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Fábio Luiz Marinho de Oliveira

JUIZ DE FORA

FEVEREIRO, 2014



Variable Block Size Motion Estimation
Algorithms
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Resumo

Este trabalho pretende realizar uma comparação de métodos de estimação de movimento

entre imagens, mais precisamente entre os algoritmos Full Search, Four Step Search e suas

respectivas versões com tamanho de bloco variável. Para essa análise, além de critérios de

eficiência, é usada a taxa de reconhecimento da base de dados KTH. O trabalho apresenta

os conceitos e algoritmos de casamento de blocos que fundamentam essa comparação.

Palavras-chave: Estimação de movimento, casamento de blocos, tamanho de bloco

variável



Abstract

This work intends to make a comparison between motion estimation methods, more pre-

cisely between Full Search, Four Step Search and their respective variable block size

versions. For such analysis, along with efficiency criteria, the recognition rate from KTH

dataset is used. The work presents block matching concepts and algorithms that underlie

the comparison.

Keywords: Motion Estimation, block matching, variable block size
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1 Introduction

Detecting movement in a sequence of images is an important research field of computer

vision. Several applications rely on the quality and efficiency of methods carrying out this

task. Motion Estimation is one of these methods and consists in tracking the movement

of regions between frames of a video.

The assumption is that if there were continuous motion in the image sequence,

several blocks from one image could be found on the next one, but in different positions.

This was described as a “piecewise translation” by Jain and Jain [6], who first introduced

the technique. So, the goal would be to find where these blocks, possibly representing

objects, are in the following frame.

The algorithms for motion estimation, called Block Matching Algorithms (BMA),

vary mainly on search strategies and error functions. Search strategies are more efficient

ways of analysing the image in order to find the best match for a region. Since it is highly

unlikely that two regions will have exactly the same pixel intensities, an error function is

used as criterion for which block provides the best match, measuring how similar these

regions are.

A variant of the BMA is the Variable-size Block Matching Algorithm (VSBM),

which does not maintain a fixed size for the blocks analysed throughout the computation.

In the VSBM, the sizes of the blocks often change via split or merge, depending on results

yielded by the block matching routine.

This work presents two search strategies coupled with two error functions and

also presents a VSBM approach applied with both strategies. The search strategies are:

Full Search and Four Step Search. The error functions are: Sum of Absolute Differences

and Mean Absolute Difference.

Chapter 2 provides the fundamentals of motion estimation necessary for the un-

derstanding of this work. Chapter 3 presents the different methods implemented. Chapter

4 contains the experimental results and comparison of the algorithms. Chapter 5 brings

the conclusion and future works.
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1.1 Problem Definition

Let Jn and Jn+1 be two consecutive frames in a video. The displacement vector field Dn

is defined as Dn(b) = [dx(bx, by), dy(bx, by)] for each block b on Jn with coordinates (bx, by).

Each vector (dx, dy) points to the position of the block b∗ in Jn+1 which minimizes some

error function ε, so

(dx, dy) = (b∗x − bx, b∗y − by),min{ε(b, b∗)}.

Ideally, b and b∗ have very similar pixel intensity configurations, ε(b, b∗) is close to

zero, and the field Dn is a good representation of object motion between the two frames.

1.2 Objectives

The main objective of this work is the study and implementation of motion estimation

methods, focusing on the variable block sizes approach.

As secondary objectives, there is efficiency and quality comparison between the

methods and the investigation on how motion estimation can contribute to generate de-

scriptors on motion detection and classification problems.
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2 Fundamentals

2.1 Basic Concepts and Definitions

2.1.1 Images

An image can be defined as a function f : R2 → Rn, (x, y) 7→ ~f(x, y), where x and

y are called space coordinates, n ∈ N is the number of channels, and the amplitude f

for any coordinates (x, y) is called intensity or brightness level. For n = 1, we have

f : R2 → R, (x, y) 7→ f(x, y), a scalar function representing the grey scale level on each

point [3].

Digital Images

In order to represent an image on a computer, it has to be captured by sensors. However,

the data obtained via these sensors do not reflect the continuity of the image with respect

to the space coordinates and the amplitude. These sensors are usually restricted to a finite

number of positions and finite range of intensities captured. Even when these restrictions

do not apply to the sensor, they do for the image representation on the computer, which

has a finite number of bits. So, at some point between the acquisition and storage of

the image, the discretization of both space coordinates and amplitude has to occur. The

discretization of the domain into a finite number of regular intervals is called sampling.

The discretization of the co-domain is called quantization.

A digital image is an image which can be represented in a finite number of bits.

In other words, it is an image with both domain and co-domain discrete. For purposes

of simplicity, the discretization process maps the coordinates into integers so that x =

0, 1, 2, ...,M−1 and y = 0, 1, 2, ..., N−1 and the intensities into f(x, y) = 0, 1, 2, ..., L−1.

This way, each channel of the image could be represented by a matrix AM×N such that

aij = f(x = i, y = j) = f(i, j), i = 0, 1, 2, ...,M − 1, j = 0, 1, 2, ..., N − 1. Each element

of this matrix corresponds to a pair of coordinates and is called picture element, pel, or
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pixel [3].

Image Operations

Despite its matrix representations, operations involving one or more images are carried

out pixel by pixel.

The sum, difference, product and division between two images f and g are written

as

s(x, y) = f(x, y) + g(x, y)

d(x, y) = f(x, y)− g(x, y)

p(x, y) = f(x, y)× g(x, y)

v(x, y) = f(x, y)÷ g(x, y)

respectively, for each pair of coordinates (x,y) [3].

The result of these operations may, sometimes, be out of the intensity range

[0, L− 1]. In this case, the result may not be an image but still have some relevance for

the image processing. In this work, this will be the case when calculating the difference

between two images, which may yield results below zero. This is an important operation

in the block matching process, since the error metrics used rely on the difference operation.

2.1.2 Digital Videos

In a similar way to how images are defined, videos can be defined as a function g : R3 →

Rn, (x, y, t) 7→ ~g(x, y, t), where x and y are called space coordinates, t is called time

coordinate, n ∈ N is the number of channels, and the amplitude g for any coordinates

(x, y, t) is called intensity or brightness level. Digital videos are videos where x, y, t and

g are discrete. We can look at a digital video as a finite sequence of images, with one

f(x, y) for each t. Each image in this sequence is called frame [3].
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2.2 Motion Estimation Concepts and Definitions

This section presents the concepts and terminology concerning motion estimation that

will frequently be used in this work.

2.2.1 Block

A rectangular sx × sy block of an image with domain D is defined as a subimage, or a

set of pixels b = {(x, y) ∈ D|bx ≤ x ≤ bx + sx, by ≤ y ≤ by + sy}, where bx and by are the

coordinates for the top-left pixel of the block. These coordinates are used to identify the

whole block.

For each block in a frame, a corresponding block is searched for in the next frame,

hence the name Block Matching Algorithm.

In the Variable-size Block Matching Algorithm, the sizes sx and sy can vary

between blocks, so they are used along with the coordinates to identify the block.

2.2.2 Search Window

During the block matching process, one frame is called “reference frame” and the following

is called “target frame”.

A search window is the set of blocks on the target frame which are examined.

The search window is usually centred on the block from the reference frame which is being

matched. This restriction is imposed in order to reduce computational cost of analysing

a whole frame.

An important observation that can be made about the search window is that

it limits the size of the motion vectors calculated through the algorithm, since all the

candidates for matching are assumed to be somewhat close to reference frame block. Due

to this limitation, the algorithm is incapable of capturing abrupt motion in the small

frame time interval.
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2.2.3 Search Strategy

The search strategy is the main part of the block matching algorithm. It is the series of

steps, or an algorithm per se, through which the search window is explored in order to

find the best match for a block.

The main goal of a search strategy is to reduce the computational effort of the

BMA retaining the quality of the results compared to examining each block in the search

window.

Many strategies have been proposed over the years, such as New Three Step

Search [9], Four Step Search [14], Simple Efficient Search [10], Diamond Search [19], and

Adaptive Rood Pattern Search [12]. To illustrate the gain in performance proportioned

by a search strategy, this work presents the results yielded by the Full Search, which is

the brute force approach, and the Four Step Search.

2.2.4 Error Function

The error function is the measure of similarity between two blocks. This function is

defined in terms of the pixel intensities in the pair of blocks being analysed.

A variety of error functions can be found in the literature being applied as error

criteria for block matching algorithms [2, 6, 7], differing in complexity, outlier handling,

topology, among other features.

In the BMA, the error function ε is the sole criterion used to find the best match

for a block. The best match is the one that minimizes ε.
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3 Block Matching Algorithms

3.1 Overview

This section presents the Block Matching Algorithm and a brief explanation of each of

its steps.

Algorithm 1: Block Matching Algorithm

Data: Images f,g
Result: Vector set D
Divide image f into a set of blocks B;
forall the bf ∈ B do

b∗ ← bf ;
costb∗ ←∞;
C ← SearchStrategy(g,W,C, b∗);
while C 6= ∅ do

forall the b ∈ C do
costb ← ε(bf , b);
if costb < costb∗ then

b∗ ← b;
costb∗ ← costb;
(dx, dy)← (bx − bfx, by − bfy);

end if

end forall
C ← SearchStrategy(g,W,C, b∗);

end while
D ← D ∪ {(dx, dy)};

end forall

The Block Matching Algorithm consists of a series of minimization processes of

a function ε, one for each block bf in the reference frame f . The search space for each

one of these minimization problems is bounded by the search window W and is explored

through a search strategy.

In the algorithm presented above, SearchStrategy is assumed to be able to create

and/or update a set of candidate blocks C from the image g, for each iteration of the

search. This update is based on the search window, on the current candidate set, and on

the current best matching block. The cost function ε is evaluated for every candidate b

in C, and the displacement vector d(dx, dy) is the difference between the reference frame
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block bf (bfx, b
f
y) and the block b∗(b∗x, b

∗
y) which minimizes ε.

When the candidates set C is empty, meaning that the search has finished, the

algorithm proceeds to the next block in B, until all blocks from the reference frame f have

been matched with a block from the target frame g. BMA’s output is the displacement

vector set D, which contains a translation vector d for each block bf ∈ B.

Figure 3.1 shows a frame with displacement vectors computed by BMA drawn

over it. All the vectors are evenly spaced, since all blocks have the same size.

Figure 3.1: BMA displacement vectors.

3.2 Search Strategies

This section describes the search strategies implemented. The Full Search was chosen

as a reference for how much computational effort the block matching task may require

if a proper strategy is not employed. The Four Step Search was chosen because it is

a simple strategy and yet it shows the performance gain that can be obtained, without

compromising the quality of the results.
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3.2.1 Full Search

The Full Search (FS) is the simplest and most thorough strategy. Once a search window

is established, the full search consists of trying to match every possible block inside this

window. For example, in a 15 × 15 window, 225 comparisons are necessary in order to

find the best match.

This is a very expensive strategy, but it guarantees that the best match found is

indeed the one which minimizes the error function in the search window.

3.2.2 Four Step Search

The Four Step Search (4SS) [14] is a steepest descent based strategy. It consists of four

different search patterns used during its four steps.

Starting from the center of a 15×15 window, the first step looks at 9 locations in

a 5× 5 window. At any step, if the least error is found at the center of search pattern the

search jumps to fourth step. If the least error is at one of the eight locations except the

center, then this location becomes the search origin and the search moves to the second

step. The search pattern is still maintained as 5 × 5 pixels wide. Depending the least

error location, 4SS might end up checking errors at 3 or 5 additional locations. If the

least error is found at a corner, the second step checks its 5 neighbours that have not

been checked on the first step. If the least error is at the side, the second step checks

its 3 neighbours. The third step is exactly the same as the second step, except that it

always leads to the fourth step. In the fourth step the pattern size is shrunk to 3 × 3.

The location with the least error is the best matching block and the motion vector is set

to point to that position.

The patterns are shown in Figure 3.2. Figure 3.2a contains the first step pattern.

Figures 3.2b and 3.2c show both cases for second and third step patterns. Figure 3.2d

shows the fourth step pattern. Figure 3.3 shows an example procedure.

Since 4SS is a steepest descent based method, it is subject to being trapped in

local minima, but the quality difference is small and well worth the gain in efficiency,

compared to the FS. In the best case scenario, 17 points are checked and in the worst

case scenario, 27 points are checked out of the 225 in the 15× 15 window.
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(a) (b) (c) (d)

Figure 3.2: 4SS patterns [14].

Figure 3.3: 4SS steps [14].

3.3 Error Functions

3.3.1 Sum of Absolute Differences

The Sum of Absolute Differences (SAD) [4] between two images f and g in a measurement

window W is defined as follows

εSAD(dx, dy) =
∑

x,y∈W

|f(x, y)− g(x+ dx, y + dy)|

where (x, y) are the pixel coordinates and (dx, dy) is the motion vector.

Notice that SAD just accumulates the absolute differences in the measurement

window W . This means that bigger windows tend to produce higher εSAD values than

smaller windows.
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3.3.2 Mean Absolute Difference

The Mean Absolute Difference (MAD) [18] is calculated as follows

εMAD(dx, dy) =
1

N

∑
x,y∈W

|f(x, y)− g(x+ dx, y + dy)|

subject to the same definitions as before and N being the number of pixels in W .

Contrary to SAD, MAD takes into account the size of the measurement window.

By dividing the accumulated differences by the number of pixels, different sizes of windows

have little to no effect on εMAD values. This is an important regard since the VSBMA

relies on an fixed error threshold to decide whether to split a block or not.

3.4 Variable Size Block Matching Algorithm

This section presents the Variable Block Matching Algorithm [2, 15], and a brief expla-

nation of each of its steps.

Algorithm 2: Variable Size Block Matching Algorithm

Data: Images f,g
Result: Vector set D
Divide image f into a set of blocks B;
forall the bf ∈ B do

b∗ ← bf ;
costb∗ ←∞;
C ← SearchStrategy(g,W,C, b∗);
while C 6= ∅ do

forall the b ∈ C do
costb ← ε(bf , b);
if costb < costb∗ then

b∗ ← b;
costb∗ ← costb;
(dx, dy)← (bx − bfx, by − bfy);

end if

end forall
if costb∗ > threshold then

C ← C ∪ Split(b);
end if
C ← SearchStrategy(g,W,C, b∗);

end while
D ← D ∪ {(dx, dy)};

end forall
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VSBMA works just like BMA, except for the additional function Split. This

function divides the block b passed as parameter into four smaller blocks and adds them

to the candidate list. These smaller blocks can be further divided into even smaller blocks,

until they fall below a fixed error threshold or a minimum block size is reached. This way,

a quad-tree structure emerges, with leaf nodes corresponding to blocks of varying sizes

[2]. This tree is used in order to properly code the segmentation of the image, as shown

on Figure 3.4. The goal is to make the edge of the blocks coincide with the borders

of the objects in the scene, forming regions with uniform intensity, just like in picture

segmentation [5].

Figure 3.4: Quad tree image segmentation [16].

Figure 3.5 shows a frame with displacement vectors computed through VSBMA

drawn over it. Hotter coloured vectors correspond to bigger blocks and colder coloured

vectors correspond to smaller blocks. The size of the vectors are proportional to their

norms. This example suggests that the motion of more homogeneous regions of the image

can be represented by a single vector, while more detailed regions need more vectors in

order to properly represent its motion.
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Figure 3.5: VSBMA displacement vectors.
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4 Experimental Results

4.1 Efficiency Evaluation

In order to make a efficiency comparison between the algorithms, two criteria are con-

sidered: average frame rate and average number of blocks per frame, per video. The

frame rate serves as running speed measurement, while the number of blocks measures

memory efficiency. The number of blocks can also be related to running speed, since

the split operations required to create more blocks also require function calls and block

comparisons.

All tests were run on a IntelrCoreTMi7-3632QM 2.2GHz with 6GB memory.

These tests were made on a 2391 compressed video database, with resolution of 160×120,

frame rate of 25fps and average duration of 4 seconds.

BMA efficiency results are shown on Table 4.1. As expected, FS performs one

order of magnitude slower than 4SS. It is possible to compute 4SS in real time, since it

presents frame rates superior to 25fps on all cases. Also, SAD performs slightly faster

than MAD, due to division operations not needed to compute SAD. Since the size of the

blocks are fixed, the amount of blocks per frame does not change between tests with the

same block size.
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Table 4.1: BMA efficiency results. Darker shades of gray highlight the best results.

Parameters
Avg frame rate Number of blocks

Block Size Strategy Error Function

8 FS MAD 6.1492 300
8 FS SAD 6.4307 300
8 4SS MAD 53.9517 300
8 4SS SAD 55.2892 300
16 FS MAD 7.2568 70
16 FS SAD 7.4416 70
16 4SS MAD 60.1998 70
16 4SS SAD 62.2743 70
24 FS MAD 8.5012 30
24 FS SAD 8.9444 30
24 4SS MAD 68.6432 30
24 4SS SAD 69.4906 30
32 FS MAD 10.6040 15
32 FS SAD 10.9181 15
32 4SS MAD 79.4199 15
32 4SS SAD 79.6133 15

For VSBMA, the comparison table is split in two, since one more parameter has

to be considered, the splitting threshold. Table 4.2 shows the results using MAD as the

error function and Table 4.3 shows the results using SAD. In both cases, the threshold

values vary around the mean error, approximately 0.02 for MAD and 5.2 for SAD, to

produce variation on the segmentation quad-tree depth.
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Table 4.2: VSBMA-MAD efficiency results. Darker shades of gray highlight the best results.

Parameters
Avg frame rate Avg blocks

Block Size Strategy Threshold

8 FS 0.01 5.7695 300.4539
8 FS 0.02 6.6796 300.3864
8 FS 0.05 7.3968 300.3242
8 4SS 0.01 40.3573 300.4701
8 4SS 0.02 46.7789 300.4209
8 4SS 0.05 50.6304 300.3678
16 FS 0.01 5.8594 70.3342
16 FS 0.02 6.3491 70.3239
16 FS 0.05 7.5028 70.2836
16 4SS 0.01 43.7113 70.3073
16 4SS 0.02 50.9870 70.2997
16 4SS 0.05 58.1089 70.2661
24 FS 0.01 5.9359 30.1240
24 FS 0.02 7.2140 30.1219
24 FS 0.05 8.3355 30.1049
24 4SS 0.01 45.8166 30.1173
24 4SS 0.02 55.1667 30.1152
24 4SS 0.05 64.1783 30.0991
32 FS 0.01 5.9292 15.1754
32 FS 0.02 8.3002 15.1718
32 FS 0.05 10.8208 15.1478
32 4SS 0.01 46.0447 15.1702
32 4SS 0.02 57.2291 15.1672
32 4SS 0.05 69.9777 15.1445

Through table 4.2, it is possible to observe that the variable block size routine

causes some sensible impact on the frame rate, but not on the number of blocks, when

using MAD. The frame rate decreases about 10% to 20%, while the number of blocks

increases less than 0.7%, when compared to BMA results. Even so, it is still possible to

compute 4SS with variable sized blocks in real time.

As shown in Table 4.3, SAD has much more impact on block sizes than MAD.

The threshold value plays an important role. When the threshold is low, the segmentation

trees are much deeper. This happens because SAD values grow faster as the block sizes

get bigger. The smallest differences between pixels, when accumulated in a big 32× 32 or

16× 16 block, are almost guaranteed to go above the error threshold. As for speed, SAD

outperforms MAD, in general, since every split operation for MAD comes at the cost of

four extra division operations.
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Table 4.3: VSBMA-SAD efficiency results. Darker shades of gray highlight the best
results.

Parameters
Avg frame rate Avg blocks

Block Size Strategy Threshold

8 FS 3 7.0903 329.2612
8 FS 5 7.6541 311.9919
8 FS 7 7.6081 306.1324
8 FS 10 7.6537 302.9779
8 4SS 3 54.7578 329.5360
8 4SS 5 56.2760 313.0274
8 4SS 7 56.4500 306.9313
8 4SS 10 57.3187 303.5935
16 FS 3 6.1122 143.6343
16 FS 5 6.9305 109.5896
16 FS 7 7.1620 96.5009
16 FS 10 7.3943 87.1845
16 4SS 3 51.0604 142.3622
16 4SS 5 54.4792 109.4417
16 4SS 7 57.3006 96.4079
16 4SS 10 59.5514 87.3178
24 FS 3 5.5233 106.0835
24 FS 5 6.6730 80.0724
24 FS 7 7.6792 65.9465
24 FS 10 8.0449 54.3488
24 4SS 3 42.3479 103.2254
24 4SS 5 49.9035 78.5384
24 4SS 7 53.6687 65.2164
24 4SS 10 57.5309 53.9471
32 FS 3 4.2342 105.4149
32 FS 5 5.9097 71.0749
32 FS 7 7.1490 56.5982
32 FS 10 7.9498 44.9034
32 4SS 3 39.1349 104.1251
32 4SS 5 45.5658 70.8307
32 4SS 7 50.3448 56.3691
32 4SS 10 55.8548 44.8931
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4.2 Quality Evaluation on Human Action Recogni-

tion Application

Human action recognition have been an active field of research over many years now.

Several distinct techniques have been employed, like optical flow [11] and 3-D gradients [8].

But so far, motion estimation has not been thoroughly explored as an action recognition

tool, even though it has been used in an array of applications where motion is a relevant

feature. Muralidhar et al [13] proposes an architecture for video encoding and compression

based on variable block size motion estimation. Amel et al [1] uses motion estimation to

detect shot boundaries in video sequences.

In this work, an orientation tensor based descriptor for KTH dataset is generated

from both ME algorithms presented. This dataset and the computation of the descriptor

is described on the following sections.

4.2.1 KTH Dataset

KTH is a database of 2391 video sequences of six human actions: walking, running,

jogging, boxing, hand waving and hand clapping. These actions are performed by 25

people in four different scenarios: outdoors, outdoors with scale variation, outdoors with

different clothes, and indoors. The sequences have a resolution of 160 × 120 pixels and

25fps frame rate [17].

4.2.2 Descriptor

The motion descriptor is obtained through three steps. The first one is to calculate the

displacement vectors with BMA or VSBMA. The second step is to convert these vectors

into polar coordinates and build a histogram ~h = {hl}, l ∈ [1, n], where each one of the n

bins represents an angle θ interval and is populated as the following equation:

hl =
∑
i,j

d(i, j) · ω(i, j), (4.1)
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(a) Boxing (b) Clapping (c) Waving

(d) Jogging (e) Running (f) Walking

Figure 4.1: KTH dataset categories.

where ω(i, j) is a Gaussian weighting function with standard deviation σ = 0.01. This

means that each vector adds to the bin with the closest θ value and to the neighbouring

bins in a mild way. The third step is to calculate an orientation tensor as such:

T = ~h · ~hT , (4.2)

which is a condensed representation for the motion between a pair of frames.

The tensor for each pair of frames and for all the video sequences in the dataset

are then accumulated and normalized with L2 Frobenius norm, so that it is possible to

compare different video sequences regardless of their length or resolution.

4.2.3 Recognition Rates

The quality measure used is the output of a SVM classifier, which takes the descriptors

for the whole database and divides them into three groups: a training set, a test set and

a validation set. The accuracy shown in Tables 4.4 and 4.5 refer to the percentage of

correct action predictions from the descriptor.

Table 4.4 shows the recognition rates for all BMA test runs. These recognition

rates indicate that the error function have little to no impact at all on the recognition

rates, whereas search strategy and block size play a major role on the descriptor’s accuracy.

The case with block size 32 achieves poor results due to the big blocks encompassing too
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heterogeneous regions, and thus failing to capture the detailed motion within. The case

with block size 8 shows two very different results, indicating that even though the block

size may be appropriate to capture the fine motion, it may also be more subject to noise

and compression artefacts, and thus misleadingly capturing background motion. The

cases with block sizes 16 and 24 seems to strike a balance between the two previous cases,

achieving the best results.

Table 4.4: BMA recognition rates. Darker shades of gray highlight the best results.

Parameters
Accuracy

Block Size Strategy Error Function

8 FS MAD 73.9
8 FS SAD 73.9
8 4SS MAD 79.3
8 4SS SAD 79.3
16 FS MAD 79.2
16 FS SAD 79.2
16 4SS MAD 78.1
16 4SS SAD 78.1
24 FS MAD 76.8
24 FS SAD 76.7
24 4SS MAD 79.6
24 4SS SAD 79.6
32 FS MAD 75.1
32 FS SAD 75.1
32 4SS MAD 75.1
32 4SS SAD 75.1

Table 4.5 shows the best recognition rates obtained with VSBMA. The table

presents only SAD results. This is due to MAD tests yielding inferior results than SAD,

in all cases tested.

Compared to its BMA counterparts, VSBMA tests show increments on recogni-

tion rates ranging from 1% up to 11%. This is a solid improvement, considering VSBMA

still retains BMA’s real time computation capability.

There is a tendency of increasingly better results as the block sizes get bigger.

This happens because the segmentation process tends to include all relevant motion in-

formation from the cases with smaller block sizes into the cases with bigger block sizes.

The only cases where this tendency is not followed are the cases with block size 16 and

one of the cases with block size 24. Note though, that on all of these cases, the segmen-
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tation threshold is very far from the average error. On the high threshold case, VSBMA

faces the same problem as BMA, where the block may contain more than one direction of

motion. On the low threshold cases, the blocks might have become even smaller than the

object they are supposed to encapsulate, throughout the segmentation process. Since all

the vectors have the same weight in the descriptor computation, regardless of their size,

having too many or too few vectors brings back the same problems found with BMA:

failure to capture fine motion and sensitivity to noise.

Table 4.5: VSBMA best recognition rates. Darker shades of gray highlight the best
results.

Parameters
Accuracy

Block Size Strategy Threshold

8 4SS 3 81.2
8 4SS 5 80.3
8 4SS 7 80.8
8 FS 10 80.4
16 4SS 3 81.9
16 FS 5 83.4
16 FS 7 82.9
16 FS 10 81.9
24 4SS 3 80.9
24 4SS 5 82.2
24 4SS 7 82.6
24 4SS 10 82.6
32 4SS 3 83.9
32 FS 5 84.0
32 4SS 7 84.4
32 4SS 10 84.6
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5 Conclusion

This work intends to make a comparison between motion estimation methods. For that

purpose, it begins with the introduction to the concepts and definitions related to Motion

Estimation. Then it presents two approaches for ME: the Block Matching Algorithm and

the Variable Size Block Matching Algorithm, both brought along with two different search

strategies: the Full Search and the Four Step Search; and two error functions: Sum of

Absolute Differences and Mean Absolute Difference.

One important regard is that this work has no intent to compare state-of-the-art

Motion Estimation methods nor compete with state-of-the-art human action recognition

methods. It is but an experiment on integrating these two fields.

Future works may include several improvements, both on VSBMA and on its use

for action recognition. Better exploration of the parameters, adaptive threshold values,

block merging operations and different block geometry are a few examples of improvements

that can be made on VSBMA. As for human action recognition, the integration of VSBMA

and other techniques and datasets is yet to be made.
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