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Resumo

Neste trabalho, propõe-se um método para detecção de danos em estruturas reticula-

res, combinando modelagem pelo método de Elementos Finitos (MEF) com Otimização

Inteira Mista baseada em classificação. Inicialmente, para cada elemento estrutural

são atribúıdas duas variáveis indicadoras de dano: variáveis binárias para localização

e variáveis cont́ınuas para quantificação. O principal objetivo dessa dupla atribuição es-

trutural é permitir uma estratégia hierárquica para a avaliação do dano. Funções objetivo

serão definidas para medir as discrepâncias entre o comportamento dinâmico do modelo

sem dano, danificado e as frequências naturais e modos vibracionais observados. Um algo-

ritmo hierárquico de otimização por classificação, sem uso de gradientes, será empregado

em duas etapas: localização qualitativa do dano e quantificação precisa de sua severidade.

Os resultados serão avaliados com e sem a presença de rúıdo nas medições.

Palavras-chave: método dos Elementos Finitos, otimização inteira-mista, otimização de

ordem zero, análise de danos estruturais.



Abstract

This work proposes a method for damage detection in reticular structures, combining

Finite Element method (FEM) modeling with classification-based Mixed Integer Optimi-

zation. Initially, for each structural element is assigned two damage indicator variables:

binary variables for location and continuous variables for quantification. The main pur-

pose of this double structural assign is to allow an hierarquical strategy for the damage

assessment. Objective functions will be defined to measure discrepancies between the

dynamic behavior of the undamaged model, damaged model and the observed natural

frequencies and vibrational modes. A gradient-free, optimization based on a hierarquical

classification method algorithm will then be applied in two stages: a step of qualitative

damage assessment followed by precise quantification of its severity.. The results will be

evaluated both in the absence and presence of noise in the measurements.

Keywords: Finit Element Method, mixed-integer optimization, zero-order optimization,

structural damage analysis.
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7.8 Gráfico de Box-Plots por elemento da estrutura de treliça utilizando graus

de liberdade horizontais. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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7.21 Gráfico de Box-Plots por elemento da estrutura de treliça utilizando o
modelo hierárquico, função de penalidade e graus de liberdade verticais
(cenário 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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7.25 Gráfico de Box-Plots por elemento da estrutura de viga utilizando o modelo
hierárquico, função de penalidade e graus de liberdade verticais (cenário 1). 64
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1 Introdução

A detecção precoce de danos em estruturas é crucial para garantir a segurança de pon-

tes, edif́ıcios e instalações industriais, evitando colapsos catastróficos como o da ponte

Morandi, em Gênova (Itália), em agosto de 2018, que resultou em dezenas de v́ıtimas

e prejúızos significativos (LANARI et al., 2020). Nesse contexto, Sistemas de Monito-

ramento de Saúde Estrutural (SHM) baseados em análise modal são cada vez mais em-

pregados para identificar precocemente anomalias dinâmicas: danos estruturais alteram

a distribuição de massa e rigidez e, consequentemente, as frequências naturais e modos

de vibração (JIANG et al., 2022). Estudos ressaltam que o uso cont́ınuo de SHM per-

mite detectar danos antes que provoquem falhas inesperadas e planejar manutenções mais

econômicas (ZACHARAKIS; GIAGOPOULOS, 2022).

A identificação de danos estruturais, englobando detecção, localização e quan-

tificação, configura-se como um problema inverso de otimização, usualmente mal posto,

caracterizado pela não unicidade de solução e pela elevada sensibilidade a pequenas va-

riações nos dados de entrada (CHA; KIM; BUYUKOZTURK, 2017). Em tais condições,

rúıdos e imprecisões experimentais tendem a tornar mais complexo a obtenção de resul-

tados eletivos, o que torna imprescind́ıvel o uso de estratégias de regularização ou de

formulações robustas para garantir estabilidade e confiabilidade ao diagnóstico.

Diante da complexidade inerente a essa tarefa, muitos trabalhos dividem o pro-

cesso de análise em duas etapas bem definidas: uma etapa para localizar os elementos

danificados e outra para quantificar sua severidade (FU et al., 2016; CURY; BORGES;

BARBOSA, 2010). Friswell et al. (FRISWELL; PENNY; GARVEY, 1998), por exemplo,

empregaram um algoritmo genético para a localização discreta do dano e, em seguida,

utilizaram sensibilidade modal para estimar sua extensão cont́ınua, demonstrando ganhos

expressivos em eficiência e estabilidade.

Devido à natureza complexa do problema, diversos estudos aplicam algoritmos

populacionais, como Algoritmos Genéticos e Enxame de Part́ıculas, por serem livres de

gradiente, ou seja, não dependerem de derivadas do espaço de busca, o que os torna ro-
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bustos frente a superf́ıcies de otimização não suaves ou multimodais (ALKAYEM et al.,

2018). Neste trabalho, optou-se pela otimização por classificação, método que permite re-

alizar simultaneamente otimização de variáveis discretas (localização do dano) e cont́ınuas

(quantificação da severidade), constituindo uma formulação mista capaz de tornar todo o

processo mais eficiente. Deve-se ressaltar que este novo modelo emergente de otimização,

baseando em múltiplas soluções candidatas que interagem, similar ao conceito de po-

pulação nos algoritmos evolucionistas, se enquadram nos chamados algoritmos baseados

em amostragem, com um maior embasamento em estat́ıstica e aprendizagem de máquina

(HARPER; ORDONEZ; COLLINS, 2021).

Estudos recentes mostram que algoritmos de classificação, como o RACOS (Ran-

domized Coordinate Shrinking), aprendem uma fronteira de decisão entre soluções “boas”

e “ruins”, restringindo iterativamente a região de busca promissora (YU; QIAN; HU, 2016;

LIU et al., 2017). Hu et al. (LIU et al., 2017) destacam que esses métodos suportam

naturalmente domı́nios cont́ınuos, discretos ou h́ıbridos, e, em testes comparativos, o RA-

COS apresentou desempenho superior e mais estável do que outros otimizadores clássicos

em problemas complexos, o que reforça sua adequação a cenários desafiadores.

Complementarmente, emprega-se um modelo de Elementos Finitos para simu-

lar o comportamento dinâmico da estrutura, no qual cada elemento afetado altera as

frequências naturais e modos de vibração. Um arcabouço hierárquico, onde a variável

booleana, responsável pela localização do dano, tem prioridade no processo de otimização

é apresentado em conjunto com funções objetivo complementares, constrúıdas a partir

dos dados modais das estruturas saudáveis e danificadas, gerando um processo intŕınseco

de duas etapas.

1.1 Objetivos

O objetivo geral é desenvolver e validar um arcabouço para detecção de dano em estru-

turas reticulares utilizando um modelo de otimização por classificação constrúıdo com

variáveis inteiras mista de forma hierárquica visando uma busca intŕınseca da localização

e quantificação do dano estrutural, utilizando-se de dados modais da estrutura em seus

estados sem dano e danificado modeladas por meio do método dos Elementos Finitos. Por
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fim, introduzir rúıdo sintético nos dados para simular condições experimentais próximas

a condições reais.

1.2 Organização do trabalho

O presente trabalho está dividido nos seguintes caṕıtulos: o caṕıtulo 2 apresenta um

conjunto de trabalhos relacionados, nela são discutidas as principais estratégias utilizadas

na literatura. O caṕıtulo 3 apresenta a metodologia seguida em detalhes. O caṕıtulo

4 apresenta a fundamentação teórica de elementos finitos; o caṕıtulo 5 apresenta com

detalhes a otimização por classificação; o caṕıtulo 6 apresenta a modelagem do problema;

o caṕıtulo 7 apresenta os experimentos realizados e os principais resultados. Por fim, no

caṕıtulo 8 são apresentadas as conclusões finais do trabalho.
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2 Trabalhos relacionados

A literatura recente em detecção de danos estruturais é dominada por abordagens meta-

heuŕısticas, frequentemente h́ıbridas, que exploram funções objetivo baseadas em frequências

naturais, modos de vibração e energias modais. Esses trabalhos variam desde validações

em modelos simplificados até aplicações em modelos numéricos complexos e estruturas re-

ais, com ênfase crescente na robustez ao rúıdo e na eficiência computacional. A seguir são

descritos alguns desses trabalhos que utilizam otimização de ordem zero, todos na linha de

algoritmos evolucionistas e de inteligência de enxame, não tendo sido encontrado nenhum

trabalho que segue a linha de otimização por classificação abordada neste trabalho.

Kaveh et al. propõem o Shuffled Shepherd Optimization Algorithm (SSOA) como

uma estratégia de inteligência de enxame com tratamento de fronteiras para problemas de

identificação de danos, testando o método em treliças planas, vigas cont́ınuas e pórticos

planos (KAVEH; HOSSEINI; ZAERREZA, 2021). O algoritmo foi escolhido devido à

sua grande acurácia em baixo-ńıvel na detecção de elementos danificados sem utilizar

a estratégia de fronteira. O estudo demonstra ganhos quando a estratégia de fronteira

é incorporada (comparações entre SSOA e sua versão sem a estratégia de fronteira),

evidenciando que mecanismos de controle de fronteira e refinamento local podem melhorar

a estabilidade da busca em problemas de atualização de modelo por elementos finitos.

Alkayem et al. apresentam o framework h́ıbrido multiobjetivo MOLFPSO/TOP-

SIS, que combina componentes de otimização por enxame multiobjetivo com voos de

Lévy e a técnica TOPSIS para atualização de modelos por elementos finitos em estrutu-

ras 3D (ALKAYEM; CAO; RAGULSKIS, 2018). A utilização do algoritmo de enxame de

part́ıculas multiobjetivo foi adotada devido à grande robustez de métodos multiobjetivos

semelhantes, mesmo considerando cenários com rúıdo. Aplicado a um pórtico espacial

(84 elementos, 45 nós e 270 DOFs), o método alcança elevada precisão na identificação de

danos; no entanto, o estudo não realiza comparações quantitativas diretas com um amplo

conjunto de concorrentes, o que limita a avaliação externa de sua superioridade.

O SA-QSFS propõe uma versão auto-adaptativa do Stochastic Fractal Search,
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integrando critérios modais e energéticos (MSH, STE, CMS) e testando o método no

modelo IASC–ASCE (ALKAYEM et al., 2022b). Esse algoritmo foi escolhido devido

à sua capacidade de autorregulação sem a necessidade de refinamento dos parâmetros

estocásticos, o que fornece um grande potencial de resolver o problema de detecção de

danos. Esse trabalho realiza comparações extensivas com metaheuŕısticas consagradas e

mostra desempenho competitivo em cenários ruidosos, sugerindo que estratégias fractais

adaptativas são promissoras para paisagens de busca altamente multimodais t́ıpicas da

identificação inversa de danos.

Estudos baseados em algoritmos evolucionistas clássicos também permanecem

relevantes. Georgioudakis e Plevris investigam o desempenho de diferentes critérios de

correlação modal no contexto da identificação de danos usando Evolução Diferencial (DE)

(GEORGIOUDAKIS; PLEVRIS, 2016). O trabalho compara quatro funções objetivo

distintas em uma estrutura de barra biapoiada, oferecendo uma análise metodológica

detalhada sobre o efeito da formulação objetiva na sensibilidade às caracteŕısticas de

dano, embora com comparações adicionais limitadas.

Shabbir et al. aplicam um Algoritmo Genético (GA) para detecção de danos em

uma viga plana, examinando diversas combinações de funções objetivo (F1–F4) e termos

de regularização (SHABBIR et al., 2017). O algoritmo foi utilizado por ser um otimizador

global com grande capacidade de convergência em problemas complexos. Por fim, o estudo

mostra que a inclusão de termos de regularização e métricas modais combinadas melhora

a robustez frente a rúıdo, com resultados estáveis em ńıveis de até cerca de 10% de rúıdo, o

que reforça a importância de se projetar funções objetivo que penalizem soluções espúrias.

O Hybrid Bee–Genetic Algorithm (HBGA) integra a busca global do Bee Algo-

rithm com a capacidade de refinamento local do GA e sendo validado em uma ponte real

(Na Xa Suspension Footbridge) (NGOC-NGUYEN et al., 2022). O algoritmo foi adotado

devido à sua grande adoção em problemas complexos e à sua grande acurácia no problema

do inversor multińıvel em cascata, a qual superou o Algoritmo Genético. O trabalho

reporta elevada acurácia na localização e quantificação de danos, rápida convergência e

ganhos significativos de eficiência computacional (citado como ∼ 40% de redução no custo

de CPU em relação aos algoritmos constituintes), além de menor taxa de falsos positivos
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— fatores que tornam esse estudo particularmente relevante para validação prática em

SHM.

Monteiro et al. aplicam o Whale Optimization Algorithm (WOA) à detecção,

localização e quantificação de danos em diversos modelos, viga cantilever, treliça planar

de 10 barras e uma passarela de pedrestes treliçada, calibrando modelos para minimizar

a soma dos quadrados das diferenças relativas das seis primeiras frequências naturais

(MONTEIRO et al., 2024). O algoritmo foi escolhido devido à sua capacidade de não

apenas identificar o dano, mas também localizar e quantificar, além de não depender de

informações de gradiente, o que é essencial no processo de otimização de funções complexas

e altamente não-lineares. Embora o WOA apresente desempenho satisfatório e discussões

qualitativas em relação a benchmarks clássicos (como a ponte Z24), o estudo enfatiza a

necessidade de comparações quantitativas mais amplas para posicionar o método frente a

alternativas h́ıbridas.

Alkayem et al. também propõem uma estratégia baseada em energias modais

com o Oppositional Unified Particle Swarm Gradient-Based Optimizer (OL-UPSGBO /

UPSGBO), utilizando uma função objetivo h́ıbrida que combina energia cinética modal

(MKEn) e energia de deformação modal (MSE) (ALKAYEM et al., 2022a). Testes in-

cluem o conjunto de benchmarks IEEE CEC 2017, pórticos multi-andares e o modelo de

referência ASCE (pórtico de quatro andares com 116 elementos), mostrando desempenho

competitivo e robustez ao rúıdo.

Sadraei et al. propõem um Improved Grey Wolf Optimizer (I-GWO) que com-

bina informações de frequência com a matriz de flexibilidade generalizada para atualizar

modelos e localizar danos (SADRAEI; GHOLHAKI; REZAIFAR, 2025). Aplicado a um

pórtico de cisalhamento de 15 andares, a uma ponte treliçada bidimensional e a pórticos

bidimensionais, o I-GWO demonstra maior precisão em comparação com versões originais

do GWO e com PSO, evidenciando que modificações na dinâmica de liderança do enxame

e no tratamento de informação modal podem melhorar significativamente a capacidade

dedutiva de danos.
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3 Metodologia

Este trabalho propõe uma metodologia para detecção de danos estruturais baseada na

combinação entre modelagem numérica via Método dos Elementos Finitos (MEF) e um

algoritmo de otimização hierárquico fundamentado em classificação supervisionada. O

problema é formulado como um problema inverso de otimização inteira mista, visando

identificar a localização e a severidade de danos em estruturas reticulares a partir de

informações dinâmicas.

Inicialmente, são desenvolvidos modelos numéricos de estruturas reticulares, como

treliças, pórticos e vigas, por meio do MEF. A partir da discretização estrutural, obtêm-

se as matrizes globais de rigidez e massa, que permitem a realização da análise modal

da estrutura. As frequências naturais e os modos de vibração da estrutura ı́ntegra são

adotados como dados de referência no processo de detecção de dano.

O dano estrutural é representado como uma redução da rigidez dos elementos,

mantendo-se a matriz de massa inalterada. Para cada elemento define-se um parâmetro

cont́ınuo associado ao ńıvel de dano, limitado ao intervalo [0,1], onde 0 significa perda de

rigidez total do elemento e 1, rigidez ı́ntegra. A resposta dinâmica da estrutura danificada

é obtida a partir da modificação das matrizes elementares e do procedimento de montagem

global.

A identificação do dano é tratada como um problema de otimização inverso,

no qual funções objetivo medem a discrepância entre as propriedades modais estimadas

e os dados de referência. A presença simultânea de variáveis discretas, relacionadas à

localização do dano, e variáveis cont́ınuas, associadas à sua intensidade, caracteriza o

problema como inteiro mista e altamente não convexo.

Para sua resolução, emprega-se um algoritmo de otimização baseado em clas-

sificação supervisionada, organizado de forma hierárquica. Esse modelo permite tratar

de maneira integrada a localização e a quantificação do dano em um único processo de

otimização, garantindo consistência entre as variáveis de decisão.

Adicionalmente, uma estratégia de decomposição dos dados modais é implemen-
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tada visando adequar o uso dos modos de vibração em relação às possibilidades reais de

aquisição em experimentação, bem como sua utilização na construção de funções objetivo

de forma mais efetiva.

Por fim, experimentos numéricos são realizados em diferentes estruturas e cenários

de dano com o objetivo de avaliar a viabilidade e a eficácia da metodologia proposta. Os

detalhes referentes à modelagem estrutural, à definição das funções objetivo e ao algoritmo

de otimização são apresentados nos caṕıtulos seguintes.
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4 Fundamentação Teórica

Este caṕıtulo apresenta a base teórica necessária para o desenvolvimento do trabalho,

abordando os principais conceitos de modelagem estrutural e análise dinâmica utilizados

na metodologia proposta. Inicialmente, são introduzidos os fundamentos do Método dos

Elementos Finitos, destacando sua aplicação à análise vibracional de estruturas. Em se-

guida, descrevem-se os modelos de elementos estruturais empregados nos experimentos

numéricos, treliças planas, pórticos planos e vigas modeladas segundo a teoria de Ti-

moshenko, enfatizando suas hipóteses, graus de liberdade e formulações básicas. Esses

conceitos constituem o alicerce para a formulação do problema inverso de detecção de

danos apresentado nos caṕıtulos subsequentes.

4.1 Método dos Elementos Finitos

O Método dos Elementos Finitos (MEF) é uma técnica de análise numérica utilizada para

se obter soluções aproximadas em uma grande variedade de problemas de engenharia

(JAGOTA; SETHI; KUMAR, 2013). O método baseia-se na discretização do domı́nio

cont́ınuo da estrutura em um conjunto finito de elementos interconectados por nós, nos

quais os campos de deslocamento são aproximados por funções de interpolação adequadas.

No âmbito da análise estrutural, o MEF permite modelar de forma sistemática o

comportamento mecânico de sistemas complexos, considerando propriedades geométricas,

constitutivas e condições de contorno. A partir da formulação variacional do problema,

obtêm-se sistemas de equações algébricas que relacionam forças nodais e deslocamentos,

possibilitando análises estáticas e dinâmicas com elevado grau de flexibilidade.

4.1.1 Análise vibracional

A análise vibracional de estruturas por meio do MEF tem como objetivo caracterizar

o comportamento dinâmico do sistema quando submetido a excitações externas ou em

regime de vibração livre. Após a discretização espacial, o comportamento de um sistema
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elástico linear, sem amortecimento, pode ser descrito pela equação matricial:

Mü(t) +Ku(t) = F(t), (4.1)

em que M é a matriz de massa global, K a matriz de rigidez global, u(t) o vetor de

deslocamentos nodais e F(t) o vetor de forças externas. No caso da vibração livre não

amortecida, considera-se F(t) = 0.

A análise modal consiste na busca de soluções harmônicas do tipo u(t) = ϕeiωt,

conduzindo ao problema generalizado de autovalores:

Kϕ = ω2Mϕ, (4.2)

em que ωi representa a i-ésima frequência natural angular e ϕi o i-ésimo modo de vi-

bração associado. As frequências naturais e os modos de vibração constituem proprie-

dades dinâmicas fundamentais da estrutura e são amplamente explorados em técnicas de

detecção de danos, uma vez que alterações estruturais tendem a provocar variações nesses

parâmetros.

4.1.2 Treliça plana

A treliça plana é um sistema estrutural formado por barras interligadas por articulações

espećıficas, de modo que cada elemento resiste apenas a esforços axiais de tração ou

compressão. Cada nó possui dois graus de liberdade, correspondentes aos deslocamentos

nas direções horizontal (u) e vertical (v), resultando em quatro graus de liberdade por

elemento.

A formulação do elemento de treliça baseia-se na hipótese de comportamento

elástico linear e pequenas deformações, assumindo que a deformação ocorre exclusiva-

mente ao longo do eixo da barra. No sistema de coordenadas local, a matriz de rigidez

do elemento é dada por:

ke =
EA

L

 1 −1

−1 1

 .
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onde E representa o módulo de elasticidade, A a área da seção transversal do elemento e

L o comprimento do elemento.

A matriz de massa do elemento pode ser formulada de maneira consistente, con-

siderando a distribuição cont́ınua da massa ao longo do comprimento da barra, sendo

posteriormente transformada para o sistema global e incorporada à matriz de massa glo-

bal da estrutura. No sistema local, a matriz de massa consistente do elemento de treliça

bidimensional é dada por:

me =
ρAL

6

2 1

1 2

 .

onde ρ representa a densidade do material.

Para representar a orientação arbitrária do elemento no plano, utiliza-se uma ma-

triz de transformação constrúıda a partir dos cossenos diretores, a qual permite expressar

as matrizes elementares de rigidez e de massa no sistema global de coordenadas. As ma-

trizes globais de rigidez e de massa da estrutura são então obtidas por meio da montagem

das contribuições de todos os elementos, de acordo com a conectividade nodal.

A transformação para o sistema global é realizada por meio da matriz:

T =



c 0

s 0

0 c

0 s


, (4.3)

onde c = cos θ e s = sin θ. As matrizes elementares no sistema global de rigidez e de

massa são obtidas por:

Kg = TTkeT, Mg = TTmeT. (4.4)

Por fim, as matrizes globais de rigidez e de massa da estrutura são obtidas por

meio do operador de montagem, considerando todos os elementos da treliça:

K = Anel
i=1ki M = Anel

i=1mi
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em que A representa o operador de montagem (assemble), nel o número total de elementos

da estrutura, e ki e mi as matrizes elementares de rigidez e massa do i-ésimo elemento,

respectivamente.

4.1.3 Viga de Timoshenko

A teoria de vigas de Timoshenko consiste em uma extensão da teoria clássica de Euler–

Bernoulli, na qual são considerados explicitamente os efeitos da deformação por cisalha-

mento transversal, permitindo que a rotação da seção transversal seja independente da

derivada do deslocamento transversal. Essa formulação é particularmente adequada para

vigas curtas ou estruturas de baixa esbeltez, nas quais os efeitos de cisalhamento não

podem ser desprezados.

No presente trabalho, a viga de Timoshenko é modelada como um elemento de

pórtico plano bidimensional, no qual cada nó possui três graus de liberdade: deslocamento

axial u, deslocamento transversal v e rotação da seção θ. Assim, cada elemento apresenta

dois nós e um total de seis graus de liberdade.

A formulação do elemento incorpora tanto a rigidez axial quanto os efeitos de

flexão e cisalhamento. O acoplamento entre flexão e cisalhamento é introduzido por meio

do parâmetro adimensional

ϕ =
12EI

kGAL2
,

onde E é o módulo de elasticidade longitudinal, G é o módulo de elasticidade transversal,

A é a área da seção transversal, I é o momento de inércia, k é o fator de correção de

cisalhamento e L é o comprimento do elemento.

A matriz de rigidez local do elemento de Timoshenko, no sistema de coordenadas
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local, é expressa por:

ke =
EI

(1 + ϕ)L3



A
I
(1 + ϕ)L2 0 0 −A

I
(1 + ϕ)L2 0 0

0 12 6L 0 −12 6L

0 6L (4 + ϕ)L2 0 −6L (2− ϕ)L2

−A
I
(1 + ϕ)L2 0 0 A

I
(1 + ϕ)L2 0 0

0 −12 −6L 0 12 −6L

0 6L (2− ϕ)L2 0 −6L (4 + ϕ)L2


.

A matriz de massa consistente do elemento é obtida pela soma de duas parcelas:

uma associada às massas translacionais e outra relacionada às contribuições rotacionais

da seção transversal. Dessa forma, a matriz de massa local pode ser escrita como

me = m(t)
e +m(r)

e ,

onde m
(t)
e representa a parcela translacional e m

(r)
e a parcela rotacional, ambas formuladas

de modo consistente com a teoria de Timoshenko.

Quando o elemento apresenta inclinação no plano, as matrizes de rigidez e de

massa são transformadas do sistema local para o sistema global, equação 4.4, por meio

da matriz de rotação T, equação 4.5.

T =



c s 0 0 0 0

−s c 0 0 0 0

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 −s c 0

0 0 0 0 0 1


, (4.5)

4.1.4 Pórtico plano

O elemento de pórtico plano permite a representação simultânea de esforços axiais, es-

forços cortantes e momentos fletores, sendo amplamente empregado na modelagem de

estruturas como quadros e edif́ıcios. Cada nó do elemento possui três graus de liberdade:
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deslocamento horizontal u, deslocamento vertical v e rotação θ, totalizando seis graus de

liberdade por elemento.

A formulação adotada baseia-se na teoria clássica de Euler–Bernoulli, assumindo

comportamento elástico linear, pequenas deformações e seções transversais que permane-

cem planas e perpendiculares ao eixo deformado.

No sistema de coordenadas local, a matriz de rigidez do elemento de pórtico plano

é dada por:

ke =



EA
L

0 0 −EA
L

0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 −6EI
L2

2EI
L

−EA
L

0 0 EA
L

0 0

0 −12EI
L3 −6EI

L2 0 12EI
L3 −6EI

L2

0 6EI
L2

2EI
L

0 −6EI
L2

4EI
L


,

onde E representa o módulo de elasticidade longitudinal do material, A a área da seção

transversal, I o momento de inércia da seção em relação ao eixo neutro e L o comprimento

do elemento.

A matriz de massa do elemento é formulada de maneira consistente, levando em

consideração a distribuição cont́ınua da massa ao longo do comprimento do elemento, bem

como os efeitos associados às rotações da seção transversal. No sistema de coordenadas

local, a matriz de massa consistente do elemento de pórtico plano é dada por:

me = ρAL



1
3

0 0 1
6

0 0

0 13
35

11L
210

0 9
70

−13L
420

0 11L
210

L2

105
0 13L

420
− L2

140

1
6

0 0 1
3

0 0

0 9
70

13L
420

0 13
35

−11L
210

0 −13L
420

− L2

140
0 −11L

210
L2

105


,

em que ρ representa a densidade do material. As matrizes elementares de rigidez e de

massa são posteriormente transformadas para o sistema global de coordenadas por meio de
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uma matriz de transformação, equação 4.5, constrúıda a partir dos cossenos diretores do

elemento, sendo então incorporadas às matrizes globais da estrutura por meio do operador

de montagem, conforme a conectividade nodal.
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5 Otimização por classificação

Em uma grande variedade de problemas modernos em engenharia, ciências biológicas,

otimização de simulações e ajuste de hiperparâmetros, deseja-se otimizar uma função

objetivo da qual não se conhecem derivadas, cujas avaliações são caras ou sujeitas a

rúıdo. Tais funções são frequentemente tratadas como caixas-pretas (black-box ), exigindo

métodos que dependam exclusivamente da avaliação da função objetivo.

Nesse cenário, insere-se o campo da Otimização de Ordem Zero (Derivative-

Free Optimization - DFO), que desenvolve algoritmos capazes de otimizar uma função

f(x) : χ → R sem acesso a gradientes. Métodos DFO abrangem desde métodos deter-

mińısticos clássicos (busca direta, Nelder–Mead, trust-regions sem derivadas) até métodos

populacionais (evolucionistas, enxame) e modelos substitutos (Bayesian Optimization,

EDAs).

Nos últimos anos, surgiu uma nova classe de algoritmos que se destaca pela

formulação inovadora: a otimização por classificação, introduzida inicialmente por yu et

al. (2016) e posteriormente expandida por Hashimoto et al. (2018) e Han et al. (2025)

(HASHIMOTO; YADLOWSKY; DUCHI, 2018) (HAN et al., 2025).

Essa nova estratégia propõe substituir a estimativa direta da função objetivo

por um processo supervisionado capaz de distinguir regiões com bons valores para a

função objetivo das regiões ruins (valores de baixa qualidade da função objetivo). Tal

abordagem produz algoritmos teoricamente robustos, escaláveis e com garantias formais

de convergência, superando limitações de métodos populacionais tradicionais. Devido

à recente introdução dessa classe na literatura, sua aplicação ainda é limitada; assim,

este trabalho busca expandi-la ao aplicá-la ao problema inverso de detecção de danos

estruturais.

O presente caṕıtulo apresenta o referencial teórico e o funcionamento dessa classe

de algoritmos.
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5.1 Otimização de Ordem Zero (DFO)

Nesta seção, serão abordados, de modo formal, os algoritmos de otimização de ordem zero,

destacando-se as principais abordagens desta classe de algoritmos além de apresentar, de

forma mais aprofundada, os algoritmos de otimização por classificação.

5.1.1 Definição formal

Dado um domı́nio χ ⊆ Rd, onde d é a quantidade de dimensões do domı́nio do problema,

o problema clássico de DFO consiste em:

min
x∈χ

f(x) (5.1)

onde temos que f é acesśıvel apenas por meio de consultas pontuais, isto é, o algoritmo

não possui qualquer informação anaĺıtica além dos valores observados de f(x). Como

consequência, o custo para computar cada f(x) pode ser alto (em tempo computacional,

energia ou custo experimental), e o valor retornado pode ser afetado por rúıdo ou incerteza.

A definição acima, embora simples, revela a principal dificuldade da área: como

escolher eficientemente novos valores candidatos a ótimo para avaliação sem depender de

derivadas ou de estruturas internas da função. Quando a dimensionalidade d é pequena,

algoritmos clássicos como métodos de busca direta podem ser adequados, mas em contex-

tos de alta dimensão, funções altamente multimodais ou cenários com rúıdo significativo,

o problema torna-se muito mais desafiador.

5.1.2 Categorias de algoritmos

A literatura em DFO evoluiu ao longo de décadas para agrupar os métodos existentes em

conjuntos conceituais, cada um com prinćıpios e limitações caracteŕısticos.

Um dos conjuntos é composto por métodos determińısticos e de busca direta,

como Nelder–Mead, Pattern Search e variantes deMesh Adaptative Direct Search (MADS).

Esses métodos exploram o espaço de soluções por meio de movimentos estruturados, bus-
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cando regiões de melhora local sem requerer qualquer aproximação expĺıcita da função.

A robustez e a simplicidade dessas abordagens resultam de sua natureza puramente

geométrica: pequenas perturbações ou padrões regulares permitem detectar regiões pro-

missoras. Entretanto, a ausência de modelagem estat́ıstica ou capacidade adaptativa

elevada faz com que tais métodos degradem significativamente em problemas de alta di-

mensão. Seu potencial se dá em espaços de busca de baixa dimensão ou funções suaves,

mas sua escalabilidade é limitada.

O segundo conjunto consiste nos métodos populacionais, entre os quais se desta-

cam Algoritmos Evolucionistas, como o Algoritmo Genético (GA) e a Evolução Diferen-

cial (DE), e de Inteligência de Enxame, como a Otimização por Enxame de Part́ıculas

(PSO) e a Otimização por Colônia de Formigas (ACO). Esses métodos operam sobre uma

população de soluções que evoluem ao longo das iterações. Sua força principal está na ro-

bustez e na capacidade de navegação em espaços complexos sem necessidade de suposições

ŕıgidas sobre a função a ser otimizada.

Por fim, surge o terceiro conjunto, e o mais recente, fundamentado na otimização

por classificação. Essa abordagem redefine o problema de otimização como uma sequência

de problemas de aprendizado supervisionado, onde, utilizando-se das funções objetivo de

uma amostragem, o algoritmo aprende uma função de classificação que distingue regiões

boas e ruins com base em um limiar dinâmico. Além disso, o espaço de busca é progres-

sivamente limitado conforme o classificador identifica regiões com maior probabilidade

de conter soluções de baixa qualidade. A força dessa abordagem reside na possibilidade

de aplicar prinćıpios teóricos da aprendizagem estat́ıstica para garantir o progresso da

otimização, além de exibir um excelente desempenho em alta dimensão.

5.2 A Otimização por classificação

O prinćıpio geral de um otimizador por classificação é, ao invés de aproximar uma função

f(x) de sua região ótima, aproxima regiões ou subńıveis de alto desempenho e regiões

de baixo desempenho de f(x), através da determinação de um conjunto baseado em

amostragem na forma:
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Dα = {x ∈ χ : f(x) ≤ α} (5.2)

onde α é um limiar de qualidade. Baseando-se nesse conjunto, constrói-se, de forma

iterativa um classificador binário:

ht(x) ∈ {0, 1} (5.3)

onde ht(x) = 1, indica que x pertence a uma região promissora (definida pelas amostras

do conjunto Dα), e ht(x) = 0, uma região de baixa qualidade (definida pelas amostras

que não pertencem a Dα).

Uma vez constrúıda essa fronteira aproximada, o algoritmo amostra novas soluções

a partir da região positiva χ
(t)
+ = {x : ht(x) = 1}.

5.2.1 Funcionamento básico

O processo iterativo dos métodos de otimização por classificação pode ser formalizado de

maneira clara, pois todos os algoritmos pertencentes a essa classe compartilham a mesma

estrutura conceitual: dado um conjunto de amostras avaliadas, um limiar de qualidade é

estabelecido, uma função de classificação é ajustada para distinguir regiões promissoras e

não promissoras, e novas amostras são geradas predominantemente na região classificada

como positiva. Esse ciclo, inspirado diretamente nos prinćıpios de aprendizagem supervisi-

onada, substitui o uso de gradientes ou modelos expĺıcitos por um mecanismo adaptativo

que explora a geometria dos subńıveis da função objetivo. Todo esse procedimento é

ilustrado pelo Algoritmo 1.
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Algoritmo 1: Framework geral para Otimização baseada em Classificação

Input : Função objetico f(x) a ser minimizada; Método de classificação

C; Parâmetro λ ∈ [0, 1] responsável por controlar a exploração;

Threshold schedule {α1 > α2 > · · · > αT}; Número total de

iterações T ∈ N; Subrotina para geração Amostragem(·); Tamanho

da amostragem por iteração m ∈ N.

Output: solução minimizada aproximada xmin e seu valor f(xmin).

1 Inicialização: Constrói-se a amostragem inicial S0 = {x1, . . . , xm} a partir

de UX, região de busca inicial, e avalia cada f(x) para todo x ∈ S0.

2 Define-se xmin ← argminx∈S0 f(x).

3 for t = 1 to T do

4 Bt = {(xi, yi) : xi ∈ St−1, yi = 1[f(xi) ≤ αt]}.

5 Inicia-se um novo conjunto: St ← ∅.

6 for j = 1 to m do

7 Treine o classificador ht,j ← C(Bt).

8 x
(t)
j = Amostragem(ht,j, λ)

9 St ← St ∪ {x(t)
j }.

10 end for

11 x̂← argminx∈St f(x).

12 end for

13 return xmin and f(xmin)

O método é iniciado com a construção de uma amostragem sobre o domı́nio

seguindo distribuição uniforme UX (linha 1), ou seja, ele irá escolher um conjunto inicial

de soluções de forma aleatória. Em seguida o algoritmo irá salvar a amostra com o menor

valor encontrado (linha 2).

O processo iterativo inicia com o algoritmo, a partir do conjunto amostral atual,

definindo os indiv́ıduos pertencentes as classes positiva (“bons”) e, consequentemente, a

classe negativa (“ruins”), utilizando o parâmetro α, que representa o limiar entre ambas as

classes (linha 4). Após essa etapa, é constrúıdo um novo conjunto de amostras utilizando

o classificador e ambas as classes para definir um novo intervalo de distribuição para a
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geração das novas amostras. O classificador é uma função binária definida implicitamente

por uma região geométrica do espaço de busca sob a forma de um hiper-retângulo, sendo

responsável por distinguir as soluções promissoras das soluções não promissoras. Esse

classificador é aprendido por meio de contrações sucessivas e aleatórias das coordenadas

do espaço de busca, preservando simplicidade estrutural e controlando explicitamente o

tamanho da região positiva, o que favorece tanto a exploração eficiente quanto as garantias

teóricas de convergência do método.

O Algoritmo 2 representa a etapa de encolhimento do espaço de busca. Inicial-

mente, constrói-se o conjunto B+
t , contendo apenas as soluções classificadas como positivas

na iteração t, ou seja, as soluções que estão abaixo do limiar definido (linha 1). Após isso,

define-se B−
t como o conjunto das soluções negativas, obtido pela diferença entre o con-

junto total Bt e o conjunto das soluções positivas (linha 2). Em seguida, uma solução

positiva x+ é selecionada aleatoriamente em B+
t ; essa solução atua como ponto de re-

ferência e deve permanecer obrigatoriamente dentro da região positiva do classificador

(linha 3). A região positiva inicial Dht é definida como todo o espaço de busca χ, e o

conjunto de ı́ndices I é inicializado contendo todas as coordenadas do espaço, indicando

que todas as dimensões ainda estão livres para contração (linha 4).

Após essa etapa inicial, inicia-se um laço que verifica se ainda existe alguma

solução negativa sendo classificada como positiva, isto é, pertencente à região Dht; en-

quanto isso ocorrer, a região precisa ser refinada (linha 5). Depois desse passo, seleciona-se

aleatoriamente uma coordenada k dentre aquelas ainda dispońıveis no conjunto I (linha

6). Se a dimensão escolhida no espaço anterior for de domı́nio discreto (linha 7), então a

região positiva é contráıda nessa coordenada, mantendo apenas os pontos cujo valor na

dimensão k coincide com o valor correspondente da solução positiva de referência x+, ou

seja, elimina-se as soluções negativas que diferem nessa coordenada (linha 8). Por fim, a

coordenada k é removida do conjunto I, indicando que ela não poderá mais ser utilizada

em futuras contrações (linha 9).
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Algoritmo 2: Randomized Coordinate Shrinking Classification (RACOS)

Input : Iteração atual t; Conjunto de soluções rotuladas Bt; Espaço de

busca X ∈ {{0, 1}n, [0, 1]n}; Conjunto de ı́ndices I = {1, . . . , n};

Número máximo de coordenadas incertas M ∈ N+.

Output: Classificador ht com região positiva Dht .

1 B+
t ← soluções positivas em Bt

2 B−
t ← Bt \B+

t

3 Selecione aleatoriamente x+ = (x+
1 , . . . , x

+
n ) ∈ B+

t

4 Inicialize Dht ← X e I ← {1, . . . , n}

5 while ∃ x ∈ B−
t tal que ht(x) = +1 do

6 Selecione aleatoriamente k ∈ I

7 if X = {0, 1}n then

8 Dht ← Dht \ {x ∈ X | xk ̸= x+
k }

9 I ← I \ {k}

10 else if X = [0, 1]n then

11 Selecione aleatoriamente x− ∈ B−
t

12 if x+
k ≥ x−

k then

13 Amostre r ∼ U(x−
k , x

+
k )

14 Dht ← Dht \ {x ∈ X | xk < r}

15 else

16 Amostre r ∼ U(x+
k , x

−
k )

17 Dht ← Dht \ {x ∈ X | xk > r}

18 end if

19

20 end while

21 while |I| > M do

22 Selecione aleatoriamente k ∈ I

23 Dht ← Dht \ {x ∈ X | xk ̸= x+
k }

24 I ← I \ {k}

25 end while

26 return ht
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Caso a dimensão seja cont́ınua, ou seja, χ = [0, 1]n, uma solução negativa x− é

selecionada aleatoriamente em B− para guiar a contração da região (linha 11). Compara-

se o valor da coordenada k da solução positiva com o valor da mesma coordenada da

solução negativa (linha 12). Se o valor de x+ for maior ou igual ao de x−, sorteia-se um

ponto de corte r no intervalo aberto entre esses dois valores, caso contrário, considera-se

a situação inversa (linha 13 e linha 16, respectivamente). A região positiva é contráıda

removendo-se todos os pontos cuja coordenada k seja menor que r, garantindo que x−

seja exclúıda enquanto x+ permanece (linha 14). No caso oposto, x+
k < x−

k , remove-se

da região positiva todos os pontos cuja coordenada k seja maior do que r, novamente

excluindo a solução negativa sem afetar a positiva (linha 17).

Após o laço inicial do algoritmo, inicia-se um segundo laço cujo objetivo é contro-

lar a complexidade do classificador, verificando se o número de coordenadas ainda livres

excede o limite M (linha 21). Seleciona-se aleatoriamente uma coordenada k dentre as

ainda dispońıveis (linha 22). A região positiva é novamente contráıda nessa coordenada,

fixando-a ao valor correspondente de x+, reduzindo o volume da região positiva (linha 23).

Por fim, a coordenada k é removida do conjunto I, atualizando o número de dimensões

livres e encerrando uma iteração do segundo laço (linha 24).

O retorno do algoritmo é um classificador ht definido de forma impĺıcita pela

região positiva final Dht, que será utilizada para guiar a amostragem na etapa de oti-

mização (linha 26).
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6 Modelagem do problema

Neste caṕıtulo, aserá abordada a modelagem do problema a ser otimizado pelo algoritmo

e as principais motivações e conceitos no desenvolvimento do método.

6.1 Sistema hierárquico

A literatura recente sobre detecção de danos baseada em inteligência computacional tem

convergido para abordagens em duas etapas, nas quais a localização do dano e a quan-

tificação de sua severidade são tratadas de forma sequencial. Nesse contexto, Farhadi et

al. (FARHADI; GHIASI; TORKZADEH, 2024) propuseram uma metodologia que com-

bina um ı́ndice de dano baseado em energia modal e vetores de forças residuais para a

identificação preliminar dos elementos potencialmente danificados, seguida por uma etapa

de quantificação formulada como um problema de otimização. Essa segunda fase é re-

solvida por algoritmos evolucionistas, como o Particle Swarm Optimization (PSO) e a

Evolução Diferencial. Embora os resultados numéricos indiquem elevada precisão, a es-

tratégia adotada depende da separação expĺıcita entre métricas voltadas à localização do

dano e algoritmos espećıficos para sua quantificação.

De forma semelhante, Achouri et al. (ACHOURI et al., 2023) exploraram uma

abordagem em dois passos baseada na combinação de análise modal e redes neurais artifi-

ciais, cujos parâmetros são ajustados por meio de um algoritmo h́ıbrido PSO-BOA. Nesse

trabalho, a localização do dano é inferida implicitamente a partir de padrões associados às

respostas modais, enquanto a quantificação da severidade é tratada como um problema

de regressão supervisionada. Apesar da boa concordância com dados experimentais, o

método depende da integração de técnicas distintas, organizadas em etapas conceitual-

mente separadas, o que pode aumentar a complexidade da modelagem e do processo de

calibração.

Ainda dentro dessa perspectiva, métodos evolucionistas com forte acoplamento

heuŕıstico também têm sido empregados em procedimentos sequenciais de identificação de
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danos. O Improved Black Widow Optimization (IBWO), por exemplo, baseia-se em uma

fusão multiestratégica de mecanismos de busca incorporados ao algoritmo Black Widow

Optimization original, com o objetivo de aprimorar o equiĺıbrio entre exploração global

e refinamento local, acelerando a convergência e reduzindo a propensão à estagnação em

ótimos locais (CHEN et al., 2025). Aplicado à identificação de danos estruturais, o método

apresenta elevada robustez à presença de rúıdo, com resultados consistentes mesmo sob

ńıveis de até 20%, além de desempenho computacional aprimorado. Entretanto, a forte

integração de múltiplas heuŕısticas dificulta a análise isolada da contribuição de cada

mecanismo para os ganhos observados, mantendo a abordagem alinhada a uma lógica

sequencial de localização seguida de quantificação do dano.

Nesse contexto, destaca-se como principal diferencial do método proposto neste

trabalho o uso de um único algoritmo de otimização inteira-mista para tratar, de forma

simultânea, tanto a localização quanto a quantificação do dano estrutural. Diferentemente

das abordagens encontradas na literatura, nas quais a localização do dano é frequente-

mente tratada como um pré-processamento ou como uma etapa independente de filtragem

do espaço de busca, o método desenvolvido integra ambas as tarefas em uma única for-

mulação de otimização. Dessa forma, a topologia do dano (identificação dos elementos

danificados) e sua severidade (ńıvel de redução de rigidez) são determinadas de maneira

conjunta, a partir de uma única função objetivo.

Essa unificação reduz a dependência de heuŕısticas auxiliares e de métricas in-

termediárias espećıficas para cada etapa, simplificando a modelagem matemática do pro-

blema inverso de identificação de danos. Por fim, o uso de um mesmo arcabouço al-

goŕıtmico para ambas as tarefas confere maior generalidade ao método, facilitando sua

aplicação a diferentes classes de estruturas, como treliças, vigas e pórticos, e reforçando

sua contribuição em relação a estratégias para localização e quantificação de dano estru-

tural.

A integração simultânea da localização e da quantificação do dano é viabilizada

por meio de um sistema hierárquico de variáveis de decisão, no qual diferentes ńıveis

de informação são acoplados dentro de uma mesma formulação de otimização. Nesse

sistema, a presença ou ausência de dano em cada elemento estrutural é representada
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por uma variável discreta, enquanto a severidade do dano é descrita por uma variável

cont́ınua associada à rigidez remanescente do elemento. Essa organização hierárquica

reflete a natureza f́ısica do problema, uma vez que a quantificação do dano só possui

significado quando a existência do dano é previamente indicada.

Do ponto de vista matemático, essa hierarquia não implica a decomposição do

problema em etapas sequenciais, mas sim a definição de uma dependência lógica entre

variáveis dentro de um único vetor de decisão. A variável binária atua como um meca-

nismo de ativação que controla a influência da variável cont́ınua correspondente na res-

posta estrutural. Dessa forma, quando um elemento é classificado como não danificado,

sua rigidez permanece inalterada, independentemente do valor assumido pela variável

cont́ınua. Por outro lado, quando o elemento é identificado como danificado, a variável

cont́ınua passa a governar diretamente o ńıvel de redução de rigidez aplicado ao modelo.

Essa estratégia permite que o algoritmo de otimização explore simultaneamente

a topologia do dano e sua severidade, preservando uma estrutura lógica hierárquica que

reduz o espaço de busca efetivo e evita soluções fisicamente inconsistentes. Além disso,

ao incorporar essa hierarquia diretamente na representação das variáveis, elimina-se a

necessidade de critérios adicionais para transição entre fases de localização e quantificação,

mantendo o problema formulado de maneira unificada e coerente.

6.2 Modelagem da solução

Uma vez estabelecida a formulação hierárquica das variáveis do problema, esta seção des-

creve como uma solução candidata para o problema de identificação de danos estruturais

é modelada. O objetivo é explicitar a representação adotada para os parâmetros de dano,

que permite tratar, de forma unificada, a localização e a quantificação do dano dentro de

um mesmo processo de otimização.

Conforme discutido anteriormente, cada elemento estrutural é caracterizado por

duas variáveis de decisão: uma variável cont́ınua, associada ao grau de rigidez remanes-

cente do elemento, e uma variável binária, responsável por indicar a presença ou ausência

de dano. A variável cont́ınua assume valores no intervalo unitário, representando a fração

da rigidez original preservada, enquanto a variável binária atua como um mecanismo de
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ativação, garantindo que apenas os elementos identificados como danificados tenham sua

rigidez efetivamente reduzida.

Dessa forma, uma solução candidata é representada como um vetor de parâmetros

de dano, no qual cada par de variáveis corresponde a um elemento da estrutura. Essa

representação mista permite codificar simultaneamente informações topológicas, relacio-

nadas à localização do dano, e informações quantitativas, relacionadas à sua severidade.

Um exemplo esquemático dessa representação é apresentado a seguir:

Amostrai = {b1, c1, b2, c2, ..., bn, cn} (6.1)

Onde bi e ci representam a variável binária e a variável cont́ınua, respectivamente,

do i-ésimo elemento. Essa equação torna expĺıcito o sistema hierárquico abordado na seção

anterior. No modelo proposto, se bi = 0, então considera-se o valor de rigidez presente em

ci, caso contrário, se bi = 1, considera-se o valor de bi como rigidez do elemento (elemento

ı́ntegro).

6.3 Energia de Deformação Modal por Decomposição

A Energia de Deformação Modal (Modal Strain Energy – MSE) é amplamente empregada

na literatura de identificação e detecção de danos estruturais devido à sua elevada sensi-

bilidade a variações locais de rigidez, superando abordagens baseadas exclusivamente em

frequências naturais ou formas modais globais (ALKAYEM et al., 2018). Fundamentada

na relação entre a configuração deformada de um modo de vibração e a matriz de rigidez

da estrutura, a MSE pode ser avaliada em diferentes ńıveis de discretização, destacando-se

as abordagens global e elementar.

A MSE global representa a energia total associada a um determinado modo,

obtida pelo somatório das contribuições energéticas de todos os graus de liberdade do

sistema, mas, usualmente, se considera apenas o primeiro grau. A função representada

pela equação 6.2 representa o MSE global. Nela ϕm
i representa o vetor modal associado

ao i-ésimo grau de liberdade da estrutura com dano, ϕu
i corresponde ao vetor modal do
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modelo ı́ntegro da estrutura, ou seja, sem danos, enquanto Ku denota a matriz de rigidez

global que representa a estrutura ı́ntegra.

fMSE =

ngl∑
i=1

∣∣∣ϕu,T
i Kuϕu

i − ϕg,T
i Kuϕg

i

∣∣∣ (6.2)

Já a MSE elementar discrimina a fração de energia armazenada em cada elemento

da malha de elementos finitos, sendo particularmente adequada para a localização e quan-

tificação de danos, uma vez que falhas estruturais manifestam-se como reduções locais de

rigidez. Por esse motivo, a MSE elementar é frequentemente utilizada como base para a

construção de funções objetivo em procedimentos de atualização de modelos e algoritmos

de otimização aplicados ao diagnóstico estrutural.

Entretanto, em problemas experimentais de identificação estrutural baseados em

parâmetros modais, é comum que as formas modais medidas apresentem informação es-

pacial incompleta. Essa limitação decorre tanto de restrições práticas de instrumentação

quanto da própria natureza de certos graus de liberdade, como rotações nodais, que não

podem ser diretamente mensuradas por sensores convencionais. Em estruturas reticulares,

vigas e pórticos planos, essa incompletude pode comprometer significativamente a cor-

relação entre modos experimentais e numéricos quando são utilizados critérios puramente

matemáticos, como o Modal Assurance Criterion (MAC), especialmente em situações nas

quais diferentes modos apresentam padrões semelhantes nos graus de liberdade efetiva-

mente medidos, apesar de possúırem naturezas f́ısicas distintas.

Uma terceira estratégia de utilização do MSE é a decomposição do cálculo levando-

se em conta as direções preferenciais de aparecimento do dano. No trabalho seminal de

Yang et al. (YANG; LI; HU, 2004) foi proposta a decomposição da matriz elementar

de estruturas oceânicas (offshore) em suas direções de esforços, onde definiu-se um MSE

espećıfico na direção axial, com maior potencial de indicativo de dano nesse padrão de

estruturas.

Mais recentemente, Brehm et al. (BREHM; ZABEL; BUCHER, 2010) propõem

a decomposição da MSE, na qual os graus de liberdade do modelo numérico são partici-

onados em subconjuntos definidos a partir de critérios f́ısicos ou geométricos relevantes.

Esses agrupamentos podem representar, por exemplo, direções espećıficas de movimento
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(translações e rotações), regiões estruturais distintas ou subestruturas fracamente acopla-

das. A partir dessa partição, analisa-se a distribuição da energia de deformação modal

entre os diferentes agrupamentos, fornecendo uma caracterização f́ısica mais representa-

tiva de cada modo de vibração.

A função objetivo baseada no MSE por decomposição fundamenta-se, portanto,

na definição prévia de um conjunto de graus de liberdade de interesse, os quais podem

corresponder a regiões espećıficas da estrutura. Esses conjuntos podem corresponder a

regiões espećıficas da estrutura, direções particulares de movimento, como deslocamen-

tos verticais ou horizontais, ou ainda a graus de liberdade isolados cuja resposta seja

considerada relevante para a identificação de danos.

Para esse fim, define-se um vetor de seleção (ou vetor de ı́ndices) vs, responsável

por identificar quais graus de liberdade da estrutura global são considerados na avaliação

da função objetivo. Esse vetor atua como um operador de filtragem, restringindo a análise

apenas aos graus de liberdade associados a um padrão de interesse previamente definido.

O padrão P consiste em um conjunto lógico que especifica as regiões, subestru-

turas ou direções do sistema estrutural que se deseja isolar no cálculo do MSE. Exemplos

t́ıpicos de padrões incluem:

P → semiestrutura da direita em caso de uma viga;

P → graus de liberdade associados à translação vertical

...

(6.3)

Diversos padrões P podem ser definidos e analisados de forma independente,

permitindo a investigação direcionada de diferentes parcelas do comportamento estrutural.

Formalmente, considerando uma estrutura com ngl graus de liberdade globais,

o vetor de seleção vs é definido de modo a mapear o padrão P no espaço dos graus de

liberdade, assumindo a forma de um vetor binário ou de um conjunto de ı́ndices que

identifica exclusivamente os graus de liberdade pertencentes ao padrão considerado.

No contexto deste trabalho, a informação energética proveniente da MSE por

decomposição é incorporada diretamente à formulação da função objetivo do problema

de otimização. Dessa forma, define-se a função objetivo apresentada na Equação 6.4,
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a qual se diferencia da função global da Equação 6.2 tanto no conjunto de graus de

liberdade considerados quanto nos modos de vibração empregados. Em particular, ao

invés de utilizar todos os graus de liberdade do modelo, a função objetivo restringe sua

avaliação apenas àqueles associados aos ı́ndices definidos no vetor de seleção vs. Além

disso, diferentemente da abordagem baseada na comparação entre a estrutura gerada

pelo otimizador e a estrutura ı́ntegra de referência, optou-se por empregar diretamente

os modos de vibração obtidos a partir das medições da estrutura sob análise, visando

aumentar a sensibilidade da função objetivo à presença e à localização de danos.

fMSEd
=

ngl∑
i=1,j∈v

∣∣∣ϕm,T
i,j Kuϕm

i,j − ϕg,T
i,j K

uϕg
i,j

∣∣∣ (6.4)

Na equação 6.4, ϕm
i representa o vetor modal associado ao i-ésimo grau de liber-

dade (ou agrupamento) da estrutura com dano, ϕg
i corresponde ao vetor modal do modelo

gerado pelo algoritmo de otimização, enquanto Ku denota a matriz de rigidez global que

representa a estrutura ı́ntegra.

A minimização da função objetivo com decomposição visa promover a convergência

do modelo numérico para uma distribuição de energia de deformação modal compat́ıvel

com aquela observada na estrutura danificada, tornando o procedimento menos senśıvel à

incompletude espacial das medições experimentais e a rúıdos, além de reforçar o caráter

f́ısico do processo de identificação e quantificação de danos.

Além disso, o uso da MSE por decomposição, permite que o cálculo do MSE seja

feito com componentes de mesma ordem de grandeza, evitando, assim, que componentes

de ordem de grandeza menor nos modos de vibração tenham sua parcela de contribuição

no MSE minorado ou irrelevante. Por exemplo, a separação de deslocamentos horizontais

e verticais pode ser interessante quando se tem uma maior agnitude entre um dos dois

deslocamentos. Assim, o cálculo de um MSE decomposto para cada direção, permite

potencializar suas utilizações em procedimentos de detecção de dano.

Finalizando, essas estratégias para construção de funções objetivo baseadas no

MSE serão avaliadas isoladamente e por meio de métodos de penalização visando o en-

tendimento do potencial para o modelo de otimização apresentado.
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7 Procedimentos Experimentais e resultados

Este caṕıtulo tem como objetivo mostrar a evolução do método de detecção de danos

estruturais durante o tempo.

O sistema utilizado está descrito abaixo:

1. Processador Intel Core i5-10100T;

2. 8Gb de memória RAM DDR4;

3. Sistema Operacional: Windows 11 Home.

7.1 Estruturas utilizadas

As estruturas utilizadas nos procedimentos experimentais estão descritas abaixos. As

marcações no formato de triângulos representam v́ınculos, ou seja, condições de con-

torno da estrutura no sentido de tranlações, já as marcações com quadrados representam

condições de contorno dos graus de loberdade de rotação, ou seja, nesses pontos as rotações

do nó são nulas.

A estrutura representada na imagem 7.1 representa uma treliça plana de 9 ele-

mentos. Pode-se notar condições de contorno nos graus de liberdade verticais dos nós nas

posições (0, 0) e (12, 0) e uma condição de contorno horizontal no nó (0, 0). A estrutura

representa uma ponte com dano de 50% no elemento 5.

Já a estrutura representada na figura 7.2, representa uma pequena viga engastada

de 9 elementos. É uma estrutura mais dif́ıcil de se trabalhar, pois, como possui graus de

rotação e estes não podem ser medidos com acelerômetros, a quantidade de modos de

vibração que podem ser utilizados acabam sendo limitados.

Por fim, a estrutura representada na imagem 7.3, representa um pórtico plano de

13 elementos que, assim como a estrutura de viga, possui 3 graus de liberdade por nó,

sendo a estrutura mais complexa trabalhada neste trabalho.
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Figura 7.1: Treliça plana utilizada nos experimentos

Figura 7.2: Viga utilizada nos experimentos

7.2 Energia de deformação modal

Nesta seção são apresentados os experimentos numéricos realizados com base na Energia

de Deformação Modal (MSE), com o objetivo de avaliar o desempenho do algoritmo de

otimização no problema de identificação de danos estruturais. Inicialmente, analisa-se o

comportamento do método utilizando a MSE global, considerando simultaneamente todos
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Figura 7.3: Pórtico plano utlizado nos experimentos

os graus de liberdade dispońıveis no modelo numérico. Essa abordagem serve como ponto

de partida para investigar as limitações associadas ao uso direto da energia modal total,

especialmente em cenários nos quais a informação experimental é incompleta ou pouco

discriminativa.

Na sequência, introduz-se a MSE por agrupamento, na qual os graus de liberdade

são particionados, permitindo avaliar a contribuição energética de subconjuntos espećıficos

da estrutura. Essa estratégia busca contornar as dificuldades observadas no caso global,

explorando a distribuição espacial da energia de deformação como forma de aprimorar o

pareamento modal.

Os experimentos apresentados nesta seção contemplam diferentes configurações

de análise e permitem comparar diretamente o impacto da escolha da métrica de MSE na

convergência do algoritmo e na qualidade das soluções obtidas.

7.2.1 MSE global

Inicialmente, realizou-se uma análise da estrutura de treliça empregando a Energia de

Deformação Modal global. Nesta abordagem, a energia modal é avaliada considerando

simultaneamente todos os graus de liberdade do modelo numérico, sem qualquer distinção
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ou particionamento espacial. O experimento correspondente a essa configuração é descrito

na subseção a seguir.

Experimento

Para a estrutura de treliça, figura 7.1, inicialmente considerou-se um dano de 50% (dano

elevado) no elemento 5 para a realização dos experimentos iniciais. Esse dano elevado

tem como objetivo verificar as capacidades iniciais do algoritmo no problema de detecção

de danos.

Na tabela a seguir, tem-se os parâmetros que serão utilizados pelo algoritmo em

todos os próximos experimentos relacionados com as estruturas reticulares do trabalho:

Tabela 7.1: Parâmetros do algoritmo.
Quantidade de iterações 500
Tamanho da amostragem 70

Tamanho do conjunto positivo 30
Bits incertos 4
Probabilidade 0.99

Com o objetivo de se realizar uma análise mais robusta, o algoritmo foi executado

20 vezes, e os melhores resultados de cada execução foram salvos em arquivos csv.

Resultados

O gráfico presente na figura 7.4 apresenta a taxa de convergência média do algoritmo

para todas as 20 execuções além dos desvios-padrões. Observa-se uma convergência muito

rápida já no ińıcio das iterações, o que indica a eficiência do algoritmo.

O algoritmo obteve uma boa taxa de convergência, figura 7.4, aproximando-se

bastante do valor 0, porém, o gráfico da figura 7.5, indica que, apesar do valor da função

objetivo estar muito próximo de zero após algumas iterações, essa estratégia inicial não

é capaz de encontrar a solução correta, demonstrando, dessa forma, a dificuldade do

problema enfrentado.

O gáfico da figura a seguir, figura 7.5, representa todos os resultados obtidos sob a

forma de Box-Plots por elemento, ou seja, cada Box-Plot representa um elemento diferente

da malha. Essa representação demonstra, de forma global, a acurácia e a precisão geral
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Figura 7.4: Taxa de convergência do algoritmo.

do modelo.

Figura 7.5: Gráficos Box-Plot para cada elemento da malha.

Apesar do valor da função objetivo estar muito próximo de zero após algumas

iterações, essa estratégia inicial não é capaz de encontrar a solução correta, demons-

trando, dessa forma, a dificuldade do problema enfrentado. Desse modo, esse modelo

inicial, considerando todos os graus de liberdade, não é suficiente para se obter resultados

minimamente satisfatórios, sendo necessário um modelo mais sofisticado.
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7.2.2 MSE com decomposição

O método adotado neste trabalho baseia-se na Energia de Deformação Modal por agrupa-

mento. Nessa abordagem, os graus de liberdade do modelo são particionados em conjuntos

distintos, definidos a partir de critérios f́ısicos, permitindo avaliar separadamente a con-

tribuição energética de cada grupo para os modos de vibração analisados. Neste estudo,

os agrupamentos foram definidos de acordo com as direções dos deslocamentos nodais,

considerando-se separadamente os graus de liberdade horizontais e verticais.

Experimentos

Foram realizados experimentos com a estrutura de treliça, mantendo-se um dano de 50%

no elemento 5, de modo a preservar a consistência com os testes apresentados anterior-

mente. O objetivo desses experimentos é investigar o impacto do isolamento dos graus de

liberdade horizontais e verticais no desempenho do algoritmo, avaliando se a utilização de

informações modais direcionais contribui para uma identificação de danos mais precisa e

robusta.

Resultados

As Figuras 7.6 e 7.7 apresentam, respectivamente, as taxas médias de convergência do

algoritmo quando se utiliza a MSE calculada apenas a partir dos graus de liberdade

horizontais e apenas dos graus de liberdade verticais. Em ambos os casos, observa-se uma

convergência acelerada, com o algoritmo rapidamente se mantendo próximo da solução

ótima, comportamento semelhante ao observado na análise com MSE global.

A análise da convergência média indica que a separação dos graus de liberdade

não compromete a eficiência do processo de otimização, mantendo um comportamento

estável ao longo das iterações.

Os resultados globais obtidos ao longo das 20 execuções do algoritmo são apresen-

tados sob a forma de Box-Plots nas Figuras 7.8 e 7.9, correspondentes, respectivamente,

aos casos em que se utilizam apenas os graus de liberdade horizontais e apenas os graus

de liberdade verticais. Essa representação permite avaliar simultaneamente a acurácia e

a precisão do método para cada elemento da estrutura.
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Figura 7.6: Taxa de convergência do algoritmo com MSE utilizando somente os graus de
liberdade horizontais.

Figura 7.7: Taxa de convergência do algoritmo com MSE utilizando somente os graus de
liberdade verticais.

Observa-se que a utilização dos graus separados levam a uma maior variabilidade

nos resultados, como mostram as figuras 7.8 e 7.9, mas, em ambos os casos, ainda não

houve melhorias, o que leva à necessidade de melhorar o modelo.
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Figura 7.8: Gráfico de Box-Plots por elemento da estrutura de treliça utilizando graus de
liberdade horizontais.

Figura 7.9: Gráfico de Box-Plots por elemento da estrutura de treliça utilizando graus de
liberdade verticais.

7.3 Sistema hierárquico

Com base nas limitações observadas nas análises anteriores, especialmente aquelas asso-

ciadas à baixa capacidade discriminativa da função objetivo baseada exclusivamente na

Energia de Deformação Modal, introduz-se nesta seção o sistema hierárquico de variáveis

de decisão descrito no Caṕıtulo 6.1. O objetivo principal dessa estratégia é aprimorar

simultaneamente a localização e a quantificação do dano estrutural, integrando ambas as
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tarefas em uma única formulação de otimização inteira-mista.

Os experimentos numéricos realizados com o sistema hierárquico são apresenta-

dos a seguir, tendo como foco inicial avaliar o impacto dessa formulação unificada na

otimização de uma função sintética e, em seguida, avaliar a identificação de danos em

diferentes classes estruturais.

7.3.1 Função Sintética

Com o objetivo de avaliar a capacidade do algoritmo de otimização em identificar correta-

mente tanto a localização quanto a intensidade dos danos, bem como verificar o compor-

tamento do sistema hierárquico entre variáveis discretas e cont́ınuas, foram inicialmente

realizadas simulações empregando uma função sintética. O uso dessa função permite re-

produzir, de forma controlada e computacionalmente eficiente, as principais caracteŕısticas

do problema de detecção de danos estruturais, dispensando, nessa etapa, a necessidade de

cálculos associados ao método dos elementos finitos e à análise modal. Dessa forma, torna-

se posśıvel isolar e analisar o desempenho do algoritmo de otimização sem a interferência

de modelos f́ısicos mais complexos.

A função sintética adotada neste trabalho foi constrúıda de modo a apresentar um

único ótimo global correspondente à solução exata do problema, garantindo que o valor

da função objetivo seja nulo apenas quando o vetor de decisão coincide com o vetor de

referência que representa o estado real de dano da estrutura. Além disso, a formulação da

função incorpora explicitamente a hierarquia entre as variáveis, em que os ı́ndices ı́mpares

correspondem a variáveis discretas associadas à localização do dano, enquanto os ı́ndices

pares representam variáveis cont́ınuas relacionadas à quantificação do dano. A função

objetivo é definida como:

s(x) =
n∑

i=1

[
(x2i−1 − u2i−1)

2 +
(
1 + (x2i−1 − u2i−1)

2
)
(x2i − u2i)

2
]

(7.1)

na qual o erro associado à quantificação do dano é ponderado em função do erro de

localização, refletindo o caráter hierárquico do problema e penalizando de forma mais
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severa estimativas cont́ınuas incorretas quando a localização do dano não é corretamente

identificada.

Na função 7.1, x representa o vetor com os dados de entrada e u representa o

vetor com os valores corretos.

Experimento

Para a validação, foram considerados cenários de dano em uma estrutura composta por

nove elementos. No primeiro cenário, foi imposto um dano de 70% no elemento 4. No

segundo cenário, foram considerados dois danos simultâneos, sendo um dano de 20% no

elemento 5 e um dano de 10% no elemento 7. Esses cenários foram escolhidos de forma

a avaliar tanto a identificação de danos isolados quanto a capacidade do algoritmo em

lidar com múltiplos danos, mantendo a coerência entre a etapa de localização e a etapa

de quantificação.

O parâmetros utilizados pelo algoritmo para este experimento em espećıfico estão

descritos na tabela a seguir:

Tabela 7.2: Parâmetros do algoritmo.
Quantidade de iterações 100
Tamanho da amostragem 70

Tamanho do conjunto positivo 30
Bits incertos 4
Probabilidade 0.99

Os bits incertos, presentes na tabela 7.2, são usados para garantir que algumas

dimensões do espaço de busca não sejam completamente fixos e possam variar de forma

incerta. Essa caracteŕıstica permite ao algoritmo explorar melhor o expaço de busca.

Por fim, a probabilidade se refere à probabilidade do algoritmo adicionar uma

amostra ao conjunto amostral. De forma simples, o algoritmo irá, ao criar uma nova

amostra, sortear um número real entre 0 e 1. Se o valor for menor que o parâmetro de

probabilidade, o algoritmo irá adicioná-lo ao conjunto amostral, se for maior, irá descartar.

O algoritmo foi executado 20 vezes para cada cenário de dano.
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Figura 7.10: Resultados do algoritmo utilizando a função sintética para o primeiro cenário
de dano.

Figura 7.11: Convergência do algoritmo ao longo das iterações para o primeiro cenário.

Resultados

No primeiro cenário, representado pela figura 7.10, em que foi imposto um dano de 70%

no elemento 4, nota-se que apenas esse elemento apresenta valores significativamente

diferentes de zero, concentrados em torno de 0,7. O box-plot do elemento 4 exibe uma

mediana próxima ao valor de referência e uma dispersão relativamente pequena, indicando

que o algoritmo converge de forma consistente para a intensidade correta do dano ao
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longo das execuções. Os demais elementos permanecem com valores próximos de zero,

sem dispersões relevantes, o que demonstra que não foram identificados falsos positivos

de dano, confirmando a eficácia do algoritmo na etapa de localização.

Figura 7.12: Resultados do algoritmo utilizando a função sintética para o segundo cenário
de dano.

Figura 7.13: Convergência do algoritmo ao longo das iterações para o segundo cenário.

No segundo cenário, que considera a presença simultânea de dois danos, sendo

20% no elemento 5 e 10% no elemento 7, observa-se um comportamento análogo. Os

box-plots correspondentes aos elementos 5 e 7 apresentam medianas próximas aos valores
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de dano impostos, com variações moderadas, enquanto os demais elementos permane-

cem concentrados em torno de zero. Esse resultado indica que o algoritmo foi capaz de

identificar corretamente múltiplos danos, mantendo a distinção entre elementos ı́ntegros e

danificados, além de estimar adequadamente as intensidades associadas a cada elemento

afetado.

Complementando a análise dos box-plots apresentados nas Figuras 7.10 e 7.12,

a avaliação do comportamento do algoritmo ao longo das iterações reforça as conclusões

obtidas a partir dos resultados finais. As Figuras 7.11 e 7.13, que apresentam a evolução

do valor da função objetivo ao longo das iterações para o primeiro e o segundo cenários

de dano, respectivamente, indicam que o processo de convergência ocorre de forma rápida

e estável em ambos os casos. Observa-se que, já nas primeiras iterações, o algoritmo

promove uma redução significativa do valor da função objetivo, aproximando-se do valor

correto da solução por volta da iteração 50, a partir da qual as melhorias tornam-se

marginais.

Esse comportamento evidencia que a função sintética proposta fornece uma paisa-

gem de otimização favorável, permitindo que o algoritmo explore eficientemente o espaço

de busca e identifique precocemente regiões próximas ao ótimo global. A rápida con-

vergência, aliada à precisão na localização e quantificação dos danos, confirma a ade-

quação da abordagem adotada tanto para a validação do algoritmo quanto para a análise

do sistema hierárquico entre variáveis discretas e cont́ınuas.

7.3.2 Experimentos em modelos estruturais completos

Tendo visto as capacidades do algoritmo e do sistema hierárquico, foram realizados expe-

rimentos numéricos considerando três estruturas distintas: uma treliça plana, uma viga

unidimensional e um pórtico plano. Em todos os casos, foi adotado um único cenário de

dano para cada estrutura, com o objetivo de isolar o efeito da hierarquia de variáveis na

capacidade do algoritmo de identificar corretamente a localização e a severidade do dano.

Os cenários de dano considerados correspondem a uma redução de 50% da rigidez

em um único elemento estrutural, conforme descrito a seguir:

• Treliça: dano de 50% no elemento 6;
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• Viga: dano de 50% no elemento 5;

• Pórtico: dano de 50% no elemento 9.

Para cada estrutura analisada, o algoritmo de otimização é executado 20 ve-

zes de forma independente, com diferentes inicializações aleatórias, mantendo-se fixos os

parâmetros de controle utilizados na seção 7.2.1. Essa estratégia tem como objetivo ava-

liar não apenas a acurácia das soluções obtidas, mas também a robustez, a estabilidade e

a repetibilidade do método frente à natureza estocástica do processo de otimização.

A análise detalhada dos resultados é apresentada na subseção seguinte, com foco

na comparação entre as respostas obtidas para as diferentes estruturas e na discussão dos

ganhos proporcionados pela introdução do sistema hierárquico em relação aos modelos

previamente avaliados.

7.3.3 Resultados

Nesta subseção são analisados os resultados obtidos com a aplicação do modelo hierárquico

utilizando exclusivamente a função objetivo baseada na Energia de Deformação Modal

(MSE), considerando diferentes estruturas e agrupamentos dos graus de liberdade. A

análise é conduzida a partir dos gráficos de Box-Plots por elemento, os quais sintetizam

os melhores resultados obtidos em 20 execuções independentes do algoritmo de otimização,

permitindo avaliar a acurácia e a robustez do método.

Treliça

Para a estrutura de treliça, os resultados obtidos com os graus de liberdade horizontais

e verticais são apresentados nas Figuras 7.14 e 7.15, respectivamente. Observa-se que

a utilização dos graus de liberdade horizontais conduz a resultados insatisfatórios, com

elevada dispersão e ausência de uma indicação clara do elemento danificado. Nesse caso,

o algoritmo não consegue identificar de forma consistente o elemento 6 como danificado,

refletindo uma baixa capacidade de discriminação da função objetivo nessa configuração.

Por outro lado, quando se utilizam os graus de liberdade verticais, Figura 7.15,

observa-se uma melhora na identificação do dano. A mediana associada ao elemento 6
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Figura 7.14: Gráfico de Box-Plots por elemento da estrutura de treliça utilizando o modelo
hierárquico e graus de liberdade horizontais.

Figura 7.15: Gráfico de Box-Plots por elemento da estrutura de treliça utilizando o modelo
hierárquico e graus de liberdade verticais.

encontra-se próxima ao valor real de danificação, indicando que, ao longo das 20 execuções

independentes, o algoritmo foi capaz de identificar de uma forma mais correta tanto a

localização quanto, de forma aproximada, a severidade do dano no elemento correto. Esse

resultado sugere que, para a estrutura de treliça, a informação modal vertical é mais

senśıvel às alterações introduzidas pelo dano quando combinada ao modelo hierárquico

para esse cenário de dano.
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Viga

Os resultados obtidos para a estrutura de viga são apresentados nas Figuras 7.16 e 7.17,

correspondentes aos graus de liberdade horizontais e verticais, respectivamente. Em am-

bos os casos, observa-se que o modelo hierárquico baseado exclusivamente na MSE não

foi capaz de fornecer resultados satisfatórios. As distribuições apresentadas não eviden-

ciam a correta identificação do elemento danificado, tampouco indicam uma convergência

consistente em torno do valor real de danificação.

Figura 7.16: Gráfico de Box-Plots por elemento da estrutura de viga utilizando o modelo
hierárquico e e graus de liberdade horizontais.

Esses resultados sugerem que, para a estrutura de viga, a função objetivo base-

ada apenas na Energia de Deformação Modal, mesmo quando combinada com o sistema

hierárquico de variáveis, não apresenta sensibilidade suficiente para distinguir de forma

robusta a presença do dano, independentemente do agrupamento dos graus de liberdade

considerado.

Pórtico

Para a estrutura de pórtico, os resultados obtidos com os graus de liberdade horizontais

e verticais são apresentados nas Figuras 7.18 e 7.19, respectivamente. Em ambos os ca-

sos, observa-se um desempenho limitado do método, com o algoritmo não conseguindo

identificar corretamente o elemento danificado nem estimar adequadamente sua severi-
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Figura 7.17: Gráfico de Box-Plots por elemento da estrutura de viga utilizando o modelo
hierárquico e graus de liberdade verticais.

dade. As distribuições dos Box-Plots indicam elevada dispersão e ausência de medianas

próximas ao valor real de dano, evidenciando dificuldades na discriminação espacial da

função objetivo.

Figura 7.18: Gráfico de Box-Plots por elemento da estrutura de pórtico utilizando o
modelo hierárquico e graus de liberdade horizontais.

De forma geral, os resultados desta seção indicam que, embora o sistema hierárquico

contribua para impor uma estrutura lógica ao problema de identificação de danos, sua

combinação exclusiva com a Energia de Deformação Modal não é suficiente para garantir
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Figura 7.19: Gráfico de Box-Plots por elemento da estrutura de pórtico utilizando o
modelo hierárquico e graus de liberdade verticais.

uma identificação robusta e precisa em todas as classes de estruturas analisadas. Es-

ses achados reforçam a necessidade da introdução de informações adicionais na função

objetivo, como critérios de similaridade modal, motivando a incorporação de funções de

penalidade baseadas no MAC, conforme discutido na seção seguinte.

7.4 Funções de penalidade

O último passo importante com o modelo envolve a adição de uma nova função. O objetivo

dessa nova função é penalizar os resultados da função objetivo MSE de forma a tornar o

modelo mais senśıvel a valores de dano que diferem muito da danificação real. Tudo isso

é feito com base diretamente nos modos de vibração gerados pelo algoritmo e os modos

respectivos do modelo danificado real. A função escolhida para realizar este trabalho foi

a função MAC, descrita abaixo.
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M
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i )
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i )
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(7.2)

A função MAC é responsável por comparar dois modos de vibração (autovetores)

e verificar o quão similar ambos são. Se a função retornar 1, então os modos de vibração

são idênticos, se retornar algo próximo de 0, então os modos são muito diferentes. Dessa
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forma, isso adiciona uma nova informação à função-objetivo, onde espera-se melhorar

consideravelmente os resultados.

Dessa forma, a nova função objetivo escolhida para otimizar é descrita abaixo:

f(x) = MSE(x) ∗ (1−MAC(x)) (7.3)

7.4.1 Experimentos

Com o objetivo de avaliar o impacto da inclusão da função de penalidade baseada no

critério MAC na identificação de danos estruturais, foram realizados novos experimentos

numéricos utilizando a função objetivo definida na Equação 7.3. Esses experimentos visam

verificar se a combinação entre a Energia de Deformação Modal e a similaridade modal

é capaz de reduzir ambiguidades observadas nas análises anteriores, tornando o processo

de otimização mais senśıvel à configuração real de dano.

Os testes foram conduzidos considerando, novamente, os três tipos de estruturas.

Para cada uma dessas estruturas, foram definidos dois cenários de dano, de modo a

contemplar tanto situações de dano localizado quanto casos mais complexos envolvendo

múltiplos elementos danificados. Essa escolha permite avaliar a robustez da metodologia

proposta frente a diferentes ńıveis de complexidade do problema inverso.

No primeiro cenário de dano, considera-se a presença de um único elemento da-

nificado, com um ńıvel de dano elevado, correspondente a uma redução de 50% da rigidez

do elemento. Especificamente, os cenários adotados são: z:

• Treliça: dano de 50% no elemento 6;

• Viga: dano de 50% no elemento 5;

• Pórtico: dano de 50% no elemento 7.

Esse cenário tem como objetivo principal verificar a capacidade do algoritmo em

identificar corretamente a localização do dano quando a estrutura apresenta uma alteração

significativa e bem definida em apenas um de seus elementos.

No segundo cenário de dano, são considerados múltiplos elementos danificados si-

multaneamente, com diferentes ńıveis de severidade. Esse cenário representa uma situação
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mais realista e desafiadora, na qual a resposta dinâmica da estrutura é influenciada por

interações entre danos distribúıdos. Os casos analisados são descritos a seguir:

• Treliça: dano de 25% no elemento 4 e 30% no elemento 5;

• Viga: dano de 50% no elemento 5 e 50% no elemento 8;

• Pórtico: dano de 20% no elemento 6 e 20% no elemento 10.

Em todos os experimentos, o algoritmo de otimização é executado múltiplas vezes

para cada configuração estrutural e cenário de dano, mantendo-se os mesmos parâmetros

de controle adotados nas análises anteriores. Essa estratégia permite avaliar não apenas

a acurácia das soluções obtidas, mas também a estabilidade e a repetibilidade do método

proposto frente às variações inerentes ao processo estocástico de otimização.

Os resultados obtidos a partir desses experimentos são analisados na subseção

seguinte.

7.4.2 Resultados

Nesta subseção são apresentados e analisados os resultados obtidos com a aplicação do

modelo hierárquico combinado com a função de penalidade baseada no critério MAC,

considerando diferentes estruturas, cenários de dano e agrupamentos dos graus de liber-

dade. A análise é conduzida com base nos gráficos de Box-Plots por elemento, os quais

permitem avaliar simultaneamente a acurácia, a precisão e a robustez do método ao longo

das múltiplas execuções do algoritmo.

Treliça

Para a estrutura de treliça no primeiro cenário de dano, as Figuras 7.20 e 7.21 apresentam

os resultados obtidos utilizando, respectivamente, os graus de liberdade horizontais e

verticais. Observa-se que ambas as abordagens conduzem a resultados satisfatórios, com

clara identificação do elemento danificado e medianas próximas ao valor real de dano.

No entanto, a utilização dos graus de liberdade horizontais, Figura 7.20, apresenta maior

precisão, evidenciada por uma dispersão significativamente menor e pela concentração dos
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Figura 7.20: Gráfico de Box-Plots por elemento da estrutura de treliça utilizando o modelo
hierárquico, função de penalidade e graus de liberdade horizontais (cenário 1).

Figura 7.21: Gráfico de Box-Plots por elemento da estrutura de treliça utilizando o modelo
hierárquico, função de penalidade e graus de liberdade verticais (cenário 1).

resultados em torno do valor correto. Esse comportamento indica que, para esse cenário,

a informação modal horizontal é mais senśıvel à presença do dano introduzido.

No segundo cenário de dano da treliça, envolvendo múltiplos elementos danifica-

dos, os resultados são apresentados nas Figuras 7.22 e 7.23. Em ambos os casos, observa-se

um aumento na complexidade do problema, refletido em uma maior variabilidade dos re-

sultados. A análise da Figura 7.22 revela excelente precisão na identificação do dano no

elemento 4, enquanto o elemento 5 apresenta mediana próxima ao valor real, indicando
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Figura 7.22: Gráfico de Box-Plots por elemento da estrutura de treliça utilizando o modelo
hierárquico, função de penalidade e graus de liberdade horizontais (cenário 2).

Figura 7.23: Gráfico de Box-Plots por elemento da estrutura de treliça utilizando o modelo
hierárquico, função de penalidade e graus de liberdade verticais (cenário 2).

que o algoritmo foi capaz de estimar adequadamente sua severidade. Entretanto, alguns

elementos ı́ntegros, especialmente os elementos 3 e 7, apresentaram outliers associados à

identificação incorreta de dano, embora as medianas permaneçam nulas, sugerindo que

em pelo menos metade das execuções o método preservou corretamente a integridade

estrutural desses elementos.

Por sua vez, a Figura 7.23 apresenta um comportamento mais equilibrado, com

menor número de outliers distribúıdos ao longo dos elementos. Embora a precisão na
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estimativa do dano no elemento 4 seja inferior à observada no caso horizontal, as me-

dianas associadas aos elementos danificados permanecem próximas dos valores corretos,

indicando que o algoritmo foi capaz de identificar corretamente quais elementos estão

danificadas, ainda que com menor exatidão na quantificação.

Viga

Figura 7.24: Gráfico de Box-Plots por elemento da estrutura de viga utilizando o modelo
hierárquico, função de penalidade e graus de liberdade horizontais (cenário 1).

Figura 7.25: Gráfico de Box-Plots por elemento da estrutura de viga utilizando o modelo
hierárquico, função de penalidade e graus de liberdade verticais (cenário 1).
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Para a estrutura de viga no primeiro cenário de dano, os resultados obtidos com

os graus de liberdade horizontais e verticais são apresentados nas Figuras 7.24 e 7.25,

respectivamente. Observa-se que a abordagem baseada nos graus de liberdade horizontais

apresenta desempenho insatisfatório, não conseguindo identificar corretamente o elemento

danificado e indicando, de forma recorrente, dano em elementos que permanecem ı́ntegros.

Figura 7.26: Gráfico de Box-Plots por elemento da estrutura de viga utilizando o modelo
hierárquico, função de penalidade e graus de liberdade horizontais (cenário 2).

Figura 7.27: Gráfico de Box-Plots por elemento da estrutura de viga utilizando o modelo
hierárquico, função de penalidade e graus de liberdade verticais (cenário 2).

Em contraste, a utilização dos graus de liberdade verticais, Figura 7.25, conduz
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a resultados mais promissores. Nesse caso, o algoritmo identifica de forma mais precisa e

consistente o elemento danificado, com medianas próximas ao valor real de dano. Embora

ainda seja observada a indicação incorreta de dano no elemento 9, a severidade estimada

para esse elemento é significativamente menor quando comparada ao caso horizontal,

refletindo uma melhoria substancial na capacidade discriminativa do método.

No segundo cenário de dano da estrutura de viga, os resultados apresentados nas

Figuras 7.26 e 7.27 reforçam essa tendência. A abordagem baseada nos graus de liber-

dade horizontais apresenta desempenho bastante limitado, não sendo capaz de identificar

corretamente os elementos danificados. Por outro lado, a utilização dos graus de liber-

dade verticais permite a correta identificação do dano no elemento 5, embora o método

não consiga localizar adequadamente o dano no elemento 8, indicando novamente dano

indevido no elemento 9. Ainda assim, observa-se uma superioridade clara da abordagem

vertical frente à horizontal para essa estrutura.

Pórtico

Figura 7.28: Gráfico de Box-Plots por elemento da estrutura de pórtico utilizando o
modelo hierárquico, função de penalidade e graus de liberdade horizontais (cenário 1).

Para a estrutura de pórtico no primeiro cenário de dano, as Figuras 7.28 e 7.29

apresentam os resultados obtidos com os graus de liberdade horizontais e verticais, res-

pectivamente. A análise da Figura 7.28 indica um desempenho insatisfatório, com o al-
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Figura 7.29: Gráfico de Box-Plots por elemento da estrutura de pórtico utilizando o
modelo hierárquico, função de penalidade e graus de liberdade verticais (cenário 1).

goritmo apontando danos em múltiplos elementos, o que evidencia uma baixa capacidade

de discriminação espacial nessa configuração.

Figura 7.30: Gráfico de Box-Plots por elemento da estrutura de pórtico utilizando o
modelo hierárquico, função de penalidade e graus de liberdade horizontais (cenário 2).

Em contrapartida, a Figura 7.29 revela resultados significativamente melhores.

Nesse caso, o algoritmo identifica corretamente o elemento danificado, com mediana

próxima ao valor real de dano e dispersão reduzida, demonstrando que a informação

modal vertical é mais adequada para a identificação de danos nesse cenário de dano.
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Figura 7.31: Gráfico de Box-Plots por elemento da estrutura de pórtico utilizando o
modelo hierárquico, função de penalidade e graus de liberdade verticais (cenário 2).

No segundo cenário de dano do pórtico, envolvendo múltiplos elementos danifi-

cados, os resultados são apresentados nas Figuras 7.30 e 7.31. A abordagem baseada nos

graus de liberdade horizontais apresenta desempenho bastante insatisfatório, não sendo

capaz de identificar corretamente os elementos danificados. Por outro lado, a utilização

dos graus de liberdade verticais conduz a resultados mais consistentes, permitindo a cor-

reta identificação dos elementos danificados com maior precisão, apesar da presença de

um número elevado de outliers. Ainda assim, as medianas associadas aos elementos da-

nificados indicam que o método conseguiu capturar adequadamente a configuração geral

de dano da estrutura.

De forma geral, os resultados evidenciam que a combinação do modelo hierárquico

com a função de penalidade baseada no MAC contribui significativamente para a melhoria

da identificação de danos, especialmente quando aliada à escolha adequada dos graus de

liberdade. Observa-se que a eficácia do método é fortemente dependente da estrutura

analisada e da direção dos deslocamentos considerados, reforçando a importância de es-

tratégias hierárquicas e direcionais na formulação de funções objetivo mais discriminativas

para problemas de identificação de danos estruturais.
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7.5 Experimentos com rúıdo

Após a análise dos resultados obtidos a partir de dados modais livres de rúıdo, procedeu-se

à avaliação da robustez do método proposto frente à presença de incertezas nas medições.

Essa etapa é fundamental, uma vez que, em aplicações reais de monitoramento da integri-

dade estrutural, as formas modais identificadas experimentalmente estão inevitavelmente

sujeitas a rúıdos provenientes de erros de instrumentação, limitações dos sensores e inter-

ferências ambientais.

Com esse objetivo, os experimentos apresentados nas seções anteriores foram

repetidos considerando a adição de rúıdo branco às formas modais utilizadas na formulação

da função objetivo. Para cada estrutura analisada, treliça, viga e pórtico plano, foram

selecionados os melhores resultados obtidos nos cenários sem rúıdo, entendidos como

aqueles que apresentaram maior acurácia na identificação do elemento danificado e menor

dispersão estat́ıstica nas estimativas de severidade do dano.

A partir desses resultados de referência, novas execuções do algoritmo de oti-

mização foram realizadas, agora utilizando formas modais contaminadas com aproxima-

damente 2% de rúıdo relativo. O rúıdo foi aplicado diretamente às componentes dos

vetores modais, preservando-se a normalização pela massa, de modo a simular de forma

realista as condições experimentais encontradas em ensaios de vibração. Todos os demais

parâmetros do algoritmo, incluindo critérios de parada, número de iterações e configuração

do sistema hierárquico, foram mantidos inalterados, garantindo a comparabilidade direta

entre os experimentos com e sem rúıdo.

7.5.1 Resultados

Nesta subseção são apresentados os resultados obtidos a partir da repetição dos experi-

mentos considerados mais promissores para cada estrutura, agora sob a influência de rúıdo

adicionado às medidas modais. A introdução de aproximadamente 2% de rúıdo tem como

objetivo simular condições mais próximas daquelas observadas em aplicações experimen-

tais reais, nas quais incertezas associadas à instrumentação, ao processo de identificação

modal e às condições operacionais são inevitáveis.
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Treliça

Figura 7.32: Gráfico de Box-Plots por elemento da estrutura de treliça utilizando o modelo
hierárquico, função de penalidade e graus de liberdade horizontais (cenário 1 - com rúıdo).

As Figuras 7.32 e 7.33 apresentam os resultados obtidos para a estrutura de treliça

considerando a introdução de aproximadamente 2% de rúıdo nas formas modais, para os

cenários que utilizam, respectivamente, os graus de liberdade horizontais e verticais na

formulação da função objetivo.

De modo geral, observa-se que a presença de rúıdo compromete significativamente

a capacidade do algoritmo em quantificar corretamente o ńıvel de dano estrutural. Em

ambos os cenários, embora o sistema hierárquico ainda permita certa exploração do espaço

de busca, as estimativas de dano associadas aos elementos estruturais apresentam elevada

dispersão e ausência de concentração estat́ıstica no valor real de danificação. As medianas

obtidas encontram-se afastadas do valor de referência, indicando que o algoritmo não foi

capaz de convergir de forma consistente para a severidade correta do dano ao longo das

execuções independentes.

Adicionalmente, a distribuição dos Box-Plots evidencia que o rúıdo introduz am-

biguidade na resposta modal, dificultando a distinção energética entre elementos ı́ntegros

e danificados. Esse comportamento reforça a elevada sensibilidade do critério baseado

em parâmetros modais às incertezas experimentais, mesmo quando associado ao modelo

hierárquico e à função de penalidade adotada.



7.5 Experimentos com rúıdo 71

Figura 7.33: Gráfico de Box-Plots por elemento da estrutura de treliça utilizando o modelo
hierárquico, função de penalidade e graus de liberdade verticais (cenário 2 - com rúıdo).

Viga

Os resultados obtidos para a estrutura de viga, apresentados nas Figuras 7.34 e 7.35, evi-

denciam um comportamento distinto entre os dois cenários analisados. No primeiro caso,

observa-se que o algoritmo não apresentou desempenho satisfatório, com as estimativas

de dano distribúıdas de forma difusa entre os elementos e sem qualquer indicação clara

de concentração no elemento efetivamente danificado. Esse resultado indica que, sob a

presença de rúıdo, a informação modal dispońıvel não foi suficiente para guiar o processo

de otimização de maneira eficiente.

No segundo cenário, embora o algoritmo ainda não tenha sido capaz de identi-

ficar corretamente o ńıvel de danificação, nota-se uma exploração mais pronunciada do

elemento 8, refletida pelo aumento significativo do intervalo interquartil associado a esse

elemento. Esse comportamento sugere que o método passa a reconhecer, ainda que de

forma imprecisa, a influência do elemento danificado na resposta modal quando diferentes

combinações de graus de liberdade são consideradas. No entanto, a elevada variabilidade

e o afastamento das medianas em relação ao valor real indicam que a presença de rúıdo

continua sendo um fator limitante para a convergência adequada do algoritmo.

De maneira geral, os resultados para a estrutura de viga confirmam que a in-

trodução de rúıdo nas medições modais intensifica as dificuldades já observadas nos ex-
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Figura 7.34: Gráfico de Box-Plots por elemento da estrutura de viga utilizando o modelo
hierárquico, função de penalidade e graus de liberdade verticais (cenário 1 - com rúıdo).

Figura 7.35: Gráfico de Box-Plots por elemento da estrutura de viga utilizando o modelo
hierárquico, função de penalidade e graus de liberdade verticais (cenário 2 - com rúıdo).
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perimentos sem rúıdo, evidenciando a necessidade de estratégias adicionais de filtragem,

regularização ou enriquecimento da informação modal para garantir maior robustez ao

processo de identificação de danos.

Pórtico

Figura 7.36: Gráfico de Box-Plots por elemento da estrutura de pórtico utilizando o
modelo hierárquico, função de penalidade e graus de liberdade verticais com rúıdo (cenário
1 - com rúıdo).

As Figuras 7.36 e 7.37 apresentam os resultados obtidos para a estrutura de

pórtico considerando a introdução de aproximadamente 2% de rúıdo nas medidas modais,

utilizando o modelo hierárquico com função de penalidade e graus de liberdade verticais.

Em ambos os cenários analisados, observa-se que o algoritmo não conseguiu loca-

lizar de forma consistente o elemento danificado, tampouco estimar com precisão o ńıvel

de danificação associado. Os gráficos de Box-Plots evidenciam elevada dispersão dos re-

sultados ao longo dos elementos estruturais, com medianas distantes do valor real de dano

e presença significativa de outliers, o que indica instabilidade no processo de otimização

sob a influência do rúıdo.

Comparativamente aos experimentos sem rúıdo, nota-se uma degradação acentu-

ada do desempenho do método, sugerindo que, para estruturas do tipo pórtico, a com-

binação entre incompletude modal e incertezas experimentais afeta de maneira mais severa

a correlação entre os modelos numérico e experimental. Esse comportamento reforça a
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Figura 7.37: Gráfico de Box-Plots por elemento da estrutura de pórtico utilizando o
modelo hierárquico, função de penalidade e graus de liberdade verticais com rúıdo (cenário
1 - com rúıdo).

necessidade de estratégias adicionais de regularização ou de métricas modais mais ro-

bustas quando o método é aplicado a estruturas com maior complexidade cinemática e

acoplamento entre graus de liberdade.
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8 Conclusão e trabalhos futuros

Neste trabalho foi proposto e avaliado um arcabouço h́ıbrido para detecção de danos em

estruturas reticulares, combinando a modelagem numérica via método dos Elementos Fi-

nitos com um algoritmo de otimização inteira-mista baseado em classificação, organizado

de forma hierárquica. A formulação adotada permitiu tratar, de maneira integrada, os

problemas de localização e quantificação do dano estrutural, tradicionalmente abordados

de forma sequencial ou desacoplada na literatura especializada.

A principal contribuição do método reside na utilização simultânea de variáveis

discretas e cont́ınuas em um único processo de otimização, no qual a identificação da

presença de dano atua como mecanismo de ativação para a quantificação de sua seve-

ridade. Essa estratégia hierárquica mostrou-se eficaz na redução do espaço de busca e

no aumento da estabilidade do problema inverso, especialmente em cenários de maior

ńıvel de complexidade em relação a elementos danificados. Ademais, o emprego da oti-

mização por classificação, ainda pouco explorada no contexto da identificação de danos

estruturais, revelou-se uma alternativa viável e competitiva frente a meta-heuŕısticas mais

consolidadas, apresentando boa capacidade de convergência e consistência dos resultados.

Os experimentos numéricos conduzidos em diferentes topologias estruturais, treliças

planas, vigas modeladas por barras de Timoshenko e pórticos planos, indicaram que a me-

todologia proposta é capaz de localizar corretamente os elementos danificados e estimar

com boa precisão a intensidade do dano em cenários ideais, isto é, na ausência de rúıdo

nas medições modais. Nesses casos, os resultados obtidos apresentaram baixa dispersão

estat́ıstica ao longo de múltiplas execuções independentes, evidenciando a robustez do

método quando aplicado a dados completos e livres de incertezas experimentais.

A introdução da função de penalidade baseada no critério MAC mostrou-se um

componente essencial do arcabouço proposto. Ao incorporar explicitamente informações

sobre a similaridade entre modos de vibração numéricos e de referência, a função de pe-

nalidade contribuiu de forma significativa para o aumento da acurácia e da precisão dos

resultados, especialmente na etapa de quantificação do dano. Esse mecanismo permitiu
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penalizar soluções que, embora apresentassem baixos valores de erro energético, não re-

produziam adequadamente a natureza f́ısica dos modos de vibração, resultando em uma

formulação de função objetivo mais informativa e discriminativa.

Por outro lado, os experimentos realizados com a adição de aproximadamente

2% de rúıdo nas medidas evidenciaram uma degradação considerável do desempenho do

método, sobretudo para as estruturas mais complexas, como vigas e pórticos planos. Nes-

ses cenários, observou-se aumento significativo da dispersão dos resultados e dificuldade

na correta localização e quantificação dos danos, indicando sensibilidade do método às

incertezas experimentais e à incompletude das informações modais. Esses resultados res-

saltam os desafios inerentes à aplicação de técnicas baseadas em parâmetros modais em

condições mais próximas da realidade experimental.

Como perspectivas para trabalhos futuros, destacam-se diversas possibilidades

de extensão e aprimoramento da metodologia proposta. Inicialmente, sugere-se a inves-

tigação de estratégias adicionais de robustez ao rúıdo, como o uso de métricas modais

alternativas ou h́ıbridas. Além disso, a integração do método com técnicas de apren-

dizado de máquina, especialmente abordagens de aprendizado por reforço ou modelos

probabiĺısticos, pode contribuir para melhorar a exploração do espaço de busca e a ge-

neralização dos resultados. Experimentos em estruturas com maior número de elementos

também devem ser realizados para avaliar a escalabilidade do modelo.
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1424-8220/17/1/145⟩.

CHEN, Z. et al. A multistrategy fusion–improved black widow optimization algorithm for
structural damage identification. Structural Control and Health Monitoring, Wiley Online
Library, v. 2025, n. 1, p. 2939779, 2025.

CURY, A. A.; BORGES, C. C.; BARBOSA, F. S. A two-step technique for damage as-
sessment using numerical and experimental vibration data. Structural Health Monitoring,
Sage Publications Sage UK: London, England, v. 9, n. 4, p. 357–371, 2010. Dispońıvel
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