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Resumo

O Iterative Closest Point (ICP) é um algoritmo tradicional de registro ŕıgido. Este pro-

blema visa encontrar a transformação ŕıgida que aplicada a uma nuvem de pontos D ∈ R3,

a aproxima de outra malha M ∈ R3. Um problema comum do ICP é a presença de ou-

tliers nas nuvens, ocasionado por rúıdo. O método proposto, baseado em um processo de

estimativa de normais através de elementos estruturantes tensoriais, é uma nova aborda-

gem para lidar com outliers. Foi desenvolvido um fator comparativo de forma de tensores

(CTSF, em inglês) que atua como fator de peso para a tradicional distância euclidiana,

na etapa de casamento do ICP.

Palavras-chave: Registro ŕıgido, Iterative Closest Point, elementos estruturantes tenso-

riais, estimativa de normal



Abstract

The Iterative Closest Point (ICP) is a traditional algorithm for rigid registration. In this

problem, the goal is to find the rigid transformation that applied to a point cloud D ∈ R3,

brings it closer to another point cloud M ∈ R3. A common problem within the ICP is

the presence of outliers in the clouds, caused by noise. The proposed method, based on

a normal estimation process through tensor structuring elements, is a novel approach to

deal with outliers. A comparative tensor shape factor (CTSF) was developed, acting as

a weighting factor to the traditional euclidian distance, in the ICP matching step.

Keywords: Rigid registration, Iterative Closest Point, tensor structuring elements, nor-

mal estimation
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Time can be the answer, take a chance,

or lose it all

It’s a simple mistake to make, to create

love and to fall

So rise and be your master, cause you

don’t need to be a slave

Of memory ensnared in a web, in a cage

Anathema (A Simple Mistake)
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1 Introduction

In computer vision a recurrent problem is surface registration. In this problem the aim

is to find the spacial transformation that best aligns two or more point clouds into the

same coordinate system. This process is essential to capture 3D geometry of objects, that

can be used by CAD projects, movie animations, games or medical images, among other

applications.

A point cloud is the given name to a set of point, where each element corresponds

to a different point in space. It may contain information about its position, color or

normal. These clouds can be generated synthetically or obtained from 3D Scanners, like

the one presented by de Souza Filho et al [3]. The advent of low cost devices, such as the

Microsoft Kinect or the Asus Xtion, enables a wider use of registration algorithms.

One of the most used algorithms to register point clouds is the Iterative Closest

Point (ICP), presented by Besl and McKay [6]. It takes two point clouds, that could

represent two distinct views of a scene or object and finds the rigid transformation that

best approximates both clouds. Rusinkiewicz and Levoy [13] classify this algorithm in six

stages where optimizations can be made:

1. Selection of the model points.

2. Matching the selected points to the other cloud.

3. Weighting the corresponding pairs.

4. Rejecting some pairs.

5. Assigning an error metric.

6. Minimizing the error metric.

The presence of outliers in the point cloud, due to low quality 3D scanning, could

lead to a mismatch in the second step, which in turn can lead to a wrong transformation,

producing bad results. In order to avoid this, a new weighting factor named CTSF
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(Comparative Tensor Shape Factor) is proposed to compare two points in the matching

step, reducing the influence of outliers.

For the proposed approach, first a local normal estimation is done for every point,

considering its neighborhood. The result is a tensor for each point, containing encoded in

its eigensystem a multivariate estimation of the normal. Next, in the ICP matching step,

the CTSF compares the shape of this tensor, weighting the traditional euclidian distance.

The next chapters are organized as follows: chapter two presents the theoretical

base of the Iterative Closest Point and normal estimation with tensor structuring elements.

In chapter three, the Comparative Tensor Shape Factor is explained. Some results are

shown in chapter four, and in the final chapter some conclusions are presented.

1.1 Problem Definition

Given two distinct point clouds M,D ∈ R3 , find the rigid transformation T (R, t) that

applied to D, best aligns both clouds, where R is a rotation matrix and t is a translation

vector.

1.2 Objectives

The main objective of this work is to improve the precision and robustness of the Iterative

Closest Point (ICP) algorithm in the presence of strong non-structured noise, that is, a

noise that does not form any surface. For this, a new approach to deal with outliers based

on tensor structuring elements is proposed. The method computational efficiency will not

be focused.
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2 Theoretical Base

2.1 Iterative Closest Point

The Iterative Closest Point takes two point sets M and D, called Model and Data res-

pectively, and finds the best rigid correspondence between them, i.e.,

min
R,t

nD∑
i=1

‖RDi + t−Mi‖2 , (2.1)

where nD is the number of point in D, R is the rotation matrix and t is the translation

vector that applied to D brings it closer to M . It has two major steps: matching of the

points, often called nearest neighbor search, and transformation estimative.

In the matching step, for each point Mi ∈ M , the closest point Di ∈ D is

found, composing the set of closest points C. This step is usually the slowest part of

the algorithm, and a K-D Tree is a common data structure to accelerate it. Outliers can

lead to a mismatch, building an erroneous set C. Thus it is necessary to develop outlier

detection techniques.

The transformation estimative step finds the covariance between the sets C and

M , estimating a rigid transformation matrix to be applied on every point of the data set.

In the original ICP, Besl and McKay [6] used a quaternion-based approach to find the

transformation, but there are several alternatives that can be used, such as the presented

by Chen and Medioni [1].

These two steps are performed until a stopping criterion is satisfied.

2.1.1 Point-to-Plane

The point-to-plane technique by Chen and Medioni [1], implemented in many variants

of the ICP, allows greater tangencial movements, converging faster to a local minimum.

This method is iterative and fits as an optimization on the matching step of the ICP,

replacing the nearest neighbour search.
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Let p ∈ M , be a point of the model set, where the normals are defined for each

point. For each iteration k, and starting r0 = p, find the closest point qk ∈ D, another

point set where the normals are also defined. The intersection between a line in the

direction of the normal of rk and the tangent plane defined by the normal of qk defines a

point rk+1. Repeat the iterative step until ‖rk − rk+1‖ > ε or k < n, for a given ε. The

closest point set C is build from qk.

Chen and Medioni also presented a point-to-plane minimization function as an

extension to the point-to-point function, in equation 2.1, but considering the normal ni

of each point in the data set. These normals can be computed based on the four nearest

neighbors in the range grid [13], or using a more sophisticated method like the presented

on section 2.2. It can be written as

E =

nD∑
i=1

‖(RDi + t−Mi) · ni‖2 . (2.2)

The transformation estimative is done considering a linearization of the rotation

matrix, assuming a small angular displacement (cos θ = 1 and sin θ = θ). The error

introduced here tends to be small in late iterations of the ICP, since both sets should be

almost alligned. The linearized rotation matrix is:

R ≈


1 −γ β

γ 1 −α

−β α 1

 , (2.3)

with α, β, γ as rotations around the x̂, ŷ and ẑ axis, respectively.

Substituting 2.3 into 2.2, it can be rewritten as:

E =

nD∑
i=1

[(Di −Mi) · ni + t · ni + α (Di,yni,z −Di,zni,y) + β (Di,zni,x −Di,xni,z)

+ γ (Di,xni,y −Di,yni,x)]
2.

Defining:

ci = Di × ni
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and

r =


α

β

γ

 ,

the equation 2.4 becames:

E =

nD∑
i=1

[(Di −Mi) · ci + t · ni + r · ci]2.

Minimizing this function with respect to α, β, γ, tx, ty and tz, the following linear

system can be set:

nD∑
i=1



ci,xci,x ci,xci,y ci,xci,z ci,xni,x ci,xni,y ci,xni,z

ci,yci,x ci,yci,y ci,yci,z ci,yni,x ci,yni,y ci,yni,z

ci,zci,x ci,zci,y ci,zci,z ci,zni,x ci,zni,y ci,zni,z

ni,xci,x ni,xci,y ni,xci,z ni,xni,x ni,xni,y ni,xni,z

ni,yci,x ni,yci,y ni,yci,z ni,yni,x ni,yni,y ni,yni,z

ni,zci,x ni,zci,y ni,zci,z ni,zni,x ni,zni,y ni,zni,z


·



α

β

γ

tx

ty

tz


= −

nD∑
i=1



ci,x(Di −Mi) · ni

ci,y(Di −Mi) · ni

ci,z(Di −Mi) · ni

ni,x(Di −Mi) · ni

ni,y(Di −Mi) · ni

ni,z(Di −Mi) · ni


.

This linear system is in the form Ax = b, solving it will give the values to build

the final transformation matrix:

T =



1 −γ β tx

γ 1 −α ty

β α 1 tz

0 0 0 1


.

2.1.2 Related Works

After the introduction of the Iterative Closest Point by Besl and McKay [6], many im-

provements were made focusing on robustness, speed or both. The survey from Tam et

al. [15] presents several recent proposals to rigid and non-rigid registration, showing that

both problems are still open, although non-rigid registration is still taking its initial steps.

Their work classifies method by its optimization strategy, being stochastic, local deter-
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ministic or global deterministic and by the constraints set, that could be transformation-

induced, features, saliency, regularization and search. The classical ICP and the version

presented in this work fits in the transformation-induced constraint in their classification,

because of its closest point criterion. It is also local deterministic, since it finds the best

transformation locally at each step.

The K-D Tree [5] is a data structure often implemented to accelerate the closest

point search step [14]. In the context of the ICP, the tree usually uses the 3D cartesian

space. Hao Men et al. [10] uses a four-dimensional K-D Tree, setting the fourth axis as

the hue component, from a HSL color model. In the work of Henry et al. [8], color is used

aside feature detection (SIFT) and RANSAC to optimize the allignment when geometric

information is not enough. Druon et al. [7] also uses hue to improve the registration

quality, subdividing the cloud in seven basic colors and performing individual matches

for each subcloud, before estimate a final transformation. The drawbacks of using color

are the need of a reasonably well lit capture environment of the point clouds, since color

detection is sensitive to brightness, and innacurate on reflective surfaces. The proposed

method does not use color and, therefore, is not subject to these problems.

Since outliers can mislead the algorithm in the matching step, many methods

to identify them have been proposed. In the work of Phillips et al. [11], a probabilistic

method to identify inliers is used to modify the distance function. Another probabilistic

method is shown by Hermans et al. [9], where Gaussian Mixture Models are used to

model the point cloud and an expectation-maximization process is adapted into the ICP

to handle outliers. KinectFusion [2] is a parallel implementation of the traditional ICP

to achieve real-time registration, identifying outliers through a segmentation process and

eliminating the residuals using raycasting. Sparsity-induced norms are used by Bouaziz

et al. [4] to modify the penalty function applied, reducing the influence of outliers on the

transformation estimative.

Reyes et al. [12] estimate the rigid transformation using geometric algebra, mode-

ling the problem as finding a 3D plane in a joint space which represents the affine motion.

A process named tensor voting is used to find this plane. In this work, the method used

to estimate normals is similar to this process, however the structuring element used is
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anisotropic and the gradient of normals coincide with the tensor orientation, producing

smoother results [16].

2.2 Normal estimation with tensor structuring ele-

ments

This method is strongly based on the work of Vieira et al [16] and is divided in two steps:

coarse and fine. The first step provides an initial estimative, based only on the nearby

neighborhood geometry. This estimative is used as a starting point to the second step,

where another structuring element is applied, refining the estimative. The final result is

a tensor for each point, containing encoded in its eigensystem a multivariate estimation

of the normal. These tensors are used by the CTSF during the ICP matching step in the

proposed approach.

In the coarse step a tensor Tp is build for each point applying a radial tensor

structuring element. This way, for each p, q ∈M and p 6= q :

Tp =
∑
q∈M

e
−|| ~pq||2

σ2 · p̂q · p̂qT ,

where p̂q is the normalized vector ~pq and σ is a parameter.

The initial normal estimative is the eigenvector associated to the less significant

eigenvalue of Tp. A confidence value, used to measure how good is the estimative, can

be the planar anisotropy coefficient cp, defined as:

cp =
2(λ2 − λ3)
λ1 + λ2 + λ3

.

Where λ1, λ2, λ3 are the eigenvalues. When cp � cl ≈ cs, the tensor has an indecibility

on the third main direction, indicating a bigger chance of belonging to a planar surface.

In the second step another tensor, Sp, is built for each point. The tensor will

store the influence exerted by the neighborhood of p, based on the distance over an elliptic

trajectory between p and its neighbors.

First, the structuring element must be alligned with the estimated normal. For
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that, the applied rotation matrix is given by:

Rp =


e1x e1y e1z

e2x e2y e2z

e3x e3y e3z

 ,

where e1, e2, e3 are the normalized eigenvectors of Tp. Then, for each p, q ∈ M

and p 6= q , the vector ~pq′ is calculated as follows:

~pq′ = Rp · ~pq.

This vector expressed in spherical coordinates is:



ρ =
√
pq′2x + pq′2y + pq′2z,

θ = tan−1
pq′y
pq′x

,

φ = tan−1 pq′2z√
pq′2x+pq

′2
y

.

Let a family of ellipsoids be defined as:

x2

t2xk
2

+
(−ty + y

k
))

t2y
= 1.

The curvature of this family can be controlled by the ratio d:

d =
2kty
2ktx

=
ty
tx
.

Then, let E be an ellipsoid centered over the ŷ′-axis and tangent to the x̂′-axis.

The angle β between the plane x̂′ẑ′ and the plane tangent to q on the elliptic surface can

be calculated:

β = tan−1
2d2 tan θ

d2 − tan2 θ

Back to cartesian coordinates, replacing β for φ, a vector orthogonal to E on q ′
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can be obtained:

~vpq′ = cos θ · cos β · x̂+ sin θ · cos β · ŷ + sin β · ẑ.

The distance between p and q over the elliptic trajectory is:

d(pq′) = ρ cosφ(1 + (2− 1

d2
) tan2 φ)

d2

2d2−1 .

For the given σ, the influence force that q exerts on p is:

f(pq′) = e
−d(pq′)2

σ2 .

Finally, the resulting tensor Sp is defined as:

Sp =
∑

q ∈M

φ ~pq′ ≤
π
4

f(pq ′) · ~vpq′ · ~vpq′T .

The restriction on φ constrains the influence of q misaligned to the tangent plane

defined by the normal of p. A higher value of φ produces smoother surfaces, while smaller

values allows more details at cost of robustness to noise [16].

Like the previous tensor, the eigenvector associated to the less significant eigen-

value is the normal estimated, and the used confidence factor is the planar anisotropy

coefficient cp.
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3 Proposed Method

Given two points belonging to different point sets, when their neighborhood have the

same geometric arrangement, it is very likely that they are the same point. This way,

the influence exerted by its neighborhood is the same in both sets, so that the tensors

obtained in the normal estimation step are equal. If one of the point sets is denser, the

point will receive more influence from the neighborhood, producing a tensor with greater

magnitude, but its shape will still be the same. To avoid the influence of the magnitude,

both tensors must be normalized during the process.

In order to be able to compare two tensors, and determine how compatible they

are, a Comparative Tensor Shape Factor (CTSF) is created. Representing the tensor as

an ellipsoid, its shape is defined directly by its eigenvalues. This way, when a tensor has

a well defined direction its shape is a stretched rod, when there is an indecibility on the

two main directions its shape is like a disc, and when there is an indecibility on the three

main directions its shape is of a sphere. Figure 3.1 shows how the shape is affected by

the eigenvalues.

Figura 3.1: Tensor shape according to how many indecibility directions it have.

Two tensors have the same shape when they have the same proportion between

their eigenvalues. Hence, the CTSF is defined as:

CTSF
(
Ŝ1, Ŝ2

)
=
∑
k

(
λŜ1
k − λ

Ŝ2
k

)
,
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with λŜmk as the k-th greatest eigenvalue of Ŝm. The greater the CTSF, more dissimilar the

tensors are, i.e., more different are their shapes. In figure 3.2, some examples are shown

of when two tensors have low or high values of CTSF. Since eigenvalues are invariant to

rigid transformations, this factor is suitable to rigid registration.

Figura 3.2: Examples of how the CTSF is affected by the geometry of planar tensors.
Note that the CTSF is invariant to the magnitude of tensors, due to the normalization,
and to their orientation.

During the search for the nearest neighbor in the ICP matching step, the algo-

rithm must find the closest point using an euclidian distance. The CTSF is used in the

exponential form to weight this distance. Thus, for given two points m ∈ M and d ∈ D,

instead of only measuring their distance, the ICP must also consider how similar they are:

e
−CTSF(Ŝm,Ŝd)

2

σ2 · || ~md||.

The exponential was chosen so that when two tensors have the exactly same

shape, only their euclidian distance is considered, since the weighting term becames 1 in

this case. Otherwise, when two tensors differs their shape too much, the weighting factor

becames bigger than 1, lowering the chance to match. The σ used in this case is the same

as the used in the normal estimative step.
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4 Results

4.1 Normal Estimative

The Figures 4.1, 4.2, 4.3 show how reliable are the normals estimated using the tensor

structuring elements. The models were drawn using the ellipsoid representation of the

tensors found in the normal estimative step. Red tensors represents a high value of cp,

that is, a more reliable estimative; while blue tensors, in the other hand, represent an

uncertainty.

Figura 4.1: The bunny set has very reliable normals along its body. Except the edge of
the ears, a region with high curvature, which is harder to estimate normals.
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Figura 4.2: The chest, muzzle, palm of hand and cheeks of the armadillo are regions with
very well defined normals, opposed to fingertips, teeth, nose and the edge of the ears,
regions with high curvature.

Figura 4.3: In the octopus set only the head and small patches in tentacles have normals
with high confidence. The rest of the tentacles have medium to low confidence.
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4.2 Iterative Closest Point + CTSF

The experiments were made on the point sets Bunny (from the Stanford 3D Scanning Re-

pository, graphics.stanford.edu/data/3Dscanrep, containing 8171 points), Egea and Octo-

pus (from the Madras Repository, www-rech.telecom-lille1.eu:8080/3dsegbenchmark/dataset.html,

containing 8268 and 16554 points respectively). To show how the ICP behaves, a synthe-

tical rigid transformation was applied to the data set, while the model set remained

unchanged. The transformation is composed by a translation of 0.5 in each axis, and a

rotation of 20o around the ẑ axis. Since the ICP needs a small displacement between the

point sets, this transformation represent a feasible scenario.

In the proposed method the only variable parameter is σ, and the test values

were 0.01, 0.1, 1.0, 10.0.

Non-strucured noise was applied to both point sets to show how the method deals

with it. The amount of noise added was proportional to 0.5, 1 and 2 times the number of

points, generated randomly following a uniform distribution, inside a bounding box two

times larger than the original. The original ICP used was the one based on quaternions,

proposed by Besl and McKay [6] and accelerated by a K-D Tree.

σ Original Egea +50% Egea +100% Egea +200%
0.01 0.611223 0.589953 0.663178 0.765912
0.10 0.614304 0.528759 0.0658112 0.732408
1.00 0.233932 0.025418 0.026132 0.025831
10.00 0.232850 0.024968 0.026178 0.026660

Original ICP 0.067624 0.032374 0.062652 0.035598

Tabela 4.1: Root mean square errors for the Egea point set, varying the amount of noise
and the parameter σ. The gray values are the best results for each model.

σ Original Octopus +50% Octopus +100% Octopus +200%
0.01 0.373363 0.539407 0.614426 0.612511
0.10 0.297609 0.377939 0.444942 0.475045
1.00 0.004846 0.041921 0.018494 0.019082
10.00 0.004166 0.042753 0.042753 0.019252

Original ICP 0.085117 0.035529 0.052943 0.035329

Tabela 4.2: Root mean square errors for the Octopus point set, varying the amount of
noise and the parameter σ. The gray values are the best results for each model.
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Table 4.1 and 4.2 shows that the CTSF improved the Original ICP when a proper

value for σ is chosen, except for only one test case for each point set. The best value for

sigma was between 1 and 10, when the CTSF was used. A much lower σ implies that the

structuring element is unable to gather enough information on the neighborhood of the

points, producing poor tensor at the normal estimative step. These bad tensors tend to

be confused with outliers, causing a mismatch at the ICP matching step. On the other

hand, a much bigger value for σ does not produce better results, keeping the RMS error

close to the one when σ = 10.

Another synthetical test was performed. A set of 25 random transformations was

applied to the data set, while the model set remained unchanged, just like the previous

experiment. The transformations were composed by a translation of 0.5 in each axis, and

a rotation of 20o, 40o and 60o around an arbitrary axis, with the following values for σ:

0.01, 0.1, 1.0, 10.0. The Table 4.3 shows the results for 20◦, 40◦ and 60◦. In this table

only the best average value for σ is shown when the ICP + CTSF is used.

Bunny ICP + CTSF Original ICP
20◦ Sigma Average Std Deviation Average Std Deviation

Original 10 0,01226 0,007578772 0,20524 0,240917012
50% 1 0,009903 0,004704758 0,241066 0,154638192
100% 10 0,006947 0,002458747 0,053733 0,048210172

Bunny ICP + CTSF Original ICP
40◦ Sigma Average Std Deviation Average Std Deviation

Original 10 0,02025 0,003979782 0,179869 0,23438386
50% 10 0,012208 0,001751649 0,260375 0,125582949
100% 10 0,01117 0,00061695 0,102806 0,131441182

Bunny ICP + CTSF Original ICP
60◦ Sigma Average Std Deviation Average Std Deviation

Original 10 0,017422 0,003615576 0,242524 0,22489159
50% 10 0,013184 0,000936384 0,354515 0,128023817
100% 10 0,01139 0,001629041 0,087954 0,075503955

Tabela 4.3: Average RMS error and standard deviation for the Bunny point set, with a
rotation of 20◦, 40◦ and 60◦ in an arbitrary axis and a translation of 0.5 in each axis,
varying the amount of noise and comparing with the Original ICP.

Table 4.3 shows that the predominant value for σ in the best case is again close

to 10. In every test cases the presented method performed better than the Original

ICP. The presence of noise demonstrates even more the effectiveness of the method. The
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presented method proved to be much more stable than the Original ICP, given the low

variation of the standard deviations. These results, however, are not absolute, since the

transformations used were different. They only indicate a trend.

The ICP + CTSF usually takes more iterations than the original ICP, in some

cases more than 150 iterations, an unusual behavior for the ICP. Due to the quadratic

nature of the normal estimative step, the whole process is slow, a tradeoff chosen between

precision over speed. For this reason, a speed comparison is not interesting. To reach a

feasible result, an inverted list of neighbors was used.

(a) Initial position (b) After 5 iterations (c) After 10 iterations

(d) After 20 iterations (e) After 30 iterations (f) Final result after 37 iterati-
ons

Figura 4.4: Method convergence sequence for the Bunny dataset, considering σ = 0.5,
and an amount of 50% of noise.
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(a) Initial position (b) After 5 iterations (c) After 10 iterations

(d) After 20 iterations (e) After 30 iterations (f) Final result after 39 iterati-
ons

Figura 4.5: Method convergence sequence for the Octopus dataset, considering σ = 1.0,
and an amount of 50% of noise.
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5 Conclusion

As stated in the related works, rigid registration is still an open problem. The proposed

method using a novel approach, the use of tensor structuring elements in the ICP through

the CTSF, in the presence of strong non-structured noise, is the major contribution of

this work.

The first step is the estimative of the normals for each point in both clouds,

based on how likely its neighbors compose a surface, resulting in a tensor for each point.

Then, in the ICP matching step, a Comparative Tensor Shape Factor (CTSF) is used in

order to compare two tensors, weighting the traditional euclidian distance, mitigating the

influence of outliers in the transformation estimative step. It is important to note that

any point is discarded in the process.

The only variable parameter is σ, responsible for controlling the influence range

of the structuring element and the CTSF. In most of the tests performed the ideal range

is between 1 and 10, but this is highly sensitive to the point sets used, even with all sets

scaled to the unit bounding box.

As a future work, an adaptive σ might be investigated, eliminating the need to

calibrate the parameter for each new input point set. Different kinds of noise can be

explored, like additive noise for example. The CTSF itself is way to compare the shape

of any given two tensors, and can be used whenever is interesting to compare tensors,

expanding its usage beyond the ICP matching step.

This work was submitted to the International Conference on Pattern Recognition

(ICPR) 2014, on 21/12/2013.
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