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Resumo

A garantia da qualidade de vida da populagao idosa é um tema central diante do enve-
lhecimento global, e os sistemas de Ambiente de Vida Assistida (Ambient Assisted Living
— AAL) tém se mostrado essenciais para o monitoramento de atividades didrias. Esses
sistemas integram diferentes tecnologias para apoiar a autonomia, seguranca e bem-estar
de idosos em seus ambientes domésticos, permitindo detectar atividades, comportamentos
de risco e situagoes de emergeéncia. Neste trabalho, aplica-se o framework PoseConv3D
ao conjunto de dados Toyota Smarthome Trimmed, composto por videos de atividades
de vida diaria de idosos em ambientes reais, para o reconhecimento de agoes a partir de
videos. O modelo utiliza a estimativa de pose humana para gerar mapas de calor 2D das
articulacoes ao longo do tempo, que sao entao processados por uma rede neural convolu-
cional tridimensional, permitindo capturar padroes espaciais e temporais das agoes. Nos
experimentos, o modelo alcangou 72,2% de acurécia global e 54,5% de acurdcia média
por classe, superando em acuracia média o desempenho do modelo proposto no trabalho
original do conjunto Toyota Smarthome Trimmed. Considerando a alta granularidade do
conjunto, que inclui 31 classes de acoes com variagoes posturais e atividades visualmente
semelhantes, foi adotada uma estratégia adicional de agrupamento seméantico, reduzindo
as classes para 19 categorias-base, permitindo avaliar o desempenho do modelo em ter-
mos de padroes mais amplos de comportamento de idosos. O modelo sobre o conjunto
agrupado apresentou uma acurédcia global de 77,7% e uma acurdcia média por classe de

67,9%.

Palavras-chave: Reconhecimento de Ac¢oes Humanas, Aprendizado Profundo, Redes
Neurais Convolucionais, Visao Computacional, Ambiente de Vida Assistida, Monitora-

mento de Idosos.



Abstract

Ensuring the quality of life for the elderly population is a central theme in the face of
global aging, and Ambient Assisted Living (AAL) systems have proven essential for mo-
nitoring daily activities. These systems integrate different technologies to support the
autonomy, safety, and well-being of older adults in their home environments, allowing
the detection of activities, risky behaviors, and emergency situations. In this work, the
PoseConv3D framework is applied to the Toyota Smarthome Trimmed dataset, compo-
sed of videos of daily living activities of older adults in real environments, for action
recognition from videos. The model uses human pose estimation to generate 2D heat
maps of joints over time, which are then processed by a three-dimensional convolutional
neural network, allowing the capture of spatial and temporal patterns of actions. In the
experiments, the model achieved 72.2% overall accuracy and 54.5% average accuracy per
class, surpassing the performance on mean class accuracy of model proposed in the origi-
nal Toyota Smarthome Trimmed study. Considering the high granularity of the dataset,
which includes 31 classes of actions with postural variations and visually similar activities,
an additional semantic clustering strategy was adopted, reducing the classes to 19 base
categories, allowing the model’s performance to be evaluated in terms of broader patterns
of older adult behavior. The model on the grouped set showed an overall accuracy of

77.7% and an average accuracy per class of 67.9%.

Keywords: Human Action Recognition, Deep Learning, Convolutional Neural Networks,

Computer Vision, Ambient Assisted Living, Elderly Monitoring,.
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1 Introducao

De acordo com o relatério de Perspectivas da Populagao Mundial 2024 das Nagoes Unidas
(ONU, 2024), a transigao demografica global caminha para um marco histérico: até me-
ados da década de 2050, as pessoas com 65 anos ou mais representarao cerca de 18% da
populagao mundial. No Brasil, essa realidade é ainda mais imediata; segundo o Censo 2022
do IBGE (IBGE, 2022), a populac¢ao com 60 anos ou mais ja representa 15,8% do total do
pais, com projecoes do Ministério da Saide indicando que, até 2030, o niimero de idosos
deverd ultrapassar o de jovens na faixa de zero a 14 anos (BRASIL, 2022). O envelheci-
mento demanda servigos e beneficios que garantam uma vida condigna, diferenciando-se
do restante da sociedade devido ao cardter degenerativo de certas condicoes, conforme
destacado pela Rede Interagencial de Informagoes para Saude (RIPSA) (RISPA, 2009).
Estima-se, ainda, que até 80% da populacao idosa possua ao menos uma condicao cronica,
projetando um contingente de 50 milhoes de pessoas com necessidades permanentes de
saude até 2050. Diante disso, o sistema exige nao apenas investimentos vultosos, mas
uma readequacao em infraestrutura e capital humano, focando na formacao geridtrica
integrada e no fortalecimento das redes sociais de suporte.

Um exemplo de acao diante de desafios como os mencionados, realizado pelo go-
verno brasileiro, foi o langamento em 2018 da Estratégia Brasil Amigo da Pessoa Idosa
(BRASIL, 2018), cujas iniciativas incluem a promocao de ambientes seguros, adaptacao
de residencias, lazer e medidas de prevencao de quedas. Mais recentemente, politicas
como o Programa Envelhecer nos Territérios e o Viva Mais Cidadania (BRASIL, 2024)
tém focado no combate ao idadismo e na garantia de direitos nos locais de residéncia.
Nesse contexto, a inovagao tecnologica surge como o pilar estratégico para otimizar re-
cursos e garantir a autonomia e inclusao social da populacdo que envelhece. Assim, a
Computacao desempenha um papel fundamental seja através do letramento digital ou
pelo desenvolvimento de tecnologias assistivas e telessaude.

A Visao Computacional é uma area da Ciéncia da Computagao dedicada a ex-

tracao e a interpretacao de informacgoes a partir de imagens e videos, com o objetivo de
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representar e compreender o mundo real por meio de dados visuais (SZELISKI, 2022).
Entre os problemas centrais dessa area, destaca-se o reconhecimento de acoes humanas,
no qual modelos computacionais buscam identificar e classificar atividades a partir de
sequéncias visuais (SHUCHANG, 2022). No contexto do cuidado com a satide de idosos,
o reconhecimento de agoes baseado em visao computacional permite o monitoramento au-
tomatizado de atividades cotidianas de forma nao intrusiva, utilizando apenas informacgoes
visuais. Essa abordagem contribui para a preservacao da autonomia dos individuos, ao
dispensar o uso de dispositivos vestiveis ou sensores corporais, possibilitando que os idosos
realizem suas atividades didrias de maneira natural. A deteccao de eventos relevantes,
como quedas, comportamentos atipicos ou situacoes de emergéncia, pode, assim, ocorrer
sem a necessidade de vigilancia constante por parte de familiares ou cuidadores.

Esse tipo de aplicacao insere-se no escopo dos Sistemas de Ambiente de Vida
Assistida (Ambient Assisted Living — AAL), cujo objetivo é oferecer suporte a vida in-
dependente e segura de pessoas idosas ou com limitagoes funcionais em seus préprios
ambientes (CICIRELLI et al., 2021). Na prética, muitas solugdes AAL sao concebidas
como ecossistemas complexos, frequentemente associados a infraestruturas baseadas em
Internet das Coisas (Internet of Things — 1oT), que envolvem multiplos sensores, dis-
positivos conectados e camadas de comunicagao. Embora essas abordagens ampliem as
possibilidades de monitoramento e automacao, elas também introduzem desafios adicio-
nais de custo, implantacao e manutencao em ambientes domésticos reais. E nesse contexto
que se estabelece a motivacao deste trabalho. Diante da crescente demanda por solugoes
de monitoramento assistido e da complexidade observada em arquiteturas AAL baseadas
em loT, este estudo propoe investigar uma alternativa mais simples e focada, centrada
no uso de modelos de reconhecimento de acoes guiados por representacoes de pose hu-
mana, considerando o video como unica fonte de entrada. Essa abordagem busca reduzir
a dependéncia de sensores adicionais e de infraestruturas especializadas, isolando a contri-

buicao metodoldgica do reconhecimento de agoes e facilitando a implementacao pratica.
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1.1 Definicao do problema

A implementacao dos modelos de reconhecimento de acoes envolve, primariamente, a
extracao de caracteristicas das imagens. Essas caracteristicas, também referidas como
features, sao estruturas capazes de representar uma informagao e podem ser obtidas de
forma manual ou de forma automatizada com uso de aprendizado de maquina. Existem
diferentes formatos de entrada para o treinamento de modelos, como imagens proveni-
entes de cameras comuns, cameras de profundidade (RGB-D), cameras infravermelhas
ou térmicas. Ha ainda dados obtidos por sensores de movimento e entradas biomédicas
como sensores de frequéncia cardiaca e respiracao. Os formatos diferem no grau de in-
formacao que fornecem e influenciam na acuracia do modelo, alguns sendo mais invasivos
em relacao a privacidade do individuo monitorado e podem requerer interacao direta com
o dispositivo receptor da informacao.

O problema central abordado por este trabalho é a necessidade de desenvolver
sistemas de monitoramento continuo de idosos que sejam nao invasivos e nao dependam
de sensores fisicos, utilizando apenas entradas no formato de imagens e video. Essa abor-
dagem busca garantir o conforto e a privacidade dos idosos, evitando a necessidade de
dispositivos vestiveis ou sensores intrusivos. A qualidade e natureza dos dados obtidos
refletem diretamente na acurdcia e eficiéncia dos modelos de reconhecimento de agoes.
Para formatos visuais de entrada, por exemplo, a precisao pode ser afetada por varidveis
como iluminagao, angulos de camera e a presenca de obstrucoes no ambiente. Além das
preocupagoes com a invasividade, o custo computacional e financeiro atrelado ao tipo de
informagao consumida impacta diretamente a aplicabilidade dos modelos em um cenério
real. Sistemas baseados em entradas visuais precisam ser robustos e adaptativos para
funcionar de maneira eficaz em diversas condi¢oes. Outro desafio é a disponibilidade de
conjuntos de dados (datasets) adequados para o treinamento e teste dos modelos. Os
conjuntos de dados para o problema de reconhecimento de agoes de idosos sao majori-
tariamente restritos, muitas vezes produzidos pelos préoprios autores dos sistemas e nao
disponibilizados publicamente. Portanto, é essencial explorar e avaliar modelos avangados
de reconhecimento de acoes que utilizem apenas entradas visuais, superando as limitagoes

mencionadas para garantir um monitoramento seguro, eficiente e nao invasivo dos idosos.
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1.2 Objetivos

O objetivo geral deste trabalho ¢ aplicar um modelo de reconhecimento de acoes para
monitoramento nao invasivo que utilize apenas entradas de imagens e video, visando
identificar atividades cotidianas e situacoes de risco de forma precisa e eficiente, sem
comprometer o conforto dos usudrios. As métricas utilizadas sao acurédcia geral e acurdcia
média por classe de acao e custo computacional. As propriedades consideradas sao tipo
de entrada, método de extracao de caracteristicas e método de classificacao. Sao objetivos

especificos:

e Estudar diferentes modelos de reconhecimento de agoes baseados em entradas visu-

ais.

e Levantar os principais conjuntos de dados de agoes relacionadas ao monitoramento
de idosos.
e Aplicar um modelo eficiente de reconhecimento de acoes baseado em entradas visu-

ais.

e Avaliar o desempenho do modelo em um conjunto de dados voltado para o monito-

ramento de idosos.
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2 Fundamentacao teodrica

Este capitulo apresenta os conceitos fundamentais para a compreensao do problema de
monitoramento de pessoas, com foco no reconhecimento de agoes. A Secao 2.1 aborda
o problema de reconhecimento de acoes, explorando suas origens, objetivos e relevancia.
Na Secao 2.2, sao discutidos os conceitos de agoes e as diversas formas de representa-las
computacionalmente, destacando a importancia de uma representacao eficiente para o
sucesso dos modelos. A Secao 2.3 introduz o conceito de redes neurais, detalhando seu
funcionamento e a evolugdo para o aprendizado profundo (deep learning), que impulsiona
grande parte das inovac¢oes no reconhecimento de acoes. Por fim, a Secao 2.3.1 foca nas
Redes Neurais Convolucionais (CNNs), uma arquitetura amplamente utilizada devido
a sua eficiéncia na extragao de caracteristicas relevantes de imagens e videos, aspectos

criticos na resolucao do problema em questao.

2.1 Reconhecimento de acoes humanas

O reconhecimento de agoes humanas (RAH) vem sendo um problema tratado especial-
mente pelos campos de visao computacional e aprendizado de méquina, sendo proveniente
do ramo de anédlise de videos. Aggarwal e Ryoo (2011) abordam o reconhecimento da ati-
vidade humana como uma tarefa cujo objetivo é analisar automaticamente as atividades
em andamento de um video desconhecido. Kong e Fu (2022) especificam que o problema
consiste em inferir acoes de individuos com base em uma acao ja realizada, e prever
acoes com base em execucoes incompletas. O estudo desse assunto, fundamentalmente,
busca definir o que sao agoes humanas e formas de representa-las a partir de abstragoes
computacionais que reproduzem propriedades e atributos providos pelo sentido da visao
humana. Esse processo é feito a partir de algoritmos, que, segundo Kong e Fu (2022),
devem produzir um rotulo apds observar a execucao total ou parcial de uma acao hu-
mana. As principais aplicagoes do uso de modelos de reconhecimento de agdes no mundo

real se encontram em sistemas de vigilancia, monitoramento de pacientes, recuperacao e
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anotagao de videos.

O conceito de agao é variado entre os diferentes autores desse objeto de pesquisa.
Turaga et al. (2008) faz distingao de agao e atividade, a primeira define como movimentos
simples executados na ordem de tempo de segundos, e a segunda como “agoes coordena-
das entre um pequeno nimero de pessoas”. Aggarwal e Ryoo (2011) ainda dividem as
atividades humanas em quatro niveis: gestos, agoes, interagoes e atividades em grupo. Os
gestos sao considerados como as partes atomicas do movimento, como levantar um braco
ou uma perna, e as agoes como sendo a composicao de multiplos gestos, como caminhar,
acenar. As interacOes e atividades envolvem mais de um individuo realizando diversas

acoes.

2.2 Representacao de acoes

O reconhecimento de acoes é visto como um problema de classificagdo, no entanto, a
tarefa primaria é definir como uma acao sera representada computacionalmente. Par-
tindo da ideia de compreender acoes usando a anatomia humana, as primeiras formas
de representagao utilizavam de modelos 2D ou 3D para descrever segmentos e juntas
correspondentes do corpo humano (WANG; HU; TAM, 2003). A tarefa comum a toda
representacao é transformar as entradas visuais, dispostas em pizels, em vetores de ca-
racteristicas (TURAGA et al., 2008). Essas abordagens iniciais fazem parte do que é
conhecido como shallow approaches (abordagens rasas) e se baseiam em caracteristicas
simples extraidas diretamente das imagens ou videos, como contornos, e fazendo uso de
algoritmos como regressao linear, regressao logistica, arvores de decisao, K-Vizinhos mais
proximos (K-nearest Neighbors), e maquina de vetores de suporte (SVM) (AGGARWAL;
RYOO, 2011). Se tratando de agoes, é de interesse capturar informagoes quanto a movi-
mento nas imagens. Para isso, alguns modelos baseados em movimento foram propostos,
como imagem de energia em movimento (Motion Energy Image — MEI) e imagem de
histérico de movimento (Motion History Image — MHI) (BOBICK; DAVIS, 2001), histo-
grama de gradientes orientados (Histogram of Oriented Gradients — HOG) (WANG et al.,
2011; DALAL; TRIGGS, 2005) e o fluxo 6ptico (Optical Flow — OF) (BEAUCHEMIN;
BARRON, 1995).
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Essas abordagens também sao conhecidas como hand-crafted features, traduzido
como “caracteristicas extraidas a mao”, e segundo Kong e Fu (2022), o termo implica que
modelos baseados nessas técnicas tém seus parametros decididos por especialistas, assim
exigindo conhecimento aprofundado do dominio. A partir do entendimento dos padroes
visuais especificos do contexto pode-se pensar no método de extracao de caracteristicas
adequado ao problema. Assim, por consequéncia, esses modelos também apresentam
dificuldade de performar de maneira generalizada. Turaga et al. (2008) menciona a im-
portancia da robustez e da invariancia ao lidar com informagoes no formato de video. A
robustez diz respeito a um modelo ser eficaz mesmo com algumas variagoes na entrada
quanto a ruidos, angulacao e iluminagao da cena, e a invariancia considera mudangas de
posicao, rotacao e escala. Os métodos baseados nas abordagens anteriores sao bastante
sensiveis nesses aspectos. Assim, a alternativa que surge e hoje representa o estado da
arte para reconhecimento de agoes (SHUCHANG, 2022) sdo as abordagens baseadas em
redes neurais profundas ou deep architectures, cujos modelos sao capazes de automatica-
mente aprender a identificar caracteristicas. O fluxo éptico, apesar de estar incluso nas
abordagens rasas, contribui significativamente quando usado como entrada em modelos de

aprendizado profundo por carregar informagoes quanto ao aspecto temporal dos videos.

2.2.1 Estimativa de pose

No contexto do reconhecimento de agoes, a estimativa de pose humana surge como uma
forma de representacao estrutural do movimento, na qual a dinamica de uma acao é
descrita a partir da configuracao espacial e temporal das articulagoes do corpo. Essa
representacao abstrai informacoes de aparéncia e fundo, concentrando-se na geometria
do corpo humano ao longo do tempo. A estimativa de pose consiste, portanto, na iden-
tificagao das posigoes das articulagoes do corpo humano em imagens ou sequéncias de
video. Inicialmente, esse problema foi abordado por meio de modelos baseados em par-
tes deforméveis, como as Pictorial Structures (PS) (FISCHLER; ELSCHLAGER, 1973),
nos quais o corpo humano é representado como um grafo. Nesses modelos, cada né cor-
responde a uma parte do corpo, enquanto as arestas codificam restrigoes geométricas

entre as articulagoes, sendo utilizadas caracteristicas manuais, como SIFT ou HoG, para
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a descricao visual das partes.

Com o avango do aprendizado profundo, surgiram modelos com uma formulacao
denominada holistica, como o DeepPose (TOSHEV; SZEGEDY, 2014), na qual a es-
timativa da pose é realizada a partir de uma representacao global da imagem. Nessa
abordagem, a CNN processa o corpo humano como um todo e prediz simultaneamente
as coordenadas (x,y) das articulagdes, sem impor explicitamente restrigoes geométricas
entre as partes. Essa mudanca representou um marco ao substituir pipelines baseados em
engenharia manual de caracteristicas por modelos aprendidos.

Apesar de sua relevancia historica, a regressao direta mostrou limitacoes em ter-
mos de precisdo espacial. Em resposta, métodos como o de Tompson et al. (2014) passaram
a modelar a estimativa de pose como um problema de predi¢do de mapas de calor (he-
atmaps), nos quais cada pizel expressa a probabilidade de ocorréncia de uma articulac¢ao
naquela posicao. Durante o treinamento, o rétulo de cada articulagao é representado por
um mapa de calor Gaussiano bidimensional, cuja média coincide com a posicao real da
junta e cuja variancia é mantida pequena para concentrar a distribuicao.

Formalmente, para uma articulacao localizada na coordenada (z4,v,), o valor do

pizel (i,j) no mapa de calor alvo T' é dado por:

5 (2.1)

: 2 : 2
o 1— )"+ () —

T(i,j) = exp (—( o +U = ) ) ,

em que o determina o grau de espalhamento da distribui¢ao de probabilidade ao redor da

articulagao. O processo de treinamento consiste em minimizar o Erro Quadratico Médio

entre os mapas de calor estimados pela rede e os mapas Gaussianos de referéncia.

2.3 Aprendizado profundo

O aprendizado profundo ou deep learning se refere a modelos que utilizam redes neurais
profundas para resolucao de problemas de classificacao e reconhecimento de padroes. A
ideia por tras das redes neurais foi introduzida por Rosenblatt (1958) com a proposta de
reproduzir o aparato visual humano que, basicamente, consiste de neuronios interconec-

tados no chamado cortex visual. Essa proposta foi o perceptron, considerado o modelo de
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um neuroénio artificial e foi originalmente proposto como um modelo probabilistico para
ilustrar como o cérebro (ou uma maquina) poderia armazenar e organizar informagoes.
A estrutura do perceptron é ilustrada na Figura 2.1. O modelo é composto por unida-
des sensoriais, de associacao e de resposta. As unidades sensoriais recebem os valores de
entrada, as unidades de associacao combinam essas informagoes por meio de pesos, e a

unidade de resposta aplica uma funcao de decisao para produzir a saida final.

Bias (viés) b

Entrada x4

Somador Funcéo de
Entrada x, Twx+b=s ativagdo f(s;)
Entrada x3

Figura 2.1: Esquema de um perceptron, mostrando as operacoes que ele realiza. Figura
elaborada pela autora.

Especificamente, o que ocorre é uma combinagao linear formada pelos pesos que
multiplicam cada variavel de entrada, somados a um viés (bias). Esse processo também
pode ser interpretado como uma regressao logistica, cujo objetivo é criar um limite linear

entre duas classes linearmente separaveis. A equacao da soma ponderada é dada por:

S; — ZU)J'SCJ' + b, (22)
j=1

em que s; ¢ a salda da soma linear ponderada, w; sao os pesos, x; os valores de entrada
e b o viés.

Em sequéncia a soma ponderada, aplica-se uma funcao de ativacao nao linear,
responsavel por definir o comportamento de decisao do perceptron. Essa funcao determina
a classe de saida com base no valor de s;. Um exemplo simples é a funcao limiar (ou

fung¢ao degrau), que atribui uma saida de 1 ou —1 de acordo com um valor de limiar 7:
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1, ses; >T

-1, ses; <,

onde y representa a classe predita.

De forma geral, a operacao do perceptron pode ser expressa como:

em que h(-) é a fungao de ativagdo — neste caso, a func¢ao limiar — aplicada a soma
ponderada s;, resultando na saida final y;.

As redes neurais profundas sao implementacoes dos chamados neuronios artifi-
ciais interconectados e dispostos em muiltiplas camadas, onde a saida dos neuronios de
uma camada alimenta os das proximas e assim por diante (feedfoward). O que difere a
implementagao desses neuronios do préprio modelo perceptron é a fungao de ativagao que
lida melhor com intervalos continuos, variando de forma gradual, sem saltos abruptos,
em resposta a pequenas mudancas na entrada. Isso contrasta com a funcao de limiar
rigido do perceptron, que tem uma transicao abrupta entre dois estados, o que pode cau-
sar instabilidade em sistemas interconectados. O termo aprendizado profundo vem da
profundidade que uma rede alcanca pelo seu nimero de camadas. O que faz com que
os modelos tenham a capacidade de “aprender” é a aplicacao de derivadas que ajustam
os diferentes parametros ou pesos da rede a partir do valor obtido na saida, analisando
um erro entre o valor esperado e obtido de uma predicao. Esse processo é chamado de
retropropagacao (backpropagation) (SZELISKI, 2022) e consiste no treinamento de uma
rede.

Um modelo pode ser ainda pré-treinado em uma tarefa (geralmente usando grande
quantidade de dados) e reaproveitado para outra tarefa relacionada (GOODFELLOW;
BENGIO Y.AND COURVILLE, 2016). A ideia é que os primeiros niveis de uma rede
neural capturam caracteristicas gerais dos dados, e esses conhecimentos podem ser tteis
para outras tarefas. Esse procedimento é chamado de transferéncia de aprendizado (trans-

fer learning).
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2.3.1 Redes Neurais Convolucionais

As redes neurais convolucionais (Convolutional Neural Networks — CNN) sao uma im-
plementagao de redes neurais multicamadas focadas especialmente na tarefa de proces-
samento de imagens. Essa arquitetura foi amplamente aprimorada e popularizada no
trabalho de Krizhevsky, Sutskever e Hinton (2012). Sua principal propriedade é o uso
de filtros para capturar padroes relevantes em regioes locais da imagem. Essas regioes
especificas sao também referidas como campos receptivos. O conjunto de pesos, dispos-
tos na forma do campo receptivo, é chamado de kernel ou filtro e pode ter diferentes
tamanhos (GONZALEZ; WOODS, 2018).

Os filtros sao movidos por toda a imagem realizando a operacao de convolucao,
a qual calcula uma soma de produtos entre os valores dos pizels e o conjunto de pesos
do kernel, os quais serao os parametros a serem aprendidos pela rede. Diferentes filtros
sao aprendidos durante o treinamento para detectar diferentes tipos de padroes na ima-
gem. A saida da operacao de convolucao gera os chamados feature maps ou mapas de

caracteristicas. A operacao de convolucao é ilustrada na Figura 2.2.

[
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Figura 2.2: Processo de convolugao com um kernel de tamanho 2x2.

De acordo com Szeliski (2022) a composi¢cao de miultiplas camadas nas redes
convolucionais busca construir caracteristicas locais e combina-las de diferentes maneiras
para produzir caracteristicas mais discriminativas e semanticamente significativas. Assim
se cria a ideia de hierarquia de caracteristicas que variam de baixo nivel, como bordas
e texturas, a alto nivel, que identificam objetos inteiros. Entre as camadas também
ocorre o processo de pooling (agrupamento) que reduz a dimensao da imagem, ajudando
a diminuir a complexidade computacional, mantendo os padroes mais importantes ao
eliminar detalhes menos relevantes.

As etapas que compoem a arquitetura das CNNs sao:
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1.

Convolucgao e geracao dos mapas de caracteristicas: aplicacao de filtros con-

volucionais sobre a imagem de entrada para extrair padroes locais.

Aplicagao da funcao de ativagao: aplicacao de uma funcao nao linear sobre

cada entrada (pizel) do mapa de caracteristicas.

Reducao de dimensionamento (pooling): redugao da dimensionalidade espacial

dos mapas de caracteristicas, preservando as informagoes mais relevantes.

Transformagao em vetor unidimensional (flattening): conversao dos mapas

de caracteristicas em um vetor para entrada nas camadas seguintes.

Camada totalmente conectada (Fully Connected Layer): responsivel pela
classificacao final, conectando todas as entradas a todas as saidas possiveis. Em
problemas de classificacao, as saidas representam as probabilidades de a imagem

pertencer a cada uma das classes consideradas.

A Figura 2.3 ilustra a arquitetura de uma CNN.

Reducéo de
3 . . . Camada totalmente
Entrada Convolugao dimensionalidade
) conectada
(Pooling)

] Saida

L S N e IR ITI (Classes)
Imagem
|
I
Mapas de
caracteristicas
| 1
I I
Extracdo de caracteristicas Classificagao

HE Filtro (kernel). Essa regido especifica da imagem contribui para
I um neurdnio na proxima camada

Figura 2.3: Arquitetura simplificada de uma Rede Neural Convolucional (CNN). Adap-
tado de Phung e Rhee (2019).
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3 Trabalhos relacionados

Este capitulo apresenta abordagens de monitoramento de idosos utilizando diferentes tec-
nologias. As Segoes 3.1 a 3.2 dao foco aquelas com aplicacao de técnicas de visdo compu-
tacional, aprendizado profundo sem uso de sensores. A Secao 3.1 apresenta um sistema de
detecgao de quedas usando redes neurais convolucionais (CNNs) e imagens de fluxo dptico,
destacando a robustez da técnica para diferentes cenarios e condigoes de iluminagao. Ou-
tro trabalho descreve a combinacao de modelos baseados em CNNs que utilizam fusao de
entradas em RGB e fluxo 6ptico, além de estimativa de pose para monitorar acoes coti-
dianas e de alerta em idosos. Ja a se¢ao 3.2 introduz um sistema de reconhecimento de
acoes usando cameras de profundidade estéreo, onde sao extraidas caracteristicas manuais
para identificar comportamentos como quedas e transicoes posturais. A Secao 3.3 traz
exemplos de monitoramentos com uso de sensores vestiveis e nao vestiveis e apresenta os

sistemas AAL inteligentes que fazem uso de IoT.

3.1 Monitoramento com fluxo 6ptico e CNNs

Nunez-Marcos, Azkune e Arganda-Carreras (2022) tém como objetivo desenvolver um
sistema baseado em visao computacional para detectar quedas de idosos, utilizando CNNs.
A motivagao, assim como a do presente trabalho, é criar um sistema mais confortavel
para idosos sem uso de sensores vestiveis. O sistema usa imagens de fluxo éptico para
identificar movimentos de queda, tornando-se independente de caracteristicas visuais do
ambiente, como cor ou iluminagao. O trabalho destaca como as propriedades desse tipo
de representacao contribuem para reconhecimentos baseados em entradas visuais. Com
a utilizacao das técnicas citadas também hé o objetivo de tornar o sistema generalizado
para outros tipos de cendrio.

O algoritmo de fluxo éptico foi usado para descrever os vetores de deslocamento
entre dois quadros (frames) das entradas RGB. No entanto, os autores levantam que

imagens de fluxo éptico registram um intervalo muito curto entre os quadros para detectar
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uma queda. Para contornar esse detalhe foi aplicada a ideia de empilhar um conjunto dos
quadros. Assim, a rede também pode aprender recursos relacionados a tempo mais longo.
A representacao de fluxo éptico foi usada como entrada de uma rede neural totalmente
conectada (Fully Connected Neural Network - FCNN), que funciona como o classificador
e emite um sinal de “queda’ou “sem queda”.

O modelo aplicado implementou uma versao modificada da arquitetura da CNN
VGG-16 e foi pré-treinada com o conjunto de dados ImageNet. Em seguida a rede foi re-
treinada utilizando conjuntos de dados para reconhecimentos de agoes, como o UCF101,
para que a rede pudesse aprender a interpretar movimentos humanos. Posteriormente
o modelo foi treinado com trés conjuntos de dados publicos especificos para a tarefa de
detecgao de queda, os conjuntos foram o UR Fall Dataset (URFD) que contém 30 videos
de quedas e 40 de atividades didrias; o Multiple Cameras Fall Dataset (Multicam) que
inclui 24 performances gravadas de vérias perspectivas; e o Fall Detection Dataset (FDD),
que contém quedas simuladas em cenarios diversos.

Os resultados foram comparados entre os trés conjuntos de dados especificos e
apresentados em termos de sensibilidade e especificidade. Sensibilidade mede a capacidade
de detectar corretamente quedas (verdadeiros positivos), enquanto especificidade avalia a
habilidade de identificar corretamente eventos que nao sao quedas (verdadeiros negativos).
O conjunto URFD, atingiu 100% de sensibilidade e 94,86% de especificidade. O Multicam,
teve sensibilidade de 98,07% e especificidade de 96,20%. O FDD, alcancou 93,47% de
sensibilidade e 97,23% de especificidade. O sistema também apresentou robustez ao ser
testado em condicoes diferentes de iluminagao e em cendrios diversos. No trabalho os
autores ainda abordam a questao da limitagao quanto ao conjunto de dados e a quantidade
de amostras para treinamento dos modelos no contexto apresentado e sugerem a técnica
de transferéncia de aprendizado (transfer learning) como uma solugao adequada.

O trabalho de Buzzelli, Albé e Ciocca (2020) propde um sistema para monitora-
mento de idosos baseado em videos a partir da analise de dois modelos de reconhecimento
de agbes implementados com CNNs. O primeiro modelo é o 13D (Inflated 3D ConuvNet)
que utiliza a fusao de entradas nos formatos RGB e fluxo éptico, o outro é o DeepHar fo-

cado em estimativa de pose e utiliza apenas formato RGB. A analise foi feita considerando
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o desempenho dos modelos para deteccao de determinadas categorias de agoes. A taxono-
mia desenvolvida pelos autores divide as acoes em 3 categorias principais: Alerta, Diario
(vida didria) e Status. As agOes de alerta sao aquelas que podem representar situagoes
de risco e incluem tocar a cabega, tocar as costas, vomitar, tossir/espirrar, se exercitar, e
cair. A categoria Diario diz respeito a agoes cotidianas comuns como beber, comer, ler,
usar o telefone. A classe Status representa as possiveis poses em que um individuo pode se
encontrar e as agoes que a compoem sao: sentado, em pé, deitado, no chao e caminhando.
A escolha do modelo I3D foi pensada na sua capacidade de discriminar entre diferencas
sutis em classes muito semelhantes, como as classes de alerta e vida diaria. O DeepHar
devido ao seu bom desempenho em classificacao perante uma representacao explicita de
esqueleto humano, serve melhor a classe de Status que é baseada em poses.

As classes de cada um desses grupos nao sao mutualmente exclusivas entre os
grupos, assim, por exemplo, uma pessoa pode se encontrar sentada enquanto come ou
bebe, e o sistema classificard as agoes de forma independente. Esse rastreio paralelo que
definiu a arquitetura do modelo final utilizando uma estrutura que combina trés modelos
em uma rede neural multiobjetivo exclusiva, que realiza um processamento comum inicial
e depois se ramifica em trés caminhos independentes. Algumas técnicas aplicadas nas
etapas inciais de processamento foram uso de pré-treinamento de redes, ajuste fino e uso
de detector de objetos. O sistema atingiu 97% de acuracia na inferéncia de poses bésicas,
83% em situacoes de alerta e 71% em agoes da vida didria com o uso do 13D, o modelo
que melhor performou. A classe de acgoes de vida didria teve acurdcia prejudicada por
confusoes entre agoes como beber, comer e usar o telefone, que diferem apenas para o
objeto segurado pelo individuo.

Esse trabalho também busca superar as limitagoes em relagao a conjuntos de da-
dos contribuindo com a construgao de um dataset agregado chamado ALMOND (Assisted
Living MONitoring Dataset), que retine cinco conjuntos existentes usados para o problema
de reconhecimento de ag¢oes, porém filtrando acoes que sao comumente realizadas em am-
bientes fechados e domésticos. A definicao das classes de acgoes citadas previamente é
usada na construcao desse conjunto de dados. Outra contribuicao é uma metodologia

geral para estimar a distancia maxima permitida entre a camera e o objeto monitorado.
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3.2 Monitoramento com hand-crafted features

O artigo de Zin et al. (2021) apresenta um sistema de reconhecimento de agbes em
tempo real voltado para o monitoramento de idosos em um centro de cuidados, utili-
zando cameras de profundidade estéreo. As classes de acao reconhecidas sao “Fora do
quarto”, “Transicao”, “Sentado em cadeira de rodas”, “Em pé”, “Sentado na cama”,
“Deitado na cama”, “Recebendo assisténcia” e “Queda”’. Essas acoes foram pensadas
considerando o que pode ser realizado na auséncia de enfermeiros nos quartos.

O sistema localiza pessoas extraindo diferentes regides de interesse de mapas
de disparidade UV (coordenadas U e V em mapeamento de texturas) provenientes de
quadros de imagens de profundidade. Para extracao de caracteristicas foi utilizada a fusao
das representagoes Aparéncia de Movimento de Profundidade (Depth Motion Appearance
— DMA), que captura a forma e aparéncia volumétrica do movimento, e Histérico de
Movimento de Profundidade (Depth Motion History — DMH), que rastreia o histérico
temporal do movimento. Ambas as representacoes sao descritas usando o histograma de
gradientes orientados (HOG). O sistema também incorporou caracteristicas baseadas em
distancia, medindo a distancia entre o centro de massa da pessoa e o plano do chao para
identificar agoes como quedas ou assisténcia.

O reconhecimento de agoes foi realizado utilizando o método de arredondamento
automatico (automatic rounding method) (GUO et al., 2010), o qual divide automati-
camente sequéncias de quadros longos em vérias sequéncias curtas. A classificacao é
entao feita por um SVM a partir dos descritores de caracteristicas. Um detalhe impor-
tante levantado sobre a identificacao da acao “Recebendo assisténcia”é a necessidade de
considerar a altura dos pacientes e enfermeiros. O enfermeiro que presta assisténcia é
geralmente mais alto que o idoso, e a altura normal de um idoso também parece maior do
que aquela quando o mesmo cai no chao. Assim, dois valores de limiar devem ser definidos
para a classificacao: se a altura da pessoa for maior que o “limiar de assisténcia”, a acao é
reconhecida como “Recebendo assisténcia”, se for menor que o “limiar de queda”, a agao
é reconhecida como “Queda”.

Os dados foram coletados em trés quartos de um centro de cuidados para idosos

no Japao e o numero total de dias de gravacao para cada sala foi 9, 6 e 10 dias. Apenas
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imagens de profundidade foram registradas, as imagens RGB foram omitidas para pre-
servar a privacidade dos residentes. Para cada quarto o nimero de sequéncias de acgoes
registradas foi de 14, 10 e 11 respectivamente. As sequéncias tém duracao entre 1 e 13 ho-
ras. O resultado geral foi obtido a partir da média de acuracias obtidas na classificacao de
determinadas sequéncias. As acurdcias variam de acordo com o uso de filtros de mediana,
sem o filtro o valor obtido foi de 90.6% e com o filtro a acurdcia chegou a 98.3%. Ainda
assim, ocorreram classificagoes incorretas, como as acgoes “Deitado na cama” que foram
detectadas como “Sentado na cama”. O nimero dessas detecgoes falsas foi reduzido pela
aplicacao de um filtro mediano. O tempo de reconhecimento alcangado das acoes foi de 5
segundos também por causa da aplicagao desse filtro. Os autores destacam a importancia
do sistema para além do monitoramento de satude e situagoes de risco. Com o registro de
histéricos de agoes e comportamentos dos pacientes é possivel uma analise automatizada
das gravacoes que pode garantir mais seguranca aos residentes, prevenindo dificuldades e
permitindo diagnostico e tratamento oportunos de doencas.

Ainda explorando técnicas manuais de visdo computacional, Gaikwad et al. (2023)
propoem um sistema de monitoramento de idosos treinado a partir de um conjunto de
dados feito de anotacoes de juntas de esqueleto. A motivacdo para um conjunto de
dados nao composto por imagens ¢é que, de acordo com os autores, modelos com esse tipo
de entrada demandam muito tempo de treino e também alto consumo de memoria. O
sistema utiliza o framework de reconhecimento de pose BlazePose baseado em um k-NN
(algoritmo de vizinho mais préximo). O framework extrai pontos-chave (landmarks) de
esqueleto dos quadros dos videos. A partir das landmarks, as caracteristicas extraidas sao:
o angulo das articulagoes chave (key-joint angles), calculado a partir das coordenadas
de trés pontos-chave de esqueleto utilizando uma férmula trigonométrica; a distancia
euclidiana entre as articulac¢oes chave (Fuclidean distance), determinada entre dois desses
pontos, com base em suas coordenadas tridimensionais; e a inclinagao entre as articulagoes
chave (slope) obtida através das coordenadas de dois pontos-chave de esqueleto. Sao essas
caracteristicas que compoem o conjunto de dados numérico que possui 780.000 valores de
features calculados de 20.000 imagens.

Esse sistema também é projetado para ambientes fechados e as agoes reconheci-
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das sao “Sentado”, “Em pé”, “Deitado”, “Andando”e “Caindo”. A coleta de dados no
estudo foi realizada com quatro participantes idosos (homens), com idades entre 60 e 65
anos. Os participantes tinham diferentes caracteristicas fisicas, como altura e peso, para
garantir diversidade no conjunto de dados. Foram feitas gravagoes dos participantes reali-
zando atividades normais como caminhar, sentar, deitar e incluiu quedas. Posteriormente
os videos criados foram convertidos em imagens estaticas. Para cada atividade, foram
gravadas 1.000 imagens por participante.

Para a classificagdo sao usados trés algoritmos: arvore de decisdo (Decision Tree
- DT), floresta aleatéria (Random Rorest - RF), SVM e o método ensemble. O método
ensemble consiste na combinacao de previsoes dos demais modelos visando melhorar a
precisao e a robustez. O sistema foi testado realizando 200 testes para cada método.
O método de ensemble se destacou, atingindo uma precisao de 99%. O Random Forest
também apresentou resultados notdveis, com uma precisao de 98%, enquanto o SVM e o
Decision Tree tiveram precisoes em torno de 95% a 96%. O trabalho também destaca a
importancia da aplicagao do sistema em cenarios reais, sendo feita uma analise subjetiva
de custo, poténcia e compatibilidade dos idosos com o sistema implementado. Concluiu-
se que o sistema funciona com custo reduzido de energia, porém com tempo de execucao
operacional estendido, a instalacao é facil e usa componentes sem fio, assim garantindo

conforto aos usuarios. Ha compatibilidade com configuragoes de casas inteligentes.

3.3 Monitoramento com uso de sensores

Em (OUDAH; AL-NAJI; CHAHL, 2020) é proposto um sistema de reconhecimento de
gestos manuais para cuidados de satde de idosos, em especial individuos surdos e mudos.
O modelo é baseado em CNNs e junto da entrada em formato RGB utiliza imagens de
profundidade (depth) provenientes dos sensores Microsoft Kinetic. A escolha foi feita
por esse tipo de sensor ser considerado acessivel e também confidvel para monitoramento
a longo prazo. Além disso nao exige contato direto com o a pessoa monitorada, um
objetivo que se alinha com a proposta do presente trabalho. As 5 classes de gestos
reconhecidos sao “Agua”, “Refeicao”, “Banheiro”, “Ajuda”e “Remédio”. Assim que os

gestos sao identificados, os cuidadores dos idosos sao notificados por mensagem de texto
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via dispositivo movel.

Uma CNN foi utilizada para a tarefa de extragao de caracteristicas, implemen-
tando a arquitetura ResNet-50 (DENG et al., 2009) pré-treinada. Para classificacdo dos
gestos foi utilizado o SVM. Além disso, um hardware foi desenvolvido para fazer a comu-
nicacao entre o sistema e os dispositivos méveis. O hardware inclui um sensor Kinect V2,
um microcontrolador Arduino Nano e um moédulo GSM Sim800l, que envia mensagens
para cuidadores em tempo real. O sistema funciona em um ambiente fechado e enfrenta
limitagoes, como a precisao da captura a distancias de até 4,5 metros.

O sistema foi testado com trés participantes idosos e um adulto em ambientes
domésticos, obtendo uma taxa de reconhecimento de gestos de 96,62%. Apesar do bom
valor na acurécia, os autores levantam desafios a serem superados, como a distancia
de captura, e a ocorréncia de sobreposicao de gestos com o corpo, o que dificulta sua
identificacao.

Hussain et al. (2015) apresentam uma plataforma para cuidados de saide e
emergeéncias em cidades inteligentes. A plataforma combina sensores IoT com sistemas de
alerta para monitoramento continuo. O objetivo é usar as capacidades da IoT para criar
um sistema inteligente que permita monitoramento e interacao em tempo real, voltado
para a satde personalizada de idosos e pessoas com deficiéncia em suas casas. O sistema
consiste em uma parte remota, que permite armazenar e distribuir os dados para prove-
dores de servigcos, e uma parte local que lida com a coleta de informagoes dos sensores
conectados a um paciente. O sistema inclui sensores portateis e dispositivos inteligentes
conectados a IoT para medir parametros vitais, como batimentos cardiacos, tempera-
tura, oxigenagao, entre outros. Os sensores biomédicos monitoram varios parametros
fisiolégicos como ECG, temperatura corporal, frequéncia cardiaca, e postura do corpo
(como quedas). Esses sensores estao conectados a dispositivos méveis via redes sem fio,
como bluetooth e enviam dados continuamente para o sistema. O sistema detecta agoes
como quedas, anomalias fisiolégicas (ex.: arritmia cardiaca, febre alta), inatividade pro-
longada e eventos manuais de emergéncia acionados pelo proprio usuario. Sensores moni-
toram continuamente parametros vitais e de movimento, acionando alarmes automaticos

em caso de desvios criticos ou eventos de emergéncia. Essas detecgoes geram alertas que
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sao enviados a cuidadores ou servicos médicos para intervencao imediata. Um ponto
levantado pelos autores é o desafio dos sistemas de saude centrados no paciente para
integrar informacoes recentes e histéricas dos pacientes em sistemas de satide pessoais,
transformando esses dados em suporte para a tomada de decisoes. Além disso descrevem
as necessidades desse tipo do sistema como sendo a coleta de dados de fontes variadas,
armazenamento de forma uniforme em uma plataforma de compartilhamento, e imple-
mentacao de mecanismos para analise e recuperacao dos dados.

O trabalho de Alemén et al. (2016) se trata de um modelo de fusao de dados
aplicado a um sistema com foco no monitoramento de idosos em ambientes externos. O
objetivo é utilizar sensores de smartphones e outros dispositivos para rastrear e detectar
possiveis situagoes de risco, como quedas ou desvios de rotas, notificando cuidadores em
casos de emergéncia. O sistema utiliza o modelo de fusao de dados JDL (Joint Directors of
Laboratories) para integrar informacgoes de sensores, como acelerometros, GPS e sensores
de temperatura. O sistema foi implementado através de dois componentes principais: a
aplicacao Android “CareofMe”e o sistema web “SafeRoute”. Além disso, o sistema inclui
uma rede de seguranca formada por trabalhadores locais que atuam como sensores e atu-
adores para ajudar idosos em caso de emergéncia. A metodologia do trabalho envolve a
coleta de dados de sensores embutidos em smartphones para detectar acoes como quedas
ou desvios de rotas. A fusdao de dados é usada para processar as informagoes e gerar
diagnésticos sobre o estado do idoso. Experimentos foram realizados simulando quedas e
desvios em rotas predefinidas, com trés idosos testando o sistema. Os resultados mostram
que o sistema baseado em smartphones oferece maior precisao na localizacao e monitora-
mento dos usuarios em comparagao com sensores alternativos, como sensores do Arduino.
Além disso, o sistema reduziu o tempo de resposta em situacoes de emergéncia, ao incluir
os trabalhadores locais como parte da rede de suporte. Os autores destacam a necessi-
dade de melhorar a calibracao dos sensores para aumentar ainda mais a precisao. Além
disso, sugerem o desenvolvimento de novas funcionalidades inteligentes, como respostas
automaticas em caso de emergencia.

Abdelgawad, Yelamarthi e Khattab (2017) abordam o desenvolvimento de um

sistema de monitoramento de saide baseado em IoT voltado para oferecer assisténcia
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ativa e suporte a idosos e pessoas com limitacoes fisicas. O objetivo principal do sistema é
melhorar a qualidade de vida desses usuarios, permitindo que seus sinais vitais e condigoes
ambientais sejam monitorados em tempo real, com os dados sendo processados na nuvem.
Esse sistema possibilita a tomada de a¢oes preventivas e imediatas, como resposta a quedas
ou a deteccao de problemas cardiacos, garantindo assim a seguranca e o bem-estar dos
usuarios. Sao utilizados sensores leves e vestiveis, como oximetria de pulso, ECG, sensores
de fluxo nasal/oral, temperatura, além de sensores de luz e detecgao de quedas. Esses
sensores monitoram sinais vitais, como o nivel de oxigénio no sangue, a frequéncia cardiaca
e a temperatura corporal, além de detectar quedas bruscas e condigoes de iluminacao
inadequadas. A metodologia envolveu experimentos em cendrios controlados, simulando
situagoes como quedas e mudancas nas condi¢oes de iluminacao, além de rastreamento
da localizacao interna dos usuarios. Os resultados mostraram que o sistema foi eficaz
na deteccao de quedas, na precisao do rastreamento de localizacao e no monitoramento
de variagoes de luz, demonstrando sua viabilidade para uso em assisténcia a satde. Os
autores ressaltam que, embora o sistema tenha se mostrado eficiente e de baixo custo,

ainda h& a necessidade de aprimorar a seguranca no acesso aos dados.

3.4 Consideracoes

Os trabalhos relacionados apresentados neste capitulo de forma geral exemplificam a
aplicacao de modelos de reconhecimento de agoes para monitoramento de idosos em dife-
rentes cenarios e a partir de diferentes métodos. Um ponto comum em todos os trabalhos
¢ a preocupacao com o conforto e independéncia dos idosos como pilares importantes na
garantia de qualidade de vida do grupo a partir do uso desses sistemas. As aplicacoes
com modelos baseados em video e tecnologias de visao computacional destacam maior
facilidade no acesso e construgao quanto a custo e desenvolvimento, apesar de ainda
apresentarem limitagoes. As implementagoes baseadas em redes neurais convolucionais
evidenciam o potencial dos modelos de aprendizado profundo para o reconhecimento de
agoes, especialmente quando combinadas com representacoes de movimento, como o fluxo
optico. Os trabalhos com uso de sensores e tecnologias inteligentes apresentam sistemas

mais robustos e completos em niveis de informacao para monitoramento de idosos e com
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métodos alternativos de rastreamento de agoes e atividades. No entanto demonstram
maior complexidade e custo na implementacao.

A seguir foi feita uma andlise comparativa dos trabalhos que utilizam de técnicas
de visao computacional a fim de padronizar as métricas a serem comparadas e também
para que a analise esteja alinhada com os objetivos deste trabalho. A andlise foi dividida
em duas tabelas apenas por questoes de formatacao e melhor visualizacao dos dados. A
Tabela 3.1 traz comparacoes acerca dos objetivos e acoes reconhecidas. A Tabela 3.2 traz

informacoes acerca dos métodos de extracao de caracteristicas, métodos de classificacao,

métricas de avaliacao e técnicas utilizadas nos treinamentos dos modelos.

Tabela 3.1: Comparacao de trabalhos por objetivo e agoes reconhecidas entre sistemas de
monitoramento de agoes para idosos.

Trabalho Objetivo Acoes Reconhecidas

(NunEZ- Deteccao de quedas de ido- | Quedas

MARCOS; sos em tempo real usando

AZKUNE; visao computacional

ARGANDA-

CARRERAS,

2022)

(ZIN et al., | Monitoramento em tempo | Fora do quarto, Transigao, Sen-

2021) real de idosos em centros de | tado em cadeira de rodas, Em

cuidados pé, Sentado na cama, Deitado

na cama, Recebendo assisténcia e
Queda

(OUDAH; AL- | Reconhecimento de gestos | Gestos manuais (Agua, Refeigao,

NAJI; CHAHL, | de idosos para comunicagao | Banheiro, Ajuda, Remédio)

2020) de necessidades basicas

(GAIKWAD et | Reconhecimento de ativida- | Sentar, Andar, Ficar de Pé, Dei-

al., 2023) des e monitoramento resi- | tar, Cair

dencial de idosos

(BUZZELLI, Monitoramento de ido- | Status: Sentado, em pé, ca-

ALB¢; CI- | sos para independéncia e | minhando, deitado, no chao,

OCCA, 2020) emergeéncias (queda) Alerta: tocando a cabeca, to-
cando as costas, tocando o
tronco, tocando o pescogo, vomi-
tando, tossindo/espirrando, ace-
nando com as maos, fazendo
exercicios, caindo, rejeitando,
Vida diaria: bebendo, comendo,
lendo, usando o telefone, vestin-
do/despindo, usando o laptop, re-
jeitando
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Tabela 3.2: Comparacao de extragao de caracteristicas, classificagdo, métricas e técnicas

de treinamento.

Trabalho Ex. de Carac- | Classificacao| Métricas Técnicas de
teristicas Treinamento
(NunEZ- Imagens de fluxo | CNN (VGG- | Sens.:  100% | Transfer  lear-
MARCOS; éptico (TVL-1) | 16) + FC-NN | (URFD), ning (ImageNet,
AZKUNE; 08.07% (Mul- | UCF101)  +
ARGANDA- ticam) — Es- | Fine-tuning
CARRERAS, pec.: 94.86%
2022) (URFD),
96.20% (Mul-
ticam)
(ZIN et al, | DMA + DMH SVM Acuracia: Treinamento di-
2021) 90% — 98% reto
(OUDAH; AL- | CNN (ResNet- | SVM Acurécia: CNN pré-
NAJI; CHAHL, | 50) 96.62% treinada
2020) (ResNet-50)
(GAIKWAD et | BlazePose Ensemble Sensibilidade: | Ensemble
al., 2023) + Angulos, (SVM, DT, | 99%, Especi- | (SVM, DT,
Distancias e | RF) ficidade: 97% | RF)
Inclinagoes
(BUZZELLI; Faster R-CNN | I3D + De- | Acurécia: Transfer — lear-
ALB¢; CI- | (detecgao) + | epHAR 97% (bésico), | ning (Kinetics-
OCCA, 2020) I3D e DeepHAR 83%  (aler- | 400 e NTU)
(agao) tas), 1% | +  Fine-tuning
(vida didria) | (ALMOND da-

taset)
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4 Conjunto de dados

Este capitulo apresenta o levantamento dos principais conjuntos de dados relacionados ao
reconhecimento de atividades humanas em ambientes domésticos, com foco no monitora-
mento de idosos, bem como a justificativa para a escolha do conjunto de dados utilizado
neste trabalho. Inicialmente, é realizada uma andlise comparativa entre diferentes bases
disponiveis na literatura. Em seguida, o conjunto selecionado é descrito em detalhes,

destacando suas caracteristicas, desafios e adequacao aos objetivos da pesquisa.

4.1 Levantamento dos conjuntos de dados

Diversos conjuntos de dados tém sido propostos na literatura para o problema de reco-
nhecimento de atividades humanas e monitoramento de idosos, conforme resumido na
Tabela 4.1. No entanto, a maioria apresenta limitagoes que comprometem sua adequacao
a cenarios domésticos reais ou aos requisitos demograficos deste trabalho.

O conjunto IXMAS (WEINLAND; RONFARD; BOYER, 2006), por exemplo,
restringe-se a gestos simples capturados em baixa resolugao, o que limita a complexidade
das agoes analisdveis. Os conjuntos UWA3D II (RAHMANTI et al., 2013) e N-UCLA
(KOPPULA; GUPTA; SAXENA, 2024) oferecem maior diversidade de agoes e multiplas
visoes, porém nao incluem participantes idosos, falhando em atender ao principal critério
demografico da pesquisa. De forma semelhante, o NTU RGB+D (SHAHROUDY et
al., 2016), apesar de sua abrangéncia e ampla adog¢ao, é composto majoritariamente por
adultos jovens, nao representando adequadamente os padroes de movimento da populacao
idosa.

O MSR Daily Activity 3D (WANG et al., 2012) apresenta agoes relacionadas a
atividades cotidianas, porém é capturado em um ambiente altamente controlado, com
angulo de camera fixo, o que reduz significativamente sua capacidade de generalizacao
para residéncias reais. O Fall Dataset (PLANINC; KAMPEL, 2012), embora relevante

para aplicacoes de seguranca geriatrica, concentra-se exclusivamente em quedas e posturas
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estaticas, além de ser composto apenas por imagens individuais, e nao por sequéncias de
video, tornando-o inadequado para o monitoramento abrangente de atividades de vida
didria (AVDs).

Diante dessas limitagoes, destaca-se o conjunto Toyota Smarthome Trimmed
(TST) (DAS et al., 2019), que se diferencia por contemplar idosos realizando atividades
espontaneas de vida didria em ambientes domésticos realistas, atendendo simultaneamente
aos critérios demograficos, ambientais e de formato de dados exigidos por esta pesquisa.
Além do TST, o projeto Toyota Smarthome disponibiliza o conjunto Toyota Smarthome
Untrimmed (TSU) (DAI et al., 2022). No entanto, o TSU é composto por videos longos
e nao segmentados, o que impoe elevado custo computacional e maior complexidade no
pré-processamento, especialmente em abordagens que requerem segmentacao temporal
precisa das atividades. Por esse motivo, o TSU nao foi adotado neste trabalho.

Tabela 4.1: Comparativo dos conjuntos de dados levantados para reconhecimento de acoes
de idosos. “N/I” significa “Nao informado”.

Conjunto N de N2 de N® de Resolugao N® de Ambientes Faixa etdria
J Acoes Amostras Sujeitos < Cameras dos sujeitos

IXMAS 11 1148 11 60x48 5 Unico N/I

UWA3D II 30 1075 10 640480 4 Unico N/1

N-UCLA 10 1494 10 N/I 3 Variados N/I

NTU RGB+D 60 56880 N/I 19201080 3 Variados N/I

MSR Daily o

Activity 3D 16 320 N/I N/I 1 (fixa) Unico N/1

Fall Dataset 5 21499 5 320x240 1 (fixa) Unico 19 a 50 anos

Toyota Smarthome 5 16115 18 640x480 7 3 60 a 80 anos

Trimmed

Toyota Smarthome -, 536 18 640480 7 3 60 a 80 anos

Untrimmed

4.2 Toyota Smarthome Trimmed

O conjunto de dados Toyota Smarthome Trimmed (TST) (DAS et al., 2019) foi selecionado
para o presente trabalho por abordar uma lacuna critica na area de reconhecimento de
atividades humanas: a escassez de bases que representem de forma realista as atividades
de vida didria realizadas por pessoas idosas em ambientes domésticos.

A composicao demografica dos conjuntos de dados tradicionalmente utilizados



4.2 Toyota Smarthome Trimmed 36

constitui uma limitagao relevante, especialmente em abordagens baseadas exclusivamente
em informacoes de pose. A presenca — ou auséncia — de participantes idosos influen-
cia diretamente a validacao, a capacidade de generalizagao e a aplicabilidade de sistemas
de reconhecimento de atividades humanas voltados a esse ptublico. A literatura aponta
que grande parte das pesquisas concentra-se no reconhecimento genérico de atividades,
resultando em uma lacuna no que se refere a dados especificamente direcionados a idosos
(DAI et al., 2022). Essa necessidade é refor¢ada pelo fato de que caracteristicas de movi-
mento, como amplitude, ritmo e variabilidade, diferem significativamente entre idosos e
populagoes mais jovens, impactando diretamente as coordenadas de pose utilizadas como
entrada dos modelos (ZHAI et al., 2023). Consequentemente, a auséncia de validagao
em dados representativos desse piblico é frequentemente apontada como uma limitacao
metodoldgica (HAYAT et al., 2022; DAT et al., 2022).

O TST é composto por 16.115 videos curtos de pessoas idosas realizando 31 ati-
vidades espontaneas em ambientes domésticos controlados. As gravacoes ocorrem em trés
ambientes distintos — sala de estar, cozinha e sala de jantar — com 7 cameras em di-
ferentes pontos do ambiente. Os videos possuem resolucao de 640 x 480 pizels, taxa de
amostragem temporal de 20 FPS (frames per second) e estao disponiveis em trés moda-
lidades: RGB, profundidade e juntas de esqueleto (com coordenadas em 3 dimensdes).

A duragdo dos videos varia entre 1 segundo e 2 minutos e 54 segundos, com
duragao média de aproximadamente 12 segundos. No total, o conjunto de dados acumula
55 horas, 29 minutos e 33 segundos de gravacoes. Exemplos de amostras do conjunto
podem ser observados na Figura 4.1. A Tabela 4.2 apresenta as 31 classes de acgoes
presentes no conjunto, enquanto a Figura 4.2 ilustra a distribuicao de amostras por classe.

As caracteristicas do TST introduzem desafios relevantes para o reconhecimento
de atividades, incluindo alta variacao intraclasse, forte desbalanceamento entre as clas-
ses, coexistencia de atividades simples e compostas, presenca de agoes com padroes de
movimento semelhantes e variacao significativa na duracao das atividades. Esses fatores
tornam o conjunto particularmente adequado para a avaliacao da robustez e da capacidade
de generalizacao do método proposto neste trabalho.

Embora apresente limitagoes e maior complexidade, o conjunto TST ainda pode se



4.2 Toyota Smarthome Trimmed

37

Tabela 4.2: As 31 classes de agoes do conjunto Toyota Smarthome Trimmed.

ID Acao (Inglés) Tradugao (Portugués)
1 Cook.Cleandishes Cozinhar.Lavar louca
2 Cook.Cleanup Cozinhar.Limpar
3 Cook.Cut Cozinhar.Cortar
4 Cook.Stir Cozinhar.Mexer
5  Cook.Usestove Cozinhar.Usar fogao
6  Cutbread Cortar pao
7 Drink.Frombottle Beber.De uma garrafa
8  Drink.Fromcan Beber.De uma lata
9  Drink.Fromcup Beber.De uma xicara
10 Drink.Fromglass Beber.De um copo
11 Fat. Attable Comer.A mesa
12 FEat.Snack Comer.Lanche
13 Enter Entrar
14 Getup Levantar-se
15  Laydown Deitar-se
16  Leave Sair
17 Makecoffee. Pourgrains  Fazer café.Colocar o p6
18  Makecoffee. Pourwater — Fazer café.Adicionar dgua
19  Maketea. Boilwater Fazer cha.Ferver agua
20  Maketea.Insertteabag Fazer cha.Colocar o saquinho
21 Pour.Frombottle Despejar.De uma garrafa
22 Pour.Fromcan Despejar.De uma lata
23 Pour.Fromkettle Despejar.De uma chaleira
24 Readbook Ler um livro
25  Sitdown Sentar-se
26 Takepills Tomar remédios
27  Uselaptop Usar laptop
28  Usetablet Usar tablet
29  Usetelephone Usar telefone
30 Walk Caminhar
31  WatchTV Assistir TV

beneficiar de modelos previamente treinados em bases amplas e consolidadas no problema
de reconhecimento de agoes, como o NTU RGB+D (SHAHROUDY et al., 2016). Assim, o
uso de transferéncia de aprendizado torna-se uma estratégia adequada para este trabalho,
pois permite aproveitar representagoes ja aprendidas em um dominio mais geral e adapta-
las ao contexto especifico de monitoramento de idosos, reduzindo o custo de treinamento

e potencialmente melhorando o desempenho sobre o TST.

4.2.1 Protocolo do conjunto Toyota Smarthome

O conjunto de dados Toyota Smarthome fornece protocolos padronizados de divisao dos
dados para fins de avaliagao experimental. Neste trabalho, foi adotado o protocolo Cross-
Subject, no qual os sujeitos utilizados para treinamento, validacao e teste pertencem a

grupos distintos, garantindo que o modelo seja avaliado em individuos nao vistos durante
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Figura 4.1: Amostras de quadros de videos do conjunto Toyota Smarthome Trimmed.
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Figura 4.2: Distribuicao de videos por classe no conjunto Toyota Smarthome Trimmed.

o treinamento. Neste protocolo os 18 individuos do conjunto de dados sao divididos em
grupos de treinamento, (individuos 3, 4, 6, 7, 9, 12, 13, 15 e 17), validagao (individuos 19
e 25). Os 7 individuos restantes (2, 5, 8, 10, 11, 14 e 18) sao reservados para o conjunto
de teste.

As listas de divisao de dados foram utilizadas conforme disponibilizadas pelos
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autores do conjunto no repositério do projeto !, sem modificacoes, assegurando a re-
produtibilidade dos experimentos e a comparabilidade com trabalhos relacionados. A
Tabela 4.3 apresenta a distribuicao das amostras entre os subconjuntos de treinamento,
validacao e teste.

Tabela 4.3: Divisao dos splits do conjunto Toyota Smarthome Trimmed no protocolo
Cross-Subject.

Classe Treino Validagcao Teste Total

1 225 20 133 378
2 254 19 107 380
3 93 17 68 178
4 300 30 199 579
5 78 0 18 96
6 23 2 20 45
7 209 0 132 341
8 171 35 119 325
9 1115 379 47 2241
10 40 19 6 65
11 333 31 253 617
12 140 24 52 216
13 282 29 133 444
14 438 78 317 833
15 79 37 65 181
16 289 20 107 416
17 35 8 21 64
18 41 8 27 76
19 37 9 16 62
20 30 6 20 o6
21 112 60 104 276
22 34 2 23 29
23 69 10 28 107
24 475 133 334 942
25 560 117 439 1116
26 177 29 138 344
27 184 34 178 396
28 34 0 15 49
29 251 53 147 451
30 2312 021 1237 4070
31 409 73 230 712
Total 8829 1853 5433 16115

Thttps://github.com/srijandas07/i3d_smarthome
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5 Metodologia

Este capitulo apresenta a metodologia adotada para a realizacao dos experimentos de
reconhecimento de agoes humanas desenvolvidos neste trabalho. A contribuicao do pre-
sente trabalho baseia-se na aplicagao do framework PoseConv3D (DUAN et al., 2022) ao
conjunto de dados Toyota Smarthome Trimmed bem como as andlises de desempenho do
modelo e conjunto de dados propostos.

Inicialmente, é apresentada uma visao geral do framework PoseConv3D e de seus
principais componentes. Em seguida, sao descritos o protocolo experimental adotado, os
procedimentos de preparacao do conjunto de dados e as configuracoes utilizadas para o

treinamento, validacao e avaliacao do modelo.

5.1 Framework PoseConv3D

Dentro da categoria de redes neurais convolucionais, destacam-se aquelas que utilizam
convolugoes tridimensionais (3D-CNNs). Esse tipo de arquitetura é particularmente ade-
quado para processar dados que possuem, além da dimensao espacial (2D), a dimensao
temporal, como ocorre em sequéncias de video. Assim, as 3D-CNNs configuram-se como
uma escolha apropriada para o problema abordado neste trabalho.

O PoseConv3D (DUAN et al., 2022) é um framework que utiliza representagoes
de juntas do corpo humano (skeleton joints) como entrada, combinadas a uma 3D-CNN.
Para isso, as articulagoes do corpo sao extraidas de cada quadro do video e, posterior-
mente, convertidas em mapas de calor bidimensionais, que representam de forma densa
a posicao das juntas no espago da imagem. Esses mapas de calor podem ser obtidos a
partir de diferentes estimadores de pose. Os mapas sao organizados ao longo do tempo,
formando tensores tridimensionais que preservam simultaneamente a estrutura espacial e
a sequéncia temporal das acoes. Essa representacao compacta e expressiva possibilita que
o modelo capture padroes relevantes para a classificacao das acoes. Apds a construcao dos

tensores tridimensionais de mapas de calor, essa representagao ¢ utilizada como entrada
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Acdo 1
- I 1 - Y
l Acdo 2
CORT WET e
Geracio de Mapa de Calor |==- Acdo 3

x'l

Representacdo
Espacial & Temporal

Figura 5.1: Visao geral do framework PoseConv3D para classificacao de acoes a partir de
mapas de calor de articulagoes.

para a 3D-CNN. As convolugoes 3D permitem a extracao conjunta de padroes espaci-
ais e temporais, explorando simultaneamente a configuracao das articulagoes em cada
quadro e sua evolucao ao longo do tempo. Como resultado, a rede é capaz de apren-
der caracteristicas discriminativas associadas as agoes humanas, produzindo, ao final do
processamento, uma predicao de classe que indica a atividade realizada. A Figura 5.1

apresenta uma visao geral do framework PoseConv3D utilizado neste trabalho.

5.1.1 Extracao de mapas de calor

A extracao dos mapas de calor utilizados como entrada no PoseConv3D é realizada a
partir de um estimador de pose baseado na arquitetura High-Resolution Network (HR-
Net) (WANG et al., 2020) e previamente treinado no conjunto de dados COCO (LIN
et al., 2014a), amplamente utilizado para tarefas de deteccao e estimativa de pose hu-
mana. A HRNet destaca-se por manter representacoes de alta resolucao ao longo de toda
a rede, caracteristica essencial para localizar articulagoes de forma precisa em cenarios
com oclusoes, miltiplas pessoas ou movimentos rapidos. Em vez de seguir o paradigma
tradicional das redes convolucionais, que reduzem progressivamente a resolucao espacial
para ampliar o contexto semantico, a HRNet opera com multiplos fluxos convolucionais
em diferentes resolugoes mantidos em paralelo. Esses fluxos comunicam-se continuamente
por meio de mddulos de troca de informagoes, de modo que as representacoes de alta

resolucao sao enriquecidas com informacgoes semanticas provenientes das resolucoes mais
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baixas. Como resultado, os mapas de calor produzidos pela HRNet sao densos, espacial-
mente precisos e apresentam boa separabilidade entre as articulagoes, mesmo em situacgoes
complexas.

A HRNet também segue um paradigma top-down, no qual um detector de pes-
soas, baseado na rede Faster R-CNN (GIRSHICK, 2015), primeiro localiza o individuo na
cena e fornece uma caixa delimitadora (bounding boz). A rede extrai os mapas de calor
dos pontos-chave apenas dentro desse recorte, de modo que, quando o sujeito esta parcial-
mente fora do quadro, a caixa delimitadora também ¢ truncada, reduzindo a quantidade
de informacao disponivel para a estimativa de pose. Ainda assim, a HRNet apresenta
certa robustez nesses cendrios, pois mantém representacoes de alta resolugao ao longo de
toda a arquitetura e é treinada com estratégias de aumento de dados, como a half-body
augmentation, que simula situagoes em que partes do corpo estao ocultas ou fora da ima-
gem. Assim, mesmo com visibilidade parcial do sujeito, a rede consegue inferir posicoes
de pontos-chave com razoavel consisténcia, embora casos de truncamento extremo possam
comprometer a qualidade dos mapas gerados.

Dentro do framework, para cada video processado é gerado um arquivo no for-
mato pickle contendo todas as informagoes necessarias para representar a sequéncia do
esqueleto ao longo do tempo. Esse arquivo segue uma estrutura padronizada composta
por metadados do video e pelas anotacoes dos pontos-chave detectados que representam
as juntas. Cada entrada contém o identificador do video, o nimero total de quadros
utilizados e as dimensoes originais do video registradas. Esses dados auxiliam tanto na
depuracao quanto na visualizagao e normalizacao das poses. As informacoes principais

concentram-se no tensor keypoint, estruturado no formato

MxTxV xC,

em que M representa o numero de individuos na cena, 7" o nimero de quadros, V a
quantidade de pontos-chave e C' 0 ntiimero de coordenadas por junta (C' = 2 para poses
2D ou C = 3 para poses 3D). Essa organizagao é compativel com diferentes convengoes de

esqueleto, como COCO (17 juntas), ou NTU RGB+D (25 juntas). Além das coordenadas,
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0 arquivo registra as pontuagoes de confianga no tensor keypoint_score, estruturado como

MxT xV,

indicando o grau de confiabilidade de cada deteccao. A combinacao entre coordenadas e
escores fornece uma representacao consistente da pose ao longo do tempo, servindo de base
para a geracao dos mapas de calor utilizados durante o processamento pelo PoseConv3D.

A Figura 5.2 mostra o resultado gerado neste estudo a partir do processamento de
um quadro da acao Walk, no qual se observam os pontoa-chave identificados pela HRNet

(a) e o mapa de calor associado as mesmas articulagoes (b).

Esqueleto detectado no Frame 6 Keypoitns detectados no frame 6 (]
® Keypoints r2.0
100 4 \\\ \_\,\l
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L \®
200 \-\\\ .
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300 A
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(a) Deteccao dos pontos-chave em um quadro  (b) Mapa de calor gerado a partir dos mesmos
de video da agao Walk (Caminhar). pontos-chave.

Figura 5.2: Comparacao entre um quadro sobreposto com os keypoints detectados pela
HRNet e o respectivo mapa de calor combinado utilizado como entrada para o processo de
modelagem. No mapa de calor combinado, os valores variam de 0 (auséncia de resposta
ao redor do pixel) até aproximadamente 2, resultantes da soma das respostas gaussianas
de multiplas juntas.

A entrada no formato de mapas de calor confere ao PoseConv3D vantagens em
relagao a outros modelos baseados em estruturas 3D, como Graph Convolutional Networks
(GCNs). Conforme apontado pelos autores, nas GCNs, as coordenadas de cada junta sao
armazenadas individualmente para cada pessoa, multiplicando-se pela resolucao espacial,
quantidade de quadros e niimero de juntas, o que faz com que o custo computacional cresca
linearmente com o nimero de individuos no video. Ja no PoseConv3D, todas as pessoas
sao representadas em um mesmo volume de mapas de calor: cada canal corresponde a

uma junta especifica, e multiplos picos dentro do canal representam a ocorréncia dessa
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junta em diferentes individuos. Por exemplo, em uma cena contendo duas pessoas, o canal
correspondente a junta “cabeca” apresentara dois picos de ativagao, cada um indicando
a posicao da cabeca de um individuo distinto. Esse padrao se repete nos demais canais
de juntas, permitindo que o modelo represente multiplas pessoas simultaneamente em um
unico volume de mapas de calor.

Essa abordagem reduz de forma significativa a quantidade de parametros da rede,

sem comprometer a expressividade necessaria ao reconhecimento de agoes.

5.1.2 O modelo X3D

O PoseConv3D permite a aplicacao de diferentes backbones de 3D-CNNs, proporcionando
flexibilidade na escolha da arquitetura subjacente. Entre as opcoes sugeridas no trabalho
original, a rede escolhida nesta metodologia é a X3D (FEICHTENHOFER, 2020), cuja
estrutura segue o design de uma ResNet tridimensional, uma rede composta por blocos
residuais 3D organizados em estagios progressivos de convolugao. A X3D é uma extensao
da X2D que introduz escalonamento progressivo nas dimensoes espacial, temporal e de
capacidade do modelo. Esse escalonamento é realizado por meio de fatores de escala
explicitos: o fator de largura (v,,), o fator de gargalo (), o fator de profundidade (),
o fator temporal (y;) e o stride temporal (v,), e o fator espacial (vs). Os fatores v e v,
influenciam a etapa de entrada e a camada inicial (stem); o fator 75 define a resolugao
espacial das ativacoes; enquanto os fatores v,,, 7 € 74 ajustam, respectivamente, o nimero
de canais, a expansao interna dos blocos residuais e o nimero de repeticoes em cada
estdgio. As diferentes configuracoes de fatores produzem variantes da X3D, sem alteracao
da organizacao estrutural da rede, como a X3D-XS, X3D-S, X3D-M e X3D-L.

A estrutura base comum da X3D se apresenta da seguinte forma: a rede é iniciada
por um estagio stem baseado em convolugoes tridimensionais, responsavel pela extragao
inicial de padroes espago-temporais de baixo nivel a partir das sequéncias de entrada.
Especificamente nessa etapa inicial, a X3D emprega uma convolucao espago-temporal
separavel, na qual a modelagem espacial e temporal é realizada de forma desacoplada.
Apoés o stem, as representagoes sao progressivamente refinadas ao longo de quatro estagios

residuais hierarquicos, identificados como res 2 a res 5. Cada estagio é formado por
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blocos residuais do tipo bottleneck, que utilizam convolugoes tridimensionais compactas
para expandir a capacidade representacional do modelo. Ao final do processo de extracao
espaco-temporal, as ativacoes sao agregadas por meio da operacao de Global Average
Pooling, que consolida as informagoes ao longo das dimensoes espacial e temporal. Essa
representacao compacta é entao utilizada pela cabeca de classificacao para realizar a
predicao da acao observada.

No trabalho do PoseConv3D, a variacao X3D-S oferecia alto desempenho com
o menor numero de parametros e operagoes de ponto flutuante (FLOPs), portanto foi
a variagao escolhida para os experimentos do presente trabalho. Os autores destacam
adaptacgoes necessarias para que as 3D-CNNs processassem a entrada no novo formato
proposto, o de pose. A ideia é remover as redugoes de resolucdo (down-sampling) nas
primeiras camadas que ocorrem no estagio stem, pois os volumes de mapas de calor ja
possuem dimensao adequada e menor quando comparados a quadros de video (RGB).
Além disso, utilizar uma arquitetura mais leve, com menos camadas e canais, ja seria
suficiente para capturar a dinamica espaciotemporal das acoes. Dessa forma, os autores
implementaram uma versao reduzida da X3D-S, denominada Pose-X3D-S, onde a quan-
tidade de camadas convolucionais foi ajustada a partir da atribuicao do valor 1 ao fator
de profundidade ;. Também houve a remogao do primeiro estdgio da rede e do tltimo
estagio residual.

A Tabela 5.1 mostra as diferencas entre a arquitetura original e a reduzida. O
stem original do modelo é configurado com um stride temporal v, = 6, correspondente
a amostragem de um quadro a cada seis, e otimizado para entradas RGB com resolucao
160 x 160. Esse stem é substituido por uma versao adaptada, utilizando v, = 1, de modo
a preservar integralmente a resolucao temporal das sequéncias de pose com dimensao
56 x 56. Além disso, o bloco res_5 é removido em sua totalidade, assim como a camada
conv_5. Dessa forma, a rede passa a encaminhar as ativagoes diretamente do bloco res 4

para uma convolugao 1 x 1 com 216 canais, seguida da operacao de Global Average Pooling.
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Tabela 5.1: Comparacao das arquiteturas das redes X3D-S Original e Pose-X3D-S adap-
tada.

X3D-S Pose-X3D-S

Estagio Original Adaptada
(Residual) Descricao do Bloco/Camada (74 = 2.2) (va=1)
stem Data Layer e Conv_1: Amostragem Tem- Stridg Stridi
poral e espacial. o= o=
res_2 Bloco residual com filtros [1 x 12, 24] X3 repeticoes X2 repeticoes
res_3 Bloco residual com filtros [1 x 12, 48] x5 repeticoes x5 repeticoes
res 4 Bloco residual com filtros [1 x 12, 96] x 11 repeticoes X3 repeticoes
res_b Bloco residual com filtros [1 x 12,192 X7 repeticoes ~ Removido

5.2 Protocolo experimental

O presente trabalho envolve a aplicacdo de um modelo previamente proposto (Pose-
Conv3D) a um conjunto de dados especifico (Toyota Smarthome Trimmed). Nesse con-
texto, é fundamental distinguir os protocolos definidos pelos autores do conjunto de dados,
aqueles inerentes ao framework PoseConv3D e as decisoes metodoldgicas assumidas neste

estudo.

5.2.1 Protocolo do framework PoseConv3D

O PoseConv3D define um protocolo proprio de treinamento relacionado a arquitetura
da rede, o pipeline de processamento baseado em mapas de calor de articulagoes e as
configuragoes de otimizacgao utilizadas durante o aprendizado. Neste trabalho, foi utilizada
a rede X3D-S adaptada por Duan et al. (2022) e implementada na biblioteca PySkl ? de
mesma autoria. Sao disponibilizados também os arquivos de pesos de treinamento dessa
rede em diferentes conjuntos de dados, considerandos protocolos de divisao do préprio
conjunto escolhido. Essa funcionalidade possibilitou a aplicacao de pré-treinamento aos

experimentos apresentados no Capitulo 6.

Zhttps://github.com /kennymckormick /pyskl
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5.3 Preparacao do conjunto de dados

A obtencao do conjunto de dados TST para utilizacao no presente trabalho foi realizada
sob demanda, diretamente a partir do site oficial do projeto®. Para a reproducao do
protocolo experimental apresentado na Secao 4.2.1, foram utilizadas as listas de divisao
de dados (splits) em formato .txt disponibilizadas no repositério indicado pelos criadores
do conjunto. Esses arquivos descrevem os subconjuntos de treinamento, validagao e teste,
de acordo com o protocolo de avaliagdo escolhido. O protocolo Cross-Subject (CS) foi
adotado porque favorece a avaliagao da capacidade de generalizagao do modelo, uma vez
que garante que o sistema reconheca acoes executadas por individuos nao vistos durante
o treinamento.

Foi desenvolvida uma rotina para converter as anotagoes originais do TST em
arquivos . json, de forma a adequé-las ao formato esperado pelo PoseConv3D. A rotina
foi construida a partir dos arquivos . csv das listas de splits do TST. Atividades compostas,
como Cook.CleanDishes, foram renomeadas a partir da substituicao do separador “.” para
“_"(Cook__CleanDishes), permitindo a organizagao correta dos quadros individuais em
pastas para entrada no PoseConv3D e resolvendo erros de leitura de diretério. Listas de
videos para a extragao dos esqueletos foram geradas para cada split do conjunto TST
conforme rotina especificada pela ferramenta PySkl.

A etapa seguinte consistiu na extracdo dos esqueletos bidimensionais (2D ske-
letons) por meio da rede HRNet. Essa extragao foi realizada utilizando a ferramenta
PySkl que fornece rotinas especificas para converter videos em anotagoes no formato . pk1,
compativeis com o framework PoseConv3D, além de possuir implementacoes de diversos
modelos de CNNs. O processo foi aplicado a todos os arquivos de lista de splits (treino,
validagao e teste) do Toyota Smarthome Trimmed, resultando em um conjunto completo
de anotagoes de mapas de calor armazenados em um unico arquivo pickle. Cada anotagao
contém, para cada video, informagcoes sobre o nimero de quadros, dimensoes da imagem,
rotulo da acao e coordenadas dos pontoa-chave extraidos. Esse conjunto padronizado
constitui a base de dados de entrada utilizada nas etapas subsequentes de treinamento e

avaliacao do modelo.

3https://project.inria.fr/toyotasmarthome
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6 Experimentos e resultados

Neste capitulo sao apresentados e analisados os experimentos realizados para avaliar o de-
sempenho do modelo no reconhecimento de agoes humanas. Inicialmente, sao conduzidos
testes de inferéncia sobre o conjunto TST utilizando um modelo pré-treinado no conjunto
NTU RGB+D. O objetivo é analisar o comportamento da rede no conjunto TST a partir
do pré-treinamento em um conjunto distinto, porém semanticamente relacionado, bem
como avaliar a viabilidade da estratégia de pré-treinamento adotada.

Em seguida, sao conduzidos experimentos com o framework PoseConv3D utili-
zando diferentes subconjuntos do conjunto de dados TST, bem como anélises do impacto
de diferentes configuragoes de treinamento. Posteriormente, os experimentos sao esten-
didos ao conjunto completo de dados, permitindo uma avaliagao mais abrangente. Por
fim, os resultados obtidos sao comparados com trabalhos da literatura e é explorado um
experimento adicional de agrupamento semantico de classes, com o objetivo de analisar
padroes de confusao e similaridade entre as agoes.

Os experimentos descritos neste trabalho foram executados em ambiente Linux,
utilizando GPUs distintas em funcao da evolugao do pipeline experimental e do aumento
progressivo do volume de dados. Nos experimentos iniciais e nas avaliagoes conduzidas
sobre conjuntos reduzidos e intermediarios foi utilizada uma GPU NVIDIA GeForce GTX
1050 com 2 GB de memoéria de video (VRAM). Posteriormente, para a realiza¢ao dos
experimentos envolvendo o conjunto completo de dados, foi empregada uma GPU NVIDIA
GeForce GTX 1660 com 6 GB de VRAM. Essa mudanga permitiu a ampliacao do niimero
de videos processados por GPU e viabilizou o treinamento em maior escala, mantendo-se
a mesma arquitetura e pipeline de processamento. As demais configuracoes de software,
incluindo versoes de CUDA, drivers e bibliotecas auxiliares, seguiram as defini¢oes padrao

da ferramenta PySkl, conforme disponibilizado por seus desenvolvedores.
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6.1 Analise exploratéria de inferéncia cruzada entre

NTU RGB+D e TST

O objetivo desta etapa foi analisar qualitativamente o comportamento do modelo Pose-
Conv3D, utilizando a rede X3D pré-treinada no conjunto NTU RGB+D, ao processar
videos do Toyota Smarthome Trimmed. Foram utilizados 27 videos (e suas anotagoes de
mapas de calor) de agdes cotidianas comuns no TST — como “levantar-se”, “sentar-se”,
“deitar-se”, “comer”, “usar o telefone” e “caminhar” — por serem representativas para
um minimo de monitoramento, enquanto outras agoes apresentavam alta complexidade e
pouca correspondéncia com o NTU. O objetivo nao era avaliar acuracia, mas compreen-
der como o conhecimento adquirido durante o pré-treinamento se manifesta em acoes nao
vistas, explorando correspondéncias posturais, ambiguidades semanticas e limitacoes da
abordagem baseada apenas em esqueletos 2D. Para cada predi¢ao, também foi registrado
um valor de confianca, correspondente a probabilidade atribuida a classe prevista pelo
modelo, permitindo observar o grau de certeza das inferéncias em cada video.

A Tabela 6.1 mostra que o modelo fez predicoes correspondentes a 13 das 60
classes do NTU RGB+D em pelo menos um video do TST. As classes do conjunto NTU
RGB+D sao apresentadas na Tabela 6.2, as classes detectadas pelo modelo foram desta-
cadas em negrito. O modelo foi capaz de reconhecer significativamente agoes com padroes
corporais bem definidos, especialmente aquelas relacionadas a mudancas de postura, como
“levantar-se” e “deitar-se”. E importante notar, entretanto, que valores altos de confianca
nao implicam que a classe prevista seja semanticamente equivalente a agao do TST; eles
indicam apenas que o modelo reconheceu padroes posturais semelhantes aos aprendidos
durante o pré-treinamento. Esses resultados fornecem uma visao inicial sobre como o
modelo pré-treinado interpreta dinamicas corporais em um dominio novo, destacando
tanto correspondéncias plausiveis quanto limitagoes da abordagem baseada apenas em
esqueletos 2D.

Neste contexto, foi observada a correspondéncia entre acoes de “sentar-se”e “deitar-
se” do TST e classes do NTU RGB+D associadas a posturas curvadas, como “ndusea ou

vomito” ou “calcar sapato”. Essa relacao evidencia que o modelo, por basear-se exclu-
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Tabela 6.1: Resultados dos testes de inferéncia com rede pré-treinada no NTU RGB+D.

, Acao - Tempo de Classe Prevista
Video (TST) (TST) Duragao (s) Inferéncia (s) (NTU RGB+D) Confianga
Getup_p14_r03_v02_c04 Levantar-se 2 0.600 Levantar-se (da posi¢ao sentada) 0.981
Getup_p02_r00_v06_c05 Levantar-se 1 0.701 Néausea ou vomito 0.810
Getup_p16.r01 v02_c05 Levantar-se 2 0.623 Levantar-se (da posi¢ao sentada) 0.771
Leave_p02_r00_v01_c07 Sair 3 0.666 Cambalear 0.760
Sitdown_p02_r00_v04_c04 Sentar-se 2 0.627 Calgar sapato 0.720
Usetablet_p20_r02_v10_c01 Usar tablet 24 0.697 Ler 0.704
Enter_p10_r00_v02_c05 Entrar 5 0.505 Caminhar afastando-se 0.688
Leave_p10_r00_v01_c05 Sair 4 0.620 Cambalear 0.636
Laydown pl14 r00_v02_c04 Deitar-se 5 0.569 Nausea ou vomito 0.610
Laydown_p02_r00_v07_c04 Deitar-se 5 0.603 Néusea ou vomito 0.582
Eat__Attable_p02r00_v11.c01 Comer & mesa 2 0.665 Ler 0.536
Laydown_p11_r02_v02_c04 Deitar-se 6 0.608 Néausea ou vomito 0.505
Leave_p14_r00_v02_c04 Sair 4 0.658 Abracar outra pessoa 0.433
Leave_p11_r00_v06_c04 Sair 6 0.687 Abragar outra pessoa 0.409
Laydown_p10_r01_v03_c04 Deitar-se 5 0.602 Vestir jaqueta 0.405
Enter_p14_r00_v05_c04 Entrar 4 0.494 Caminhar em dire¢ao ao outro 0.333
Enter_p11_r00_v03_c04 Entrar 7 0.556 Caminhar afastando-se 0.314
Walk_p16_r00_v01_c04 Caminhar 5 0.781 Calgar sapato 0.306
Enter_p20-r01_v16_c07 Entrar 5 0.887 Tocar as costas (dor nas costas) 0.293
Sitdown_p11_r00_v05_c04 Sentar-se 2 2.294 Calgar sapato 0.290
Getup_p10_r00_v09_c01 Levantar-se 5 0.572 Ler 0.282
Walk_p02_r00_v01_c06 Caminhar 2 0.569 Calgar sapato 0.219
Sitdown_p14_r00_v02_c05 Sentar-se 7 2.044 Ler 0.165
Sitdown_p10_r00_v02_c05 Sentar-se 2 1.524 Ndusea ou vomito 0.155
Usetelephone p02 r00 v01 c06 Usar telefone 8 0.874 Limpar o rosto 0.131
Eat__Attable p02 108 v11.c02 Comer & mesa 2 0.744 Sentar-se 0.115
Eat__Attable_p02.r14 v11.c01 Comer & mesa 4 0.768 Usar celular/tablet 0.109

sivamente em informagoes posturais, tende a associar a¢oes com configuragoes corporais
semelhantes, independentemente do contexto da cena. De modo semelhante, agoes como
“entrar” e “sair” foram mapeadas para classes como “caminhar afastando-se” ou “cami-
nhar em direcao ao outro”, o que indica que o modelo reconhece padroes locomotores
compartilhados entre os conjuntos. Outras correspondéncias posturais também se mos-
traram plausiveis, como “usar tablet” ou “comer a mesa” sendo associadas a classe “ler”,
todas caracterizadas por leve inclinagao do tronco e foco visual direcionado para um objeto
préximo.

Por outro lado, algumas predi¢oes demonstraram falta de correspondéncia semantica,
evidenciando limitagoes da abordagem baseada apenas em pose e destacando a diferenca
quanto a variabilidade de classes entre os dois conjuntos, uma vez que o NTU RGB+D
possui praticamente o dobro de agoes que o TST. Um exemplo particularmente ilustrativo
ocorre nas acgoes de “sair” (Leave), que foram classificadas como “abragar outra pessoa”
ou “cambalear”. Embora essas classes parecam incompativeis a primeira vista, a analise
de quadros dos videos em questao, exibida na Figura 6.1, revela que, na maioria dos ca-
sos (Leave_p02_r00-v01_c07, Leave_p14_r00-v02-c0/ , Leave_p11_r00-v06_c04) o individuo

interage fisicamente com a porta ao abrir ou empurra-la. Esse gesto altera a configuracao
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Tabela 6.2: Classes do NTU RGB+D com agoes detectadas nas amostras do conjunto
TST destacadas em negrito.

ID Acao ID Acao ID Acao
Al  Beber dgua A21  Tirar chapéu/boné A41  Espirrar/tossir
A2 Comer refei¢ao/lanche A22 Comemorar A42 Cambalear
A3 Escovar os dentes A23  Acenar com a mao A43  Cair
A4 Escovar o cabelo A24  Chutar algo A44  Tocar a cabega (dor de
cabeca)
A5 Deixar cair A25  Alcangar o bolso A45 Tocar o peito (dor no
coracdo/estomago)
A6 Pegar objeto A26 Pular em um pé A46 Tocar as costas (dor
nas costas)
A7 Arremessar A27  Saltar A47  Tocar o pescogo (dor no
pescogo)
A8  Sentar-se A28 Fazer/atender chamada A48 NAusea ou vOmito
telefonica
A9  Levantar-se (da A29 TUsar celular/tablet A49 Usar ventilador (sen-
posigao sentada) tindo calor)
A10 Bater palmas A30 Digitar no teclado A50  Socar/tapar outra pes-
soa
A1l Ler A31 Apontar com o dedo A51  Chutar outra pessoa
Al12 Escrever A32 Tirar selfie A52 Empurrar outra pessoa
A13 Rasgar papel A33 Verificar horario mno Ab3 Dar tapinha nas costas
relogio de outra pessoa
Al4 Vestir jaqueta A34 Esfregar as maos A54  Apontar para outra pes-
soa
A15 Tirar jaqueta A35  Assentir com a cabega A55 Abragar outra pessoa
Al16 Calgar sapato A36 Negar com a cabeca A56 Entregar algo a outra
pessoa
A17  Tirar sapato A37 Limpar o rosto A57  Tocar o bolso de outra
pessoa
A18 Colocar 6culos A38 Saudar (continéncia) A58 Apertar as maos
A19 Tirar 6culos A39 Juntar as palmas das A59 Caminhar em direcao
maos ao outro
A20  Colocar chapéu/boné A40  Cruzar as maos a frente ~ A60 Caminhar afastando-

se

dos bracos e do tronco, produzindo uma postura semelhante a de outras agoes do NTU, o

que explica as predigoes com confianca relativamente alta, apesar da diferenca seméantica

entre as classes. E no video Leave_p10_-r00_v01_c05 ocorre oclusao de uma das pernas, o

que também pode ter contribuido para a predicao de “cambalear”. Situacoes similares

ocorreram em predicoes como “usar telefone” sendo classificado como “limpar o rosto” ou

“caminhar” sendo confundido com “calgar sapato”. Esses casos reforcam que, na auséncia

de pistas contextuais, como objetos manipulados ou elementos estruturais do ambiente, o

modelo tende a confundir acoes distintas que compartilham padroes corporais semelhan-



6.1 Analise exploratoria de inferéncia cruzada entre NTU RGB+D e TST 53

tes.

N /
y A

Leave pl4 r00 v02 c04

I iy,

. g

7

Leave p10 rO0 vO1 cO5

7
Law g /"rfi‘ m— .
V7 /dlLeave pli 100 06 c04

Figura 6.1: Exemplos de quadros dos videos da classe “Leave” ilustrando situacoes que in-
fluenciaram as predi¢oes do modelo, incluindo interagao com objetos do ambiente, oclusoes
parciais do corpo e posturas ambiguas.

De modo geral, as classificagoes com maior confianca indicam que a rede conse-
gue identificar corretamente padroes biomecanicos fundamentais, validando a eficacia da
representagao baseada em mapas de calor. Ja os erros em amostras de menor confianga
refletem o desafio natural de interpretar agoes complexas e com baixa variabilidade pos-
tural e movimentos de pequena amplitude, apenas a partir da postura, sem o suporte
de informagoes visuais complementares. Além disso, parte dessas inconsisténcias decorre
da inexisténcia de uma correspondéncia direta entre as agoes do Toyota Smarthome e as
classes disponiveis no modelo pré-treinado no NTU RGB+D. Uma analise nominal dos
31 videos avaliados revela que apenas 8 agoes possuem equivalente direto ou semantica-
mente proximo no NTU RGB+D: Getup (Levantar-se da posigao sentada, A9), Sitdown
(Sentar-se, A8), Fat.Attable e Eat.Snack (Comer refeigdo/lanche, A2), Readbook (Ler,
A11), Usetablet e Usetelephone (Usar celular/tablet, A29), e Walk (Caminhar afastando-

se, A60 / Caminhar em dire¢ao ao outro, A59). As demais agoes, como cozinhar, beber
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Figura 6.2: Exemplo de oclusao do individuo durante a acao de “sentar-se”.

de copo ou lata, cortar pao e assistir TV, nao possuem equivalente nominal no NTU.
Dessa forma, mesmo quando o modelo apresenta niveis relativamente altos de confianca
em suas predicoes, grande parte delas nao reflete correspondéncia semantica direta, mas
sim similaridade postural com as classes aprendidas.

Sobre a duracao dos videos e dos tempos de inferéncia, a analise conjunta revela
que o tempo total do arquivo nao é o principal fator que determina o custo computacional
do modelo. Embora videos mais longos possam sugerir maior processamento, os resultados
mostram que a inferéncia depende predominantemente da qualidade e da completude das
poses extraidas em cada quadro. Um caso ilustrativo é o video Sitdown_p11_r00_v05_c04,
que possui apenas 2 segundos de duragao, mas apresentou um dos maiores tempos de
inferéncia (2.294 s). Esse comportamento ocorre porque o individuo permanece fora do
campo de visao na maior parte da sequéncia, como pode ser visto na Figura 6.2, o que
dificulta a deteccao de pose e leva o extrator a realizar tentativas adicionais para localizar
ou ajustar pontos corporais ausentes, aumentando substancialmente o tempo de processa-
mento. Assim, observa-se que o tempo de inferéncia estd mais relacionado a complexidade
da estimativa de pose diante de oclusoes e quadros incompletos do que ao tempo total do
video.

Os resultados apresentados nesta secao reforcam o potencial do PoseConv3D como
ponto de partida promissor para o reconhecimento de acoes no Toyota Smarthome, ao
mesmo tempo em que destacam a necessidade de um ajuste fino para especializar o modelo

as caracteristicas especificas desse conjunto de dados.
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6.2 Experimentos com o modelo treinado no TST

Apoés a andlise exploratéria do comportamento do modelo pré-treinado, esta secao apre-
senta os experimentos realizados com o PoseConv3D treinado especificamente no conjunto
de dados do Toyota Smarthome (TST). Embora a rede utilize pesos inicializados a par-
tir do pré-treinamento no NTU RGB+D, o foco desta etapa passa a ser a avaliacao do
desempenho do modelo apds sua adaptagao supervisionada as classes e as caracteristicas
préprias do TST.

Os experimentos aqui descritos tém como objetivo investigar a capacidade de
aprendizado do modelo quando exposto a dados do dominio alvo, analisando tanto o
impacto do volume e da distribuicao das amostras quanto a evolucao do desempenho
ao longo de diferentes configuragoes de treinamento. Diferentemente da etapa anterior,
em que as predigoes refletiam apenas a transferéncia direta de padroes aprendidos no
NTU RGB+D, os resultados apresentados nesta se¢ao correspondem a um cenario de
treinamento efetivo, no qual o modelo passa a aprender associacoes semanticas especificas
das acoes presentes no TST.

Dessa forma, esta etapa permite avaliar nao apenas a eficicia da arquitetura
PoseConv3D no contexto do Toyota Smarthome, mas também o papel do pré-treinamento
como ponto de partida para a convergéncia e para a extracao de padroes biomecanicos
relevantes em um conjunto de dados menor, mais desbalanceado e com acoes de maior

similaridade postural.

6.2.1 Meétricas de avaliagao

A avaliacao do desempenho do modelo foi realizado a partir das seguintes métricas:

e Acuracia Global: corresponde a proporcao total de videos corretamente classifica-
dos pelo modelo em relagao ao ntimero total de amostras no conjunto de teste. Essa
métrica reflete o desempenho geral do classificador, sendo sensivel a distribuicao das

classes.

e Acuricia Média (por Classe): definida como a média das acuricias calculadas

individualmente para cada classe de agao no conjunto de teste. Diferentemente da
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acuracia global, essa métrica atribui o mesmo peso a todas as classes, independen-
temente do nimero de amostras, permitindo uma avaliacao mais equilibrada do

desempenho do modelo.

e Diferenca Absoluta (DIF): corresponde a diferenga, em pontos percentuais (p.p.),
entre a acuracia global e a acuracia média por classe. Essa métrica foi utilizada como
um indicador direto do efeito do desbalanceamento entre classes, permitindo quanti-
ficar o quanto o desempenho global do modelo é influenciado por classes com maior
nimero de amostras. Valores elevados de DIF indicam maior discrepancia entre o

desempenho médio por classe e o desempenho agregado do modelo.

e Desvio padrao entre classes (DP): Além da acurdcia média por classe, foi con-
siderado o desvio padrao da acuracia média por classe como forma de quantificar
a variabilidade do desempenho do modelo entre as diferentes acoes. Essa métrica
mede o grau de dispersao das acuracias individuais das classes em torno da média,
permitindo avaliar o quao uniforme é o comportamento do classificador ao longo
do conjunto de agoes. Valores elevados de desvio padrao indicam que o modelo
apresenta desempenho desigual entre as classes, geralmente associado ao desbalan-
ceamento do conjunto de dados ou a presenca de acoes com padroes posturais mais

ambiguos e de dificil distingao.

6.2.2 Experimentos com subconjuntos do conjunto de dados

Para definir a configuragao experimental de referéncia (baseline), foram conduzidos expe-
rimentos com subconjuntos de tamanho reduzido do conjunto TST, organizados de forma
incremental. Embora esses subconjuntos representem apenas uma fragao do conjunto
completo, eles foram construidos com volumes progressivamente maiores entre si, permi-
tindo analisar o impacto do aumento gradual de dados e da redistribuicao das classes no
desempenho do modelo.

Os subconjuntos avaliados, renomeados para indicar a origem e o tamanho, in-
cluiram: Toyota[1.270], Toyota[1.645], Toyota[1.827], Toyota[1.922] e Toyota[l.753], além

do conjunto completo com 16.115 amostras (Toyota[16.115]). A Tabela 6.3 detalha a
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evolugao do nimero de amostras nos conjuntos de treino, validacao e teste ao longo dos
diferentes estagios experimentais, reforcando a légica incremental adotada e o equilibrio
buscado entre classes.

Tabela 6.3: Evolucao do nimero de amostras nos conjuntos de treino, validagao e teste
para os subconjuntos do TST.

Subconjunto Treino Validacao Teste Estagio do conjunto

Toyota[1.270] 910 160 200  Conjunto inicial

Toyotal[1.645] 1285 160 200  Expansao do conjunto de treino

Toyota[1.827] 1285 160 382  Expansao do conjunto de teste

Toyota[1.922] 1285 255 382  Ajuste da proporcao treino/va-
lidagao para 80%/20%

Toyota[1.753] 1192 255 306  Conjunto com teto de 40 amos-
tras por classe no treino e 10 para
validacao

A Tabela 6.4 resume os resultados obtidos, incluindo a acurédcia global, a média
das acuracias entre classes no conjunto de teste e a diferenca. Essa abordagem incremental
e a apresentacao das métricas citadas permitem compreender o impacto do tamanho
do conjunto de dados, do balanceamento entre classes e da evolugao da maturidade do

conjunto na performance do modelo.

Tabela 6.4: Comparacao entre acuréacia global, acuracia média e diferenga absoluta entre
acuracias no conjunto de teste para diferentes subconjuntos do TST.

Subconjunto Acuricia Global (%) Acuricia Média (%) DIF (p.p.)

Toyota[1.270] 51,0 13,9 7.1
Toyotal1.645] 52,0 418 10,2
Toyota[1.827] 50,0 48,1 1,9
Toyota[1.922] 47,9 46,4 1,5
Toyota[1.753] 49,7 49,7 0,0

O subconjunto Toyota[1.270] teve como objetivo principal a validagao do pipeline
de processamento e a verificacao da convergéncia inicial do modelo. A quantidade de
amostras por classe no conjunto de treino variava de 16 a 83, com média de 27 amostras.
Nessa etapa, buscou-se assegurar que a arquitetura PoseConv3D era capaz de proces-
sar corretamente as sequéncias de poses extraidas, mesmo diante de uma distribuicao
altamente desigual entre as classes. Nao houve, nesse estégio, exploragao sistematica de
hiperparametros, sendo utilizadas configuragoes pré-definidas da arquitetura X3D origi-

nalmente ajustadas para o conjunto NTU RGB+D, com adaptacoes restritas ao nimero



6.2 Experimentos com o modelo treinado no TST 58

de classes e a quantidade de videos processados por GPU. Em fun¢ao do volume reduzido
de dados, os resultados obtidos foram considerados estritamente preliminares e utilizados
apenas como verificagao funcional do pipeline. Posteriormente o conjunto de dados passou
a ser reorganizado de forma incremental, com o objetivo de manter uma divisao aproxi-
mada de 80% das amostras destinadas ao treinamento e 20% a validacao. Esse processo
de ampliacao do subconjunto foi conduzido considerando, adicionalmente, a manutencao
de uma distribuicao o mais equilibrada possivel de amostras entre as classe.

Nos subconjuntos de 1.645 e 1.827 amostras, foi introduzida uma primeira tenta-
tiva de balanceamento da distribui¢ao, com a imposi¢ao de um teto de 42 amostras por
classe, com quantidade minima de 23 amostras por classe. A excecao foi a classe Walk,
que permaneceu com 83 amostras desde o primeiro subconjunto, devido a sua natureza
distinta e ao fato de nao apresentar confusoes relevantes com outras acoes. Apesar desse
ajuste, até o Toyota[l.645] o modelo ainda apresentava desempenho global limitado, com
taxas de predicao muito baixas para diversas classes. Como consequéncia, algumas ca-
tegorias sequer apareciam na matriz de confusao, uma vez que nao eram preditas em
nenhuma instancia, o que inviabilizava uma analise qualitativa completa nesse estagio e
motivou a nao exibi¢ao dessas matrizes.

A partir do subconjunto Toyota[1.827] a matriz de confusdo passou a estar com-
pleta, possibilitando-se identificar padroes de erro mais consistentes, como exibido na
Figura 6.3. Observou-se que as principais confusoes nao estavam relacionadas ao desbalan-
ceamento residual das classes, mas sim a similaridade semantica e postural entre determi-
nadas acoes. Em particular, verificaram-se confusoes recorrentes entre classes que compar-
tilham a mesma dinamica corporal basica e diferem predominantemente pelo objeto com
o qual o individuo interage. Esse comportamento ja era esperado e foi evidente em gru-
pos de acoes como Drink. Frombottle, Drink. Fromcan, Drink. Fromcup e Drink. Fromglass,
todas caracterizadas por movimentos semelhantes dos membros superiores em direcao a
regiao da face, variando apenas pelo tipo de recipiente manipulado. Padrao andlogo foi
observado entre as classes Pour. Frombottle, Pour.Fromcan e Pour.Fromkettle, bem como
entre acoes de preparacao de alimentos e bebidas, como Cook. Cleandishes, Cook.Cleanup

e Cook.Cut, cujas diferencas semanticas estao fortemente associadas ao contexto e aos
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objetos presentes na cena, e nao a postura corporal isolada. De forma semelhante, ati-
vidades envolvendo leitura e uso de dispositivos eletronicos, incluindo ReadBook, Use-
Laptop, UseTablet apresentaram confusoes frequentes. Essas agoes compartilham uma
postura predominantemente estéatica, com leve inclinacao do tronco e orientagao do olhar
para um objeto a frente do corpo, o que dificulta a distin¢cao baseada exclusivamente em

informagoes de pose.

Cook.Cleandishes 7110.0 10.0 50.0 10.0 10.0 10.0
Cook.Cleanup 150.0 30.0 10.0 10.0
Cook.Cut 40.0 10.0 10.0 10.0 10.0 20.0
Cook.Stir 1 m
Cook.Usestove q 50.0 20.0 10.0 20.0
Cutbread q 20.0 30.0 20.0 30.0
Drink.Frombottle 4 20.0 20.0 40.0 10.0 10.0
Drink.Fromcan - 10.0 40.0 20.0 10.0 10.0 10.0
Drink.Fromcup - 16.1 3.2 12.929.016.1 3.2 3.2 3.2 6.5 3.2 3.2
Drink.Fromglass q 83.3 16.7
Eat.Attable 7.1 50.0 /1L 143 21.4
Eat.Snack 4 20.0 20.0 10.0 10.0

Enter 20.0
Getup 1 5.6
Laydown -

Leave

Real

Makecoffee.Pourgrains 10.0

Makecoffee.Pourwater -
Maketea.Boilwater 10.010.0

Maketea.Insertteabag - 30.0

Pour.Frombottle - 50.0 30.0 10.0
Pour.Fromcan 4 10.0 10.0 10.0 40.0 10.0 20.0

Pour.Fromkettle 4 20.0 10.0 50.0 20.0

Readbook 4 8.3 83 83 16.7
Sitdown - 18.8 6.2 6.2 6.2

Takepills 20.0 10.0 10.0 10.0 10.0 10.0 30.0

Uselaptop q 20.0 10.0 30.0 30.0 10.0

Usetablet q 10.0 10.0 m 20.0

Usetelephone - 10.0

N
N)

Walk - 133 2.2 2.2 111 4.4 [Pivd 2.2

=)
=
o
=
o
=
=)
N
WatchTV { ©
=)

w

Laydown { ©

=)
N

WatchTV 4

Cook.Cleandishes 4
Cook.Cleanup
Cook.Cut
Cook.Stir -
Cook.Usestove 4
Cutbread -
Drink.Frombottle 4
Drink.Fromcan -
Drink.Fromcup
Drink.Fromglass 4
Eat.Attable
Eat.Snack
Enter 4
Getup 4
Leave
Makecoffee.Pourgrains 4
Makecoffee.Pourwater
Maketea.Boilwater 4
Maketea.Insertteabag
Pour.Frombottle
Pour.Fromcan -
Pour.Fromkettle

Readbook { ©
Sitdown

Takepills { ©

Uselaptop { ©
Usetablet
Usetelephone

Walk { ©

Predito

Figura 6.3: Matriz de Confusao do conjunto de teste do subconjunto Toyota[1.827].

Ainda nesse contexto, destaca-se a classe WatchTV que apresentou confusoes
significativas com diversas outras acoes, como Sitdown, Readbook, e com atividades de uso

de dispositivos eletronicos (Uselaptop, Usetablet). H& ocorréncia de confusao até mesmo
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com as classes de agao de ingestao de bebidas (Drink e suas variages), também devido
a postura semelhante adotada pelo individuo. Além disso, a natureza concorrente de
algumas atividades contribui para essas confusoes, ja que é possivel realizar outras agoes
simultaneamente a observacao da televisao, e o modelo, ao se basear exclusivamente em
informagcoes de pose sem considerar o contexto ou objetos presentes na cena, nao consegue
discernir essas situagoes.

Com a implementagcao da divisao estrita de 80%/20% no subconjunto Toyota[1.922],
observou-se uma maior convergéncia entre a acuracia global e a acuracia média por classe.
Mesmo com a classe Walk ainda superando o teto inicialmente planejado, a aproximacao
entre essas métricas indicou um aprendizado mais equilibrado. A analise da matriz de
confusao apresentada na Figura 6.4 reforgou que o desbalanceamento nao era o principal
fator limitante do desempenho do modelo nesse estagio. Embora Walk possuisse o maior
volume de dados, ela nao concentrava confusoes relevantes com outras classes.

Como ajuste final, foi realizada uma correcao pontual no conjunto de dados com
o objetivo de viabilizar uma divisao dos subconjuntos de treino, validagao e teste se-
gundo proporgoes mais exatas, e de aproximar, tanto quanto possivel, uma distribuicao
uniforme entre as classes. Para isso, adotou-se um teto maximo de 40 amostras por
classe, incluindo o ajuste da classe Walk, anteriormente com maior ntimero de instancias.
Embora a disponibilidade de dados tenha impedido que todas as classes atingissem esse
limite, resultando em uma sub-representacao residual em algumas categorias, o subcon-
junto final obtido (Toyota[l.753]) permitiu a conducao dos experimentos sob condigoes
mais proximas do cenario ideal. Nesse contexto, o modelo alcancou acuracia global e
acuracia média idénticas, ambas de 49,7%, eliminando a diferenca entre essas métricas e
garantindo maior comparabilidade entre as classes.

A Figura 6.5 apresenta a matriz de confusao normalizada do modelo treinado
com o subconjunto Toyota[1.753]. Apesar da queda na acurdcia global, em comparagao
com o modelo treinado com o subconjunto Toyota[1.922], observa-se uma melhoria no
desempenho por classe, evidenciada pelo aumento da acuracia na diagonal principal em
10 das classes avaliadas. O ganho mais expressivo foi observado na classe Cutbread, cuja

acurdcia de 20% no subconjunto anterior foi para 60% no subconjunto Toyota[l.753].
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subconjunto Toyota[1.922].

Outras classes também apresentaram ganhos relevantes, como Enter de 50% para 70% e

Cook. Cleanup de 30% para 60%. A classe Laydown chegou a atingir 100% de acurécia.

Verificou-se também uma reducgao em confusoes especificas entre classes seman-

ticamente semelhantes.

No subconjunto anterior, a classe Cutbread apresentava con-

fusao de aproximadamente 20% com Cook.Stir. De forma semelhante, a confusao entre

Drink. Frombottle e Drink.Fromglass com a classe Walk reduziu-se de 50% para 30%, in-

dicando uma melhor separacao entre padroes de consumo de bebidas e movimentos de

locomogao. Observa-se ainda uma ligeira redugao da confusao entre agoes envolvendo o

uso de dispositivos, como Usetablet e Uselaptop. Nao houve aumento de confusao sig-
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Figura 6.5: Matriz de Confusao do conjunto de teste do subconjunto preliminar
Toyotal[1.753].

nificativo (igual ou acima de 20 p.p.) entre as classes. Esses resultados sugerem que
a estratégia adotada no Toyota[l.753] contribuiu para um aprendizado mais equilibrado
entre classes.

A evolugao dos experimentos indica que, nos estagio inicial o desempenho do
modelo foi fortemente impactado pelo nimero reduzido de dados disponiveis e pelo ele-
vado desbalanceamento entre as classes. Nessas condigoes, observou-se uma diferenca
expressiva entre a acurdcia global e a acurdcia média (19,2 p.p.), bem como dificuldades
na aprendizagem de representacoes discriminativas para categorias menos representadas,

resultando inclusive em predigoes ausentes para algumas classes. A partir do subconjunto
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Toyota[1.827], o modelo passou a apresentar um comportamento mais estavel, evidenci-
ado pela consolidacao de uma matriz de confusao completa e pela reducao consistente da
diferenga entre as acuracias global e média (de 1,9 p.p para 0,0 p.p.). Nas condiges desse
experimento, as limitagoes remanescentes deixaram de estar predominantemente associa-
das a escassez de dados ou ao desbalanceamento extremo, passando a refletir, sobretudo,
a elevada similaridade semantica entre determinadas agoes, em especial aquelas que se di-
ferenciam apenas pelo objeto de interacao. Nesse contexto, o subconjunto Toyota[l.753]
representa um ponto de equilibrio relevante. Embora nao maximize a acuracia global, ele
fornece uma avaliacao mais justa e informativa da capacidade do modelo, ao assegurar
desempenho uniforme entre classes e minimizar distorcoes causadas por distribuicoes as-
simétricas. Esse cenario foi, portanto, adotado como base para as andlises subsequentes

de configuracao e para a interpretagao dos limites do PoseConv3D no conjunto de dados

TST.

6.2.3 Analise de hiperparametros

Com o objetivo de investigar o impacto de diferentes configuragoes de treinamento no
desempenho do modelo, foram conduzidos experimentos no subconjunto Toyota[l.753],
definido como baseline experimental a partir dos experimentos anteriores. Os experi-
mentos contemplaram variacoes na estratégia de pré-treinamento, taxa de aprendizado,
nimero de videos processados por GPU e quantidade de épocas de treinamento.
Embora a analise central dos resultados se dé em torno da rede X3D, definida
como backbone principal deste trabalho, a arquitetura C3D Light (LIN et al., 2014b),
também foi avaliada de forma breve. Esta rede foi utilizada como um dos modelos de
referéncia no estudo original do PoseConv3D, também com uma versao adaptada imple-
mentada e igualmente validada no conjunto NTU RGB+D pelos autores. A inclusao da
C3D Light teve como motivagao técnica a investigacao de um compromisso alternativo
entre custo computacional e capacidade representacional. A rede era a segunda mais
leve entre as redes que Duan et al. (2022) utilizaram no trabalho original em termos de
quantidade de parametros e FLOPs. Sua estrutura apresenta maior profundidade quando

comparada a X3D nas configuracoes adotadas, o que poderia, em principio, favorecer a mo-
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delagem de padroes espago-temporais mais complexos, ainda que com aumento moderado
no custo de treinamento. Dessa forma, a arquitetura foi incorporada aos experimentos
com o objetivo de verificar se esse acréscimo estrutural seria capaz de competir com a
X3D no contexto do conjunto Toyota[1.753]. Assim como a X3D, a C3D Light foi avaliada
com e sem inicializacao a partir de pesos pré-treinados no NTU RGB-+D, mantendo-se os
demais parametros fixos.

As taxas de aprendizado analisadas foram 0,01 e 0,005. O nimero de videos por
GPU corresponde ao tamanho do lote (batch size) por GPU, indicando quantas amostras
de video sao processadas simultaneamente em cada iteracao de treinamento. Os valores
desse parametro foram 8 e 12. Para cada configuracao, o treinamento foi conduzido por
24, 40 ou 60 épocas, e o desempenho foi avaliado por meio da acurécia global e da acurécia
média, tanto no conjunto de validacao quanto no conjunto de teste, e também a diferenca
absoluta entre os valores das métricas dos respectivos conjuntos (DIF). Adicionalmente,
foi registrado o tempo total de treinamento de cada experimento, visando caracterizar o
custo computacional associado as diferentes configuragoes.

Os resultados obtidos a partir dessas variagoes sao apresentados nas Tabelas 6.5
e 6.6, servindo como base para a andlise comparativa e para a definicao da configuracao
adotada nos experimentos subsequentes. Nas tabelas em questao, “Exp” refere-se ao
identificador do experimento (ou configuragdo) e “LR” refere-se a taxa de aprendizado
(learning rate), e ressalta-se que os modelos X3D e C3D Light citados referem-se as
implementacgoes adaptadas pelos autores do PoseConv3D. A tabela também apresenta os

tempos de treinamento em cada configuracao.

Tabela 6.5:  Configuracoes experimentais e desempenhos obtidos no conjunto
Toyotal[l.753].

Exp Modelo Pré-treinamento LR Videos/GPU Epocas Validagao (%) Teste (%) Duragao
Acc. Global Acc. Média Acc. Global Acc. Média
1 X3D Sim 0,01 8 40 60,9 52,9 48,4 47,7 5h
2 X3D Sim 0,01 12 40 60,9 53,1 46,7 46,1 3h
3 X3D Nao 0,01 12 40 53,1 45,7 41,8 42,2 3h
4 X3D Sim 0,005 12 40 59,8 53,6 50,3 49,7 Sh
5 X3D Sim 0,005 12 60 59,2 51,7 49,7 49,3 7h
6 C3D Light Sim 0,01 8 24 59,8 52,6 48,4 48,2 8h20
7 C3D Light Nao 0,01 8 24 59,8 54,9 45,8 45,2 8h30
8 C3D Light Sim 0,005 8 40 57,0 50,7 46,7 46,1 14h

No que se refere a taxa de aprendizado, nos Experimentos 2 e 4, observa-se que

ambas as configuracoes convergem de forma estavel ao longo das 40 épocas para as taxas
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Tabela 6.6: Diferenga absoluta entre acurdcias de validagao e teste (em pontos percentu-
ais) para diferentes configuragoes no conjunto Toyota[1.753].

Exp Modelo Pré-treinamento LR Videos/GPU Epocas Validagao / Teste (p.p.)
DIF Acc. Global DIF Acc. Média
1 X3D Sim 0,01 8 40 12,52 511
P X3D Sim 0,01 12 40 14,16 6,98
3 X3D Nio 0,01 12 40 11,24 3,52
4 X3D Sim 0,005 12 40 9,45 3,89
5 X3D Sim 0,005 12 60 9,55 2,49
6  C3D Light Sim 0,01 8 24 11,40 4,39
7 C3D Light Nao 0,01 8 24 14,03 9,71
8 (3D Light Sim 0,005 8 40 10,25 4,54
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Figura 6.6: Curvas de perda de treino com taxas de aprendizado 0,01 (Experimento 1) e
0,005 (Experimento 4).

0,01 e 0,005 (Figuras 6.6 e 6.7). No entanto, no experimento conduzido com taxa de
aprendizado igual a 0,01 esse comportamento nao se refletiu em melhor desempenho no
conjunto de teste, sendo observada uma queda de aproximadamente 3,6 p.p. na acuracia
global e de 2 p.p. na acuracia média em relagao as configuracoes com taxa de aprendi-
zado de 0,005. Embora a taxa de aprendizado 0,01 tenha produzido acuracias elevadas
no conjunto de validagao (global de 60,9% e média 52,9%), a discrepancia em rela¢ao ao
conjunto de teste, evidenciada por um uma diferenca de 14,16 p.p. na acuracia global e
6,98 p.p. na acurdcia média, sugere um processo de ajuste excessivo dos pesos (overfit-
ting), comprometendo a capacidade de generalizagao do modelo. Em contraste, a taxa
de aprendizado de 0,005 apresentou convergéncia mais rapida nas primeiras épocas, além
de melhor equilibrio entre os resultados de validacao e teste, reduzindo a discrepancia

entre a acuracia global (9,45%) e a acurdcia média por classe (3,89%). Esse padrao de
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desempenho entre as duas taxas de aprendizado se repete nos demais experimentos com

o modelo X3D apresentados na tabela.
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Figura 6.7: Curvas de acuracia de treino e validagdo para os experimentos 2 e 4 com
diferentes taxas de aprendizado.

A anélise do impacto do tamanho do lote por GPU nos Experimentos 1 e 2, indica
que a configuracao com 12 videos apresentou convergéncia mais rapida nas primeiras
épocas em relacao a de 8 videos (Figura 6.8). Esse comportamento é evidenciado pela
queda mais acentuada da perda de treino nas primeiras iteracoes, assim como por valores
de perda consistentemente menores ao longo de todo o processo de otimizacao. Tais

resultados podem ser compreendidos a partir da relagao entre o tamanho do lote, o niimero
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Comparacao da perda de treino entre configuracbes com 8 e 12 videos por GPU
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Figura 6.8: Curva de perda de treino com as configuragoes de 8 e 12 videos por GPU
(Experimentos 1 e 2, respectivamente).

de iteracoes por época e a taxa de aprendizado.

Como formalizado na Equacao 6.1 onde Ny, é o nimero total de iteracoes durante
o treinamento; E é o nimero de épocas; N é o numero total de amostras no conjunto de
dados; B é o tamanho do lote (batch size), para um conjunto de dados fixo, o aumento
do tamanho do lote reduz o nimero de atualizacoes de pesos realizadas a cada época,
tornando as estimativas de gradiente menos ruidosas. Dessa forma, quando combinado
com uma taxa de aprendizado relativamente elevada, esse regime de otimizacao permite
passos maiores no espaco de parametros que permanecem mais estaveis, acelerando a

convergencia inicial da funcao de custo.

N
Niter = £ X [EW (6.1)

Entretanto, ao confrontar esse comportamento com as métricas de desempenho,
observa-se que a convergéncia mais rapida e a menor perda de treino nao se traduziram em
melhor capacidade de generalizacao. Conforme os dados apresentados na Tabela 6.5, am-
bas as configuragoes atingiram o mesmo valor de acuracia global no conjunto de validagao
(60,89%). No conjunto de teste, contudo, a configuracao com 12 videos por GPU apre-

sentou desempenho inferior, com reducao da acuracia de 48,37% para 46,73%. Tendéncia

semelhante é observada na acuracia média por classe, que apresentou leve aumento na
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validagao (de 52,85% para 53,11%), acompanhado por queda no teste (de 47,74% para
46,13%). Esse comportamento indica que a boa convergéncia e o ajuste acentuado no
treinamento fizeram o modelo se especializar nos dados de treino, gerando sobreajuste.
Nesse contexto, a reducao da taxa de aprendizado mostrou-se eficaz para melhorar a ge-
neralizacao, pois passos menores nos ajustes de peso tornam o treinamento mais estavel.
Como pode ser observado na Tabela 6.5, no Experimento 4 o uso de uma taxa de aprendi-
zado de 0,005 com 12 videos por GPU e mantendo-se a quantidade de épocas dos demais
experimentos, houve aumento tanto na acurécia global (50,3%) quanto na acuracia média
(49,7%) no conjunto de teste, além da menor diferenca de acuracia global (9,45 p.p.).

Em relagao ao nuimero de épocas, os resultados dos Experimentos 4 e 5 indicam
que a extensao do treinamento de 40 para 60 épocas nao resultou em ganhos consistentes
de desempenho. Pelo contrario, a configuragao com 60 épocas apresentou uma leve queda
tanto na acurdcia de validacao e teste quanto na acuracia média por classe, a0 mesmo
tempo em que implicou um aumento expressivo do custo computacional, passando de 5h
para 7h de processamento. Esse comportamento sugere que o modelo ja havia atingido
um ponto de saturacao por volta das 40 épocas, conforme evidenciado pela estabilizacao
da curva de perda de treino na Figura 6.9, correspondente ao Experimento 5. A partir
desse ponto, a continuidade do treinamento passou a provocar sobreajuste, sem beneficios
adicionais em termos de generalizagao. Esse cenario é corroborado pela alta volatilidade e
auséncia de tendéncia de subida na acuracia de validagao do Experimento 5 apds a época
40, como exibido na Figura 6.10.

Quanto ao uso de pré-treinamento, a interpretacao dos seus efeitos deve consi-
derar nao apenas a capacidade de generalizagao do modelo, mas também o custo com-
putacional associado ao processo de treinamento. Ao comparar os Experimentos 2 e 3,
observa-se que a configuragdo com pré-treinamento (experimento 2) apresenta desempe-
nho significativamente superior no conjunto de teste, com acurdcia global de 46,7% frente
a 41,8% e acuracia média de 46,7% frente a 42,2%. Esse ganho pode ser atribuido ao fato
de que o modelo pré-treinado é ajustado especificamente ao dominio do problema em es-
tudo, refinando representacoes previamente aprendidas e aproveitando similaridades entre

o conjunto NTU RGB+D e o conjunto Toyota Smarthome.
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Comparacao da perda de treino entre configuracdes com 40 e 60 épocas
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Figura 6.9: Curvas de perda de treino para 40 épocas (Experimento 4) e 60 épocas
(Experimentos 5).

Em contrapartida, a diferenca de acurdcia global 14,16 p.p. frente a 11,24 p.p. e
de acuracia média 6,98 frente a 3,52 p.p mostra-se ligeiramente maior na configuracao com
pré-treinamento. Esse comportamento, pode ser explicado pela dinamica de convergéncia
do treinamento, exibida na Figura 6.11. Na Figura observa-se que o modelo pré-treinado
inicia o processo de otimizacao em niveis de perda mais baixos e converge de maneira mais
rapida e estavel, enquanto o treinamento do zero apresenta uma fase inicial prolongada
de adaptacao, evidenciando a necessidade de um maior nimero de épocas para atingir
desempenho comparavel. Quando o numero de épocas é limitado, o treinamento sem
aprendizado prévio pode nao alcangar um regime suficientemente maduro para capturar
de forma consistente as variagoes intra-classe, afetando principalmente a acurdcia média.

Uma avaliagdo mais equilibrada foi possivel nos experimentos 9 e 10, com con-
figuracoes sem pré-treinamento treinadas com taxa de aprendizado na escala de 1073
(0,005 e 0,001), estendidas em 80 e 160 épocas. Os resultados sao apresentados na Ta-
bela 6.7. Mesmo com aumento significativo do nimero de épocas, os valores maximos
obtidos dos experimentos foram de 51,95% de acurécia global e acuracia média por classe
de 46,79%, no conjunto de validacao, valores consideravelmente inferiores aos obtidos
pelas configuragoes equivalentes com pré-treinamento. Esses resultados indicam que o

aumento do nimero de épocas, isoladamente, nao é suficiente para compensar a auséncia
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Comparacao da acuracia de treino e validacao para 40 épocas
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Figura 6.10: Curva de acurdcia de treino e validagao para 40 épocas (Experimento 4) e
60 épocas (Experimento 5).

de pré-treinamento, sendo ainda invidavel em termos de custo computacional devido ao
prolongado tempo de treinamento necessario para que o modelo comece a convergir.
Experimentos adicionais com taxa de aprendizado reduzida para 0,001 e até 160
épocas reforcam essa observacao. Mesmo sob um regime de treinamento prolongado, o
modelo nao apresentou convergéncia adequada no conjunto de treino, atingindo aproxima-
damente 50% de acuracia, enquanto os valores no conjunto de validacdo permaneceram
abaixo de 45%. Isso evidencia que a simples reducao da taxa de aprendizado torna o
processo de otimizagao excessivamente lento e computacionalmente inviavel no contexto

experimental considerado.
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Comparacao da perda de treino entre configuracbes com e sem pré-treinamento
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Figura 6.11: Curvas de perda do conjunto de treino para as configuragoes com e sem
pré-treinamento (Experimentos 2 e 3 respectivamente).

Tabela 6.7: Resultados adicionais sem pré-treinamento considerando apenas treino e va-
lidacao.

Exp Modelo LR Videos por GPU Epocas Acc. Treino Acc. Validagao

9 X3D 0,005 24 80 93,75% 51,95% (global)
46,79% (média)
10 X3D  0.001 12 160 53,33% 43,01% (global)
37,44% (média)

Por outro lado, as configuracoes com pré-treinamento a partir do conjunto NTU
RGB+D apresentaram convergéncia mais rapida e estavel, alcancando niveis superiores
de acurdcia com um nimero reduzido de épocas e taxas de aprendizado moderadas. A
melhor configuragao obtida de todos os experimentos é a do Experimento 4 com taxa de
aprendizado de 0,005, 12 videos por GPU e 40 épocas. O modelo atingiu 50,3% de acuracia
global e 49,7% de acurdcia média no conjunto de teste em apenas 5 horas de treinamento,
apresentando também 53,6% de acurdcia média e 59,8% de acurécia global no conjunto de
validagao. Além disso, essas configuragoes resultaram nos menores valores de DIF entre
treinamento e validacao, indicando melhor equilibrio entre desempenho e capacidade de
generalizagao. O uso de pré-treinamento configura-se, portanto, como a alternativa de
melhor custo-beneficio para o treinamento do Pose-X3D-S no conjunto TST.

Ao comparar os backbones avaliados, o X3D apresentou desempenho superior ao
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C3D Light na maior parte das configuracoes experimentais, especialmente quando com-
binado com pré-treinamento e taxa de aprendizado reduzida. Embora o C3D Light tenha
alcancado acuracias competitivas no conjunto de validacao nos Experimentos 6 e 7, in-
clusive comparaveis a melhor configuracao do X3D, seu desempenho no conjunto de teste
permaneceu inferior. Além disso, o C3D Light exigiu tempos de treinamento significati-
vamente maiores, em alguns casos mais que o dobro, sem apresentar ganhos proporcionais
de desempenho, comprometendo sua viabilidade pratica no contexto avaliado.

Dessa forma, a rede X3D se consolidou como a melhor op¢ao, e sua configuracao
mais eficiente foi adotada como base para os experimentos subsequentes, por oferecer o
melhor equilibrio entre desempenho, estabilidade do aprendizado e viabilidade computa-
cional, sendo particularmente adequada ao cenario de reconhecimento de acoes humanas

baseado exclusivamente em informacoes de pose.

6.2.4 Experimentos sobre o conjunto completo

Os experimentos conduzidos com o conjunto completo de dados sao centrais neste tra-
balho, uma vez que a comparacao com resultados reportados na literatura pressupoe a
utilizacao de todo o volume de dados disponivel. Assim, apds a validacao inicial do pi-
peline experimental em subconjuntos reduzidos, o treinamento e a avaliagao do modelo
foram estendidos ao conjunto completo, respeitando o protocolo original definido para o
conjunto e citado na Secao 5.3.

Nestes experimentos o backbone X3D (Pose-X3D-S) foi adotado, inicializado a
partir de pesos previamente ajustados no conjunto NTU RGB+D, caracterizando um
cenario de pré-treinamento sobre um dominio distinto. O treinamento foi realizado com
taxa de aprendizado igual a 0,005, utilizando 32 videos por GPU e um total de 20 épocas.
O aumento na quantidade de videos por GPU em comparagao aos experimentos anteriores
foi possibilitado pela atualizacao da placa de video, citada na introducao deste capitulo.
Nao foram aplicadas, nesse estagio, estratégias adicionais de balanceamento de classes
ou aumentos de dados direcionados, sendo mantida a distribuicao original do conjunto
de treinamento. Os conjuntos de validacao e teste também permaneceram inalterados,

assegurando a consisténcia da avaliacao. Os resultados obtidos neste experimento sao
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apresentados na Tabela 6.8 e serviram de referéncia para as analises e ajustes experimen-

tais subsequentes.

Tabela 6.8: Resultados da aplicacao do framework PoseConv3D ao conjunto Toyota
Smarthome Trimmed completo.

Validagao (%) Teste (%) Duragao
Acc. Global Acc. Média Acc. Global Acc. Média DP
77,12 52,14 72,26 54,51 25,88 12h

Observa-se que o modelo atingiu 77,12% de acuricia global em validagao, indi-
cando boa capacidade de ajuste aos dados vistos durante o treinamento. No entanto, a
acuracia média por classe foi de 52,14% e desvio padrao de acuracia média por classe
de 25,88%, evidenciando que o desempenho varia significativamente entre classes, prin-
cipalmente devido ao desbalanceamento e a dificuldade de predizer acoes com posturas
semelhantes. No conjunto de teste, a acurdcia global de 72,26% e a acurdcia média de
54,51% sugerem que o modelo generaliza de forma razodvel, mantendo desempenho consis-
tente em dados nao vistos. De forma geral, o resultado indica que o PoseConv3D consegue
capturar padroes espaciais e temporais das acoes, mas ainda apresenta limitacoes em ati-
vidades com posturas semelhantes ou acoes concorrentes, refletindo a dificuldade inerente
ao reconhecimento de agoes puramente a partir de representacoes de pose. A andlise
qualitativa da matriz de confusao obtida no conjunto de teste (Figura 6.12) reforca essas
observagoes, evidenciando que as confusoes entre classes seguem padroes semelhantes aos
jé identificados.

Especificamente, na atividade Drink. Fromcup, observou-se que seu elevado niimero
de amostras no conjunto de treinamento introduzia um viés amostral. A classe WatchTV,
como ja destacado em andlises dos subconjuntos preliminares, mesmo em menor quan-
tidade de amostras apresentou baixa variabilidade das poses associadas a acao, caracte-
rizada por movimentos sutis e postura predominantemente estatica, o que resultou em
dificuldades de generalizagao do modelo. De modo semelhante, a classe Readbook também
manteve grande confusao com diversas classes que o individuo realiza sentado e, ainda,
interagindo com um objeto como Usetablet, Uselaptop, Fat.Attable entre outras.

Na tentativa de mitigar esses problemas, foram avaliadas diferentes estratégias

de pré-processamento aplicadas exclusivamente ao conjunto de treinamento, com o obje-
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Figura

tivo de reduzir

das agoes menos representadas.

6.12: Matriz de confusao do conjunto de

teste do TST completo.

os efeitos do desbalanceamento entre classes e aumentar a variabilidade

As estratégias investigadas incluiram: (1) ajuste da

distribuicao das classes mais frequentes e com maior grau de confusao, em particular

Drink. Fromcup, Readbook e WatchTV; e (2) a imposigdo de um limite maximo de 400

amostras por

classe.

O conjunto de treino apresenta uma média de aproximadamente 215 amostras

por classe, contudo, devido ao forte desbalanceamento da distribuicao, essa média nao é

um indicador robusto da representatividade real das classes, uma vez que a maioria delas

possui menos de 400 amostras, enquanto apenas seis classes atingem ou ultrapassam esse



6.2 Experimentos com o modelo treinado no TST 75

valor. Além disso, observa-se que o desbalanceamento é fortemente concentrado em duas
classes dominantes(Drink. Fromcup e Walk), com mais de 1000 amostras cada. Embora
a limitagdo do nimero de amostras por classe reduza o viés associado a essas classes
majoritarias, uma reducao excessiva poderia comprometer classes ja bem definidas pela
maior disponibilidade de dados, levando a perda de variabilidade intra-classe. Nesse con-
texto, o teto de 400 amostras foi definido como um compromisso entre a mitigacao do
desbalanceamento e a preservagao da representatividade estatistica das classes mais fre-
quentes, afetando principalmente as classes dominantes e mantendo a distribuicao original
da maioria das demais.

Paralelamente a aplicacao das duas estratégias, foi adotada uma estratégia de
aumento de dados baseada exclusivamente em transformagcoes geométricas aplicadas as
préprias amostras do conjunto de treino, sem a introducao de novas instancias independen-
tes ou dados sintéticos externos. Essas transformacoes foram direcionadas exclusivamente
as classes sub-representadas no conjunto de treinamento. A selecao dessas classes foi fun-
damentada em uma andlise quantitativa da métrica de precisao por classe, associada a
distribuicao de amostras nos conjuntos de treino, validacao e teste, conforme apresen-
tado na Tabela 6.9. A precisdao mede quao confidveis sao as predi¢oes do modelo para
uma classe especifica, considerando apenas as amostras classificadas como pertencentes
a essa classe. Com base nesses critérios, foram identificadas como classes criticas Cut-
bread, Drink.Fromglass, Maketea.Insertteabag, Pour.Fromcan e Usetablet, caracterizadas
por baixos valores de precisao e, em alguns casos, pela escassez ou auséncia de amostras no
conjunto de validacao. O objetivo principal dessa estratégia foi mitigar o impacto da limi-
tada representatividade dessas classes e ampliar a variabilidade intra-classe, favorecendo

um processo de aprendizado mais robusto.

Tabela 6.9: Precisao por classe critica e distribuicao de amostras nos conjuntos de treino,
validacao e teste.

ID Classe Precisao (%) Treino Validagao Teste
6  Cutbread 33,33 23 2 20
10 Drink. Fromglass 0,00 40 19 6
20  Maketea.Insertteabag 21,88 30 6 20
22 Pour.Fromcan 12,50 34 2 23

28  Usetablet 0,00 34 0 15
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Os aumentos adotados foram pensados para atuacao direta sobre a estrutura
geométrica das sequéncias de pose, permitindo simular variagoes realistas na execugao
das atividades humanas monitoradas. O primeiro tipo de aumento consiste na aplicacao
de rotagoes aleatérias de pequena magnitude, limitadas a até 15 graus, sobre o esqueleto
humano. Essa transformacao busca representar variacoes naturais na orientacao corporal
do individuo em relagao a camera, comuns em cenarios reais de monitoramento doméstico,
nos quais o posicionamento do sujeito raramente é perfeitamente alinhado ao plano de cap-
tura. Ao introduzir essa variabilidade, o modelo é incentivado a aprender representacoes
mais invariantes a orientacao espacial da pose.

O segundo aumento corresponde a variacao de escala da pose, na qual todas as
articulacoes sao ampliadas ou reduzidas de forma proporcional. Essa operacgao simula di-
ferencas na distancia entre o individuo e a camera, bem como variagoes antropométricas
entre sujeitos distintos. Do ponto de vista do aprendizado, esse aumento reduz a de-
pendéncia do modelo em relacao a dimensoes absolutas do esqueleto, favorecendo a cap-
tura de relacoes espaciais relativas entre as articulagoes ao longo do tempo.

Adicionalmente, foi introduzida uma perturbacao controlada nas coordenadas
dos pontos-chave, caracterizada pela adicao de ruido de baixa intensidade. Esse tipo de
aumento visa modelar imprecisoes inerentes aos algoritmos de estimagao de pose, que
podem ocorrer em funcao de oclusoes, variacoes de iluminacao ou ruido visual. Ao expor
o modelo a essas perturbacoes durante o treinamento, busca-se aumentar sua robustez
a pequenas inconsisténcias nas entradas, reduzindo o risco de overfitting a configuragoes
articulares especificas.

Todas as operagoes de aumento de dados foram aplicadas exclusivamente ao con-
junto de treinamento, preservando a integridade dos conjuntos de validacao e teste. Essa
estratégia permitiu ampliar a diversidade das classes sub-representadas sem introduzir
viés artificial na avaliacao do desempenho do modelo. Os resultados obtidos para cada
estratégia estao apresentados na Tabela 6.10.

A introdugao da estratégia de aumento de dados em classes criticas (Tabela 6.9),
aliada ao balanceamento das classes Drink. Fromcup, Readbook e WatchTV, foi inicial-

mente avaliada com 30 épocas de treinamento. Observou-se uma leve reducao na acurécia
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Tabela 6.10: Resultados obtidos ao aplicar diferentes estratégias de correcao de desbalan-
ceamento e aumento de dados no conjunto de treino Toyota Smarthome Trimmed.

Estratégia Validacao (%) Teste (%) Duragao
Acc. Global Acc. Média Acc. Global Acc. Média
1 74,53 94,35 71,67 59,22 18h
2 71,83 50,15 69,00 55,21 13h

de validacao, que passou para 74,53%, acompanhada por acuracia média de 54,35%. No
conjunto de teste, o desempenho mostrou-se estabilizado, com acuracia global de 71,67%
e acurdcia média por classe de 55,22%, superando a acurdcia média obtida sem balan-
ceamento. Destaca-se que, nessa configuracao, a acuracia de teste atingia 55,05% j4 em
20 épocas, indicando convergéncia mais precoce. O prolongamento do treinamento para
40 épocas, mantendo a mesma estratégia de aumento de dados, nao resultou em ganhos
substanciais, sugerindo saturacao do desempenho.

A comparagao entre as matrizes de confusao do conjunto de teste para o TST
completo (Figura 6.12) e para o modelo com a estratégia 1 de balanceamento (Figura 6.13)
evidencia que os padroes gerais de confusao entre classes foram amplamente preservados.
De forma complementar, observa-se que o balanceamento proporcionou ganhos signifi-
cativos em algumas classes, enquanto outras mantiveram acertos baixos, especialmente
aquelas semanticamente ou biomecanicamente semelhantes, indicando que o aumento de
dados e redistribuicao das amostras nao elimina completamente confusoes entre acoes
similares.

Entre as classes criticas houve ganho apenas na classe Usetablet, que passou de
0% para 6,7% de acertos. Por outro lado, a classe Cutbread apresentou uma reducao
no desempenho, com queda de 15% para 10% de acertos, enquanto Maketea. Insertteabag
manteve-se estavel em 35%. A classe Pour.Fromcan teve o nimero de acertos reduzido
a 0. Além disso, classes como Drink. Fromglass continuaram sem acertos (0%), permane-
cendo fortemente confundidas com agoes semanticamente proximas que dispoem de maior
nimero de amostras, como Drink. Fromcup. Esses resultados indicam que, embora o ba-
lanceamento contribua para melhorar o desempenho de algumas classes sub-representadas,
ele nao é suficiente para resolver ambiguidades inerentes a agoes com poucos exemplos ou

elevada similaridade semantica e biomecanica.
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Figura 6.13: Matriz de confusao do conjunto de teste do TST para o modelo com estratégia
1 de balanceamento.

No geral, o maior ganho absoluto ocorreu na classe Eat.Attable, com aumento de
38 amostras corretamente classificadas, correspondendo a um ganho relativo de 15,02%.
Outras classes também apresentaram ganhos relevantes, como a reducao das confusoes
entre Drink. Fromcup e Drink. Fromcan (432 amostras, 4,28%), Readbook (+22 amostras,
6,59%), bem como melhorias na separacao entre WatchTV e Readbook (+21 amostras,
9,13%) e na classe Drink.Fromcan (+18 amostras, 15,13%). Esses resultados indicam que
a estratégia favoreceu o aprendizado de classes menos representadas e contribuiu para
uma melhor distingao entre agoes semanticamente préximas.

Por outro lado, algumas classes apresentaram perdas consideraveis. A maior
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queda foi observada em Drink. Fromcup, com reducao de 104 amostras corretamente clas-
sificadas (-13,92%). Também foram observadas intensificagbes de confusdo envolvendo
Eat. Attable e Drink.Fromcup (-33 amostras, -13,04%), bem como em WatchTV (-28
amostras, -12,17%), Readbook (-21 amostras, -6,29%) e Drink.Frombottle (-17 amostras,
-12,88%), todas associadas a confusoes com Drink. Fromcup. Esses resultados mostram
que, ao reduzir a predominancia de algumas classes no treinamento, ocorreu uma redis-
tribuicao dos erros, com aumento de confusoes entre agoes que compartilham posturas e
contextos semelhantes.

Em sintese, a estratégia 1 de balanceamento promove melhorias expressivas em
classes criticas, especialmente em Fat.Attable e Drink.Fromcan, favorecendo a repre-
sentacao de acoes menos frequentes. Simultaneamente, observa-se a ocorréncia de com-
pensagoes naturais, com aumento de confusdes em classes que anteriormente eram bem
reconhecidas, evidenciando que o balanceamento atua como um mecanismo de redistri-
buicao do erro e equilibrio do modelo, ainda que nao elimine completamente ambiguidades
entre classes postural ou semanticamente similares.

A estratégia 2 apresentou reducao da acuracia de validacao, atingindo 71,83%,
bem como queda da acurdcia média por classe para 50,15%. No conjunto de teste, en-
tretanto, a acuracia global manteve-se em 69,00%, com acuracia média de 55,21%. Esses
resultados indicam que a restricao no nimero de amostras por classe limita a capacidade
de ajuste do modelo durante o treinamento, mas nao compromete de forma significativa
o desempenho no teste, sugerindo um efeito regularizador implicito. A Tabela 6.11 apre-
senta a distribuicao de amostras por classe apds a aplicacao do teto global, mostrando que
classes dominantes como Drink. Fromcup, Readbook, Sitdown e Walk foram drasticamente
reduzidas, enquanto classes médias e raras foram preservadas. O total de amostras de
treino caiu de 8.829 para 5.920, mantendo-se os conjuntos de validacao e teste inalterados
para garantir comparabilidade.

A comparacao entre as matrizes de confusao do balanceamento 2 (Figura 6.14)
e do balanceamento 1 (Figura 6.13) evidencia alteragoes relevantes na distribuicao dos
erros do modelo. O maior ganho individual foi observado na redistribuicao das predigoes

da classe Walk para Leave, com um acréscimo de 60 amostras (4,85%), indicando maior
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Cook.Cut 1 8.8 15 15 240 29 15 15 15 29 2.9)
Cook.Stir 1.0 2.0 0.5 0.5 2.0 0.5 1.0 0.5
Cook.Usestove 4 JISIIN 5.6 5.6 56 5.6 5.6
Cutbread q 5.0 15.0 10.0 5.0 10.0 15.0 40.0
Drink.Frombottle 4 40.9 24.2 20.5 0.8 0.8 0.8 3.0 1.5 0.8 6.8
Drink.Fromcan - 1.7 454269 0.8 1.7 2.5 0.8 1.7 5.0 0.8 12.6
Drink.Fromcup - 0.1 0.1 0.1 2.7 7.6 &%) 1.3 1.9 1.5 03 0.7 0.1 0.1 0.1 35 0.3 0.7 0.9 9.0
Drink.Fromglass 4 W 66.7 16.7
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Eat.Snack 9 1.9 1.9 1.9 40.4 3.8 269 19 1.9 5.8 19 1.9 19 19 19 338
Enter 0.8 3 0.8 0.8 3.0 6.8 0.8
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Laydown - il Sl 15 9.2
E Leave 4.7 0.9 0.9 0.9
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Figura 6.14: Matriz de confusao do conjunto de teste do TST para o modelo com estratégia
2 de balanceamento.

separacao entre essas agoes. Outros aumentos relevantes na redistribuigao de erros incluem
as confusoes entre Walk e Enter (4+53, 4,28%), ¢ Walk e Cook.Cleanup (420, 1,62%).

Em termos de acertos efetivos (diagonal da matriz), destacam-se os ganhos nas
classes WatchTV (421, 9,13%) e Uselaptop (+15, 8,43%).

Em contrapartida, a maior perda de desempenho foi concentrada na classe Walk,
que apresentou redugao de 178 amostras corretamente classificadas (-14,39%). Além disso,
observou-se aumento das confusoes de outras classes com Walk, incluindo Usetelephone
(-17, -11,56%), Enter (-17, -12,78%) e Leave (-15, -14,02%). Por fim, a classe Takepills

apresentou queda de desempenho, com redugao de 14 acertos (-10,14%).
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Tabela 6.11: Distribuicao de amostras por classe apds aplicacao de teto global de 400
amostras no conjunto de treino.

Classe | Nome da Classe Treino Validacao Teste | Total
1 Cook. Cleandishes 225 20 133 378
2 Cook. Cleanup 254 19 107 380
3 Cook.Cut 93 17 68 178
4 Cook.Stir 300 80 199 579
5 Cook. Usestove 78 0 18 96
6 Cutbread 23 2 20 45
7 Drink. Frombottle 209 0 132 341
8 Drink. Fromcan 171 35 119 325
9 Drink. Fromcup 400 379 47 1526
10 Drink. Fromglass 40 19 6 65
11 Eat. Attable 333 31 253 617
12 FEat.Snack 140 24 52 216
13 Enter 282 29 133 444
14 Getup 400 78 317 795
15 Laydown 79 37 65 181
16 Leave 289 20 107 416
17 Makecoffee. Pourgrains 35 8 21 64
18 Makecoffee. Pourwater 41 8 27 76
19 Maketea. Boilwater 37 9 16 62
20 Maketea.Insertteabag 30 6 20 56
21 Pour. Frombottle 112 60 104 276
22 Pour. Fromcan 34 2 23 59
23 Pour. Fromkettle 69 10 28 107
24 Readbook 400 133 334 867
25 Sitdown 400 117 439 956
26 Takepills 177 29 138 344
27 Uselaptop 184 34 178 396
28 Usetablet 34 0 15 49
29 Usetelephone 251 53 147 451
30 Walk 400 521 1237 | 2158
31 WatchTV 400 73 230 703

Total 5920 1853 5433 | 13206

Nota: observa-se o desbalanceamento no niimero de amostras de treino, de modo que diversas classes
nao atingem o teto proposto.

Entre as classes criticas, observa-se ganho de acertos em Cutbread, de 10% para

15%, enquanto Maketea.Insertteabag apresentou reducao de 35% para 30%. Por outro

lado, Drink. Fromglass manteve-se com 0% de acertos, Pour.Fromcan continuou em 0% e

Usetablet reduziu de 6,7% para 0%. Esses resultados indicam que novamente o balance-

amento promoveu redistribuicao de erros.

Em sintese, o balanceamento 2 atenuou parcialmente o viés das classes dominantes

ao promover uma redistribuicao dos erros entre classes funcionalmente semelhantes, alte-
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rando os padroes de confusao observados no modelo. Embora a classe Walk tenha perma-
necido como um dos principais polos de erro, observou-se uma redistribuicao das predigoes
incorretas envolvendo essa classe, bem como ganhos pontuais de acurdcia em classes es-
pecificas. Como consequéncia, verificou-se uma maior homogeneidade na acuracia média
por classe, indicando um treinamento mais equilibrado. Ainda assim, algumas classes
permaneceram desafiadoras, especialmente aquelas sub-amostradas ou semanticamente
préximas, evidenciando limitagoes inerentes a representacao baseada apenas em esquele-
tos 2D. Esse comportamento sugere que o balanceamento e as estratégias de aumento de
dados atuam como mecanismos de regularizacao, melhorando o equilibrio do treinamento

sem eliminar completamente ambiguidades estruturais do problema.

6.2.5 Comparacao com a Literatura

Para comparar os resultados obtidos com o uso do PoseConv3D, considera-se o modelo
Separable Spatio-Temporal Attention (STA) (DAS et al., 2019), proposto pelos préprios
autores do conjunto TST para lidar com os desafios especificos desse conjunto. O STA
é guiado por pose 3D e também utiliza informagées de aparéncia (RGB) acopladas a
uma 3D-CNN. O modelo funciona acoplando um mecanismo de atencao sobre a 3D-
CNN, utilizando as coordenadas 3D do esqueleto humano como entrada para uma LSTM
de 3 camadas. A LSTM ¢é uma arquitetura de rede neural recorrente (RNN) capaz de
aprender dependéncias temporais nos dados. Neste caso, a rede direciona a atencao
espacial e temporal de forma separada. A dissociacao entre atencao espacial e temporal
permite que o modelo concentre-se em regides e momentos relevantes do video, além de
proporcionar maior robustez a mudancas de angulo de camera.

A Tabela 6.12 apresenta os resultados do modelo STA e os resultados do Pose-
X3D-S para o conjunto Toyota Smarthome Trimmed obtidos no presente trabalho. Para a
comparacao de resultados, reitera-se que ambos os modelos apresentados foram treinados
sob o protocolo Cross-Subject definido para o conjunto T'ST e apresentado na Secao 4.2.1.
Essa escolha assegura a utilizacao das mesmas listas de videos e das mesmas divisoes de
conjuntos de treinamento, validacao e teste entre os trabalhos.

Em termos de custo computacional, o modelo STA apresenta uma complexidade
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Tabela 6.12: Comparacao de desempenho do conjunto de teste do Toyota Smarthome
Trimmed na metodologia proposta neste trabalho com o método da literatura.

Modelo Entrada Acuracia Global Acuracia Média
STA Pose + RGB  75,3% 54,2%

STA Pose somente Nao informado 42,5%
PoseConv3D - X3D

(Este trabalho) Pose somente  72,26% 54,51%

significativamente maior que a X3D. O STA exige pré-treinamento separado das redes
base I3D (RGB) e LSTM (pose 3D), consumindo cerca de 23 horas, seguido de 5 ho-
ras adicionais para o treinamento ponta a ponta do mecanismo de atencao. Além disso,
a utilizagao de multiplas GPUs (4 GTX 1080 Ti) é necessaria para viabilizar esse trei-
namento, refletindo um alto consumo de recursos de hardware. Em contraste, a X3D
treinada apenas com informacoes de pose 2D em uma tnica GPU, totalizou 12 horas
de treinamento para o conjunto completo, sem necessidade de pré-treinamento separado,
demonstrando maior eficiéncia computacional. O maior gasto de tempo foi para extracao
de mapas de calor dos 16.115 videos. Essa diferenca evidencia que, embora o STA possa
alcancar maior acuracia ao combinar RGB e pose 3D, ele impoe custos computacionais
consideravelmente superiores em comparacao ao modelo baseado exclusivamente em pose.
Além disso, apesar de o STA com Pose + RGB apresentar a maior acurédcia global, a X3D
alcangou uma acuracia média significativamente superior comparada ao STA utilizando
apenas pose, e ficando relativamente préximo ao STA que combina Pose e RGB. Esse
resultado demonstra que a X3D consegue capturar com fidelidade as diferentes classes de
agoes, mesmo utilizando apenas informacoes de pose 2D.

Durante a fase de teste, o tempo de processamento de um tnico video (forward
pass) com o STA foi de aproximadamente 338 ms. Embora nao se tenha medido ainda
o tempo de inferéncia com o pipeline do PoseConv3D, o modelo foi executado de forma

eficiente para o conjunto completo de videos.

6.2.6 Experimento de agrupamento semantico de classes

O objetivo deste experimento foi avaliar o potencial do modelo para um cenéario de monito-

ramento mais geral de idosos, em que o foco esta em categorias amplas de comportamento,
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sem preocupacao com variagoes finas de cada agao. Para isso, realizou-se inicialmente um
agrupamento semantico das classes baseado na classe base de cada acao, definida como
a parte do rotulo anterior ao primeiro ponto. Dessa forma, acoes como Cook. Cleandishes e
Cook. Cleanup foram agrupadas na classe Cook, enquanto Drink. Fromcup e Drink. Frombottle
passaram a pertencer a classe Drink. Apos o agrupamento, foram definidas 19 classes-base
e o modelo foi treinado novamente com a nova rotulacao.

A avaliacao do modelo sob essa configuracao apresentou uma acuracia geral de
77,7% e uma acurdcia média por classe de 67,9% no conjunto de teste. Esses resultados
indicam que, embora o modelo tenha desempenho satisfatorio no reconhecimento global
das acoes, algumas classes ainda apresentam maior dificuldade de classificagao. A andlise
da matriz de confusao exibida na Figura 6.15 mostra que classes mais frequentes e visual-
mente distintas, como Walk, apresentam alto nimero de acertos, enquanto classes menos
representadas ou visualmente semelhantes a outras, como Cutbread e Fat, apresentam
maior dispersao fora da diagonal principal. No caso da classe Fat, a redugao na acuracia
em relacao as suas acoes individuais provavelmente esta relacionada a variacao de postura
durante a execucao da acao: enquanto comer a mesa geralmente ocorre sentado, consumir
snacks pode acontecer em pé, deitado ou em movimento, tornando o reconhecimento mais
desafiador.

Embora a fusao das classes Drink tenha simplificado a classificacao, essa es-
tratégia nem sempre é vantajosa, pois pode agrupar agoes que o modelo ainda confunde
de formas diferentes, mantendo ambiguidades. Uma alternativa seria agrupar classes com
base na similaridade de postura ou nos padroes de confusao observados nas matrizes de
confusao, permitindo reduzir de forma mais direcionada a complexidade do problema.
Outra abordagem complementar seria treinar modelos especialistas para subconjuntos
de classes que apresentam alta similaridade postural ou semantica, de modo a manter a
granularidade quando necessario, sem comprometer o desempenho global do sistema.

Ainda assim, o agrupamento semantico das classes cumpriu seu papel de reduzir
a complexidade do problema de classificacao, permitindo que o modelo aprenda padroes
gerais de comportamento dos individuos. Mesmo com algumas confusoes entre classes

semelhantes, os resultados indicam que o modelo é capaz de identificar corretamente a



6.2 Experimentos com o modelo treinado no TST

85

Cook IR 0.4 6.5 0.4 0.6 0.2 15 1.9 1.7 0.4 2,5 0.6 0.2 1.7 0.2
Cutbread { 10.0 15.0 10.0 10.0 20.0 35.0
Drink4{ 0.3 0.3 6.6
Eat{ 0.3 0.3 0.3 1.0 2.0
Enter{ 0.8 0.8 18.0 0.8
Getupq 0.9 0.3 2.2 1.8
Laydown - 18.5
Leave{ 0.9 15.0 0.9
Makecoffee 4 10.4 21
E Maketea 4 33.3 8.3
Pourq 5.2 0.6 3.9
Readbook 4 3.0 0.3 15 0.6 21.3
Sitdown{ 1.1 1.6 4.8
Takepills{ 3.6 0.7 1.4 0.7 51
Uselaptop 4 1.7 11.2
Usetablet 6.7 6.7 13.3 6.7 20.0
Usetelephone { 2.7 12.2 0.7 0.7 0.7 2.0 0.7 5.4
Walk4 0.6 0.6 1.6 1.4 0.2 0.2
WatchTV{ 0.9 13.5 1.8 0.4 7.0 0.4 0.4 3.0
2
=
Predito
Figura 6.15: Matriz de Confusao do conjunto de teste do TST apds agrupamento

semantico de classes.

maioria das agoes relevantes para o monitoramento geral de idosos, validando a abordagem

adotada.
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7 Conclusao

Este trabalho investigou a aplicacao do modelo PoseConv3D ao conjunto Toyota Smarthome
Trimmed (TST) no contexto do reconhecimento de agdes humanas voltado ao monitora-
mento nao invasivo de idosos, utilizando exclusivamente informagcoes de video processadas
a partir de mapas de calor 2D das articulagbes. A partir dessa investigacao, foi possivel
demonstrar que o modelo é capaz de monitorar atividades de forma nao invasiva por meio
de uma rede neural tridimensional baseada em sequéncias de pose.

Os resultados experimentais indicam que, mesmo em um conjunto desafiador
como o TST, caracterizado por elevada variabilidade postural e agbes concorrentes, o
modelo alcanga desempenho consistente, especialmente em acoes com variagao de postura
bem definida, diretamente relevantes para cendrios de assisténcia e prevenc¢ao de riscos.

A anélise detalhada das matrizes de confusao e das métricas por classe eviden-
ciou que as principais limitagoes do modelo estao associadas a semelhanca semantica e
postural entre determinadas acgoes, em especial aquelas realizadas em posicao sentada ou
envolvendo interacao com objetos semelhantes. Nesse contexto, a aplicacao de estratégias
de balanceamento e aumento de dados mostrou-se eficaz para mitigar vieses amostrais,
reduzir confusoes sistematicas e estabilizar a acurdcia média por classe, além de favorecer
uma convergéncia mais precoce do treinamento, mesmo sem impactar significativamente
a acuracia global de teste.

O agrupamento seméantico das classes permitiu avaliar o modelo sob uma pers-
pectiva mais alinhada ao monitoramento comportamental, demonstrando que a redugao
da granularidade das acOes preserva informacoes essenciais sobre o estado funcional do
individuo. Essa abordagem reforca a viabilidade do uso do modelo em aplicagoes praticas,
nas quais a identificacao de padroes gerais de comportamento é frequentemente mais re-
levante do que a distingao entre agoes finamente granulares.

Os experimentos também evidenciaram que o pré-treinamento em conjuntos ex-
ternos, aliado a ajustes criteriosos de hiperparametros, é determinante para alcancar um

equilibrio entre capacidade de ajuste e generalizacao, mesmo em cenarios com forte des-
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balanceamento de classes.

Comparativamente, a metodologia proposta neste trabalho supera o desempenho
de acuracia média por classe reportado no modelo proposto no trabalho original do TST
(modelo STA), porém com uma implementacao mais simples e de menor custo computa-
cional.

Como perspectivas futuras, planeja-se integrar o modelo a um sistema de mo-
nitoramento em tempo real, possibilitando a avaliacao do desempenho de inferéncia e
da viabilidade computacional em ambientes domésticos reais. Além disso, a investigacao
de estratégias avancadas de aumento de dados para classes sub-representadas e a incor-
poracao de informagoes contextuais da cena, como objetos e layout do ambiente, visando
a reducao de ambiguidades entre acoes visualmente semelhantes e ampliacao da aplicabi-

lidade do modelo em cenéarios de assisténcia & vida didria.
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