partir de

sequências visuais (SHUCHANG, 2022). No contexto do cuidado com a saúde de idosos,

o reconhecimento de ações baseado em visão computacional permite o monitoramento au-

tomatizado de atividades cotidianas de forma não intrusiva, utilizando apenas informações

visuais. Essa abordagem contribui para a preservação da autonomia dos indiv́ıduos, ao

dispensar o uso de dispositivos vest́ıveis ou sensores corporais, possibilitando que os idosos

realizem suas atividades diárias de maneira natural. A detecção de eventos relevantes,

como quedas, comportamentos at́ıpicos ou situações de emergência, pode, assim, ocorrer

sem a necessidade de vigilância constante por parte de familiares ou cuidadores.

Esse tipo de aplicação insere-se no escopo dos Sistemas de Ambiente de Vida

Assistida (Ambient Assisted Living – AAL), cujo objetivo é oferecer suporte à vida in-

dependente e segura de pessoas idosas ou com limitações funcionais em seus próprios

ambientes (CICIRELLI et al., 2021). Na prática, muitas soluções AAL são concebidas

como ecossistemas complexos, frequentemente associados a infraestruturas baseadas em

Internet das Coisas (Internet of Things – IoT), que envolvem múltiplos sensores, dis-

positivos conectados e camadas de comunicação. Embora essas abordagens ampliem as

possibilidades de monitoramento e automação, elas também introduzem desafios adicio-

nais de custo, implantação e manutenção em ambientes domésticos reais. É nesse contexto

que se estabelece a motivação deste trabalho. Diante da crescente demanda por soluções

de monitoramento assistido e da complexidade observada em arquiteturas AAL baseadas

em IoT, este estudo propõe investigar uma alternativa mais simples e focada, centrada

no uso de modelos de reconhecimento de ações guiados por representações de pose hu-

mana, considerando o v́ıdeo como única fonte de entrada. Essa abordagem busca reduzir

a dependência de sensores adicionais e de infraestruturas especializadas, isolando a contri-

buição metodológica do reconhecimento de ações e facilitando a implementação prática.
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1.1 Definição do problema

A implementação dos modelos de reconhecimento de ações envolve, primariamente, a

extração de caracteŕısticas das imagens. Essas caracteŕısticas, também referidas como

features, são estruturas capazes de representar uma informação e podem ser obtidas de

forma manual ou de forma automatizada com uso de aprendizado de máquina. Existem

diferentes formatos de entrada para o treinamento de modelos, como imagens proveni-

entes de câmeras comuns, câmeras de profundidade (RGB-D), câmeras infravermelhas

ou térmicas. Há ainda dados obtidos por sensores de movimento e entradas biomédicas

como sensores de frequência card́ıaca e respiração. Os formatos diferem no grau de in-

formação que fornecem e influenciam na acurácia do modelo, alguns sendo mais invasivos

em relação à privacidade do indiv́ıduo monitorado e podem requerer interação direta com

o dispositivo receptor da informação.

O problema central abordado por este trabalho é a necessidade de desenvolver

sistemas de monitoramento cont́ınuo de idosos que sejam não invasivos e não dependam

de sensores f́ısicos, utilizando apenas entradas no formato de imagens e v́ıdeo. Essa abor-

dagem busca garantir o conforto e a privacidade dos idosos, evitando a necessidade de

dispositivos vest́ıveis ou sensores intrusivos. A qualidade e natureza dos dados obtidos

refletem diretamente na acurácia e eficiência dos modelos de reconhecimento de ações.

Para formatos visuais de entrada, por exemplo, a precisão pode ser afetada por variáveis

como iluminação, ângulos de câmera e a presença de obstruções no ambiente. Além das

preocupações com a invasividade, o custo computacional e financeiro atrelado ao tipo de

informação consumida impacta diretamente a aplicabilidade dos modelos em um cenário

real. Sistemas baseados em entradas visuais precisam ser robustos e adaptativos para

funcionar de maneira eficaz em diversas condições. Outro desafio é a disponibilidade de

conjuntos de dados (datasets) adequados para o treinamento e teste dos modelos. Os

conjuntos de dados para o problema de reconhecimento de ações de idosos são majori-

tariamente restritos, muitas vezes produzidos pelos próprios autores dos sistemas e não

disponibilizados publicamente. Portanto, é essencial explorar e avaliar modelos avançados

de reconhecimento de ações que utilizem apenas entradas visuais, superando as limitações

mencionadas para garantir um monitoramento seguro, eficiente e não invasivo dos idosos.
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1.2 Objetivos

O objetivo geral deste trabalho é aplicar um modelo de reconhecimento de ações para

monitoramento não invasivo que utilize apenas entradas de imagens e v́ıdeo, visando

identificar atividades cotidianas e situações de risco de forma precisa e eficiente, sem

comprometer o conforto dos usuários. As métricas utilizadas são acurácia geral e acurácia

média por classe de ação e custo computacional. As propriedades consideradas são tipo

de entrada, método de extração de caracteŕısticas e método de classificação. São objetivos

espećıficos:

• Estudar diferentes modelos de reconhecimento de ações baseados em entradas visu-

ais.

• Levantar os principais conjuntos de dados de ações relacionadas ao monitoramento

de idosos.

• Aplicar um modelo eficiente de reconhecimento de ações baseado em entradas visu-

ais.

• Avaliar o desempenho do modelo em um conjunto de dados voltado para o monito-

ramento de idosos.
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2 Fundamentação teórica

Este caṕıtulo apresenta os conceitos fundamentais para a compreensão do problema de

monitoramento de pessoas, com foco no reconhecimento de ações. A Seção 2.1 aborda

o problema de reconhecimento de ações, explorando suas origens, objetivos e relevância.

Na Seção 2.2, são discutidos os conceitos de ações e as diversas formas de representá-las

computacionalmente, destacando a importância de uma representação eficiente para o

sucesso dos modelos. A Seção 2.3 introduz o conceito de redes neurais, detalhando seu

funcionamento e a evolução para o aprendizado profundo (deep learning), que impulsiona

grande parte das inovações no reconhecimento de ações. Por fim, a Seção 2.3.1 foca nas

Redes Neurais Convolucionais (CNNs), uma arquitetura amplamente utilizada devido

à sua eficiência na extração de caracteŕısticas relevantes de imagens e v́ıdeos, aspectos

cŕıticos na resolução do problema em questão.

2.1 Reconhecimento de ações humanas

O reconhecimento de ações humanas (RAH) vem sendo um problema tratado especial-

mente pelos campos de visão computacional e aprendizado de máquina, sendo proveniente

do ramo de análise de v́ıdeos. Aggarwal e Ryoo (2011) abordam o reconhecimento da ati-

vidade humana como uma tarefa cujo objetivo é analisar automaticamente as atividades

em andamento de um v́ıdeo desconhecido. Kong e Fu (2022) especificam que o problema

consiste em inferir ações de indiv́ıduos com base em uma ação já realizada, e prever

ações com base em execuções incompletas. O estudo desse assunto, fundamentalmente,

busca definir o que são ações humanas e formas de representá-las a partir de abstrações

computacionais que reproduzem propriedades e atributos providos pelo sentido da visão

humana. Esse processo é feito a partir de algoritmos, que, segundo Kong e Fu (2022),

devem produzir um rótulo após observar a execução total ou parcial de uma ação hu-

mana. As principais aplicações do uso de modelos de reconhecimento de ações no mundo

real se encontram em sistemas de vigilância, monitoramento de pacientes, recuperação e
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anotação de v́ıdeos.

O conceito de ação é variado entre os diferentes autores desse objeto de pesquisa.

Turaga et al. (2008) faz distinção de ação e atividade, a primeira define como movimentos

simples executados na ordem de tempo de segundos, e a segunda como “ações coordena-

das entre um pequeno número de pessoas”. Aggarwal e Ryoo (2011) ainda dividem as

atividades humanas em quatro ńıveis: gestos, ações, interações e atividades em grupo. Os

gestos são considerados como as partes atômicas do movimento, como levantar um braço

ou uma perna, e as ações como sendo a composição de múltiplos gestos, como caminhar,

acenar. As interações e atividades envolvem mais de um indiv́ıduo realizando diversas

ações.

2.2 Representação de ações

O reconhecimento de ações é visto como um problema de classificação, no entanto, a

tarefa primária é definir como uma ação será representada computacionalmente. Par-

tindo da ideia de compreender ações usando a anatomia humana, as primeiras formas

de representação utilizavam de modelos 2D ou 3D para descrever segmentos e juntas

correspondentes do corpo humano (WANG; HU; TAM, 2003). A tarefa comum a toda

representação é transformar as entradas visuais, dispostas em pixels, em vetores de ca-

racteŕısticas (TURAGA et al., 2008). Essas abordagens iniciais fazem parte do que é

conhecido como shallow approaches (abordagens rasas) e se baseiam em caracteŕısticas

simples extráıdas diretamente das imagens ou v́ıdeos, como contornos, e fazendo uso de

algoritmos como regressão linear, regressão loǵıstica, árvores de decisão, K-Vizinhos mais

próximos(K-nearest Neighbors), e máquina de vetores de suporte (SVM) (AGGARWAL;

RYOO, 2011). Se tratando de ações, é de interesse capturar informações quanto a movi-

mento nas imagens. Para isso, alguns modelos baseados em movimento foram propostos,

como imagem de energia em movimento (Motion Energy Image – MEI) e imagem de

histórico de movimento (Motion History Image – MHI) (BOBICK; DAVIS, 2001), histo-

grama de gradientes orientados (Histogram of Oriented Gradients – HOG) (WANG et al.,

2011; DALAL; TRIGGS, 2005) e o fluxo óptico (Optical Flow – OF) (BEAUCHEMIN;

BARRON, 1995).
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Essas abordagens também são conhecidas como hand-crafted features, traduzido

como “caracteŕısticas extráıdas a mão”, e segundo Kong e Fu (2022), o termo implica que

modelos baseados nessas técnicas têm seus parâmetros decididos por especialistas, assim

exigindo conhecimento aprofundado do domı́nio. A partir do entendimento dos padrões

visuais espećıficos do contexto pode-se pensar no método de extração de caracteŕısticas

adequado ao problema. Assim, por consequência, esses modelos também apresentam

dificuldade de performar de maneira generalizada. Turaga et al. (2008) menciona a im-

portância da robustez e da invariância ao lidar com informações no formato de v́ıdeo. A

robustez diz respeito a um modelo ser eficaz mesmo com algumas variações na entrada

quanto a rúıdos, angulação e iluminação da cena, e a invariância considera mudanças de

posição, rotação e escala. Os métodos baseados nas abordagens anteriores são bastante

senśıveis nesses aspectos. Assim, a alternativa que surge e hoje representa o estado da

arte para reconhecimento de ações (SHUCHANG, 2022) são as abordagens baseadas em

redes neurais profundas ou deep architectures, cujos modelos são capazes de automatica-

mente aprender a identificar caracteŕısticas. O fluxo óptico, apesar de estar incluso nas

abordagens rasas, contribui significativamente quando usado como entrada em modelos de

aprendizado profundo por carregar informações quanto ao aspecto temporal dos v́ıdeos.

2.2.1 Estimativa de pose

No contexto do reconhecimento de ações, a estimativa de pose humana surge como uma

forma de representação estrutural do movimento, na qual a dinâmica de uma ação é

descrita a partir da configuração espacial e temporal das articulações do corpo. Essa

representação abstrai informações de aparência e fundo, concentrando-se na geometria

do corpo humano ao longo do tempo. A estimativa de pose consiste, portanto, na iden-

tificação das posições das articulações do corpo humano em imagens ou sequências de

v́ıdeo. Inicialmente, esse problema foi abordado por meio de modelos baseados em par-

tes deformáveis, como as Pictorial Structures (PS) (FISCHLER; ELSCHLAGER, 1973),

nos quais o corpo humano é representado como um grafo. Nesses modelos, cada nó cor-

responde a uma parte do corpo, enquanto as arestas codificam restrições geométricas

entre as articulações, sendo utilizadas caracteŕısticas manuais, como SIFT ou HoG, para
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a descrição visual das partes.

Com o avanço do aprendizado profundo, surgiram modelos com uma formulação

denominada hoĺıstica, como o DeepPose (TOSHEV; SZEGEDY, 2014), na qual a es-

timativa da pose é realizada a partir de uma representação global da imagem. Nessa

abordagem, a CNN processa o corpo humano como um todo e prediz simultaneamente

as coordenadas (x, y) das articulações, sem impor explicitamente restrições geométricas

entre as partes. Essa mudança representou um marco ao substituir pipelines baseados em

engenharia manual de caracteŕısticas por modelos aprendidos.

Apesar de sua relevância histórica, a regressão direta mostrou limitações em ter-

mos de precisão espacial. Em resposta, métodos como o de Tompson et al. (2014) passaram

a modelar a estimativa de pose como um problema de predição de mapas de calor (he-

atmaps), nos quais cada pixel expressa a probabilidade de ocorrência de uma articulação

naquela posição. Durante o treinamento, o rótulo de cada articulação é representado por

um mapa de calor Gaussiano bidimensional, cuja média coincide com a posição real da

junta e cuja variância é mantida pequena para concentrar a distribuição.

Formalmente, para uma articulação localizada na coordenada (xg, yg), o valor do

pixel (i, j) no mapa de calor alvo T é dado por:

T (i, j) = exp

(
−(i− xg)

2 + (j − yg)
2

2σ2

)
, (2.1)

em que σ determina o grau de espalhamento da distribuição de probabilidade ao redor da

articulação. O processo de treinamento consiste em minimizar o Erro Quadrático Médio

entre os mapas de calor estimados pela rede e os mapas Gaussianos de referência.

2.3 Aprendizado profundo

O aprendizado profundo ou deep learning se refere a modelos que utilizam redes neurais

profundas para resolução de problemas de classificação e reconhecimento de padrões. A

ideia por trás das redes neurais foi introduzida por Rosenblatt (1958) com a proposta de

reproduzir o aparato visual humano que, basicamente, consiste de neurônios interconec-

tados no chamado córtex visual. Essa proposta foi o perceptron, considerado o modelo de



2.3 Aprendizado profundo 19

um neurônio artificial e foi originalmente proposto como um modelo probabiĺıstico para

ilustrar como o cérebro (ou uma máquina) poderia armazenar e organizar informações.

A estrutura do perceptron é ilustrada na Figura 2.1. O modelo é composto por unida-

des sensoriais, de associação e de resposta. As unidades sensoriais recebem os valores de

entrada, as unidades de associação combinam essas informações por meio de pesos, e a

unidade de resposta aplica uma função de decisão para produzir a sáıda final.

Somador 
Σ wjxj + b = si

Função de
ativação f(si)

Saída y

Bias (viés) b

Peso 
w1

Peso 
w2

Peso 
w3

Entrada x1

Entrada x2

Entrada x3

Figura 2.1: Esquema de um perceptron, mostrando as operações que ele realiza. Figura
elaborada pela autora.

Especificamente, o que ocorre é uma combinação linear formada pelos pesos que

multiplicam cada variável de entrada, somados a um viés (bias). Esse processo também

pode ser interpretado como uma regressão loǵıstica, cujo objetivo é criar um limite linear

entre duas classes linearmente separáveis. A equação da soma ponderada é dada por:

si =
n∑

j=1

wjxj + b, (2.2)

em que si é a sáıda da soma linear ponderada, wj são os pesos, xj os valores de entrada

e b o viés.

Em sequência à soma ponderada, aplica-se uma função de ativação não linear,

responsável por definir o comportamento de decisão do perceptron. Essa função determina

a classe de sáıda com base no valor de si. Um exemplo simples é a função limiar (ou

função degrau), que atribui uma sáıda de 1 ou −1 de acordo com um valor de limiar τ :
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y =


1, se si ≥ τ

−1, se si < τ,

(2.3)

onde y representa a classe predita.

De forma geral, a operação do perceptron pode ser expressa como:

yi = h(si), (2.4)

em que h(·) é a função de ativação — neste caso, a função limiar — aplicada à soma

ponderada si, resultando na sáıda final yi.

As redes neurais profundas são implementações dos chamados neurônios artifi-

ciais interconectados e dispostos em múltiplas camadas, onde a sáıda dos neurônios de

uma camada alimenta os das próximas e assim por diante (feedfoward). O que difere a

implementação desses neurônios do próprio modelo perceptron é a função de ativação que

lida melhor com intervalos cont́ınuos, variando de forma gradual, sem saltos abruptos,

em resposta a pequenas mudanças na entrada. Isso contrasta com a função de limiar

ŕıgido do perceptron, que tem uma transição abrupta entre dois estados, o que pode cau-

sar instabilidade em sistemas interconectados. O termo aprendizado profundo vem da

profundidade que uma rede alcança pelo seu número de camadas. O que faz com que

os modelos tenham a capacidade de “aprender” é a aplicação de derivadas que ajustam

os diferentes parâmetros ou pesos da rede a partir do valor obtido na sáıda, analisando

um erro entre o valor esperado e obtido de uma predição. Esse processo é chamado de

retropropagação (backpropagation) (SZELISKI, 2022) e consiste no treinamento de uma

rede.

Ummodelo pode ser ainda pré-treinado em uma tarefa (geralmente usando grande

quantidade de dados) e reaproveitado para outra tarefa relacionada (GOODFELLOW;

BENGIO Y.AND COURVILLE, 2016). A ideia é que os primeiros ńıveis de uma rede

neural capturam caracteŕısticas gerais dos dados, e esses conhecimentos podem ser úteis

para outras tarefas. Esse procedimento é chamado de transferência de aprendizado (trans-

fer learning).
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2.3.1 Redes Neurais Convolucionais

As redes neurais convolucionais (Convolutional Neural Networks – CNN) são uma im-

plementação de redes neurais multicamadas focadas especialmente na tarefa de proces-

samento de imagens. Essa arquitetura foi amplamente aprimorada e popularizada no

trabalho de Krizhevsky, Sutskever e Hinton (2012). Sua principal propriedade é o uso

de filtros para capturar padrões relevantes em regiões locais da imagem. Essas regiões

espećıficas são também referidas como campos receptivos. O conjunto de pesos, dispos-

tos na forma do campo receptivo, é chamado de kernel ou filtro e pode ter diferentes

tamanhos (GONZALEZ; WOODS, 2018).

Os filtros são movidos por toda a imagem realizando a operação de convolução,

a qual calcula uma soma de produtos entre os valores dos pixels e o conjunto de pesos

do kernel, os quais serão os parâmetros a serem aprendidos pela rede. Diferentes filtros

são aprendidos durante o treinamento para detectar diferentes tipos de padrões na ima-

gem. A sáıda da operação de convolução gera os chamados feature maps ou mapas de

caracteŕısticas. A operação de convolução é ilustrada na Figura 2.2.

1 0

2 1

14 18 16

26 30 26

20 23 16

1 2 3 0

4 5 6 1

7 8 9 2

3 7 1 5
Kernel

Saída
Entrada

* =

Figura 2.2: Processo de convolução com um kernel de tamanho 2×2.

De acordo com Szeliski (2022) a composição de múltiplas camadas nas redes

convolucionais busca construir caracteŕısticas locais e combiná-las de diferentes maneiras

para produzir caracteŕısticas mais discriminativas e semanticamente significativas. Assim

se cria a ideia de hierarquia de caracteŕısticas que variam de baixo ńıvel, como bordas

e texturas, a alto ńıvel, que identificam objetos inteiros. Entre as camadas também

ocorre o processo de pooling (agrupamento) que reduz a dimensão da imagem, ajudando

a diminuir a complexidade computacional, mantendo os padrões mais importantes ao

eliminar detalhes menos relevantes.

As etapas que compõem a arquitetura das CNNs são:
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1. Convolução e geração dos mapas de caracteŕısticas: aplicação de filtros con-

volucionais sobre a imagem de entrada para extrair padrões locais.

2. Aplicação da função de ativação: aplicação de uma função não linear sobre

cada entrada (pixel) do mapa de caracteŕısticas.

3. Redução de dimensionamento (pooling): redução da dimensionalidade espacial

dos mapas de caracteŕısticas, preservando as informações mais relevantes.

4. Transformação em vetor unidimensional (flattening): conversão dos mapas

de caracteŕısticas em um vetor para entrada nas camadas seguintes.

5. Camada totalmente conectada (Fully Connected Layer): responsável pela

classificação final, conectando todas as entradas a todas as sáıdas posśıveis. Em

problemas de classificação, as sáıdas representam as probabilidades de a imagem

pertencer a cada uma das classes consideradas.

A Figura 2.3 ilustra a arquitetura de uma CNN.

Entrada Convolução

Mapas de
características

Redução de
dimensionalidade

(Pooling)

Imagem

Extração de características Classificação

Filtro (kernel). Essa região específica da imagem contribui para
um neurônio na próxima camada

Camada totalmente
conectada

Saída
(Classes)

Figura 2.3: Arquitetura simplificada de uma Rede Neural Convolucional (CNN). Adap-
tado de Phung e Rhee (2019).
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3 Trabalhos relacionados

Este caṕıtulo apresenta abordagens de monitoramento de idosos utilizando diferentes tec-

nologias. As Seções 3.1 a 3.2 dão foco àquelas com aplicação de técnicas de visão compu-

tacional, aprendizado profundo sem uso de sensores. A Seção 3.1 apresenta um sistema de

detecção de quedas usando redes neurais convolucionais (CNNs) e imagens de fluxo óptico,

destacando a robustez da técnica para diferentes cenários e condições de iluminação. Ou-

tro trabalho descreve a combinação de modelos baseados em CNNs que utilizam fusão de

entradas em RGB e fluxo óptico, além de estimativa de pose para monitorar ações coti-

dianas e de alerta em idosos. Já a seção 3.2 introduz um sistema de reconhecimento de

ações usando câmeras de profundidade estéreo, onde são extráıdas caracteŕısticas manuais

para identificar comportamentos como quedas e transições posturais. A Seção 3.3 traz

exemplos de monitoramentos com uso de sensores vest́ıveis e não vest́ıveis e apresenta os

sistemas AAL inteligentes que fazem uso de IoT.

3.1 Monitoramento com fluxo óptico e CNNs

Núñez-Marcos, Azkune e Arganda-Carreras (2022) têm como objetivo desenvolver um

sistema baseado em visão computacional para detectar quedas de idosos, utilizando CNNs.

A motivação, assim como a do presente trabalho, é criar um sistema mais confortável

para idosos sem uso de sensores vest́ıveis. O sistema usa imagens de fluxo óptico para

identificar movimentos de queda, tornando-se independente de caracteŕısticas visuais do

ambiente, como cor ou iluminação. O trabalho destaca como as propriedades desse tipo

de representação contribuem para reconhecimentos baseados em entradas visuais. Com

a utilização das técnicas citadas também há o objetivo de tornar o sistema generalizado

para outros tipos de cenário.

O algoritmo de fluxo óptico foi usado para descrever os vetores de deslocamento

entre dois quadros (frames) das entradas RGB. No entanto, os autores levantam que

imagens de fluxo óptico registram um intervalo muito curto entre os quadros para detectar
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uma queda. Para contornar esse detalhe foi aplicada a ideia de empilhar um conjunto dos

quadros. Assim, a rede também pode aprender recursos relacionados a tempo mais longo.

A representação de fluxo óptico foi usada como entrada de uma rede neural totalmente

conectada (Fully Connected Neural Network - FCNN), que funciona como o classificador

e emite um sinal de “queda”ou “sem queda”.

O modelo aplicado implementou uma versão modificada da arquitetura da CNN

VGG-16 e foi pré-treinada com o conjunto de dados ImageNet. Em seguida a rede foi re-

treinada utilizando conjuntos de dados para reconhecimentos de ações, como o UCF101,

para que a rede pudesse aprender a interpretar movimentos humanos. Posteriormente

o modelo foi treinado com três conjuntos de dados públicos espećıficos para a tarefa de

detecção de queda, os conjuntos foram o UR Fall Dataset (URFD) que contém 30 v́ıdeos

de quedas e 40 de atividades diárias; o Multiple Cameras Fall Dataset (Multicam) que

inclui 24 performances gravadas de várias perspectivas; e o Fall Detection Dataset (FDD),

que contém quedas simuladas em cenários diversos.

Os resultados foram comparados entre os três conjuntos de dados espećıficos e

apresentados em termos de sensibilidade e especificidade. Sensibilidade mede a capacidade

de detectar corretamente quedas (verdadeiros positivos), enquanto especificidade avalia a

habilidade de identificar corretamente eventos que não são quedas (verdadeiros negativos).

O conjunto URFD, atingiu 100% de sensibilidade e 94,86% de especificidade. O Multicam,

teve sensibilidade de 98,07% e especificidade de 96,20%. O FDD, alcançou 93,47% de

sensibilidade e 97,23% de especificidade. O sistema também apresentou robustez ao ser

testado em condições diferentes de iluminação e em cenários diversos. No trabalho os

autores ainda abordam a questão da limitação quanto ao conjunto de dados e à quantidade

de amostras para treinamento dos modelos no contexto apresentado e sugerem a técnica

de transferência de aprendizado (transfer learning) como uma solução adequada.

O trabalho de Buzzelli, Albé e Ciocca (2020) propõe um sistema para monitora-

mento de idosos baseado em v́ıdeos a partir da análise de dois modelos de reconhecimento

de ações implementados com CNNs. O primeiro modelo é o I3D (Inflated 3D ConvNet)

que utiliza a fusão de entradas nos formatos RGB e fluxo óptico, o outro é o DeepHar fo-

cado em estimativa de pose e utiliza apenas formato RGB. A análise foi feita considerando
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o desempenho dos modelos para detecção de determinadas categorias de ações. A taxono-

mia desenvolvida pelos autores divide as ações em 3 categorias principais: Alerta, Diário

(vida diária) e Status. As ações de alerta são aquelas que podem representar situações

de risco e incluem tocar a cabeça, tocar as costas, vomitar, tossir/espirrar, se exercitar, e

cair. A categoria Diário diz respeito a ações cotidianas comuns como beber, comer, ler,

usar o telefone. A classe Status representa as posśıveis poses em que um indiv́ıduo pode se

encontrar e as ações que a compõem são: sentado, em pé, deitado, no chão e caminhando.

A escolha do modelo I3D foi pensada na sua capacidade de discriminar entre diferenças

sutis em classes muito semelhantes, como as classes de alerta e vida diária. O DeepHar

devido ao seu bom desempenho em classificação perante uma representação expĺıcita de

esqueleto humano, serve melhor à classe de Status que é baseada em poses.

As classes de cada um desses grupos não são mutualmente exclusivas entre os

grupos, assim, por exemplo, uma pessoa pode se encontrar sentada enquanto come ou

bebe, e o sistema classificará as ações de forma independente. Esse rastreio paralelo que

definiu a arquitetura do modelo final utilizando uma estrutura que combina três modelos

em uma rede neural multiobjetivo exclusiva, que realiza um processamento comum inicial

e depois se ramifica em três caminhos independentes. Algumas técnicas aplicadas nas

etapas inciais de processamento foram uso de pré-treinamento de redes, ajuste fino e uso

de detector de objetos. O sistema atingiu 97% de acurácia na inferência de poses básicas,

83% em situações de alerta e 71% em ações da vida diária com o uso do I3D, o modelo

que melhor performou. A classe de ações de vida diária teve acurácia prejudicada por

confusões entre ações como beber, comer e usar o telefone, que diferem apenas para o

objeto segurado pelo indiv́ıduo.

Esse trabalho também busca superar as limitações em relação a conjuntos de da-

dos contribuindo com a construção de um dataset agregado chamado ALMOND (Assisted

Living MONitoring Dataset), que reúne cinco conjuntos existentes usados para o problema

de reconhecimento de ações, porém filtrando ações que são comumente realizadas em am-

bientes fechados e domésticos. A definição das classes de ações citadas previamente é

usada na construção desse conjunto de dados. Outra contribuição é uma metodologia

geral para estimar a distância máxima permitida entre a câmera e o objeto monitorado.
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3.2 Monitoramento com hand-crafted features

O artigo de Zin et al. (2021) apresenta um sistema de reconhecimento de ações em

tempo real voltado para o monitoramento de idosos em um centro de cuidados, utili-

zando câmeras de profundidade estéreo. As classes de ação reconhecidas são “Fora do

quarto”, “Transição”, “Sentado em cadeira de rodas”, “Em pé”, “Sentado na cama”,

“Deitado na cama”, “Recebendo assistência” e “Queda”. Essas ações foram pensadas

considerando o que pode ser realizado na ausência de enfermeiros nos quartos.

O sistema localiza pessoas extraindo diferentes regiões de interesse de mapas

de disparidade UV (coordenadas U e V em mapeamento de texturas) provenientes de

quadros de imagens de profundidade. Para extração de caracteŕısticas foi utilizada a fusão

das representações Aparência de Movimento de Profundidade (Depth Motion Appearance

– DMA), que captura a forma e aparência volumétrica do movimento, e Histórico de

Movimento de Profundidade (Depth Motion History – DMH), que rastreia o histórico

temporal do movimento. Ambas as representações são descritas usando o histograma de

gradientes orientados (HOG). O sistema também incorporou caracteŕısticas baseadas em

distância, medindo a distância entre o centro de massa da pessoa e o plano do chão para

identificar ações como quedas ou assistência.

O reconhecimento de ações foi realizado utilizando o método de arredondamento

automático (automatic rounding method) (GUO et al., 2010), o qual divide automati-

camente sequências de quadros longos em várias sequências curtas. A classificação é

então feita por um SVM a partir dos descritores de caracteŕısticas. Um detalhe impor-

tante levantado sobre a identificação da ação “Recebendo assistência”é a necessidade de

considerar a altura dos pacientes e enfermeiros. O enfermeiro que presta assistência é

geralmente mais alto que o idoso, e a altura normal de um idoso também parece maior do

que aquela quando o mesmo cai no chão. Assim, dois valores de limiar devem ser definidos

para a classificação: se a altura da pessoa for maior que o “limiar de assistência”, a ação é

reconhecida como “Recebendo assistência”, se for menor que o “limiar de queda”, a ação

é reconhecida como “Queda”.

Os dados foram coletados em três quartos de um centro de cuidados para idosos

no Japão e o número total de dias de gravação para cada sala foi 9, 6 e 10 dias. Apenas
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imagens de profundidade foram registradas, as imagens RGB foram omitidas para pre-

servar a privacidade dos residentes. Para cada quarto o número de sequências de ações

registradas foi de 14, 10 e 11 respectivamente. As sequências têm duração entre 1 e 13 ho-

ras. O resultado geral foi obtido a partir da média de acurácias obtidas na classificação de

determinadas sequências. As acurácias variam de acordo com o uso de filtros de mediana,

sem o filtro o valor obtido foi de 90.6% e com o filtro a acurácia chegou a 98.3%. Ainda

assim, ocorreram classificações incorretas, como as ações “Deitado na cama” que foram

detectadas como “Sentado na cama”. O número dessas detecções falsas foi reduzido pela

aplicação de um filtro mediano. O tempo de reconhecimento alcançado das ações foi de 5

segundos também por causa da aplicação desse filtro. Os autores destacam a importância

do sistema para além do monitoramento de saúde e situações de risco. Com o registro de

históricos de ações e comportamentos dos pacientes é posśıvel uma análise automatizada

das gravações que pode garantir mais segurança aos residentes, prevenindo dificuldades e

permitindo diagnóstico e tratamento oportunos de doenças.

Ainda explorando técnicas manuais de visão computacional, Gaikwad et al. (2023)

propõem um sistema de monitoramento de idosos treinado a partir de um conjunto de

dados feito de anotações de juntas de esqueleto. A motivação para um conjunto de

dados não composto por imagens é que, de acordo com os autores, modelos com esse tipo

de entrada demandam muito tempo de treino e também alto consumo de memória. O

sistema utiliza o framework de reconhecimento de pose BlazePose baseado em um k-NN

(algoritmo de vizinho mais próximo). O framework extrai pontos-chave (landmarks) de

esqueleto dos quadros dos v́ıdeos. A partir das landmarks, as caracteŕısticas extráıdas são:

o ângulo das articulações chave (key-joint angles), calculado a partir das coordenadas

de três pontos-chave de esqueleto utilizando uma fórmula trigonométrica; a distância

euclidiana entre as articulações chave (Euclidean distance), determinada entre dois desses

pontos, com base em suas coordenadas tridimensionais; e a inclinação entre as articulações

chave (slope) obtida através das coordenadas de dois pontos-chave de esqueleto. São essas

caracteŕısticas que compõem o conjunto de dados numérico que possui 780.000 valores de

features calculados de 20.000 imagens.

Esse sistema também é projetado para ambientes fechados e as ações reconheci-
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das são “Sentado”, “Em pé”, “Deitado”, “Andando”e “Caindo”. A coleta de dados no

estudo foi realizada com quatro participantes idosos (homens), com idades entre 60 e 65

anos. Os participantes tinham diferentes caracteŕısticas f́ısicas, como altura e peso, para

garantir diversidade no conjunto de dados. Foram feitas gravações dos participantes reali-

zando atividades normais como caminhar, sentar, deitar e incluiu quedas. Posteriormente

os v́ıdeos criados foram convertidos em imagens estáticas. Para cada atividade, foram

gravadas 1.000 imagens por participante.

Para a classificação são usados três algoritmos: árvore de decisão (Decision Tree

- DT), floresta aleatória (Random Rorest - RF), SVM e o método ensemble. O método

ensemble consiste na combinação de previsões dos demais modelos visando melhorar a

precisão e a robustez. O sistema foi testado realizando 200 testes para cada método.

O método de ensemble se destacou, atingindo uma precisão de 99%. O Random Forest

também apresentou resultados notáveis, com uma precisão de 98%, enquanto o SVM e o

Decision Tree tiveram precisões em torno de 95% a 96%. O trabalho também destaca a

importância da aplicação do sistema em cenários reais, sendo feita uma análise subjetiva

de custo, potência e compatibilidade dos idosos com o sistema implementado. Concluiu-

se que o sistema funciona com custo reduzido de energia, porém com tempo de execução

operacional estendido, a instalação é fácil e usa componentes sem fio, assim garantindo

conforto aos usuários. Há compatibilidade com configurações de casas inteligentes.

3.3 Monitoramento com uso de sensores

Em (OUDAH; AL-NAJI; CHAHL, 2020) é proposto um sistema de reconhecimento de

gestos manuais para cuidados de saúde de idosos, em especial indiv́ıduos surdos e mudos.

O modelo é baseado em CNNs e junto da entrada em formato RGB utiliza imagens de

profundidade (depth) provenientes dos sensores Microsoft Kinetic. A escolha foi feita

por esse tipo de sensor ser considerado acesśıvel e também confiável para monitoramento

a longo prazo. Além disso não exige contato direto com o a pessoa monitorada, um

objetivo que se alinha com a proposta do presente trabalho. As 5 classes de gestos

reconhecidos são “Água”, “Refeição”, “Banheiro”, “Ajuda”e “Remédio”. Assim que os

gestos são identificados, os cuidadores dos idosos são notificados por mensagem de texto
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via dispositivo móvel.

Uma CNN foi utilizada para a tarefa de extração de caracteŕısticas, implemen-

tando a arquitetura ResNet-50 (DENG et al., 2009) pré-treinada. Para classificação dos

gestos foi utilizado o SVM. Além disso, um hardware foi desenvolvido para fazer a comu-

nicação entre o sistema e os dispositivos móveis. O hardware inclui um sensor Kinect V2,

um microcontrolador Arduino Nano e um módulo GSM Sim800l, que envia mensagens

para cuidadores em tempo real. O sistema funciona em um ambiente fechado e enfrenta

limitações, como a precisão da captura a distâncias de até 4,5 metros.

O sistema foi testado com três participantes idosos e um adulto em ambientes

domésticos, obtendo uma taxa de reconhecimento de gestos de 96,62%. Apesar do bom

valor na acurácia, os autores levantam desafios a serem superados, como a distância

de captura, e a ocorrência de sobreposição de gestos com o corpo, o que dificulta sua

identificação.

Hussain et al. (2015) apresentam uma plataforma para cuidados de saúde e

emergências em cidades inteligentes. A plataforma combina sensores IoT com sistemas de

alerta para monitoramento cont́ınuo. O objetivo é usar as capacidades da IoT para criar

um sistema inteligente que permita monitoramento e interação em tempo real, voltado

para a saúde personalizada de idosos e pessoas com deficiência em suas casas. O sistema

consiste em uma parte remota, que permite armazenar e distribuir os dados para prove-

dores de serviços, e uma parte local que lida com a coleta de informações dos sensores

conectados a um paciente. O sistema inclui sensores portáteis e dispositivos inteligentes

conectados à IoT para medir parâmetros vitais, como batimentos card́ıacos, tempera-

tura, oxigenação, entre outros. Os sensores biomédicos monitoram vários parâmetros

fisiológicos como ECG, temperatura corporal, frequência card́ıaca, e postura do corpo

(como quedas). Esses sensores estão conectados a dispositivos móveis via redes sem fio,

como bluetooth e enviam dados continuamente para o sistema. O sistema detecta ações

como quedas, anomalias fisiológicas (ex.: arritmia card́ıaca, febre alta), inatividade pro-

longada e eventos manuais de emergência acionados pelo próprio usuário. Sensores moni-

toram continuamente parâmetros vitais e de movimento, acionando alarmes automáticos

em caso de desvios cŕıticos ou eventos de emergência. Essas detecções geram alertas que
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são enviados a cuidadores ou serviços médicos para intervenção imediata. Um ponto

levantado pelos autores é o desafio dos sistemas de saúde centrados no paciente para

integrar informações recentes e históricas dos pacientes em sistemas de saúde pessoais,

transformando esses dados em suporte para a tomada de decisões. Além disso descrevem

as necessidades desse tipo do sistema como sendo a coleta de dados de fontes variadas,

armazenamento de forma uniforme em uma plataforma de compartilhamento, e imple-

mentação de mecanismos para análise e recuperação dos dados.

O trabalho de Alemán et al. (2016) se trata de um modelo de fusão de dados

aplicado a um sistema com foco no monitoramento de idosos em ambientes externos. O

objetivo é utilizar sensores de smartphones e outros dispositivos para rastrear e detectar

posśıveis situações de risco, como quedas ou desvios de rotas, notificando cuidadores em

casos de emergência. O sistema utiliza o modelo de fusão de dados JDL (Joint Directors of

Laboratories) para integrar informações de sensores, como acelerômetros, GPS e sensores

de temperatura. O sistema foi implementado através de dois componentes principais: a

aplicação Android “CareofMe”e o sistema web “SafeRoute”. Além disso, o sistema inclui

uma rede de segurança formada por trabalhadores locais que atuam como sensores e atu-

adores para ajudar idosos em caso de emergência. A metodologia do trabalho envolve a

coleta de dados de sensores embutidos em smartphones para detectar ações como quedas

ou desvios de rotas. A fusão de dados é usada para processar as informações e gerar

diagnósticos sobre o estado do idoso. Experimentos foram realizados simulando quedas e

desvios em rotas predefinidas, com três idosos testando o sistema. Os resultados mostram

que o sistema baseado em smartphones oferece maior precisão na localização e monitora-

mento dos usuários em comparação com sensores alternativos, como sensores do Arduino.

Além disso, o sistema reduziu o tempo de resposta em situações de emergência, ao incluir

os trabalhadores locais como parte da rede de suporte. Os autores destacam a necessi-

dade de melhorar a calibração dos sensores para aumentar ainda mais a precisão. Além

disso, sugerem o desenvolvimento de novas funcionalidades inteligentes, como respostas

automáticas em caso de emergência.

Abdelgawad, Yelamarthi e Khattab (2017) abordam o desenvolvimento de um

sistema de monitoramento de saúde baseado em IoT voltado para oferecer assistência
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ativa e suporte a idosos e pessoas com limitações f́ısicas. O objetivo principal do sistema é

melhorar a qualidade de vida desses usuários, permitindo que seus sinais vitais e condições

ambientais sejam monitorados em tempo real, com os dados sendo processados na nuvem.

Esse sistema possibilita a tomada de ações preventivas e imediatas, como resposta a quedas

ou a detecção de problemas card́ıacos, garantindo assim a segurança e o bem-estar dos

usuários. São utilizados sensores leves e vest́ıveis, como oximetria de pulso, ECG, sensores

de fluxo nasal/oral, temperatura, além de sensores de luz e detecção de quedas. Esses

sensores monitoram sinais vitais, como o ńıvel de oxigênio no sangue, a frequência card́ıaca

e a temperatura corporal, além de detectar quedas bruscas e condições de iluminação

inadequadas. A metodologia envolveu experimentos em cenários controlados, simulando

situações como quedas e mudanças nas condições de iluminação, além de rastreamento

da localização interna dos usuários. Os resultados mostraram que o sistema foi eficaz

na detecção de quedas, na precisão do rastreamento de localização e no monitoramento

de variações de luz, demonstrando sua viabilidade para uso em assistência à saúde. Os

autores ressaltam que, embora o sistema tenha se mostrado eficiente e de baixo custo,

ainda há a necessidade de aprimorar a segurança no acesso aos dados.

3.4 Considerações

Os trabalhos relacionados apresentados neste caṕıtulo de forma geral exemplificam a

aplicação de modelos de reconhecimento de ações para monitoramento de idosos em dife-

rentes cenários e a partir de diferentes métodos. Um ponto comum em todos os trabalhos

é a preocupação com o conforto e independência dos idosos como pilares importantes na

garantia de qualidade de vida do grupo a partir do uso desses sistemas. As aplicações

com modelos baseados em v́ıdeo e tecnologias de visão computacional destacam maior

facilidade no acesso e construção quanto a custo e desenvolvimento, apesar de ainda

apresentarem limitações. As implementações baseadas em redes neurais convolucionais

evidenciam o potencial dos modelos de aprendizado profundo para o reconhecimento de

ações, especialmente quando combinadas com representações de movimento, como o fluxo

óptico. Os trabalhos com uso de sensores e tecnologias inteligentes apresentam sistemas

mais robustos e completos em ńıveis de informação para monitoramento de idosos e com
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métodos alternativos de rastreamento de ações e atividades. No entanto demonstram

maior complexidade e custo na implementação.

A seguir foi feita uma análise comparativa dos trabalhos que utilizam de técnicas

de visão computacional a fim de padronizar as métricas a serem comparadas e também

para que a análise esteja alinhada com os objetivos deste trabalho. A análise foi dividida

em duas tabelas apenas por questões de formatação e melhor visualização dos dados. A

Tabela 3.1 traz comparações acerca dos objetivos e ações reconhecidas. A Tabela 3.2 traz

informações acerca dos métodos de extração de caracteŕısticas, métodos de classificação,

métricas de avaliação e técnicas utilizadas nos treinamentos dos modelos.

Tabela 3.1: Comparação de trabalhos por objetivo e ações reconhecidas entre sistemas de
monitoramento de ações para idosos.

Trabalho Objetivo Ações Reconhecidas
(NúñEZ-
MARCOS;
AZKUNE;
ARGANDA-
CARRERAS,
2022)

Detecção de quedas de ido-
sos em tempo real usando
visão computacional

Quedas

(ZIN et al.,
2021)

Monitoramento em tempo
real de idosos em centros de
cuidados

Fora do quarto, Transição, Sen-
tado em cadeira de rodas, Em
pé, Sentado na cama, Deitado
na cama, Recebendo assistência e
Queda

(OUDAH; AL-
NAJI; CHAHL,
2020)

Reconhecimento de gestos
de idosos para comunicação
de necessidades básicas

Gestos manuais (Água, Refeição,
Banheiro, Ajuda, Remédio)

(GAIKWAD et
al., 2023)

Reconhecimento de ativida-
des e monitoramento resi-
dencial de idosos

Sentar, Andar, Ficar de Pé, Dei-
tar, Cair

(BUZZELLI;
ALBé; CI-
OCCA, 2020)

Monitoramento de ido-
sos para independência e
emergências (queda)

Status: Sentado, em pé, ca-
minhando, deitado, no chão,
Alerta: tocando a cabeça, to-
cando as costas, tocando o
tronco, tocando o pescoço, vomi-
tando, tossindo/espirrando, ace-
nando com as mãos, fazendo
exerćıcios, caindo, rejeitando,
Vida diária: bebendo, comendo,
lendo, usando o telefone, vestin-
do/despindo, usando o laptop, re-
jeitando
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Tabela 3.2: Comparação de extração de caracteŕısticas, classificação, métricas e técnicas
de treinamento.

Trabalho Ex. de Carac-
teŕısticas

Classificação Métricas Técnicas de
Treinamento

(NúñEZ-
MARCOS;
AZKUNE;
ARGANDA-
CARRERAS,
2022)

Imagens de fluxo
óptico (TVL-1)

CNN (VGG-
16) + FC-NN

Sens.: 100%
(URFD),
98.07% (Mul-
ticam) — Es-
pec.: 94.86%
(URFD),
96.20% (Mul-
ticam)

Transfer lear-
ning (ImageNet,
UCF101) +
Fine-tuning

(ZIN et al.,
2021)

DMA + DMH SVM Acurácia:
90% – 98%

Treinamento di-
reto

(OUDAH; AL-
NAJI; CHAHL,
2020)

CNN (ResNet-
50)

SVM Acurácia:
96.62%

CNN pré-
treinada
(ResNet-50)

(GAIKWAD et
al., 2023)

BlazePose
+ Ângulos,
Distâncias e
Inclinações

Ensemble
(SVM, DT,
RF)

Sensibilidade:
99%, Especi-
ficidade: 97%

Ensemble
(SVM, DT,
RF)

(BUZZELLI;
ALBé; CI-
OCCA, 2020)

Faster R-CNN
(detecção) +
I3D e DeepHAR
(ação)

I3D + De-
epHAR

Acurácia:
97% (básico),
83% (aler-
tas), 71%
(vida diária)

Transfer lear-
ning (Kinetics-
400 e NTU)
+ Fine-tuning
(ALMOND da-
taset)
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4 Conjunto de dados

Este caṕıtulo apresenta o levantamento dos principais conjuntos de dados relacionados ao

reconhecimento de atividades humanas em ambientes domésticos, com foco no monitora-

mento de idosos, bem como a justificativa para a escolha do conjunto de dados utilizado

neste trabalho. Inicialmente, é realizada uma análise comparativa entre diferentes bases

dispońıveis na literatura. Em seguida, o conjunto selecionado é descrito em detalhes,

destacando suas caracteŕısticas, desafios e adequação aos objetivos da pesquisa.

4.1 Levantamento dos conjuntos de dados

Diversos conjuntos de dados têm sido propostos na literatura para o problema de reco-

nhecimento de atividades humanas e monitoramento de idosos, conforme resumido na

Tabela 4.1. No entanto, a maioria apresenta limitações que comprometem sua adequação

a cenários domésticos reais ou aos requisitos demográficos deste trabalho.

O conjunto IXMAS (WEINLAND; RONFARD; BOYER, 2006), por exemplo,

restringe-se a gestos simples capturados em baixa resolução, o que limita a complexidade

das ações analisáveis. Os conjuntos UWA3D II (RAHMANI et al., 2013) e N-UCLA

(KOPPULA; GUPTA; SAXENA, 2024) oferecem maior diversidade de ações e múltiplas

visões, porém não incluem participantes idosos, falhando em atender ao principal critério

demográfico da pesquisa. De forma semelhante, o NTU RGB+D (SHAHROUDY et

al., 2016), apesar de sua abrangência e ampla adoção, é composto majoritariamente por

adultos jovens, não representando adequadamente os padrões de movimento da população

idosa.

O MSR Daily Activity 3D (WANG et al., 2012) apresenta ações relacionadas a

atividades cotidianas, porém é capturado em um ambiente altamente controlado, com

ângulo de câmera fixo, o que reduz significativamente sua capacidade de generalização

para residências reais. O Fall Dataset (PLANINC; KAMPEL, 2012), embora relevante

para aplicações de segurança geriátrica, concentra-se exclusivamente em quedas e posturas
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estáticas, além de ser composto apenas por imagens individuais, e não por sequências de

v́ıdeo, tornando-o inadequado para o monitoramento abrangente de atividades de vida

diária (AVDs).

Diante dessas limitações, destaca-se o conjunto Toyota Smarthome Trimmed

(TST) (DAS et al., 2019), que se diferencia por contemplar idosos realizando atividades

espontâneas de vida diária em ambientes domésticos realistas, atendendo simultaneamente

aos critérios demográficos, ambientais e de formato de dados exigidos por esta pesquisa.

Além do TST, o projeto Toyota Smarthome disponibiliza o conjunto Toyota Smarthome

Untrimmed (TSU) (DAI et al., 2022). No entanto, o TSU é composto por v́ıdeos longos

e não segmentados, o que impõe elevado custo computacional e maior complexidade no

pré-processamento, especialmente em abordagens que requerem segmentação temporal

precisa das atividades. Por esse motivo, o TSU não foi adotado neste trabalho.

Tabela 4.1: Comparativo dos conjuntos de dados levantados para reconhecimento de ações
de idosos. “N/I” significa “Não informado”.

Conjunto
Nº de
Ações

Nº de
Amostras

Nº de
Sujeitos

Resolução
Nº de
Câmeras

Ambientes
Faixa etária
dos sujeitos

IXMAS 11 1148 11 60×48 5 Único N/I

UWA3D II 30 1075 10 640×480 4 Único N/I

N-UCLA 10 1494 10 N/I 3 Variados N/I

NTU RGB+D 60 56880 N/I 1920×1080 3 Variados N/I

MSR Daily
Activity 3D

16 320 N/I N/I 1 (fixa) Único N/I

Fall Dataset 5 21499 5 320×240 1 (fixa) Único 19 a 50 anos

Toyota Smarthome
Trimmed

31 16115 18 640×480 7 3 60 a 80 anos

Toyota Smarthome
Untrimmed

51 536 18 640×480 7 3 60 a 80 anos

4.2 Toyota Smarthome Trimmed

O conjunto de dados Toyota Smarthome Trimmed (TST) (DAS et al., 2019) foi selecionado

para o presente trabalho por abordar uma lacuna cŕıtica na área de reconhecimento de

atividades humanas: a escassez de bases que representem de forma realista as atividades

de vida diária realizadas por pessoas idosas em ambientes domésticos.

A composição demográfica dos conjuntos de dados tradicionalmente utilizados
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constitui uma limitação relevante, especialmente em abordagens baseadas exclusivamente

em informações de pose. A presença — ou ausência — de participantes idosos influen-

cia diretamente a validação, a capacidade de generalização e a aplicabilidade de sistemas

de reconhecimento de atividades humanas voltados a esse público. A literatura aponta

que grande parte das pesquisas concentra-se no reconhecimento genérico de atividades,

resultando em uma lacuna no que se refere a dados especificamente direcionados a idosos

(DAI et al., 2022). Essa necessidade é reforçada pelo fato de que caracteŕısticas de movi-

mento, como amplitude, ritmo e variabilidade, diferem significativamente entre idosos e

populações mais jovens, impactando diretamente as coordenadas de pose utilizadas como

entrada dos modelos (ZHAI et al., 2023). Consequentemente, a ausência de validação

em dados representativos desse público é frequentemente apontada como uma limitação

metodológica (HAYAT et al., 2022; DAI et al., 2022).

O TST é composto por 16.115 v́ıdeos curtos de pessoas idosas realizando 31 ati-

vidades espontâneas em ambientes domésticos controlados. As gravações ocorrem em três

ambientes distintos — sala de estar, cozinha e sala de jantar — com 7 câmeras em di-

ferentes pontos do ambiente. Os v́ıdeos possuem resolução de 640 × 480 pixels, taxa de

amostragem temporal de 20 FPS (frames per second) e estão dispońıveis em três moda-

lidades: RGB, profundidade e juntas de esqueleto (com coordenadas em 3 dimensões).

A duração dos v́ıdeos varia entre 1 segundo e 2 minutos e 54 segundos, com

duração média de aproximadamente 12 segundos. No total, o conjunto de dados acumula

55 horas, 29 minutos e 33 segundos de gravações. Exemplos de amostras do conjunto

podem ser observados na Figura 4.1. A Tabela 4.2 apresenta as 31 classes de ações

presentes no conjunto, enquanto a Figura 4.2 ilustra a distribuição de amostras por classe.

As caracteŕısticas do TST introduzem desafios relevantes para o reconhecimento

de atividades, incluindo alta variação intraclasse, forte desbalanceamento entre as clas-

ses, coexistência de atividades simples e compostas, presença de ações com padrões de

movimento semelhantes e variação significativa na duração das atividades. Esses fatores

tornam o conjunto particularmente adequado para a avaliação da robustez e da capacidade

de generalização do método proposto neste trabalho.

Embora apresente limitações e maior complexidade, o conjunto TST ainda pode se
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Tabela 4.2: As 31 classes de ações do conjunto Toyota Smarthome Trimmed.

ID Ação (Inglês) Tradução (Português)
1 Cook.Cleandishes Cozinhar.Lavar louça
2 Cook.Cleanup Cozinhar.Limpar
3 Cook.Cut Cozinhar.Cortar
4 Cook.Stir Cozinhar.Mexer
5 Cook.Usestove Cozinhar.Usar fogão
6 Cutbread Cortar pão
7 Drink.Frombottle Beber.De uma garrafa
8 Drink.Fromcan Beber.De uma lata
9 Drink.Fromcup Beber.De uma x́ıcara
10 Drink.Fromglass Beber.De um copo

11 Eat.Attable Comer.À mesa
12 Eat.Snack Comer.Lanche
13 Enter Entrar
14 Getup Levantar-se
15 Laydown Deitar-se
16 Leave Sair
17 Makecoffee.Pourgrains Fazer café.Colocar o pó
18 Makecoffee.Pourwater Fazer café.Adicionar água
19 Maketea.Boilwater Fazer chá.Ferver água
20 Maketea.Insertteabag Fazer chá.Colocar o saquinho
21 Pour.Frombottle Despejar.De uma garrafa
22 Pour.Fromcan Despejar.De uma lata
23 Pour.Fromkettle Despejar.De uma chaleira
24 Readbook Ler um livro
25 Sitdown Sentar-se
26 Takepills Tomar remédios
27 Uselaptop Usar laptop
28 Usetablet Usar tablet
29 Usetelephone Usar telefone
30 Walk Caminhar
31 WatchTV Assistir TV

beneficiar de modelos previamente treinados em bases amplas e consolidadas no problema

de reconhecimento de ações, como o NTU RGB+D (SHAHROUDY et al., 2016). Assim, o

uso de transferência de aprendizado torna-se uma estratégia adequada para este trabalho,

pois permite aproveitar representações já aprendidas em um domı́nio mais geral e adaptá-

las ao contexto espećıfico de monitoramento de idosos, reduzindo o custo de treinamento

e potencialmente melhorando o desempenho sobre o TST.

4.2.1 Protocolo do conjunto Toyota Smarthome

O conjunto de dados Toyota Smarthome fornece protocolos padronizados de divisão dos

dados para fins de avaliação experimental. Neste trabalho, foi adotado o protocolo Cross-

Subject, no qual os sujeitos utilizados para treinamento, validação e teste pertencem a

grupos distintos, garantindo que o modelo seja avaliado em indiv́ıduos não vistos durante
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Figura 4.1: Amostras de quadros de v́ıdeos do conjunto Toyota Smarthome Trimmed.
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Figura 4.2: Distribuição de v́ıdeos por classe no conjunto Toyota Smarthome Trimmed.

o treinamento. Neste protocolo os 18 indiv́ıduos do conjunto de dados são divididos em

grupos de treinamento, (indiv́ıduos 3, 4, 6, 7, 9, 12, 13, 15 e 17), validação (indiv́ıduos 19

e 25). Os 7 indiv́ıduos restantes (2, 5, 8, 10, 11, 14 e 18) são reservados para o conjunto

de teste.

As listas de divisão de dados foram utilizadas conforme disponibilizadas pelos
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autores do conjunto no repositório do projeto 1, sem modificações, assegurando a re-

produtibilidade dos experimentos e a comparabilidade com trabalhos relacionados. A

Tabela 4.3 apresenta a distribuição das amostras entre os subconjuntos de treinamento,

validação e teste.

Tabela 4.3: Divisão dos splits do conjunto Toyota Smarthome Trimmed no protocolo
Cross-Subject.

Classe Treino Validação Teste Total

1 225 20 133 378
2 254 19 107 380
3 93 17 68 178
4 300 80 199 579
5 78 0 18 96
6 23 2 20 45
7 209 0 132 341
8 171 35 119 325
9 1115 379 747 2241
10 40 19 6 65
11 333 31 253 617
12 140 24 52 216
13 282 29 133 444
14 438 78 317 833
15 79 37 65 181
16 289 20 107 416
17 35 8 21 64
18 41 8 27 76
19 37 9 16 62
20 30 6 20 56
21 112 60 104 276
22 34 2 23 59
23 69 10 28 107
24 475 133 334 942
25 560 117 439 1116
26 177 29 138 344
27 184 34 178 396
28 34 0 15 49
29 251 53 147 451
30 2312 521 1237 4070
31 409 73 230 712

Total 8829 1853 5433 16115

1https://github.com/srijandas07/i3d smarthome
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5 Metodologia

Este caṕıtulo apresenta a metodologia adotada para a realização dos experimentos de

reconhecimento de ações humanas desenvolvidos neste trabalho. A contribuição do pre-

sente trabalho baseia-se na aplicação do framework PoseConv3D (DUAN et al., 2022) ao

conjunto de dados Toyota Smarthome Trimmed bem como as análises de desempenho do

modelo e conjunto de dados propostos.

Inicialmente, é apresentada uma visão geral do framework PoseConv3D e de seus

principais componentes. Em seguida, são descritos o protocolo experimental adotado, os

procedimentos de preparação do conjunto de dados e as configurações utilizadas para o

treinamento, validação e avaliação do modelo.

5.1 Framework PoseConv3D

Dentro da categoria de redes neurais convolucionais, destacam-se aquelas que utilizam

convoluções tridimensionais (3D-CNNs). Esse tipo de arquitetura é particularmente ade-

quado para processar dados que possuem, além da dimensão espacial (2D), a dimensão

temporal, como ocorre em sequências de v́ıdeo. Assim, as 3D-CNNs configuram-se como

uma escolha apropriada para o problema abordado neste trabalho.

O PoseConv3D (DUAN et al., 2022) é um framework que utiliza representações

de juntas do corpo humano (skeleton joints) como entrada, combinadas a uma 3D-CNN.

Para isso, as articulações do corpo são extráıdas de cada quadro do v́ıdeo e, posterior-

mente, convertidas em mapas de calor bidimensionais, que representam de forma densa

a posição das juntas no espaço da imagem. Esses mapas de calor podem ser obtidos a

partir de diferentes estimadores de pose. Os mapas são organizados ao longo do tempo,

formando tensores tridimensionais que preservam simultaneamente a estrutura espacial e

a sequência temporal das ações. Essa representação compacta e expressiva possibilita que

o modelo capture padrões relevantes para a classificação das ações. Após a construção dos

tensores tridimensionais de mapas de calor, essa representação é utilizada como entrada
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Figura 5.1: Visão geral do framework PoseConv3D para classificação de ações a partir de
mapas de calor de articulações.

para a 3D-CNN. As convoluções 3D permitem a extração conjunta de padrões espaci-

ais e temporais, explorando simultaneamente a configuração das articulações em cada

quadro e sua evolução ao longo do tempo. Como resultado, a rede é capaz de apren-

der caracteŕısticas discriminativas associadas às ações humanas, produzindo, ao final do

processamento, uma predição de classe que indica a atividade realizada. A Figura 5.1

apresenta uma visão geral do framework PoseConv3D utilizado neste trabalho.

5.1.1 Extração de mapas de calor

A extração dos mapas de calor utilizados como entrada no PoseConv3D é realizada a

partir de um estimador de pose baseado na arquitetura High-Resolution Network (HR-

Net) (WANG et al., 2020) e previamente treinado no conjunto de dados COCO (LIN

et al., 2014a), amplamente utilizado para tarefas de detecção e estimativa de pose hu-

mana. A HRNet destaca-se por manter representações de alta resolução ao longo de toda

a rede, caracteŕıstica essencial para localizar articulações de forma precisa em cenários

com oclusões, múltiplas pessoas ou movimentos rápidos. Em vez de seguir o paradigma

tradicional das redes convolucionais, que reduzem progressivamente a resolução espacial

para ampliar o contexto semântico, a HRNet opera com múltiplos fluxos convolucionais

em diferentes resoluções mantidos em paralelo. Esses fluxos comunicam-se continuamente

por meio de módulos de troca de informações, de modo que as representações de alta

resolução são enriquecidas com informações semânticas provenientes das resoluções mais
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baixas. Como resultado, os mapas de calor produzidos pela HRNet são densos, espacial-

mente precisos e apresentam boa separabilidade entre as articulações, mesmo em situações

complexas.

A HRNet também segue um paradigma top-down, no qual um detector de pes-

soas, baseado na rede Faster R-CNN (GIRSHICK, 2015), primeiro localiza o indiv́ıduo na

cena e fornece uma caixa delimitadora (bounding box ). A rede extrai os mapas de calor

dos pontos-chave apenas dentro desse recorte, de modo que, quando o sujeito está parcial-

mente fora do quadro, a caixa delimitadora também é truncada, reduzindo a quantidade

de informação dispońıvel para a estimativa de pose. Ainda assim, a HRNet apresenta

certa robustez nesses cenários, pois mantém representações de alta resolução ao longo de

toda a arquitetura e é treinada com estratégias de aumento de dados, como a half-body

augmentation, que simula situações em que partes do corpo estão ocultas ou fora da ima-

gem. Assim, mesmo com visibilidade parcial do sujeito, a rede consegue inferir posições

de pontos-chave com razoável consistência, embora casos de truncamento extremo possam

comprometer a qualidade dos mapas gerados.

Dentro do framework, para cada v́ıdeo processado é gerado um arquivo no for-

mato pickle contendo todas as informações necessárias para representar a sequência do

esqueleto ao longo do tempo. Esse arquivo segue uma estrutura padronizada composta

por metadados do v́ıdeo e pelas anotações dos pontos-chave detectados que representam

as juntas. Cada entrada contém o identificador do v́ıdeo, o número total de quadros

utilizados e as dimensões originais do v́ıdeo registradas. Esses dados auxiliam tanto na

depuração quanto na visualização e normalização das poses. As informações principais

concentram-se no tensor keypoint, estruturado no formato

M × T × V × C,

em que M representa o número de indiv́ıduos na cena, T o número de quadros, V a

quantidade de pontos-chave e C o número de coordenadas por junta (C = 2 para poses

2D ou C = 3 para poses 3D). Essa organização é compat́ıvel com diferentes convenções de

esqueleto, como COCO (17 juntas), ou NTU RGB+D (25 juntas). Além das coordenadas,
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o arquivo registra as pontuações de confiança no tensor keypoint score, estruturado como

M × T × V,

indicando o grau de confiabilidade de cada detecção. A combinação entre coordenadas e

escores fornece uma representação consistente da pose ao longo do tempo, servindo de base

para a geração dos mapas de calor utilizados durante o processamento pelo PoseConv3D.

A Figura 5.2 mostra o resultado gerado neste estudo a partir do processamento de

um quadro da ação Walk, no qual se observam os pontoa-chave identificados pela HRNet

(a) e o mapa de calor associado às mesmas articulações (b).
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(a) Detecção dos pontos-chave em um quadro
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(b) Mapa de calor gerado a partir dos mesmos
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Figura 5.2: Comparação entre um quadro sobreposto com os keypoints detectados pela
HRNet e o respectivo mapa de calor combinado utilizado como entrada para o processo de
modelagem. No mapa de calor combinado, os valores variam de 0 (ausência de resposta
ao redor do pixel) até aproximadamente 2, resultantes da soma das respostas gaussianas
de múltiplas juntas.

A entrada no formato de mapas de calor confere ao PoseConv3D vantagens em

relação a outros modelos baseados em estruturas 3D, como Graph Convolutional Networks

(GCNs). Conforme apontado pelos autores, nas GCNs, as coordenadas de cada junta são

armazenadas individualmente para cada pessoa, multiplicando-se pela resolução espacial,

quantidade de quadros e número de juntas, o que faz com que o custo computacional cresça

linearmente com o número de indiv́ıduos no v́ıdeo. Já no PoseConv3D, todas as pessoas

são representadas em um mesmo volume de mapas de calor: cada canal corresponde a

uma junta espećıfica, e múltiplos picos dentro do canal representam a ocorrência dessa
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junta em diferentes indiv́ıduos. Por exemplo, em uma cena contendo duas pessoas, o canal

correspondente à junta “cabeça” apresentará dois picos de ativação, cada um indicando

a posição da cabeça de um indiv́ıduo distinto. Esse padrão se repete nos demais canais

de juntas, permitindo que o modelo represente múltiplas pessoas simultaneamente em um

único volume de mapas de calor.

Essa abordagem reduz de forma significativa a quantidade de parâmetros da rede,

sem comprometer a expressividade necessária ao reconhecimento de ações.

5.1.2 O modelo X3D

O PoseConv3D permite a aplicação de diferentes backbones de 3D-CNNs, proporcionando

flexibilidade na escolha da arquitetura subjacente. Entre as opções sugeridas no trabalho

original, a rede escolhida nesta metodologia é a X3D (FEICHTENHOFER, 2020), cuja

estrutura segue o design de uma ResNet tridimensional, uma rede composta por blocos

residuais 3D organizados em estágios progressivos de convolução. A X3D é uma extensão

da X2D que introduz escalonamento progressivo nas dimensões espacial, temporal e de

capacidade do modelo. Esse escalonamento é realizado por meio de fatores de escala

expĺıcitos: o fator de largura (γw), o fator de gargalo (γb), o fator de profundidade (γd),

o fator temporal (γt) e o stride temporal (γτ ), e o fator espacial (γs). Os fatores γt e γτ

influenciam a etapa de entrada e a camada inicial (stem); o fator γs define a resolução

espacial das ativações; enquanto os fatores γw, γb e γd ajustam, respectivamente, o número

de canais, a expansão interna dos blocos residuais e o número de repetições em cada

estágio. As diferentes configurações de fatores produzem variantes da X3D, sem alteração

da organização estrutural da rede, como a X3D-XS, X3D-S, X3D-M e X3D-L.

A estrutura base comum da X3D se apresenta da seguinte forma: a rede é iniciada

por um estágio stem baseado em convoluções tridimensionais, responsável pela extração

inicial de padrões espaço-temporais de baixo ńıvel a partir das sequências de entrada.

Especificamente nessa etapa inicial, a X3D emprega uma convolução espaço-temporal

separável, na qual a modelagem espacial e temporal é realizada de forma desacoplada.

Após o stem, as representações são progressivamente refinadas ao longo de quatro estágios

residuais hierárquicos, identificados como res 2 a res 5. Cada estágio é formado por
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blocos residuais do tipo bottleneck, que utilizam convoluções tridimensionais compactas

para expandir a capacidade representacional do modelo. Ao final do processo de extração

espaço-temporal, as ativações são agregadas por meio da operação de Global Average

Pooling, que consolida as informações ao longo das dimensões espacial e temporal. Essa

representação compacta é então utilizada pela cabeça de classificação para realizar a

predição da ação observada.

No trabalho do PoseConv3D, a variação X3D-S oferecia alto desempenho com

o menor número de parâmetros e operações de ponto flutuante (FLOPs), portanto foi

a variação escolhida para os experimentos do presente trabalho. Os autores destacam

adaptações necessárias para que as 3D-CNNs processassem a entrada no novo formato

proposto, o de pose. A ideia é remover as reduções de resolução (down-sampling) nas

primeiras camadas que ocorrem no estágio stem, pois os volumes de mapas de calor já

possuem dimensão adequada e menor quando comparados a quadros de v́ıdeo (RGB).

Além disso, utilizar uma arquitetura mais leve, com menos camadas e canais, já seria

suficiente para capturar a dinâmica espaciotemporal das ações. Dessa forma, os autores

implementaram uma versão reduzida da X3D-S, denominada Pose-X3D-S, onde a quan-

tidade de camadas convolucionais foi ajustada a partir da atribuição do valor 1 ao fator

de profundidade γd. Também houve a remoção do primeiro estágio da rede e do último

estágio residual.

A Tabela 5.1 mostra as diferenças entre a arquitetura original e a reduzida. O

stem original do modelo é configurado com um stride temporal γτ = 6, correspondente

à amostragem de um quadro a cada seis, e otimizado para entradas RGB com resolução

160× 160. Esse stem é substitúıdo por uma versão adaptada, utilizando γτ = 1, de modo

a preservar integralmente a resolução temporal das sequências de pose com dimensão

56× 56. Além disso, o bloco res 5 é removido em sua totalidade, assim como a camada

conv 5. Dessa forma, a rede passa a encaminhar as ativações diretamente do bloco res 4

para uma convolução 1×1 com 216 canais, seguida da operação de Global Average Pooling.
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Tabela 5.1: Comparação das arquiteturas das redes X3D-S Original e Pose-X3D-S adap-
tada.

Estágio
(Residual) Descrição do Bloco/Camada

X3D-S
Original
(γd ≈ 2.2)

Pose-X3D-S
Adaptada
(γd = 1)

stem Data Layer e Conv 1: Amostragem Tem-
poral e espacial.

Stride
γτ = 6

Stride
γτ = 1

res 2 Bloco residual com filtros [1× 12, 24] ×3 repetições ×2 repetições
res 3 Bloco residual com filtros [1× 12, 48] ×5 repetições ×5 repetições
res 4 Bloco residual com filtros [1× 12, 96] ×11 repetições ×3 repetições
res 5 Bloco residual com filtros [1× 12, 192] ×7 repetições Removido

5.2 Protocolo experimental

O presente trabalho envolve a aplicação de um modelo previamente proposto (Pose-

Conv3D) a um conjunto de dados espećıfico (Toyota Smarthome Trimmed). Nesse con-

texto, é fundamental distinguir os protocolos definidos pelos autores do conjunto de dados,

aqueles inerentes ao framework PoseConv3D e as decisões metodológicas assumidas neste

estudo.

5.2.1 Protocolo do framework PoseConv3D

O PoseConv3D define um protocolo próprio de treinamento relacionado a arquitetura

da rede, o pipeline de processamento baseado em mapas de calor de articulações e as

configurações de otimização utilizadas durante o aprendizado. Neste trabalho, foi utilizada

a rede X3D-S adaptada por Duan et al. (2022) e implementada na biblioteca PySkl 2 de

mesma autoria. São disponibilizados também os arquivos de pesos de treinamento dessa

rede em diferentes conjuntos de dados, considerandos protocolos de divisão do próprio

conjunto escolhido. Essa funcionalidade possibilitou a aplicação de pré-treinamento aos

experimentos apresentados no Caṕıtulo 6.

2https://github.com/kennymckormick/pyskl
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5.3 Preparação do conjunto de dados

A obtenção do conjunto de dados TST para utilização no presente trabalho foi realizada

sob demanda, diretamente a partir do site oficial do projeto3. Para a reprodução do

protocolo experimental apresentado na Seção 4.2.1, foram utilizadas as listas de divisão

de dados (splits) em formato .txt disponibilizadas no repositório indicado pelos criadores

do conjunto. Esses arquivos descrevem os subconjuntos de treinamento, validação e teste,

de acordo com o protocolo de avaliação escolhido. O protocolo Cross-Subject (CS) foi

adotado porque favorece a avaliação da capacidade de generalização do modelo, uma vez

que garante que o sistema reconheça ações executadas por indiv́ıduos não vistos durante

o treinamento.

Foi desenvolvida uma rotina para converter as anotações originais do TST em

arquivos .json, de forma a adequá-las ao formato esperado pelo PoseConv3D. A rotina

foi constrúıda a partir dos arquivos .csv das listas de splits do TST. Atividades compostas,

como Cook.CleanDishes, foram renomeadas a partir da substituição do separador “.”para

“ ”(Cook CleanDishes), permitindo a organização correta dos quadros individuais em

pastas para entrada no PoseConv3D e resolvendo erros de leitura de diretório. Listas de

v́ıdeos para a extração dos esqueletos foram geradas para cada split do conjunto TST

conforme rotina especificada pela ferramenta PySkl.

A etapa seguinte consistiu na extração dos esqueletos bidimensionais (2D ske-

letons) por meio da rede HRNet. Essa extração foi realizada utilizando a ferramenta

PySkl que fornece rotinas espećıficas para converter v́ıdeos em anotações no formato .pkl,

compat́ıveis com o framework PoseConv3D, além de possuir implementações de diversos

modelos de CNNs. O processo foi aplicado a todos os arquivos de lista de splits (treino,

validação e teste) do Toyota Smarthome Trimmed, resultando em um conjunto completo

de anotações de mapas de calor armazenados em um único arquivo pickle. Cada anotação

contém, para cada v́ıdeo, informações sobre o número de quadros, dimensões da imagem,

rótulo da ação e coordenadas dos pontoa-chave extráıdos. Esse conjunto padronizado

constitui a base de dados de entrada utilizada nas etapas subsequentes de treinamento e

avaliação do modelo.

3https://project.inria.fr/toyotasmarthome
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6 Experimentos e resultados

Neste caṕıtulo são apresentados e analisados os experimentos realizados para avaliar o de-

sempenho do modelo no reconhecimento de ações humanas. Inicialmente, são conduzidos

testes de inferência sobre o conjunto TST utilizando um modelo pré-treinado no conjunto

NTU RGB+D. O objetivo é analisar o comportamento da rede no conjunto TST a partir

do pré-treinamento em um conjunto distinto, porém semanticamente relacionado, bem

como avaliar a viabilidade da estratégia de pré-treinamento adotada.

Em seguida, são conduzidos experimentos com o framework PoseConv3D utili-

zando diferentes subconjuntos do conjunto de dados TST, bem como análises do impacto

de diferentes configurações de treinamento. Posteriormente, os experimentos são esten-

didos ao conjunto completo de dados, permitindo uma avaliação mais abrangente. Por

fim, os resultados obtidos são comparados com trabalhos da literatura e é explorado um

experimento adicional de agrupamento semântico de classes, com o objetivo de analisar

padrões de confusão e similaridade entre as ações.

Os experimentos descritos neste trabalho foram executados em ambiente Linux,

utilizando GPUs distintas em função da evolução do pipeline experimental e do aumento

progressivo do volume de dados. Nos experimentos iniciais e nas avaliações conduzidas

sobre conjuntos reduzidos e intermediários foi utilizada uma GPU NVIDIA GeForce GTX

1050 com 2 GB de memória de v́ıdeo (VRAM). Posteriormente, para a realização dos

experimentos envolvendo o conjunto completo de dados, foi empregada uma GPU NVIDIA

GeForce GTX 1660 com 6 GB de VRAM. Essa mudança permitiu a ampliação do número

de v́ıdeos processados por GPU e viabilizou o treinamento em maior escala, mantendo-se

a mesma arquitetura e pipeline de processamento. As demais configurações de software,

incluindo versões de CUDA, drivers e bibliotecas auxiliares, seguiram as definições padrão

da ferramenta PySkl, conforme disponibilizado por seus desenvolvedores.
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6.1 Análise exploratória de inferência cruzada entre

NTU RGB+D e TST

O objetivo desta etapa foi analisar qualitativamente o comportamento do modelo Pose-

Conv3D, utilizando a rede X3D pré-treinada no conjunto NTU RGB+D, ao processar

v́ıdeos do Toyota Smarthome Trimmed. Foram utilizados 27 v́ıdeos (e suas anotações de

mapas de calor) de ações cotidianas comuns no TST — como “levantar-se”, “sentar-se”,

“deitar-se”, “comer”, “usar o telefone” e “caminhar” — por serem representativas para

um mı́nimo de monitoramento, enquanto outras ações apresentavam alta complexidade e

pouca correspondência com o NTU. O objetivo não era avaliar acurácia, mas compreen-

der como o conhecimento adquirido durante o pré-treinamento se manifesta em ações não

vistas, explorando correspondências posturais, ambiguidades semânticas e limitações da

abordagem baseada apenas em esqueletos 2D. Para cada predição, também foi registrado

um valor de confiança, correspondente à probabilidade atribúıda à classe prevista pelo

modelo, permitindo observar o grau de certeza das inferências em cada v́ıdeo.

A Tabela 6.1 mostra que o modelo fez predições correspondentes a 13 das 60

classes do NTU RGB+D em pelo menos um v́ıdeo do TST. As classes do conjunto NTU

RGB+D são apresentadas na Tabela 6.2, as classes detectadas pelo modelo foram desta-

cadas em negrito. O modelo foi capaz de reconhecer significativamente ações com padrões

corporais bem definidos, especialmente aquelas relacionadas a mudanças de postura, como

“levantar-se” e “deitar-se”. É importante notar, entretanto, que valores altos de confiança

não implicam que a classe prevista seja semanticamente equivalente à ação do TST; eles

indicam apenas que o modelo reconheceu padrões posturais semelhantes aos aprendidos

durante o pré-treinamento. Esses resultados fornecem uma visão inicial sobre como o

modelo pré-treinado interpreta dinâmicas corporais em um domı́nio novo, destacando

tanto correspondências plauśıveis quanto limitações da abordagem baseada apenas em

esqueletos 2D.

Neste contexto, foi observada a correspondência entre ações de “sentar-se”e “deitar-

se” do TST e classes do NTU RGB+D associadas a posturas curvadas, como “náusea ou

vômito” ou “calçar sapato”. Essa relação evidencia que o modelo, por basear-se exclu-
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Tabela 6.1: Resultados dos testes de inferência com rede pré-treinada no NTU RGB+D.

Vı́deo (TST)
Ação
(TST)

Duração (s)
Tempo de

Inferência (s)
Classe Prevista
(NTU RGB+D)

Confiança

Getup p14 r03 v02 c04 Levantar-se 2 0.600 Levantar-se (da posição sentada) 0.981
Getup p02 r00 v06 c05 Levantar-se 1 0.701 Náusea ou vômito 0.810
Getup p16 r01 v02 c05 Levantar-se 2 0.623 Levantar-se (da posição sentada) 0.771
Leave p02 r00 v01 c07 Sair 3 0.666 Cambalear 0.760
Sitdown p02 r00 v04 c04 Sentar-se 2 0.627 Calçar sapato 0.720
Usetablet p20 r02 v10 c01 Usar tablet 24 0.697 Ler 0.704
Enter p10 r00 v02 c05 Entrar 5 0.505 Caminhar afastando-se 0.688
Leave p10 r00 v01 c05 Sair 4 0.620 Cambalear 0.636
Laydown p14 r00 v02 c04 Deitar-se 5 0.569 Náusea ou vômito 0.610
Laydown p02 r00 v07 c04 Deitar-se 5 0.603 Náusea ou vômito 0.582
Eat Attable p02 r00 v11 c01 Comer à mesa 2 0.665 Ler 0.536
Laydown p11 r02 v02 c04 Deitar-se 6 0.608 Náusea ou vômito 0.505
Leave p14 r00 v02 c04 Sair 4 0.658 Abraçar outra pessoa 0.433
Leave p11 r00 v06 c04 Sair 6 0.687 Abraçar outra pessoa 0.409
Laydown p10 r01 v03 c04 Deitar-se 5 0.602 Vestir jaqueta 0.405
Enter p14 r00 v05 c04 Entrar 4 0.494 Caminhar em direção ao outro 0.333
Enter p11 r00 v03 c04 Entrar 7 0.556 Caminhar afastando-se 0.314
Walk p16 r00 v01 c04 Caminhar 5 0.781 Calçar sapato 0.306
Enter p20 r01 v16 c07 Entrar 5 0.887 Tocar as costas (dor nas costas) 0.293
Sitdown p11 r00 v05 c04 Sentar-se 2 2.294 Calçar sapato 0.290
Getup p10 r00 v09 c01 Levantar-se 5 0.572 Ler 0.282
Walk p02 r00 v01 c06 Caminhar 2 0.569 Calçar sapato 0.219
Sitdown p14 r00 v02 c05 Sentar-se 7 2.044 Ler 0.165
Sitdown p10 r00 v02 c05 Sentar-se 2 1.524 Náusea ou vômito 0.155
Usetelephone p02 r00 v01 c06 Usar telefone 8 0.874 Limpar o rosto 0.131
Eat Attable p02 r08 v11 c02 Comer à mesa 2 0.744 Sentar-se 0.115
Eat Attable p02 r14 v11 c01 Comer à mesa 4 0.768 Usar celular/tablet 0.109

sivamente em informações posturais, tende a associar ações com configurações corporais

semelhantes, independentemente do contexto da cena. De modo semelhante, ações como

“entrar” e “sair” foram mapeadas para classes como “caminhar afastando-se” ou “cami-

nhar em direção ao outro”, o que indica que o modelo reconhece padrões locomotores

compartilhados entre os conjuntos. Outras correspondências posturais também se mos-

traram plauśıveis, como “usar tablet” ou “comer à mesa” sendo associadas à classe “ler”,

todas caracterizadas por leve inclinação do tronco e foco visual direcionado para um objeto

próximo.

Por outro lado, algumas predições demonstraram falta de correspondência semântica,

evidenciando limitações da abordagem baseada apenas em pose e destacando a diferença

quanto a variabilidade de classes entre os dois conjuntos, uma vez que o NTU RGB+D

possui praticamente o dobro de ações que o TST. Um exemplo particularmente ilustrativo

ocorre nas ações de “sair” (Leave), que foram classificadas como “abraçar outra pessoa”

ou “cambalear”. Embora essas classes pareçam incompat́ıveis à primeira vista, a análise

de quadros dos v́ıdeos em questão, exibida na Figura 6.1, revela que, na maioria dos ca-

sos (Leave p02 r00 v01 c07, Leave p14 r00 v02 c04 , Leave p11 r00 v06 c04 ) o indiv́ıduo

interage fisicamente com a porta ao abrir ou empurrá-la. Esse gesto altera a configuração



6.1 Análise exploratória de inferência cruzada entre NTU RGB+D e TST 52

Tabela 6.2: Classes do NTU RGB+D com ações detectadas nas amostras do conjunto
TST destacadas em negrito.

ID Ação ID Ação ID Ação

A1 Beber água A21 Tirar chapéu/boné A41 Espirrar/tossir

A2 Comer refeição/lanche A22 Comemorar A42 Cambalear

A3 Escovar os dentes A23 Acenar com a mão A43 Cair

A4 Escovar o cabelo A24 Chutar algo A44 Tocar a cabeça (dor de
cabeça)

A5 Deixar cair A25 Alcançar o bolso A45 Tocar o peito (dor no
coração/estômago)

A6 Pegar objeto A26 Pular em um pé A46 Tocar as costas (dor
nas costas)

A7 Arremessar A27 Saltar A47 Tocar o pescoço (dor no
pescoço)

A8 Sentar-se A28 Fazer/atender chamada
telefônica

A48 Náusea ou vômito

A9 Levantar-se (da
posição sentada)

A29 Usar celular/tablet A49 Usar ventilador (sen-
tindo calor)

A10 Bater palmas A30 Digitar no teclado A50 Socar/tapar outra pes-
soa

A11 Ler A31 Apontar com o dedo A51 Chutar outra pessoa

A12 Escrever A32 Tirar selfie A52 Empurrar outra pessoa

A13 Rasgar papel A33 Verificar horário no
relógio

A53 Dar tapinha nas costas
de outra pessoa

A14 Vestir jaqueta A34 Esfregar as mãos A54 Apontar para outra pes-
soa

A15 Tirar jaqueta A35 Assentir com a cabeça A55 Abraçar outra pessoa

A16 Calçar sapato A36 Negar com a cabeça A56 Entregar algo a outra
pessoa

A17 Tirar sapato A37 Limpar o rosto A57 Tocar o bolso de outra
pessoa

A18 Colocar óculos A38 Saudar (continência) A58 Apertar as mãos

A19 Tirar óculos A39 Juntar as palmas das
mãos

A59 Caminhar em direção
ao outro

A20 Colocar chapéu/boné A40 Cruzar as mãos à frente A60 Caminhar afastando-
se

dos braços e do tronco, produzindo uma postura semelhante à de outras ações do NTU, o

que explica as predições com confiança relativamente alta, apesar da diferença semântica

entre as classes. E no v́ıdeo Leave p10 r00 v01 c05 ocorre oclusão de uma das pernas, o

que também pode ter contribúıdo para a predição de “cambalear”. Situações similares

ocorreram em predições como “usar telefone” sendo classificado como “limpar o rosto” ou

“caminhar” sendo confundido com “calçar sapato”. Esses casos reforçam que, na ausência

de pistas contextuais, como objetos manipulados ou elementos estruturais do ambiente, o

modelo tende a confundir ações distintas que compartilham padrões corporais semelhan-



6.1 Análise exploratória de inferência cruzada entre NTU RGB+D e TST 53

tes.

Figura 6.1: Exemplos de quadros dos v́ıdeos da classe “Leave” ilustrando situações que in-
fluenciaram as predições do modelo, incluindo interação com objetos do ambiente, oclusões
parciais do corpo e posturas amb́ıguas.

De modo geral, as classificações com maior confiança indicam que a rede conse-

gue identificar corretamente padrões biomecânicos fundamentais, validando a eficácia da

representação baseada em mapas de calor. Já os erros em amostras de menor confiança

refletem o desafio natural de interpretar ações complexas e com baixa variabilidade pos-

tural e movimentos de pequena amplitude, apenas a partir da postura, sem o suporte

de informações visuais complementares. Além disso, parte dessas inconsistências decorre

da inexistência de uma correspondência direta entre as ações do Toyota Smarthome e as

classes dispońıveis no modelo pré-treinado no NTU RGB+D. Uma análise nominal dos

31 v́ıdeos avaliados revela que apenas 8 ações possuem equivalente direto ou semantica-

mente próximo no NTU RGB+D: Getup (Levantar-se da posição sentada, A9), Sitdown

(Sentar-se, A8), Eat.Attable e Eat.Snack (Comer refeição/lanche, A2), Readbook (Ler,

A11), Usetablet e Usetelephone (Usar celular/tablet, A29), e Walk (Caminhar afastando-

se, A60 / Caminhar em direção ao outro, A59). As demais ações, como cozinhar, beber
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Figura 6.2: Exemplo de oclusão do indiv́ıduo durante a ação de “sentar-se”.

de copo ou lata, cortar pão e assistir TV, não possuem equivalente nominal no NTU.

Dessa forma, mesmo quando o modelo apresenta ńıveis relativamente altos de confiança

em suas predições, grande parte delas não reflete correspondência semântica direta, mas

sim similaridade postural com as classes aprendidas.

Sobre a duração dos v́ıdeos e dos tempos de inferência, a análise conjunta revela

que o tempo total do arquivo não é o principal fator que determina o custo computacional

do modelo. Embora v́ıdeos mais longos possam sugerir maior processamento, os resultados

mostram que a inferência depende predominantemente da qualidade e da completude das

poses extráıdas em cada quadro. Um caso ilustrativo é o v́ıdeo Sitdown p11 r00 v05 c04,

que possui apenas 2 segundos de duração, mas apresentou um dos maiores tempos de

inferência (2.294 s). Esse comportamento ocorre porque o indiv́ıduo permanece fora do

campo de visão na maior parte da sequência, como pode ser visto na Figura 6.2, o que

dificulta a detecção de pose e leva o extrator a realizar tentativas adicionais para localizar

ou ajustar pontos corporais ausentes, aumentando substancialmente o tempo de processa-

mento. Assim, observa-se que o tempo de inferência está mais relacionado à complexidade

da estimativa de pose diante de oclusões e quadros incompletos do que ao tempo total do

v́ıdeo.

Os resultados apresentados nesta seção reforçam o potencial do PoseConv3D como

ponto de partida promissor para o reconhecimento de ações no Toyota Smarthome, ao

mesmo tempo em que destacam a necessidade de um ajuste fino para especializar o modelo

às caracteŕısticas espećıficas desse conjunto de dados.
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6.2 Experimentos com o modelo treinado no TST

Após a análise exploratória do comportamento do modelo pré-treinado, esta seção apre-

senta os experimentos realizados com o PoseConv3D treinado especificamente no conjunto

de dados do Toyota Smarthome (TST). Embora a rede utilize pesos inicializados a par-

tir do pré-treinamento no NTU RGB+D, o foco desta etapa passa a ser a avaliação do

desempenho do modelo após sua adaptação supervisionada às classes e às caracteŕısticas

próprias do TST.

Os experimentos aqui descritos têm como objetivo investigar a capacidade de

aprendizado do modelo quando exposto a dados do domı́nio alvo, analisando tanto o

impacto do volume e da distribuição das amostras quanto a evolução do desempenho

ao longo de diferentes configurações de treinamento. Diferentemente da etapa anterior,

em que as predições refletiam apenas a transferência direta de padrões aprendidos no

NTU RGB+D, os resultados apresentados nesta seção correspondem a um cenário de

treinamento efetivo, no qual o modelo passa a aprender associações semânticas espećıficas

das ações presentes no TST.

Dessa forma, esta etapa permite avaliar não apenas a eficácia da arquitetura

PoseConv3D no contexto do Toyota Smarthome, mas também o papel do pré-treinamento

como ponto de partida para a convergência e para a extração de padrões biomecânicos

relevantes em um conjunto de dados menor, mais desbalanceado e com ações de maior

similaridade postural.

6.2.1 Métricas de avaliação

A avaliação do desempenho do modelo foi realizado a partir das seguintes métricas:

• Acurácia Global: corresponde à proporção total de v́ıdeos corretamente classifica-

dos pelo modelo em relação ao número total de amostras no conjunto de teste. Essa

métrica reflete o desempenho geral do classificador, sendo senśıvel à distribuição das

classes.

• Acurácia Média (por Classe): definida como a média das acurácias calculadas

individualmente para cada classe de ação no conjunto de teste. Diferentemente da
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acurácia global, essa métrica atribui o mesmo peso a todas as classes, independen-

temente do número de amostras, permitindo uma avaliação mais equilibrada do

desempenho do modelo.

• Diferença Absoluta (DIF): corresponde à diferença, em pontos percentuais (p.p.),

entre a acurácia global e a acurácia média por classe. Essa métrica foi utilizada como

um indicador direto do efeito do desbalanceamento entre classes, permitindo quanti-

ficar o quanto o desempenho global do modelo é influenciado por classes com maior

número de amostras. Valores elevados de DIF indicam maior discrepância entre o

desempenho médio por classe e o desempenho agregado do modelo.

• Desvio padrão entre classes (DP): Além da acurácia média por classe, foi con-

siderado o desvio padrão da acurácia média por classe como forma de quantificar

a variabilidade do desempenho do modelo entre as diferentes ações. Essa métrica

mede o grau de dispersão das acurácias individuais das classes em torno da média,

permitindo avaliar o quão uniforme é o comportamento do classificador ao longo

do conjunto de ações. Valores elevados de desvio padrão indicam que o modelo

apresenta desempenho desigual entre as classes, geralmente associado ao desbalan-

ceamento do conjunto de dados ou à presença de ações com padrões posturais mais

amb́ıguos e de dif́ıcil distinção.

6.2.2 Experimentos com subconjuntos do conjunto de dados

Para definir a configuração experimental de referência (baseline), foram conduzidos expe-

rimentos com subconjuntos de tamanho reduzido do conjunto TST, organizados de forma

incremental. Embora esses subconjuntos representem apenas uma fração do conjunto

completo, eles foram constrúıdos com volumes progressivamente maiores entre si, permi-

tindo analisar o impacto do aumento gradual de dados e da redistribuição das classes no

desempenho do modelo.

Os subconjuntos avaliados, renomeados para indicar a origem e o tamanho, in-

clúıram: Toyota[1.270], Toyota[1.645], Toyota[1.827], Toyota[1.922] e Toyota[1.753], além

do conjunto completo com 16.115 amostras (Toyota[16.115]). A Tabela 6.3 detalha a
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evolução do número de amostras nos conjuntos de treino, validação e teste ao longo dos

diferentes estágios experimentais, reforçando a lógica incremental adotada e o equiĺıbrio

buscado entre classes.

Tabela 6.3: Evolução do número de amostras nos conjuntos de treino, validação e teste
para os subconjuntos do TST.

Subconjunto Treino Validação Teste Estágio do conjunto
Toyota[1.270] 910 160 200 Conjunto inicial
Toyota[1.645] 1285 160 200 Expansão do conjunto de treino
Toyota[1.827] 1285 160 382 Expansão do conjunto de teste
Toyota[1.922] 1285 255 382 Ajuste da proporção treino/va-

lidação para 80%/20%
Toyota[1.753] 1192 255 306 Conjunto com teto de 40 amos-

tras por classe no treino e 10 para
validação

A Tabela 6.4 resume os resultados obtidos, incluindo a acurácia global, a média

das acurácias entre classes no conjunto de teste e a diferença. Essa abordagem incremental

e a apresentação das métricas citadas permitem compreender o impacto do tamanho

do conjunto de dados, do balanceamento entre classes e da evolução da maturidade do

conjunto na performance do modelo.

Tabela 6.4: Comparação entre acurácia global, acurácia média e diferença absoluta entre
acurácias no conjunto de teste para diferentes subconjuntos do TST.

Subconjunto Acurácia Global (%) Acurácia Média (%) DIF (p.p.)
Toyota[1.270] 51,0 43,9 7,1
Toyota[1.645] 52,0 41,8 10,2
Toyota[1.827] 50,0 48,1 1,9
Toyota[1.922] 47,9 46,4 1,5
Toyota[1.753] 49,7 49,7 0,0

O subconjunto Toyota[1.270] teve como objetivo principal a validação do pipeline

de processamento e a verificação da convergência inicial do modelo. A quantidade de

amostras por classe no conjunto de treino variava de 16 a 83, com média de 27 amostras.

Nessa etapa, buscou-se assegurar que a arquitetura PoseConv3D era capaz de proces-

sar corretamente as sequências de poses extráıdas, mesmo diante de uma distribuição

altamente desigual entre as classes. Não houve, nesse estágio, exploração sistemática de

hiperparâmetros, sendo utilizadas configurações pré-definidas da arquitetura X3D origi-

nalmente ajustadas para o conjunto NTU RGB+D, com adaptações restritas ao número
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de classes e à quantidade de v́ıdeos processados por GPU. Em função do volume reduzido

de dados, os resultados obtidos foram considerados estritamente preliminares e utilizados

apenas como verificação funcional do pipeline. Posteriormente o conjunto de dados passou

a ser reorganizado de forma incremental, com o objetivo de manter uma divisão aproxi-

mada de 80% das amostras destinadas ao treinamento e 20% à validação. Esse processo

de ampliação do subconjunto foi conduzido considerando, adicionalmente, a manutenção

de uma distribuição o mais equilibrada posśıvel de amostras entre as classe.

Nos subconjuntos de 1.645 e 1.827 amostras, foi introduzida uma primeira tenta-

tiva de balanceamento da distribuição, com a imposição de um teto de 42 amostras por

classe, com quantidade mı́nima de 23 amostras por classe. A exceção foi a classe Walk,

que permaneceu com 83 amostras desde o primeiro subconjunto, devido à sua natureza

distinta e ao fato de não apresentar confusões relevantes com outras ações. Apesar desse

ajuste, até o Toyota[1.645] o modelo ainda apresentava desempenho global limitado, com

taxas de predição muito baixas para diversas classes. Como consequência, algumas ca-

tegorias sequer apareciam na matriz de confusão, uma vez que não eram preditas em

nenhuma instância, o que inviabilizava uma análise qualitativa completa nesse estágio e

motivou a não exibição dessas matrizes.

A partir do subconjunto Toyota[1.827] a matriz de confusão passou a estar com-

pleta, possibilitando-se identificar padrões de erro mais consistentes, como exibido na

Figura 6.3. Observou-se que as principais confusões não estavam relacionadas ao desbalan-

ceamento residual das classes, mas sim à similaridade semântica e postural entre determi-

nadas ações. Em particular, verificaram-se confusões recorrentes entre classes que compar-

tilham a mesma dinâmica corporal básica e diferem predominantemente pelo objeto com

o qual o indiv́ıduo interage. Esse comportamento já era esperado e foi evidente em gru-

pos de ações como Drink.Frombottle, Drink.Fromcan, Drink.Fromcup e Drink.Fromglass,

todas caracterizadas por movimentos semelhantes dos membros superiores em direção à

região da face, variando apenas pelo tipo de recipiente manipulado. Padrão análogo foi

observado entre as classes Pour.Frombottle, Pour.Fromcan e Pour.Fromkettle, bem como

entre ações de preparação de alimentos e bebidas, como Cook.Cleandishes, Cook.Cleanup

e Cook.Cut, cujas diferenças semânticas estão fortemente associadas ao contexto e aos
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objetos presentes na cena, e não à postura corporal isolada. De forma semelhante, ati-

vidades envolvendo leitura e uso de dispositivos eletrônicos, incluindo ReadBook, Use-

Laptop, UseTablet apresentaram confusões frequentes. Essas ações compartilham uma

postura predominantemente estática, com leve inclinação do tronco e orientação do olhar

para um objeto à frente do corpo, o que dificulta a distinção baseada exclusivamente em

informações de pose.
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Figura 6.3: Matriz de Confusão do conjunto de teste do subconjunto Toyota[1.827].

Ainda nesse contexto, destaca-se a classe WatchTV que apresentou confusões

significativas com diversas outras ações, como Sitdown, Readbook, e com atividades de uso

de dispositivos eletrônicos (Uselaptop, Usetablet). Há ocorrência de confusão até mesmo
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com as classes de ação de ingestão de bebidas (Drink e suas variações), também devido

à postura semelhante adotada pelo indiv́ıduo. Além disso, a natureza concorrente de

algumas atividades contribui para essas confusões, já que é posśıvel realizar outras ações

simultaneamente à observação da televisão, e o modelo, ao se basear exclusivamente em

informações de pose sem considerar o contexto ou objetos presentes na cena, não consegue

discernir essas situações.

Com a implementação da divisão estrita de 80%/20% no subconjunto Toyota[1.922],

observou-se uma maior convergência entre a acurácia global e a acurácia média por classe.

Mesmo com a classe Walk ainda superando o teto inicialmente planejado, a aproximação

entre essas métricas indicou um aprendizado mais equilibrado. A análise da matriz de

confusão apresentada na Figura 6.4 reforçou que o desbalanceamento não era o principal

fator limitante do desempenho do modelo nesse estágio. Embora Walk possúısse o maior

volume de dados, ela não concentrava confusões relevantes com outras classes.

Como ajuste final, foi realizada uma correção pontual no conjunto de dados com

o objetivo de viabilizar uma divisão dos subconjuntos de treino, validação e teste se-

gundo proporções mais exatas, e de aproximar, tanto quanto posśıvel, uma distribuição

uniforme entre as classes. Para isso, adotou-se um teto máximo de 40 amostras por

classe, incluindo o ajuste da classe Walk, anteriormente com maior número de instâncias.

Embora a disponibilidade de dados tenha impedido que todas as classes atingissem esse

limite, resultando em uma sub-representação residual em algumas categorias, o subcon-

junto final obtido (Toyota[1.753]) permitiu a condução dos experimentos sob condições

mais próximas do cenário ideal. Nesse contexto, o modelo alcançou acurácia global e

acurácia média idênticas, ambas de 49,7%, eliminando a diferença entre essas métricas e

garantindo maior comparabilidade entre as classes.

A Figura 6.5 apresenta a matriz de confusão normalizada do modelo treinado

com o subconjunto Toyota[1.753]. Apesar da queda na acurácia global, em comparação

com o modelo treinado com o subconjunto Toyota[1.922], observa-se uma melhoria no

desempenho por classe, evidenciada pelo aumento da acurácia na diagonal principal em

10 das classes avaliadas. O ganho mais expressivo foi observado na classe Cutbread, cuja

acurácia de 20% no subconjunto anterior foi para 60% no subconjunto Toyota[1.753].
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Figura 6.4: Matriz de Confusão do conjunto de teste do subconjunto Toyota[1.922].

Outras classes também apresentaram ganhos relevantes, como Enter de 50% para 70% e

Cook.Cleanup de 30% para 60%. A classe Laydown chegou a atingir 100% de acurácia.

Verificou-se também uma redução em confusões espećıficas entre classes seman-

ticamente semelhantes. No subconjunto anterior, a classe Cutbread apresentava con-

fusão de aproximadamente 20% com Cook.Stir. De forma semelhante, a confusão entre

Drink.Frombottle e Drink.Fromglass com a classe Walk reduziu-se de 50% para 30%, in-

dicando uma melhor separação entre padrões de consumo de bebidas e movimentos de

locomoção. Observa-se ainda uma ligeira redução da confusão entre ações envolvendo o

uso de dispositivos, como Usetablet e Uselaptop. Não houve aumento de confusão sig-
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Figura 6.5: Matriz de Confusão do conjunto de teste do subconjunto preliminar
Toyota[1.753].

nificativo (igual ou acima de 20 p.p.) entre as classes. Esses resultados sugerem que

a estratégia adotada no Toyota[1.753] contribuiu para um aprendizado mais equilibrado

entre classes.

A evolução dos experimentos indica que, nos estágio inicial o desempenho do

modelo foi fortemente impactado pelo número reduzido de dados dispońıveis e pelo ele-

vado desbalanceamento entre as classes. Nessas condições, observou-se uma diferença

expressiva entre a acurácia global e a acurácia média (19,2 p.p.), bem como dificuldades

na aprendizagem de representações discriminativas para categorias menos representadas,

resultando inclusive em predições ausentes para algumas classes. A partir do subconjunto
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Toyota[1.827], o modelo passou a apresentar um comportamento mais estável, evidenci-

ado pela consolidação de uma matriz de confusão completa e pela redução consistente da

diferença entre as acurácias global e média (de 1,9 p.p para 0,0 p.p.). Nas condições desse

experimento, as limitações remanescentes deixaram de estar predominantemente associa-

das à escassez de dados ou ao desbalanceamento extremo, passando a refletir, sobretudo,

a elevada similaridade semântica entre determinadas ações, em especial aquelas que se di-

ferenciam apenas pelo objeto de interação. Nesse contexto, o subconjunto Toyota[1.753]

representa um ponto de equiĺıbrio relevante. Embora não maximize a acurácia global, ele

fornece uma avaliação mais justa e informativa da capacidade do modelo, ao assegurar

desempenho uniforme entre classes e minimizar distorções causadas por distribuições as-

simétricas. Esse cenário foi, portanto, adotado como base para as análises subsequentes

de configuração e para a interpretação dos limites do PoseConv3D no conjunto de dados

TST.

6.2.3 Análise de hiperparâmetros

Com o objetivo de investigar o impacto de diferentes configurações de treinamento no

desempenho do modelo, foram conduzidos experimentos no subconjunto Toyota[1.753],

definido como baseline experimental a partir dos experimentos anteriores. Os experi-

mentos contemplaram variações na estratégia de pré-treinamento, taxa de aprendizado,

número de v́ıdeos processados por GPU e quantidade de épocas de treinamento.

Embora a análise central dos resultados se dê em torno da rede X3D, definida

como backbone principal deste trabalho, a arquitetura C3D Light (LIN et al., 2014b),

também foi avaliada de forma breve. Esta rede foi utilizada como um dos modelos de

referência no estudo original do PoseConv3D, também com uma versão adaptada imple-

mentada e igualmente validada no conjunto NTU RGB+D pelos autores. A inclusão da

C3D Light teve como motivação técnica a investigação de um compromisso alternativo

entre custo computacional e capacidade representacional. A rede era a segunda mais

leve entre as redes que Duan et al. (2022) utilizaram no trabalho original em termos de

quantidade de parâmetros e FLOPs. Sua estrutura apresenta maior profundidade quando

comparada à X3D nas configurações adotadas, o que poderia, em prinćıpio, favorecer a mo-
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delagem de padrões espaço-temporais mais complexos, ainda que com aumento moderado

no custo de treinamento. Dessa forma, a arquitetura foi incorporada aos experimentos

com o objetivo de verificar se esse acréscimo estrutural seria capaz de competir com a

X3D no contexto do conjunto Toyota[1.753]. Assim como a X3D, a C3D Light foi avaliada

com e sem inicialização a partir de pesos pré-treinados no NTU RGB+D, mantendo-se os

demais parâmetros fixos.

As taxas de aprendizado analisadas foram 0,01 e 0,005. O número de v́ıdeos por

GPU corresponde ao tamanho do lote (batch size) por GPU, indicando quantas amostras

de v́ıdeo são processadas simultaneamente em cada iteração de treinamento. Os valores

desse parâmetro foram 8 e 12. Para cada configuração, o treinamento foi conduzido por

24, 40 ou 60 épocas, e o desempenho foi avaliado por meio da acurácia global e da acurácia

média, tanto no conjunto de validação quanto no conjunto de teste, e também a diferença

absoluta entre os valores das métricas dos respectivos conjuntos (DIF). Adicionalmente,

foi registrado o tempo total de treinamento de cada experimento, visando caracterizar o

custo computacional associado às diferentes configurações.

Os resultados obtidos a partir dessas variações são apresentados nas Tabelas 6.5

e 6.6, servindo como base para a análise comparativa e para a definição da configuração

adotada nos experimentos subsequentes. Nas tabelas em questão, “Exp” refere-se ao

identificador do experimento (ou configuração) e “LR” refere-se à taxa de aprendizado

(learning rate), e ressalta-se que os modelos X3D e C3D Light citados referem-se às

implementações adaptadas pelos autores do PoseConv3D. A tabela também apresenta os

tempos de treinamento em cada configuração.

Tabela 6.5: Configurações experimentais e desempenhos obtidos no conjunto
Toyota[1.753].

Exp Modelo Pré-treinamento LR Vı́deos/GPU Épocas Validação (%) Teste (%) Duração
Acc. Global Acc. Média Acc. Global Acc. Média

1 X3D Sim 0,01 8 40 60,9 52,9 48,4 47,7 5h
2 X3D Sim 0,01 12 40 60,9 53,1 46,7 46,1 3h
3 X3D Não 0,01 12 40 53,1 45,7 41,8 42,2 3h
4 X3D Sim 0,005 12 40 59,8 53,6 50,3 49,7 5h
5 X3D Sim 0,005 12 60 59,2 51,7 49,7 49,3 7h
6 C3D Light Sim 0,01 8 24 59,8 52,6 48,4 48,2 8h20
7 C3D Light Não 0,01 8 24 59,8 54,9 45,8 45,2 8h30
8 C3D Light Sim 0,005 8 40 57,0 50,7 46,7 46,1 14h

No que se refere à taxa de aprendizado, nos Experimentos 2 e 4, observa-se que

ambas as configurações convergem de forma estável ao longo das 40 épocas para as taxas



6.2 Experimentos com o modelo treinado no TST 65

Tabela 6.6: Diferença absoluta entre acurácias de validação e teste (em pontos percentu-
ais) para diferentes configurações no conjunto Toyota[1.753].

Exp Modelo Pré-treinamento LR Vı́deos/GPU Épocas Validação / Teste (p.p.)
DIF Acc. Global DIF Acc. Média

1 X3D Sim 0,01 8 40 12,52 5,11
2 X3D Sim 0,01 12 40 14,16 6,98
3 X3D Não 0,01 12 40 11,24 3,52
4 X3D Sim 0,005 12 40 9,45 3,89
5 X3D Sim 0,005 12 60 9,55 2,49
6 C3D Light Sim 0,01 8 24 11,40 4,39
7 C3D Light Não 0,01 8 24 14,03 9,71
8 C3D Light Sim 0,005 8 40 10,25 4,54
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0.5

1.0
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2.0
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rd

a

Comparação da perda de treino entre taxas de aprendizado
LR: 0.005
LR: 0.01

Figura 6.6: Curvas de perda de treino com taxas de aprendizado 0,01 (Experimento 1) e
0,005 (Experimento 4).

0,01 e 0,005 (Figuras 6.6 e 6.7). No entanto, no experimento conduzido com taxa de

aprendizado igual a 0,01 esse comportamento não se refletiu em melhor desempenho no

conjunto de teste, sendo observada uma queda de aproximadamente 3,6 p.p. na acurácia

global e de 2 p.p. na acurácia média em relação às configurações com taxa de aprendi-

zado de 0,005. Embora a taxa de aprendizado 0,01 tenha produzido acurácias elevadas

no conjunto de validação (global de 60,9% e média 52,9%), a discrepância em relação ao

conjunto de teste, evidenciada por um uma diferença de 14,16 p.p. na acurácia global e

6,98 p.p. na acurácia média, sugere um processo de ajuste excessivo dos pesos (overfit-

ting), comprometendo a capacidade de generalização do modelo. Em contraste, a taxa

de aprendizado de 0,005 apresentou convergência mais rápida nas primeiras épocas, além

de melhor equiĺıbrio entre os resultados de validação e teste, reduzindo a discrepância

entre a acurácia global (9,45%) e a acurácia média por classe (3,89%). Esse padrão de
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desempenho entre as duas taxas de aprendizado se repete nos demais experimentos com

o modelo X3D apresentados na tabela.
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Curvas de acurácia de treino e validação para o experimento 2 (taxa de aprendizado
0,01).
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0,005).

Figura 6.7: Curvas de acurácia de treino e validação para os experimentos 2 e 4 com
diferentes taxas de aprendizado.

A análise do impacto do tamanho do lote por GPU nos Experimentos 1 e 2, indica

que a configuração com 12 v́ıdeos apresentou convergência mais rápida nas primeiras

épocas em relação à de 8 v́ıdeos (Figura 6.8). Esse comportamento é evidenciado pela

queda mais acentuada da perda de treino nas primeiras iterações, assim como por valores

de perda consistentemente menores ao longo de todo o processo de otimização. Tais

resultados podem ser compreendidos a partir da relação entre o tamanho do lote, o número
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Figura 6.8: Curva de perda de treino com as configurações de 8 e 12 v́ıdeos por GPU
(Experimentos 1 e 2, respectivamente).

de iterações por época e a taxa de aprendizado.

Como formalizado na Equação 6.1 ondeNiter é o número total de iterações durante

o treinamento; E é o número de épocas; N é o número total de amostras no conjunto de

dados; B é o tamanho do lote (batch size), para um conjunto de dados fixo, o aumento

do tamanho do lote reduz o número de atualizações de pesos realizadas a cada época,

tornando as estimativas de gradiente menos ruidosas. Dessa forma, quando combinado

com uma taxa de aprendizado relativamente elevada, esse regime de otimização permite

passos maiores no espaço de parâmetros que permanecem mais estáveis, acelerando a

convergência inicial da função de custo.

Niter = E ×
⌈
N

B

⌉
(6.1)

Entretanto, ao confrontar esse comportamento com as métricas de desempenho,

observa-se que a convergência mais rápida e a menor perda de treino não se traduziram em

melhor capacidade de generalização. Conforme os dados apresentados na Tabela 6.5, am-

bas as configurações atingiram o mesmo valor de acurácia global no conjunto de validação

(60,89%). No conjunto de teste, contudo, a configuração com 12 v́ıdeos por GPU apre-

sentou desempenho inferior, com redução da acurácia de 48,37% para 46,73%. Tendência

semelhante é observada na acurácia média por classe, que apresentou leve aumento na
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validação (de 52,85% para 53,11%), acompanhado por queda no teste (de 47,74% para

46,13%). Esse comportamento indica que a boa convergência e o ajuste acentuado no

treinamento fizeram o modelo se especializar nos dados de treino, gerando sobreajuste.

Nesse contexto, a redução da taxa de aprendizado mostrou-se eficaz para melhorar a ge-

neralização, pois passos menores nos ajustes de peso tornam o treinamento mais estável.

Como pode ser observado na Tabela 6.5, no Experimento 4 o uso de uma taxa de aprendi-

zado de 0,005 com 12 v́ıdeos por GPU e mantendo-se a quantidade de épocas dos demais

experimentos, houve aumento tanto na acurácia global (50,3%) quanto na acurácia média

(49,7%) no conjunto de teste, além da menor diferença de acurácia global (9,45 p.p.).

Em relação ao número de épocas, os resultados dos Experimentos 4 e 5 indicam

que a extensão do treinamento de 40 para 60 épocas não resultou em ganhos consistentes

de desempenho. Pelo contrário, a configuração com 60 épocas apresentou uma leve queda

tanto na acurácia de validação e teste quanto na acurácia média por classe, ao mesmo

tempo em que implicou um aumento expressivo do custo computacional, passando de 5h

para 7h de processamento. Esse comportamento sugere que o modelo já havia atingido

um ponto de saturação por volta das 40 épocas, conforme evidenciado pela estabilização

da curva de perda de treino na Figura 6.9, correspondente ao Experimento 5. A partir

desse ponto, a continuidade do treinamento passou a provocar sobreajuste, sem benef́ıcios

adicionais em termos de generalização. Esse cenário é corroborado pela alta volatilidade e

ausência de tendência de subida na acurácia de validação do Experimento 5 após a época

40, como exibido na Figura 6.10.

Quanto ao uso de pré-treinamento, a interpretação dos seus efeitos deve consi-

derar não apenas a capacidade de generalização do modelo, mas também o custo com-

putacional associado ao processo de treinamento. Ao comparar os Experimentos 2 e 3,

observa-se que a configuração com pré-treinamento (experimento 2) apresenta desempe-

nho significativamente superior no conjunto de teste, com acurácia global de 46,7% frente

a 41,8% e acurácia média de 46,7% frente a 42,2%. Esse ganho pode ser atribúıdo ao fato

de que o modelo pré-treinado é ajustado especificamente ao domı́nio do problema em es-

tudo, refinando representações previamente aprendidas e aproveitando similaridades entre

o conjunto NTU RGB+D e o conjunto Toyota Smarthome.
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Figura 6.9: Curvas de perda de treino para 40 épocas (Experimento 4) e 60 épocas
(Experimentos 5).

Em contrapartida, a diferença de acurácia global 14,16 p.p. frente à 11,24 p.p. e

de acurácia média 6,98 frente à 3,52 p.p mostra-se ligeiramente maior na configuração com

pré-treinamento. Esse comportamento, pode ser explicado pela dinâmica de convergência

do treinamento, exibida na Figura 6.11. Na Figura observa-se que o modelo pré-treinado

inicia o processo de otimização em ńıveis de perda mais baixos e converge de maneira mais

rápida e estável, enquanto o treinamento do zero apresenta uma fase inicial prolongada

de adaptação, evidenciando a necessidade de um maior número de épocas para atingir

desempenho comparável. Quando o número de épocas é limitado, o treinamento sem

aprendizado prévio pode não alcançar um regime suficientemente maduro para capturar

de forma consistente as variações intra-classe, afetando principalmente a acurácia média.

Uma avaliação mais equilibrada foi posśıvel nos experimentos 9 e 10, com con-

figurações sem pré-treinamento treinadas com taxa de aprendizado na escala de 10−3

(0,005 e 0,001), estendidas em 80 e 160 épocas. Os resultados são apresentados na Ta-

bela 6.7. Mesmo com aumento significativo do número de épocas, os valores máximos

obtidos dos experimentos foram de 51,95% de acurácia global e acurácia média por classe

de 46,79%, no conjunto de validação, valores consideravelmente inferiores aos obtidos

pelas configurações equivalentes com pré-treinamento. Esses resultados indicam que o

aumento do número de épocas, isoladamente, não é suficiente para compensar a ausência
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Figura 6.10: Curva de acurácia de treino e validação para 40 épocas (Experimento 4) e
60 épocas (Experimento 5).

de pré-treinamento, sendo ainda inviável em termos de custo computacional devido ao

prolongado tempo de treinamento necessário para que o modelo comece a convergir.

Experimentos adicionais com taxa de aprendizado reduzida para 0,001 e até 160

épocas reforçam essa observação. Mesmo sob um regime de treinamento prolongado, o

modelo não apresentou convergência adequada no conjunto de treino, atingindo aproxima-

damente 50% de acurácia, enquanto os valores no conjunto de validação permaneceram

abaixo de 45%. Isso evidencia que a simples redução da taxa de aprendizado torna o

processo de otimização excessivamente lento e computacionalmente inviável no contexto

experimental considerado.
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Figura 6.11: Curvas de perda do conjunto de treino para as configurações com e sem
pré-treinamento (Experimentos 2 e 3 respectivamente).

Tabela 6.7: Resultados adicionais sem pré-treinamento considerando apenas treino e va-
lidação.

Exp Modelo LR Vı́deos por GPU Épocas Acc. Treino Acc. Validação

9 X3D 0,005 24 80 93,75% 51,95% (global)

46,79% (média)

10 X3D 0.001 12 160 53,33% 43,01% (global)

37,44% (média)

Por outro lado, as configurações com pré-treinamento a partir do conjunto NTU

RGB+D apresentaram convergência mais rápida e estável, alcançando ńıveis superiores

de acurácia com um número reduzido de épocas e taxas de aprendizado moderadas. A

melhor configuração obtida de todos os experimentos é a do Experimento 4 com taxa de

aprendizado de 0,005, 12 v́ıdeos por GPU e 40 épocas. O modelo atingiu 50,3% de acurácia

global e 49,7% de acurácia média no conjunto de teste em apenas 5 horas de treinamento,

apresentando também 53,6% de acurácia média e 59,8% de acurácia global no conjunto de

validação. Além disso, essas configurações resultaram nos menores valores de DIF entre

treinamento e validação, indicando melhor equiĺıbrio entre desempenho e capacidade de

generalização. O uso de pré-treinamento configura-se, portanto, como a alternativa de

melhor custo-benef́ıcio para o treinamento do Pose-X3D-S no conjunto TST.

Ao comparar os backbones avaliados, o X3D apresentou desempenho superior ao
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C3D Light na maior parte das configurações experimentais, especialmente quando com-

binado com pré-treinamento e taxa de aprendizado reduzida. Embora o C3D Light tenha

alcançado acurácias competitivas no conjunto de validação nos Experimentos 6 e 7, in-

clusive comparáveis à melhor configuração do X3D, seu desempenho no conjunto de teste

permaneceu inferior. Além disso, o C3D Light exigiu tempos de treinamento significati-

vamente maiores, em alguns casos mais que o dobro, sem apresentar ganhos proporcionais

de desempenho, comprometendo sua viabilidade prática no contexto avaliado.

Dessa forma, a rede X3D se consolidou como a melhor opção, e sua configuração

mais eficiente foi adotada como base para os experimentos subsequentes, por oferecer o

melhor equiĺıbrio entre desempenho, estabilidade do aprendizado e viabilidade computa-

cional, sendo particularmente adequada ao cenário de reconhecimento de ações humanas

baseado exclusivamente em informações de pose.

6.2.4 Experimentos sobre o conjunto completo

Os experimentos conduzidos com o conjunto completo de dados são centrais neste tra-

balho, uma vez que a comparação com resultados reportados na literatura pressupõe a

utilização de todo o volume de dados dispońıvel. Assim, após a validação inicial do pi-

peline experimental em subconjuntos reduzidos, o treinamento e a avaliação do modelo

foram estendidos ao conjunto completo, respeitando o protocolo original definido para o

conjunto e citado na Seção 5.3.

Nestes experimentos o backbone X3D (Pose-X3D-S) foi adotado, inicializado a

partir de pesos previamente ajustados no conjunto NTU RGB+D, caracterizando um

cenário de pré-treinamento sobre um domı́nio distinto. O treinamento foi realizado com

taxa de aprendizado igual a 0,005, utilizando 32 v́ıdeos por GPU e um total de 20 épocas.

O aumento na quantidade de v́ıdeos por GPU em comparação aos experimentos anteriores

foi possibilitado pela atualização da placa de v́ıdeo, citada na introdução deste caṕıtulo.

Não foram aplicadas, nesse estágio, estratégias adicionais de balanceamento de classes

ou aumentos de dados direcionados, sendo mantida a distribuição original do conjunto

de treinamento. Os conjuntos de validação e teste também permaneceram inalterados,

assegurando a consistência da avaliação. Os resultados obtidos neste experimento são
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apresentados na Tabela 6.8 e serviram de referência para as análises e ajustes experimen-

tais subsequentes.

Tabela 6.8: Resultados da aplicação do framework PoseConv3D ao conjunto Toyota
Smarthome Trimmed completo.

Validação (%) Teste (%) Duração
Acc. Global Acc. Média Acc. Global Acc. Média DP

77,12 52,14 72,26 54,51 25,88 12h

Observa-se que o modelo atingiu 77,12% de acurácia global em validação, indi-

cando boa capacidade de ajuste aos dados vistos durante o treinamento. No entanto, a

acurácia média por classe foi de 52,14% e desvio padrão de acurácia média por classe

de 25,88%, evidenciando que o desempenho varia significativamente entre classes, prin-

cipalmente devido ao desbalanceamento e à dificuldade de predizer ações com posturas

semelhantes. No conjunto de teste, a acurácia global de 72,26% e a acurácia média de

54,51% sugerem que o modelo generaliza de forma razoável, mantendo desempenho consis-

tente em dados não vistos. De forma geral, o resultado indica que o PoseConv3D consegue

capturar padrões espaciais e temporais das ações, mas ainda apresenta limitações em ati-

vidades com posturas semelhantes ou ações concorrentes, refletindo a dificuldade inerente

ao reconhecimento de ações puramente a partir de representações de pose. A análise

qualitativa da matriz de confusão obtida no conjunto de teste (Figura 6.12) reforça essas

observações, evidenciando que as confusões entre classes seguem padrões semelhantes aos

já identificados.

Especificamente, na atividadeDrink.Fromcup, observou-se que seu elevado número

de amostras no conjunto de treinamento introduzia um viés amostral. A classe WatchTV,

como já destacado em análises dos subconjuntos preliminares, mesmo em menor quan-

tidade de amostras apresentou baixa variabilidade das poses associadas à ação, caracte-

rizada por movimentos sutis e postura predominantemente estática, o que resultou em

dificuldades de generalização do modelo. De modo semelhante, a classe Readbook também

manteve grande confusão com diversas classes que o indiv́ıduo realiza sentado e, ainda,

interagindo com um objeto como Usetablet, Uselaptop, Eat.Attable entre outras.

Na tentativa de mitigar esses problemas, foram avaliadas diferentes estratégias

de pré-processamento aplicadas exclusivamente ao conjunto de treinamento, com o obje-
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Figura 6.12: Matriz de confusão do conjunto de teste do TST completo.

tivo de reduzir os efeitos do desbalanceamento entre classes e aumentar a variabilidade

das ações menos representadas. As estratégias investigadas inclúıram: (1) ajuste da

distribuição das classes mais frequentes e com maior grau de confusão, em particular

Drink.Fromcup, Readbook e WatchTV ; e (2) a imposição de um limite máximo de 400

amostras por classe.

O conjunto de treino apresenta uma média de aproximadamente 215 amostras

por classe, contudo, devido ao forte desbalanceamento da distribuição, essa média não é

um indicador robusto da representatividade real das classes, uma vez que a maioria delas

possui menos de 400 amostras, enquanto apenas seis classes atingem ou ultrapassam esse



6.2 Experimentos com o modelo treinado no TST 75

valor. Além disso, observa-se que o desbalanceamento é fortemente concentrado em duas

classes dominantes(Drink.Fromcup e Walk), com mais de 1000 amostras cada. Embora

a limitação do número de amostras por classe reduza o viés associado a essas classes

majoritárias, uma redução excessiva poderia comprometer classes já bem definidas pela

maior disponibilidade de dados, levando à perda de variabilidade intra-classe. Nesse con-

texto, o teto de 400 amostras foi definido como um compromisso entre a mitigação do

desbalanceamento e a preservação da representatividade estat́ıstica das classes mais fre-

quentes, afetando principalmente as classes dominantes e mantendo a distribuição original

da maioria das demais.

Paralelamente à aplicação das duas estratégias, foi adotada uma estratégia de

aumento de dados baseada exclusivamente em transformações geométricas aplicadas às

próprias amostras do conjunto de treino, sem a introdução de novas instâncias independen-

tes ou dados sintéticos externos. Essas transformações foram direcionadas exclusivamente

às classes sub-representadas no conjunto de treinamento. A seleção dessas classes foi fun-

damentada em uma análise quantitativa da métrica de precisão por classe, associada à

distribuição de amostras nos conjuntos de treino, validação e teste, conforme apresen-

tado na Tabela 6.9. A precisão mede quão confiáveis são as predições do modelo para

uma classe espećıfica, considerando apenas as amostras classificadas como pertencentes

a essa classe. Com base nesses critérios, foram identificadas como classes cŕıticas Cut-

bread, Drink.Fromglass, Maketea.Insertteabag, Pour.Fromcan e Usetablet, caracterizadas

por baixos valores de precisão e, em alguns casos, pela escassez ou ausência de amostras no

conjunto de validação. O objetivo principal dessa estratégia foi mitigar o impacto da limi-

tada representatividade dessas classes e ampliar a variabilidade intra-classe, favorecendo

um processo de aprendizado mais robusto.

Tabela 6.9: Precisão por classe cŕıtica e distribuição de amostras nos conjuntos de treino,
validação e teste.

ID Classe Precisão (%) Treino Validação Teste
6 Cutbread 33,33 23 2 20
10 Drink.Fromglass 0,00 40 19 6
20 Maketea.Insertteabag 21,88 30 6 20
22 Pour.Fromcan 12,50 34 2 23
28 Usetablet 0,00 34 0 15
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Os aumentos adotados foram pensados para atuação direta sobre a estrutura

geométrica das sequências de pose, permitindo simular variações realistas na execução

das atividades humanas monitoradas. O primeiro tipo de aumento consiste na aplicação

de rotações aleatórias de pequena magnitude, limitadas a até 15 graus, sobre o esqueleto

humano. Essa transformação busca representar variações naturais na orientação corporal

do indiv́ıduo em relação à câmera, comuns em cenários reais de monitoramento doméstico,

nos quais o posicionamento do sujeito raramente é perfeitamente alinhado ao plano de cap-

tura. Ao introduzir essa variabilidade, o modelo é incentivado a aprender representações

mais invariantes à orientação espacial da pose.

O segundo aumento corresponde à variação de escala da pose, na qual todas as

articulações são ampliadas ou reduzidas de forma proporcional. Essa operação simula di-

ferenças na distância entre o indiv́ıduo e a câmera, bem como variações antropométricas

entre sujeitos distintos. Do ponto de vista do aprendizado, esse aumento reduz a de-

pendência do modelo em relação a dimensões absolutas do esqueleto, favorecendo a cap-

tura de relações espaciais relativas entre as articulações ao longo do tempo.

Adicionalmente, foi introduzida uma perturbação controlada nas coordenadas

dos pontos-chave, caracterizada pela adição de rúıdo de baixa intensidade. Esse tipo de

aumento visa modelar imprecisões inerentes aos algoritmos de estimação de pose, que

podem ocorrer em função de oclusões, variações de iluminação ou rúıdo visual. Ao expor

o modelo a essas perturbações durante o treinamento, busca-se aumentar sua robustez

a pequenas inconsistências nas entradas, reduzindo o risco de overfitting a configurações

articulares espećıficas.

Todas as operações de aumento de dados foram aplicadas exclusivamente ao con-

junto de treinamento, preservando a integridade dos conjuntos de validação e teste. Essa

estratégia permitiu ampliar a diversidade das classes sub-representadas sem introduzir

viés artificial na avaliação do desempenho do modelo. Os resultados obtidos para cada

estratégia estão apresentados na Tabela 6.10.

A introdução da estratégia de aumento de dados em classes cŕıticas (Tabela 6.9),

aliada ao balanceamento das classes Drink.Fromcup, Readbook e WatchTV, foi inicial-

mente avaliada com 30 épocas de treinamento. Observou-se uma leve redução na acurácia
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Tabela 6.10: Resultados obtidos ao aplicar diferentes estratégias de correção de desbalan-
ceamento e aumento de dados no conjunto de treino Toyota Smarthome Trimmed.

Estratégia Validação (%) Teste (%) Duração
Acc. Global Acc. Média Acc. Global Acc. Média

1 74,53 54,35 71,67 55,22 18h
2 71,83 50,15 69,00 55,21 13h

de validação, que passou para 74,53%, acompanhada por acurácia média de 54,35%. No

conjunto de teste, o desempenho mostrou-se estabilizado, com acurácia global de 71,67%

e acurácia média por classe de 55,22%, superando a acurácia média obtida sem balan-

ceamento. Destaca-se que, nessa configuração, a acurácia de teste atingia 55,05% já em

20 épocas, indicando convergência mais precoce. O prolongamento do treinamento para

40 épocas, mantendo a mesma estratégia de aumento de dados, não resultou em ganhos

substanciais, sugerindo saturação do desempenho.

A comparação entre as matrizes de confusão do conjunto de teste para o TST

completo (Figura 6.12) e para o modelo com a estratégia 1 de balanceamento (Figura 6.13)

evidencia que os padrões gerais de confusão entre classes foram amplamente preservados.

De forma complementar, observa-se que o balanceamento proporcionou ganhos signifi-

cativos em algumas classes, enquanto outras mantiveram acertos baixos, especialmente

aquelas semanticamente ou biomecanicamente semelhantes, indicando que o aumento de

dados e redistribuição das amostras não elimina completamente confusões entre ações

similares.

Entre as classes cŕıticas houve ganho apenas na classe Usetablet, que passou de

0% para 6,7% de acertos. Por outro lado, a classe Cutbread apresentou uma redução

no desempenho, com queda de 15% para 10% de acertos, enquanto Maketea.Insertteabag

manteve-se estável em 35%. A classe Pour.Fromcan teve o número de acertos reduzido

a 0. Além disso, classes como Drink.Fromglass continuaram sem acertos (0%), permane-

cendo fortemente confundidas com ações semanticamente próximas que dispõem de maior

número de amostras, como Drink.Fromcup. Esses resultados indicam que, embora o ba-

lanceamento contribua para melhorar o desempenho de algumas classes sub-representadas,

ele não é suficiente para resolver ambiguidades inerentes a ações com poucos exemplos ou

elevada similaridade semântica e biomecânica.
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Figura 6.13: Matriz de confusão do conjunto de teste do TST para o modelo com estratégia
1 de balanceamento.

No geral, o maior ganho absoluto ocorreu na classe Eat.Attable, com aumento de

38 amostras corretamente classificadas, correspondendo a um ganho relativo de 15,02%.

Outras classes também apresentaram ganhos relevantes, como a redução das confusões

entre Drink.Fromcup e Drink.Fromcan (+32 amostras, 4,28%), Readbook (+22 amostras,

6,59%), bem como melhorias na separação entre WatchTV e Readbook (+21 amostras,

9,13%) e na classe Drink.Fromcan (+18 amostras, 15,13%). Esses resultados indicam que

a estratégia favoreceu o aprendizado de classes menos representadas e contribuiu para

uma melhor distinção entre ações semanticamente próximas.

Por outro lado, algumas classes apresentaram perdas consideráveis. A maior
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queda foi observada em Drink.Fromcup, com redução de 104 amostras corretamente clas-

sificadas (-13,92%). Também foram observadas intensificações de confusão envolvendo

Eat.Attable e Drink.Fromcup (-33 amostras, -13,04%), bem como em WatchTV (-28

amostras, -12,17%), Readbook (-21 amostras, -6,29%) e Drink.Frombottle (-17 amostras,

-12,88%), todas associadas a confusões com Drink.Fromcup. Esses resultados mostram

que, ao reduzir a predominância de algumas classes no treinamento, ocorreu uma redis-

tribuição dos erros, com aumento de confusões entre ações que compartilham posturas e

contextos semelhantes.

Em śıntese, a estratégia 1 de balanceamento promove melhorias expressivas em

classes cŕıticas, especialmente em Eat.Attable e Drink.Fromcan, favorecendo a repre-

sentação de ações menos frequentes. Simultaneamente, observa-se a ocorrência de com-

pensações naturais, com aumento de confusões em classes que anteriormente eram bem

reconhecidas, evidenciando que o balanceamento atua como um mecanismo de redistri-

buição do erro e equiĺıbrio do modelo, ainda que não elimine completamente ambiguidades

entre classes postural ou semanticamente similares.

A estratégia 2 apresentou redução da acurácia de validação, atingindo 71,83%,

bem como queda da acurácia média por classe para 50,15%. No conjunto de teste, en-

tretanto, a acurácia global manteve-se em 69,00%, com acurácia média de 55,21%. Esses

resultados indicam que a restrição no número de amostras por classe limita a capacidade

de ajuste do modelo durante o treinamento, mas não compromete de forma significativa

o desempenho no teste, sugerindo um efeito regularizador impĺıcito. A Tabela 6.11 apre-

senta a distribuição de amostras por classe após a aplicação do teto global, mostrando que

classes dominantes como Drink.Fromcup, Readbook, Sitdown e Walk foram drasticamente

reduzidas, enquanto classes médias e raras foram preservadas. O total de amostras de

treino caiu de 8.829 para 5.920, mantendo-se os conjuntos de validação e teste inalterados

para garantir comparabilidade.

A comparação entre as matrizes de confusão do balanceamento 2 (Figura 6.14)

e do balanceamento 1 (Figura 6.13) evidencia alterações relevantes na distribuição dos

erros do modelo. O maior ganho individual foi observado na redistribuição das predições

da classe Walk para Leave, com um acréscimo de 60 amostras (4,85%), indicando maior
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Figura 6.14: Matriz de confusão do conjunto de teste do TST para o modelo com estratégia
2 de balanceamento.

separação entre essas ações. Outros aumentos relevantes na redistribuição de erros incluem

as confusões entre Walk e Enter (+53, 4,28%), e Walk e Cook.Cleanup (+20, 1,62%).

Em termos de acertos efetivos (diagonal da matriz), destacam-se os ganhos nas

classes WatchTV (+21, 9,13%) e Uselaptop (+15, 8,43%).

Em contrapartida, a maior perda de desempenho foi concentrada na classe Walk,

que apresentou redução de 178 amostras corretamente classificadas (-14,39%). Além disso,

observou-se aumento das confusões de outras classes com Walk, incluindo Usetelephone

(-17, -11,56%), Enter (-17, -12,78%) e Leave (-15, -14,02%). Por fim, a classe Takepills

apresentou queda de desempenho, com redução de 14 acertos (-10,14%).
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Tabela 6.11: Distribuição de amostras por classe após aplicação de teto global de 400
amostras no conjunto de treino.

Classe Nome da Classe Treino Validação Teste Total
1 Cook.Cleandishes 225 20 133 378
2 Cook.Cleanup 254 19 107 380
3 Cook.Cut 93 17 68 178
4 Cook.Stir 300 80 199 579
5 Cook.Usestove 78 0 18 96
6 Cutbread 23 2 20 45
7 Drink.Frombottle 209 0 132 341
8 Drink.Fromcan 171 35 119 325
9 Drink.Fromcup 400 379 747 1526
10 Drink.Fromglass 40 19 6 65
11 Eat.Attable 333 31 253 617
12 Eat.Snack 140 24 52 216
13 Enter 282 29 133 444
14 Getup 400 78 317 795
15 Laydown 79 37 65 181
16 Leave 289 20 107 416
17 Makecoffee.Pourgrains 35 8 21 64
18 Makecoffee.Pourwater 41 8 27 76
19 Maketea.Boilwater 37 9 16 62
20 Maketea.Insertteabag 30 6 20 56
21 Pour.Frombottle 112 60 104 276
22 Pour.Fromcan 34 2 23 59
23 Pour.Fromkettle 69 10 28 107
24 Readbook 400 133 334 867
25 Sitdown 400 117 439 956
26 Takepills 177 29 138 344
27 Uselaptop 184 34 178 396
28 Usetablet 34 0 15 49
29 Usetelephone 251 53 147 451
30 Walk 400 521 1237 2158
31 WatchTV 400 73 230 703

Total 5920 1853 5433 13206

Nota: observa-se o desbalanceamento no número de amostras de treino, de modo que diversas classes
não atingem o teto proposto.

Entre as classes cŕıticas, observa-se ganho de acertos em Cutbread, de 10% para

15%, enquanto Maketea.Insertteabag apresentou redução de 35% para 30%. Por outro

lado, Drink.Fromglass manteve-se com 0% de acertos, Pour.Fromcan continuou em 0% e

Usetablet reduziu de 6,7% para 0%. Esses resultados indicam que novamente o balance-

amento promoveu redistribuição de erros.

Em śıntese, o balanceamento 2 atenuou parcialmente o viés das classes dominantes

ao promover uma redistribuição dos erros entre classes funcionalmente semelhantes, alte-
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rando os padrões de confusão observados no modelo. Embora a classe Walk tenha perma-

necido como um dos principais polos de erro, observou-se uma redistribuição das predições

incorretas envolvendo essa classe, bem como ganhos pontuais de acurácia em classes es-

pećıficas. Como consequência, verificou-se uma maior homogeneidade na acurácia média

por classe, indicando um treinamento mais equilibrado. Ainda assim, algumas classes

permaneceram desafiadoras, especialmente aquelas sub-amostradas ou semanticamente

próximas, evidenciando limitações inerentes à representação baseada apenas em esquele-

tos 2D. Esse comportamento sugere que o balanceamento e as estratégias de aumento de

dados atuam como mecanismos de regularização, melhorando o equiĺıbrio do treinamento

sem eliminar completamente ambiguidades estruturais do problema.

6.2.5 Comparação com a Literatura

Para comparar os resultados obtidos com o uso do PoseConv3D, considera-se o modelo

Separable Spatio-Temporal Attention (STA) (DAS et al., 2019), proposto pelos próprios

autores do conjunto TST para lidar com os desafios espećıficos desse conjunto. O STA

é guiado por pose 3D e também utiliza informações de aparência (RGB) acopladas a

uma 3D-CNN. O modelo funciona acoplando um mecanismo de atenção sobre a 3D-

CNN, utilizando as coordenadas 3D do esqueleto humano como entrada para uma LSTM

de 3 camadas. A LSTM é uma arquitetura de rede neural recorrente (RNN) capaz de

aprender dependências temporais nos dados. Neste caso, a rede direciona a atenção

espacial e temporal de forma separada. A dissociação entre atenção espacial e temporal

permite que o modelo concentre-se em regiões e momentos relevantes do v́ıdeo, além de

proporcionar maior robustez a mudanças de ângulo de câmera.

A Tabela 6.12 apresenta os resultados do modelo STA e os resultados do Pose-

X3D-S para o conjunto Toyota Smarthome Trimmed obtidos no presente trabalho. Para a

comparação de resultados, reitera-se que ambos os modelos apresentados foram treinados

sob o protocolo Cross-Subject definido para o conjunto TST e apresentado na Seção 4.2.1.

Essa escolha assegura a utilização das mesmas listas de v́ıdeos e das mesmas divisões de

conjuntos de treinamento, validação e teste entre os trabalhos.

Em termos de custo computacional, o modelo STA apresenta uma complexidade
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Tabela 6.12: Comparação de desempenho do conjunto de teste do Toyota Smarthome
Trimmed na metodologia proposta neste trabalho com o método da literatura.

Modelo Entrada Acurácia Global Acurácia Média
STA Pose + RGB 75,3% 54,2%
STA Pose somente Não informado 42,5%
PoseConv3D - X3D
(Este trabalho) Pose somente 72,26% 54,51%

significativamente maior que a X3D. O STA exige pré-treinamento separado das redes

base I3D (RGB) e LSTM (pose 3D), consumindo cerca de 23 horas, seguido de 5 ho-

ras adicionais para o treinamento ponta a ponta do mecanismo de atenção. Além disso,

a utilização de múltiplas GPUs (4 GTX 1080 Ti) é necessária para viabilizar esse trei-

namento, refletindo um alto consumo de recursos de hardware. Em contraste, a X3D

treinada apenas com informações de pose 2D em uma única GPU, totalizou 12 horas

de treinamento para o conjunto completo, sem necessidade de pré-treinamento separado,

demonstrando maior eficiência computacional. O maior gasto de tempo foi para extração

de mapas de calor dos 16.115 v́ıdeos. Essa diferença evidencia que, embora o STA possa

alcançar maior acurácia ao combinar RGB e pose 3D, ele impõe custos computacionais

consideravelmente superiores em comparação ao modelo baseado exclusivamente em pose.

Além disso, apesar de o STA com Pose + RGB apresentar a maior acurácia global, a X3D

alcançou uma acurácia média significativamente superior comparada ao STA utilizando

apenas pose, e ficando relativamente próximo ao STA que combina Pose e RGB. Esse

resultado demonstra que a X3D consegue capturar com fidelidade as diferentes classes de

ações, mesmo utilizando apenas informações de pose 2D.

Durante a fase de teste, o tempo de processamento de um único v́ıdeo (forward

pass) com o STA foi de aproximadamente 338 ms. Embora não se tenha medido ainda

o tempo de inferência com o pipeline do PoseConv3D, o modelo foi executado de forma

eficiente para o conjunto completo de v́ıdeos.

6.2.6 Experimento de agrupamento semântico de classes

O objetivo deste experimento foi avaliar o potencial do modelo para um cenário de monito-

ramento mais geral de idosos, em que o foco está em categorias amplas de comportamento,
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sem preocupação com variações finas de cada ação. Para isso, realizou-se inicialmente um

agrupamento semântico das classes baseado na classe base de cada ação, definida como

a parte do rótulo anterior ao primeiro ponto. Dessa forma, ações como Cook.Cleandishes e

Cook.Cleanup foram agrupadas na classe Cook, enquantoDrink.Fromcup eDrink.Frombottle

passaram a pertencer à classe Drink. Após o agrupamento, foram definidas 19 classes-base

e o modelo foi treinado novamente com a nova rotulação.

A avaliação do modelo sob essa configuração apresentou uma acurácia geral de

77,7% e uma acurácia média por classe de 67,9% no conjunto de teste. Esses resultados

indicam que, embora o modelo tenha desempenho satisfatório no reconhecimento global

das ações, algumas classes ainda apresentam maior dificuldade de classificação. A análise

da matriz de confusão exibida na Figura 6.15 mostra que classes mais frequentes e visual-

mente distintas, como Walk, apresentam alto número de acertos, enquanto classes menos

representadas ou visualmente semelhantes a outras, como Cutbread e Eat, apresentam

maior dispersão fora da diagonal principal. No caso da classe Eat, a redução na acurácia

em relação às suas ações individuais provavelmente está relacionada à variação de postura

durante a execução da ação: enquanto comer à mesa geralmente ocorre sentado, consumir

snacks pode acontecer em pé, deitado ou em movimento, tornando o reconhecimento mais

desafiador.

Embora a fusão das classes Drink tenha simplificado a classificação, essa es-

tratégia nem sempre é vantajosa, pois pode agrupar ações que o modelo ainda confunde

de formas diferentes, mantendo ambiguidades. Uma alternativa seria agrupar classes com

base na similaridade de postura ou nos padrões de confusão observados nas matrizes de

confusão, permitindo reduzir de forma mais direcionada a complexidade do problema.

Outra abordagem complementar seria treinar modelos especialistas para subconjuntos

de classes que apresentam alta similaridade postural ou semântica, de modo a manter a

granularidade quando necessário, sem comprometer o desempenho global do sistema.

Ainda assim, o agrupamento semântico das classes cumpriu seu papel de reduzir

a complexidade do problema de classificação, permitindo que o modelo aprenda padrões

gerais de comportamento dos indiv́ıduos. Mesmo com algumas confusões entre classes

semelhantes, os resultados indicam que o modelo é capaz de identificar corretamente a
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Figura 6.15: Matriz de Confusão do conjunto de teste do TST após agrupamento
semântico de classes.

maioria das ações relevantes para o monitoramento geral de idosos, validando a abordagem

adotada.
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7 Conclusão

Este trabalho investigou a aplicação do modelo PoseConv3D ao conjunto Toyota Smarthome

Trimmed (TST) no contexto do reconhecimento de ações humanas voltado ao monitora-

mento não invasivo de idosos, utilizando exclusivamente informações de v́ıdeo processadas

a partir de mapas de calor 2D das articulações. A partir dessa investigação, foi posśıvel

demonstrar que o modelo é capaz de monitorar atividades de forma não invasiva por meio

de uma rede neural tridimensional baseada em sequências de pose.

Os resultados experimentais indicam que, mesmo em um conjunto desafiador

como o TST, caracterizado por elevada variabilidade postural e ações concorrentes, o

modelo alcança desempenho consistente, especialmente em ações com variação de postura

bem definida, diretamente relevantes para cenários de assistência e prevenção de riscos.

A análise detalhada das matrizes de confusão e das métricas por classe eviden-

ciou que as principais limitações do modelo estão associadas à semelhança semântica e

postural entre determinadas ações, em especial aquelas realizadas em posição sentada ou

envolvendo interação com objetos semelhantes. Nesse contexto, a aplicação de estratégias

de balanceamento e aumento de dados mostrou-se eficaz para mitigar vieses amostrais,

reduzir confusões sistemáticas e estabilizar a acurácia média por classe, além de favorecer

uma convergência mais precoce do treinamento, mesmo sem impactar significativamente

a acurácia global de teste.

O agrupamento semântico das classes permitiu avaliar o modelo sob uma pers-

pectiva mais alinhada ao monitoramento comportamental, demonstrando que a redução

da granularidade das ações preserva informações essenciais sobre o estado funcional do

indiv́ıduo. Essa abordagem reforça a viabilidade do uso do modelo em aplicações práticas,

nas quais a identificação de padrões gerais de comportamento é frequentemente mais re-

levante do que a distinção entre ações finamente granulares.

Os experimentos também evidenciaram que o pré-treinamento em conjuntos ex-

ternos, aliado a ajustes criteriosos de hiperparâmetros, é determinante para alcançar um

equiĺıbrio entre capacidade de ajuste e generalização, mesmo em cenários com forte des-
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balanceamento de classes.

Comparativamente, a metodologia proposta neste trabalho supera o desempenho

de acurácia média por classe reportado no modelo proposto no trabalho original do TST

(modelo STA), porém com uma implementação mais simples e de menor custo computa-

cional.

Como perspectivas futuras, planeja-se integrar o modelo a um sistema de mo-

nitoramento em tempo real, possibilitando a avaliação do desempenho de inferência e

da viabilidade computacional em ambientes domésticos reais. Além disso, a investigação

de estratégias avançadas de aumento de dados para classes sub-representadas e a incor-

poração de informações contextuais da cena, como objetos e layout do ambiente, visando

a redução de ambiguidades entre ações visualmente semelhantes e ampliação da aplicabi-

lidade do modelo em cenários de assistência à vida diária.



BIBLIOGRAFIA 88

Bibliografia

ABDELGAWAD, A.; YELAMARTHI, K.; KHATTAB, A. Iot-based health monitoring
system for active and assisted living. In: Smart Objects and Technologies for Social Good:
Second International Conference, GOODTECHS 2016. [S.l.: s.n.], 2017. p. 11 – 20.

AGGARWAL, J. K.; RYOO, M. S. Human activity analysis: A review. In: ACM Com-
puting Surveys (CSUR). [S.l.: s.n.], 2011. (3, v. 43).
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DF: Ministério da Cidadania.
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