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Resumo

Rastreamento em v́ıdeos fornece a trajetória de um objeto no tempo. Diversas pesquisas

em visão computacional e realidade aumentada dependem desta tarefa. Existem várias

soluções propostas na literatura e a maior parte delas enfrentam desafios relacionados ao

rastreamento a longo prazo. Neste cenário, rastreadores costumam falhar, exigindo uma

reinicialização. Para evitar estas falhas, várias pesquisas foram feitas com o intuito de

combinar rastreadores e detectores em tempo de execução. O presente trabalho tem como

objetivo o estudo de um rastreador a longo prazo em v́ıdeo, bem como sua implementação.

Palavras-chave: rastreamento a longo prazo, fluxo mediano, detector estat́ıstico,

rastreamento-aprendizado-detecção.



Abstract

Tracking in videos provides the object trajectory over time. Several researches on com-

puter vision and augmented reality rely on this task. There is a large variety of trackers

proposed on literature. Most of these approaches face challenges related to long-term

tracking. In this scenario, trackers tend to fail requiring restarting. To avoid these fail-

ures, over the past years, we have seen a growing interest on combining trackers and

detectors at runtime. The present work intends to present a study of a long-term tracker

in video as well as its implementation.

Keywords: long-term tracking, median flow, statistical detector, tracking-

learning-detection.
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“But it was all right, everything was all

right, the struggle was finished. He had

won the victory over himself. He loved

Big Brother.”

George Orwell (1984)
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1 Introduction

Object tracking is a fundamental task for several areas of research such as surveillance

and augmented reality. Tracking provides the object position over time, so the system

will be able to analyze object behavior or to produce new objects over it.

There is a large variety of trackers on literature differing mainly on the object

model, supported transformations and motion estimation. The reason is that different ap-

plications and environments require different abilities from the tracker. Some approaches

consist in building 3D models of rigid objects offline and estimating the affine trans-

formation parameters on each frame (Oikawa et al., 2012). In these approaches, the

object geometry must be known a priori and they usually cannot handle deformations.

For surveillance purposes, we need a more flexible tracker. There are several approaches

based on template matching (Kalal et al., 2010; Pernici and Del Bimbo, 2013). Template

is an object representation, for instance a color histogram or a set of key points and the

tracker searches for the patch which minimizes an error function. Generally, this search is

made between pairs of consecutive frames and the object found is used for the next search.

Many of these object trackers are based on point trackers like pyramidal Lucas-Kanade

tracker (Bouguet, 2001) and the object is defined by a bounding box.

There are some classical challenges on object tracking. A common challenge is

the change in the object appearance caused by illumination variations, object occlusions,

among others. Trackers also tend to accumulate errors and to fail after some time. These

issues are even worse when the tracking is made in a large amount of time, the so-called

long-term tracking.

Over the past years, we have seen a growing interest on combine trackers and

detectors, at runtime, to address these issues. Detector requires a training stage to model

the target object and, consequently, it is more capable to recognize it. It checks the

whole frame for the known template and is capable to detect when the object is out of

the scene. However, it may be confused with similar objects, since it does not consider

previous position, besides requiring a large dataset to learn object appearance. Trackers
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are capable to adapt to new object appearances, but they fail in recognize the object more

frequently.

A notable approach was proposed by Kalal et al. (2012). It combines object

tracking, detection and a semi-supervised learning component in a framework called TLD

or, as it is known, the predator. With the learning component, the system is able to

update the object model and retrain the detector.

In this work, we implement a long-term tracker which is similar to TLD. It is

composed of a tracker and a detector without the learning component. Thus, we evaluate

the ability of the detector to correct tracker responses without retraining in a long-term

scenario.

1.1 Problem definition

Given a bounding box defining an object, we want to find its trajectory throughout a

long-term video. This implies a frame-to-frame tracking which can handle illumination

variations and object occlusions in addition to detect if the object disappears of the scene.

Thus, given an object in time t, which is actually an appearance of the real object, we

want to estimate the new position in time t + 1, its scale factor, or to indicate that the

object is out of the scene.

1.2 Objectives

The main objectives of this work are the study and implementation of a tracker coupled

with a detector to avoid tracking failures. We analyze the limitations of this combination

in a long-term scenario. The tracker accuracy is evaluated using TLD dataset proposed

by Kalal et al. (2010). We also present a study of each component individually consid-

ering some classical challenges on object tracking. Finally, we present and discuss some

qualitative results.
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2 Fundamentals

In this chapter, we present some fundamental concepts for tracking and detection tasks.

But, first of all, we introduce some general definitions.

Definition 2.0.1. (Image) An image is a 2D continuous signal I : R2 → Rc which

associates a point ~q = (x, y) to a brightness vector ~v ∈ Rc. Each vector element represents

the channel intensity for a point. A digital image I is a discrete representation of an image

that usually is seen as an m×n matrix. In this work, we refer to a grayscale digital image

as image and the gray values are in the interval [0, 1]. By convention, the image origin is

located at the upper left point.

Definition 2.0.2. (Patch) A patch is a restriction of the image domain. It can be seen

as an m′ × n′ sub-image where m′ < m and n′ < n. Let ~q1 = (x1, y1) be the initial point

of the patch in an image I. The patch P is defined as:

P (x, y) = I(x1 + x, y1 + y),

where 0 ≤ x < m′ and 0 ≤ y < n′. The terminal point of the patch in I is ~q2 =

(x1 + n′, y1 +m′) = (x2, y2).

Definition 2.0.3. (Bounding box) A bounding box is a minimum rectangle which

contains the object. Formally, it is given by its minimum and maximum coordinates

B = {xmin, ymin, xmax, ymax}. To indicate that the object is out of the scene, we set an

invalid value for coordinates.

Definition 2.0.4. (Video) A video V is a sequence of images or frames ordered by time,

i.e., V = {I1, · · · , Ik}. For tracking purposes, we consider smooth sequences without

sudden cuts of scene. That is, we only accept progressive changes, including illumination

variations and object occlusions.

Definition 2.0.5. (Integral image) Integral image was proposed by Viola and Jones
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(2001) and its elements Iint(x, y) are given by:

Iint(x, y) =
∑

0≤x′≤x

∑
0≤y′≤y

f(I(x′, y′)),

where I is an image, f a function over I values, x < n and y < m.

Let S be an image defined as

S(x, y) =
∑

0≤y′≤y

f(I(x′, y′)),

i.e., an image where each element contain the column sum up to y. Considering S(x, 0) =

f(I(x, 0)) and Iint(0, y) = S(0, y) for all x and y, the integral image can be calculated as:

S(x, y) = S(x, y − 1) + f(I(x, y))

Iint(x, y) = Iint(x− 1, y) + S(x, y)

Now, suppose we want to find the integral value for a patch P within I defined

by the points ~q1 = (x1, y1) and ~q2 = (x2, y2):

Ipatch(P ) =
∑

x1≤x′≤x2

∑
y1≤y′≤y2

f(I(x′, y′)).

As depicted in Figure 2.1, Ipatch(P ) can be calculated with only four accesses to

the integral image:

Ipatch(P ) = Iint(x2, y2)− Iint(x2, y1)− Iint(x1, y2) + Iint(x1, y1).
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Figure 2.1: Integral value for a patch P .

2.1 Tracker concepts

As mentioned before, recent approaches combine tracking and detection tasks at runtime.

These combinations are also called trackers because they share the same goal. However,

most of the earliest works were based on a pure tracker.

Given an object position in a frame, the task of a pure tracker is to find the posi-

tion in a second frame. In other words, the tracker must estimate an affine transformation

which will give the second location of the object. Trackers assume that the time difference

between the two frames is small and, thus, the second position is close to the first one. For

this reason, the search can be made on a small area around the initial position. This task

may also be extended for multiple frames and each object found become the reference for

the next search.

2.1.1 Object

The object definition itself has a broad meaning. It may be a person, a car or even a

point. Each class of object requires different supported transformations. Point trackers,

for instance, usually use point displacements to describe movement while rigid objects

motion may be represented by translation, rotation and scale of the original appearance.

The input object is, in fact, a view of the real object. During the video, we can
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have a completely different appearance of the same object. This scenario is even worse

with deformable objects. Trackers are usually capable of dealing with gradual changes

and learning new appearances.

There are many ways to represent the object: by histograms, articulated models,

3D meshes, among others. The most common is by feature points. In this work, we

consider rigid and deformable objects given by the user, i.e., selected bounding box which

marks the object, and they are going to be represented by feature points.

2.1.2 Trajectory

Tracking on a sequence of frames will give us a sequence of object states. In some works,

mainly 3D approaches, the object state consists of a parameter set containing, for instance,

the rotation angle related to the initial appearance. This state is known as the object

pose. For most of 2D approaches, the object state is a pair of points, defining a bounding

box, which represents the location and extension of the object. A sequence of object

states is called trajectory. Formally, the trajectory is given by T = {Bi} where Bi is a

bounding box, i ∈ {1, · · · , k} and k is the number of frames or the trajectory size. The

aspect ratio of the initial bounding box is kept through the whole trajectory. Note that

this first bounding box must be given. It can be obtained from a detector, from the user

or, in a controlled environment, by background subtraction.

Trackers always output smooth trajectories. This means that it will estimate a

transformation for every frame, even if the object moves out of the scene or is occluded,

and the estimated position is close to the previous. For trackers, similarity is not more

important than proximity. It will not select an identical object in the scene if it is out

of the search area, and might retrieve another object if it is the most similar in the

neighborhood. Therefore, trackers assume that the object is always visible and cannot

handle sudden and large movements. If the video does not satisfy these conditions, the

tracker tends to fail.
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2.1.3 The drift problem

As we said, trackers are capable of adapting to new object appearances and dealing with

progressive changes. Since there is no guarantee that every point in the new appearance

belong to the original object, the tracker can follow a wrong object or get stuck on a

cluttered background and never recover the previous target. This problem is known as

the drift problem, i.e., the error accumulation during the track. For the best of our

knowledge, no pure tracker can recover from the drift problem. That is why several works

include a detector component. Figure 2.2 shows an example of drift failure in sequence

car from TLD dataset (Kalal et al., 2010). The car is occluded by a tree in the second

image and the tracker cannot recover the car again.

Figure 2.2: Example of drift failure in sequence car from TLD dataset (Kalal et al., 2010).

2.2 Detector concepts

The main task of a detector is to decide whether the object is in the scene or not. If

the object is visible, the detector must find out its location. Generally, detector focuses

on learning a class pattern instead of discriminate interclass objects (Amit, 2002). For

this reason, similar objects in the scene may confuse the detector. The detector task

can be seen as a classification problem: given a sample set, the detector classifies each

candidate patch as positive (object) or negative (background and other objects). To make

this decision, detector must learn object appearances and build a model from them.

According to Ozuysal et al. (2007), there are two main groups of approaches for

detection: based on invariant descriptor and on statistical models. Basically, detectors

based on invariant descriptor (Lowe, 1999; Bay et al., 2006) focuses on extracting features

invariant to affine transformations and, at runtime, matching the descriptors. This way,
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the detector will be able to deal with different appearances of the object. Statistical

models (Lepetit and Fua, 2006; Ozuysal et al., 2007) are based on a training set (authentic

or synthetic) for object modeling and a classifier to learn object pattern. Here, we focus

on statistical model. Since we are working with 2D views of a 3D object, the training set

must include variations of object perspective. For instance, Lepetit et al. (2004) synthesize

views of the original object using affine transformations.

2.2.1 Binary test

The aforementioned statistical models extract feature points from the object for matching.

At runtime, a point of a candidate object must be classified as a known feature point

or not. The recognition is made through intensity comparisons in the feature and in

the candidate surrounding patch. Ozuysal et al. (2007) proposes a set of binary tests

F = {f1(~q), · · · , fb(~q)} where fi(~q) is a function given by:

fi(~q) =

1, if I(~r0,i) < I(~r1,i)

0, otherwise
.

Points ~r0,i and ~r1,i are randomly chosen offline and belong to the surrounding patch of

~q. The binary tests in a point neighborhood give us a code which is the concatenation

of the results. This code is used for point matching. An example of code generation is

shown in Figure 2.3 for two binary tests where r0,0 = (0, 0), r1,0 = (0, 1), r0,1 = (2, 0) and

r1,1 = (2, 1). The code generated for the feature patch was 01 while for candidate patch

was 00.

Figure 2.3: Example of codes for a feature and a candidate point.

By creating new views of the object, we also have new views of a feature point.
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These corresponding points define a class. Thus, a candidate point may be similar to any

view of a feature point. Ozuysal formulates this problem in a naive Bayesian classification

framework. So, we calculate the posterior probability for a point to be classified as cj,

given that it has the code fcode(~q), i.e., P (C = cj | fcode(~q)). C is a random variable that

represents a class and can take on a feature index or −1 to indicate an unknown point.

Note that for b binary tests, we need to store 2b posteriors values for each class. For this

reason, Ozuysal proposes to use an ensemble of Bayesian classifiers.

2.2.2 Ensemble classifier

An ensemble is a set of base classifiers whose individual votes are combined into a majority

decision for a new sample. If each classifier makes independent errors and has at least

50% accuracy, then the collective response outperforms individual decisions (Hansen and

Salamon, 1990). To address the independence criteria, Ozuysal et al. (2007) proposes the

fern structure. Ferns are equal-sized partitions of the F set. Each ensemble member is

associated with a different fern set and thus, tends to make independent errors. Moreover,

this approach reduces the computational effort to store the posteriors. Each fern produces

2
b
l posteriors for each class and l · 2 b

l for the whole set of ferns, where l is the number of

ferns. Formally, a fern Fi is given by:

Fi = {fσ(i,1)(~q), · · · , fσ(i,t)(~q)},

where σ(i, j) is a random permutation of F indexes and t = b
l
. The global response of

the ensemble is given by:

P (C = cj | fcode(~q)) =
l∏

i=1

P (C = cj | f icode(~q)).

Finally, for a given point ~q, the highest probability corresponds to the most similar class,

i.e.:

c = max
cj

P (C = cj | fcode(~q)).
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The posterior probability and the random permutation are calculated offline once. Ozuysal

shows that the posterior probability is approximately:

P (C = cj | f icode(~q)) ≈
ni,j + 1∑l

a=1 (na,j + 1)
,

where ni,j is the number of training samples that generate the code f icode and has the label

cj.
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3 Long-term tracker

In this chapter, we present the long-term tracker. It was written in C++ language with the

OpenCV (Open source Computer Vision) library. Sections 3.1 and 3.2 contains individual

explanation and implementation of the tracker and detector, respectively. Both output a

bounding box for each frame of the video. In the last section, we show the combination

of tracker and detector responses in a unified component.

3.1 Tracker

In this section, we detail tracker implementation proposed in Forward-Backward Er-

ror (Kalal et al., 2010) and Tracking-Learning-Detection (Kalal et al., 2012). The tracker

receives as input a video and a bounding box defining the object in the first frame. The

main algorithm is presented below.

Algorithm 1: Median Flow Tracker.

Data: Video V = {I1, · · · , Ik}, Bounding Box B1.
Result: Trajectory T = {B1, · · · , Bk}.
begin

foreach Ii ∈ V − {Ik} do
G← buildGrid(Ii, Bi);
G′ ← pyramidalTracker(Ii,Ii+1,G);
(G,G′)← filterPoints(G,G′);
Bi+1 ← medianFlow(G,G′,Bi);

end foreach

end

For each frame, the tracker selects equally spaced points within the bounding box

in the function buildGrid(). It returns a 10×10 grid and these points are used to estimate

object motion. The other functions are explained in the following subsections: pyramidal-

Tracker() in Subsection 3.1.1, filterPoints() in Subsection 3.1.2 and Subsection 3.1.3, and

medianFlow() in Subsection 3.1.4. For each frame, a bounding box is produced containing

the object for the next frame. The output of the method is the set of bounding boxes,

i.e., the object trajectory.
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3.1.1 Pyramidal Lucas-Kanade tracker

Lucas and Kanade (1981) proposed a method to compute optical flow. Let ~q = (x, y) be a

point in the first image I and J a second image. We want to find the displacement vector

~d = (dx, dy) such that the neighborhood of ~q in I is similar to a neighborhood of ~q+ ~d in J .

Each neighborhood is defined as a (2w+ 1)× (2w+ 1) patch. The error measure between

two points is given by the L2 norm. Thus, for the whole patch, we should minimize the

error function given by:

e(~d) =
∑
(x′,y′)

[I(x′, y′)− J(x′ + dx, y
′ + dy)]

2,

where x − w ≤ x′ ≤ x + w and y − w ≤ y′ ≤ y + w. This method assumes small and

uniform displacement within the patch. Lower w values keep details while higher values

are robust to noises and illumination changes and allows large movements.

For keeping the accuracy and robustness, Bouguet (2001) proposes the pyramidal

Lucas-Kanade tracker. It consists on building image levels where each level contains a re-

sampled image. Each image has a quarter of the immediately prior level and its smoothly

quantified to avoid aliasing. This approach allows large movements since it keeps the

patch size for every level. Since large movements became small in a higher level, each

level satisfies the condition of small displacement for standard Lucas-Kanade. So, for each

level, Lucas-Kanade is computed normally. The final displacement is a combination of

each displacement found.

Lucas-Kanade and its pyramidal version output a vector field. In our case, they

output the set G′ of terminal points of each vector. Then, we must select the most reliable

points to estimate object motion. A point ~q in G is reliable if its corresponding point

in G′ is another view of the same point, i.e., if the optical flow is correct. Usually, we

test a small neighborhood to measure point reliability. The following sections present two

approaches to extract these points.
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3.1.2 Normalized cross-correlation

Normalized cross-correlation (NCC) is a similarity measure between two signals and it is

widely used for template matching. NCC gives the probability of a target patch being

located in the position ~q1 = (x1, y1) of an image. NCC has low sensitivity to absolute

intensity changes between reference and target images due to normalization. However,

it is computationally expensive when compared to the sum of squared differences (SSD)

and other common error functions.

Let T be the target patch and I be the image or the search space. NCC similarity

is defined as:

ncc(x, y) =

∑
x,y(T (x, y) · I(x1 + x, y1 + y))√∑

x,y T (x, y)2 ·
∑

x,y I(x1 + x, y1 + y)2
.

Note that, if we compare two patches with the same resolution and fix ~q = (0, 0), this

measure will indicate how much these patches look like each other. Therefore, it can be

used to measure point reliability. Thus, let ~q be a point in the first image and ~qF its

corresponding point in the next image given by pyramidal tracker. Consider P1 and P2

two patches with the same resolution around ~q and ~qF , respectively. The NCC error for

point ~q is given by eNCC(~q) = 1− ncc(0, 0), that is:

eNCC(~q) = 1−
∑

x,y(P1(x, y) · P2(x, y))√∑
x,y P1(x, y)2 ·

∑
x,y P2(x, y)2

. (3.1)

Lower NCC error means higher similarity and, consequently, higher point reliability. As

proposed by Kalal et al. (2010), 50% of the points with the worst values are eliminated.

3.1.3 Forward-Backward error

Forward-backward (FB) is a dissimilarity function proposed by Kalal et al. (2010). It

is based on the assumption that the point tracker satisfies the symmetry property for

equivalence relations. That is, if the tracker relates a point ~a to a point ~b, it is expected

that it relates the point ~b to the point ~a again. In fact, if the backward point lies on the

neighborhood of ~a, the point ~a can be seen as reliable. Formally, let ~q = (x, y) be a point

in the first image. By applying pyramidal tracking forward, we have the corresponding
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point ~qF = (xF , yF ) in the second image. Now, by applying the tracking backward using

~qF (i.e., from the second to the first image), we have the point ~qB = (xB, yB). FB error

for the point ~q is given by the Euclidean distance between ~q and ~qB:

eFB(~q) =
√

(xB − x)2 + (yB − y)2. (3.2)

FB error is depicted in Figure 3.1. Similar to NCC, 50% of the points with the worst error

are eliminated. By filtering out bad points, tracker avoids occluded points and noises for

the next stage.

Figure 3.1: FB error for point ~q. Adapted from Kalal et al. (2010).

3.1.4 Median flow

Point tracker gives us a set of vectors which represent the motion. After filtering out bad

points, we can estimate the object position using the median flow method proposed by

Kalal et al. (2010). The bounding box displacement is the median in each coordinate

~dm = (dxm, dym). This way, the method is robust to impulse noise, i.e., instant and sparse

noise, and are able to generalize the movement. For the scale factor, we compute the

ratio of the distance between each pair of points in the first and second image. That is,

let ~q11 = (x11, y11) and ~q12 = (x12, y12) be two points in the first image and ~q21 = (x21, y21)

and ~q22 = (x22, y22) their corresponding points in the second image. The distance ratio is

given by:

distratio( ~q11, ~q12) =

√
(x12 − x11)2 + (y12 − y11)2√
(x22 − x21)2 + (y22 − y21)2

.

The bounding box scale factor sm is the median of distratio. Note that, the bounding

box aspect ratio will be kept since we have the same scale factor for both coordinates.
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Therefore, given a bounding box Bi, the displacement vector ~dim = (dixm, d
i
ym) and the

scale factor sim, the coordinates of the new bounding box Bi+1 are calculated from:



xi+1
min = ximin + dixm + wi

2
(1− sim)

yi+1
min = yimin + diym + hi

2
(1− sim)

xi+1
max = ximax + dixm − wi

2
(1− sim)

yi+1
max = yimax + diym − hi

2
(1− sim)

,

where wi = ximax − ximin + 1 and hi = yimax − yimin + 1 are the width and height of Bi

respectively. We can show that the new width is given by wi+1 = wi · sim:

wi+1 = xi+1
max − xi+1

min + 1

wi+1 = ximax + dixm −
wi

2
(1− sim)− ximin − dixm −

wi

2
(1− sim) + 1

wi+1 = ximax − ximin + 1− wi(1− sim)

wi+1 = wi − wi + wi · sim

wi+1 = wi · sim.

Similarly, hi+1 = hi · sim. This way, the scale is applied around the bounding box center

and the center position is kept by this transformation. We define upper and lower limits

of bounding box size. If the size is out of this limit or the bounding box is completely out

of frame, we set an invalid value for the coordinates. If the bounding box is partially out

of the scene, we estimate displacement vector and scale factor from the remaining points.

3.2 Detector

The detector presented here is an adaptation from Kalal et al. (2012) without the learning

component. On TLD framework, the detector is a semi-supervised classifier retrained at

runtime with the addition of some tracker responses in the training set chosen by the

learning component. Here, the training stage is similar to TLD, but is performed only

once. This way, we intend to evaluate detectors limitations without retraining.
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3.2.1 Training

In this stage, detector learn the object appearance. It receives as input a unique bounding

box containing the interest object and produce new samples from it. Then, it trains the

classifier with these samples. The main algorithm is presented below.

Algorithm 2: Training.

Data: Image I1, Bounding Box B1.
Result: Object model M , Ensemble classifier C.
begin

Positive← Patch(I1, B1) ∪ ClosestPatches(I1, B1);
Positive← Positive ∪ Warped(Positive);
Negative← FarthestPatches(I1, B1);
F ← SetFerns();
foreach Ci ∈ C do

foreach P ∈ Positive do
Normalize(P );
code← GetCode(P, Fi);
Ci[code].positive+ +;

end foreach
foreach N ∈ Negative do

Normalize(N);
code← GetCode(N,Fi);
Ci[code].negative+ +;

end foreach
foreach code do

Ci[code].posterior = Ci[code].positive
Ci[code].positive+Ci[code].negative

;

end foreach

end foreach
M ← Positive ∪ Negative;

end

The training stage is composed of two main steps: samples selection and gener-

ation, and posteriors initialization. First, we select surrounding patches to increase the

object model and generate more views from them as Kalal et al. (2012). The patch under

the initial bounding box B1 is the first element in the model. The closest patches in the

image are labeled as positive examples (ClosestPatches()) and the farthest are labeled as

negative examples (FarthestPatches()). Here, patches are chosen as depicted in Figure 3.2.

These patches have the same resolution of the initial patch. From positive samples, we

generate more examples through affine transformations (Warped()). We apply separately

±10◦ in-plane rotation, ±5% scaling and ±1% translation in each direction (Figure 3.3).
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Thus, we generate 8 warped patches for each positive sample, totaling 72 positive patches

and 8 negative patches.

Figure 3.2: Positive and negative samples in a frame for the object model.

Figure 3.3: Warped images from david.

The ensemble classifier used on TLD framework is similar to the one presented

in Subsection 2.2.2. However, it does not make intensity comparisons in the patch sur-

rounding a feature point. Instead, it makes comparisons in the whole candidate patch.

Moreover, it is a binary classifier: the patch may be positive or negative.

The binary tests are randomly chosen, permuted and equally divided into the

ferns in setFerns() function. Each test is generated for a 15× 15 patch. For this reason,

each patch is normalized in Normalize() function. Each normalized patch of the model

is evaluated by a fern resulting in a code (GetCode()). The posterior probability P (Y =

1|f icode) for each fern Fi is initialized as follows:

P (Y = 1|f icode) =
pi

ni + pi
.
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It represents the probability of a patch P with code fcode being positive. Y is a random

variable that represents the class and can take on the values 1 for positive or −1 for

negative patches. pi is the number of positive training patches which has the code f icode

with the binary tests of Fi; n
i is the number of negative patches which has the same code.

3.2.2 Detection

Similarity measures: At runtime, the detector must compare a candidate patch with

the learned model. For this purpose, Kalal proposes six similarity measures. For these

similarity measures, we consider normalized resolution. Thus, let P and P ′ be two 15×15

patches and M the object model given by M = {P+
1 , · · · , P+

v , P
−
1 , · · · , P−w }. The number

of positive patches is given by v and negative is given by w.

• Patch similarity: s(P, P ′) = (ncc(0,0)+1)
2

.

• Positive similarity: s+(P,M) = maxP+
i ∈M

s(P, P+
i ).

• Negative similarity: s−(P,M) = maxP−i ∈M s(P, P−i ).

• Earliest similarity: s+50%(P,M) = maxP+
i ∈M∧i<

v
2
s(P, P+

i ).

• Relative similarity: sr(P,M) = s+(P,M)
s+(P,M)+s−(P,M)

.

• Conservative similarity: sc(P,M) =
s+
50%

(P,M)

s+
50%

(P,M)+s−(P,M)
.

Detection: The detector pseudo-code is given below:
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Algorithm 3: Detector.

Data: Video V = {I1, · · · , Ik}, Bounding Box B1.

Result: Trajectory T = {B1, · · · , Bk}.

begin

(M,C)← Training(I1, B1);

foreach Ii ∈ V − {I1} do

P ← GeneratePatches(Ii);

P ← PatchVariance(P, P+
1 );

P ← Normalize(P );

P ← PatchEnsemble(P,C);

P ← NearestNeighbor(P,M);

Bi ← MostConfident(P,M);

end foreach

end

The detector receives a video and an initial bounding box containing the object

and trains the classifier using the bounding box. For each frame, it must decide if the

object is visible. For this purpose, we generate many candidate patches that are going to

be examined by the classifier (the scanning grid approach) in GeneratePatches() function.

Each patch has the same aspect ratio than the original bounding box and is generated by

scale and translation transformations of it. The minimum size is 20 pixels and maximum is

the smallest of image width and height; the shift steps are 0.1n and 0.1m for each direction,

and the scale step is 1.2. The classifier consists of four steps, each one eliminates several

candidates.

The first step of the cascaded classifier is the variance filter. Patches with variance

value smaller than 50% of the original patch variance are filtered out. The variance value

for a patch P is given by V (P ) = E[P 2] − E[P ]2, where E[f(P )] is the expected value

and is computed as follows:

E[f(P )] =
∑
~q∈P

f(P (~q))

| P |
,

where | P | is the number of points in P . Recall that we define patch and integral images

in Chapter 2. Consider f1(I(~q)) = I(~q), f2(I(~q)) = I(~q)2 two functions over I values, and
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Iint1 , Iint2 its respective integral image. For any patch, E[P ] and E[P 2] can be calculated

in a constant time. Let q1 = (x1, y1) and q2 = (x2, y2) be two points which define P . So,

E[P ] is given by:

E[P ] =
Iint1(x2, y2)− Iint1(x2, y1)− Iint1(x1, y2) + Iint1(x1, y1)

| P |
,

and E[P 2] is given by:

E[P 2] =
Iint2(x2, y2)− Iint2(x2, y1)− Iint2(x1, y2) + Iint2(x1, y1)

| P |
.

Here, the detector assumes that the object has a high variance value and candidates with

less than 50% of this value can be filtered out. This stage removes homogeneous regions

such as wall and sky.

The second stage is the classification by ensemble trained offline. A remaining

candidate P is normalized and evaluated by each fern resulting in a set of probabilities

P (Y = 1 | f icode(P )). If the average of probabilities is greater than 50%, P passes to

the next stage. Otherwise, it is filtered out. This stage removes patches with different

patterns.

The third stage is the nearest neighbor classification. If a normalized candidate

patch is closer to positive patches than negative, it is classified as positive. For this

purpose, we use the relative similarity sr(P ). If the relative similarity of a patch is

greater than 0.5 then it is classified as positive, as proposed by Kalal et al. (2012).

The last stage receives the remaining patches of the nearest neighbor classifier

and output only one bounding box. In TLD framework, it selects the patch with the

greatest conservative similarity sc(P ). This measure is an interesting approach for TLD

since the tracker feeds the training set. The tracker learns new appearances, however the

first one is the most reliable appearance because it is given by the user. Here, we use the

highest relative similarity since the detector is not retrained.

At the beginning of any stage, if there is no remaining patches, we consider the

object as not visible. The cascaded classifier is illustrated in Figure 3.4 from Kalal et al.

(2012).
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Figure 3.4: Cascaded classifier from Kalal et al. (2012).

3.2.3 Final response

For each frame of the video, the tracker outputs a bounding box and the detector outputs

another. The final response of the long-term tracker is the bounding box with the highest

relative similarity. We set the lowest relative similarity (zero) for a bounding box with

invalid values, i.e, a not visible response. If the similarity of tracker response is less than

0.5, it receives invalid values.
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4 Experimental Results

4.1 Methodology

4.1.1 TLD dataset

David Jumping Pedestrian1 Pedestrian2 Pedestrian3

Car Motocross Volkswagen Carchase Panda

Figure 4.1: TLD sequences (Kalal et al., 2010).

To evaluate the tracker, we use TLD dataset proposed by Kalal et al. (2010).

It consists of 10 sequences: david, jumping, pedestrian1, pedestrian2, pedestrian3, car,

motocross, volkswagen, carchase and panda (Figure 4.1). Each sequence contains com-

mon challenges for long-term tracking (Table 4.1) as illumination changes and long-term

sequences. The dataset also includes the initial bounding box and the ground truth tra-

jectory for each sequence. If the object is not visible (out of the scene), the nan flag is

assigned for each bounding box coordinate. More than 50% of occlusion or more than 90

degrees of out-of-plane rotation are also considered as not visible.

4.1.2 Quality metrics

Overlap measure: Overlap measure is a similarity function to compare bounding boxes.

Let B1 and B2 be two bounding boxes, the overlap measure o(B1, B2) is given by:

o(B1, B2) =
B1 ∩B2

B1 ∪B2

,
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Table 4.1: TLD dataset (Kalal et al., 2010).

Name Frames
Mov. Partial Full Pose Illum. Scale Similar

camera occ. occ. change change change objects

1. David 761 yes yes no yes yes yes no
2. Jumping 313 yes no no no no no no
3. Pedestrian 1 140 yes no no no no no no
4. Pedestrian 2 338 yes yes yes no no no yes
5. Pedestrian 3 184 yes yes yes no no no yes
6. Car 945 yes yes yes no no no yes
7. Motocross 2665 yes yes yes yes yes yes yes
8. Volkswagen 8576 yes yes yes yes yes yes yes
9. Carchase 9928 yes yes yes yes yes yes yes
10. Panda 3000 yes yes yes yes yes yes no

where B1 ∩ B2 is the intersection area and B1 ∪ B2 is the union area (Figure 4.2). A

bounding box is considered correct if the overlap measure between the bounding box and

the ground truth is greater than 25%.

Figure 4.2: Overlap measure.

For trajectories evaluation, we use two measures. The first measure is used for

pure trackers and is given by the number of correct predictions until the first mistake.

This is used because the tracker might recover the object if it goes back for the same

position. The second measure is used for detectors and long-term trackers, and is given

by the total number of correct predictions.

4.2 Results and discussion

4.2.1 Tracker results

In this first experiment, we evaluate the tracker presented in Subsection 3.1. It is impor-

tant to note that since the tracker uses the previous position, it cannot recover from a full

occlusion. This way, the maximum number of correct frames for sequences from four to
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ten is the index of the second time that the object appears in the scene, i.e., right after

the first occlusion (Table 4.2).

Table 4.2: First full occlusion in TLD dataset.
Name Frames End of the first full occlusion

4. Pedestrian 2 338 39
5. Pedestrian 3 184 80
6. Car 945 566
7. Motocross 2665 33
8. Volkswagen 8576 277
9. Carchase 9928 168
10. Panda 3000 1284

As Kalal et al. (2012), we estimate optical flow using pyramidal Lucas-Kanade

with 2 levels in a 10×10 grid within the bounding box. We evaluate the descriptor varying

window size and filter. In addition to presented filters, we also conduct an experiment

without any filter, i.e., every point of the grid is used in median flow stage. We test each

filter with the following w values: {1, 3, 7, 10}. These results are shown in Tables 4.3, 4.5

and 4.4. Best results are indicated by bold font.

Table 4.3: No filter results.
Name Frames 1 3 7 10

1. David 761 12 465 761 761
2. Jumping 313 13 15 95 95
3. Pedestrian 1 140 1 13 8 5
4. Pedestrian 2 338 9 33 33 33
5. Pedestrian 3 184 28 52 52 52
6. Car 945 64 246 501 501
7. Motocross 2665 1 1 16 16
8. Volkswagen 8576 3 274 275 275
9. Carchase 9928 11 68 164 164
10. Panda 3000 27 82 94 98

Table 4.4: FB filter results.
Name Frames 1 3 7 10

1. David 761 13 761 761 761
2. Jumping 313 15 30 36 36
3. Pedestrian 1 140 2 5 10 10
4. Pedestrian 2 338 33 29 33 33
5. Pedestrian 3 184 52 52 52 52
6. Car 945 510 510 436 406
7. Motocross 2665 1 1 11 16
8. Volkswagen 8576 1 275 275 275
9. Carchase 9928 68 164 164 164
10. Panda 3000 53 53 64 78

Note that, for most results, the number of correct frames increases along with

the window size. This occurs because the tracker produces a more homogeneous vector
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Table 4.5: NCC filter results.
Name Frames 1 3 7 10

1. David 761 13 761 761 761
2. Jumping 313 15 35 218 95
3. Pedestrian 1 140 7 15 12 6
4. Pedestrian 2 338 33 33 33 33
5. Pedestrian 3 184 52 52 52 52
6. Car 945 510 510 510 510
7. Motocross 2665 1 1 16 29
8. Volkswagen 8576 1 275 275 275
9. Carchase 9928 123 164 164 164
10. Panda 3000 79 88 94 98

field and median flow is able to generalize the movement. Moreover, bigger windows can

handle illumination variations. For this reason, the performance increases drastically in

the david sequence. As depicted in Figure 4.3, the david sequence has large variation in

illumination.

First frame. Last frame.

Figure 4.3: Illumination change in david.

Observing the Tables 4.3, 4.5 and 4.4, we can also see that NCC and FB filters are

able to select most reliable points improving the performance before the version without

filter. NCC has the best performance of all with window size w = 7.

4.2.2 Detector results

Here, we show the detector results. We vary the number of ferns and features per fern.

The nearest classifier parameter is kept with 0.5. The results are shown in Table 4.6.

Note that fewer ferns generally improves the performance. This occurs because

more ferns is likely to have more dependencies between comparisons. The same occurs

with bigger number of comparisons. The best parameters are 8 ferns and 14 comparisons

per fern.

Tracker × Detector: Since detector are not retrained, it uses the first view of

the object through the whole video. For this reason, the performance in david sequence
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Table 4.6: Detector results.

Name Frames
14 comparison per fern 20 comparisons per fern

8 ferns 12 ferns 15 ferns 8 ferns 12 ferns 15 ferns

1. David 761 39 37 35 38 32 29
2. Jumping 313 60 63 63 51 50 48
3. Pedestrian 1 140 23 26 29 14 16 16
4. Pedestrian 2 338 113 102 102 79 79 77
5. Pedestrian 3 184 70 72 75 60 63 62
6. Car 945 593 579 578 474 454 421
7. Motocross 2665 622 609 609 628 668 687
8. Volkswagen 8576 592 525 431 208 167 142
9. Carchase 9928 705 712 717 770 837 863
10. Panda 3000 232 205 181 176 265 287

decreases drastically. At the same time, it increases the performance in several sequences

because it can recover the object. However, the detector is much slower than tracker,

achieving about 4.14 fps against 356.94 fps.

Cascaded classifier: Figure 4.4 presents a qualitative result of cascaded classi-

fier. We show each step of the classifier and the final response. The first step filters out

most of street patches considering variance value. The second step returns patches which

have the same pattern as the person of interest. The last step selects most confident patch

correctly.

Figure 4.4: A successful classification on pedestrian2 sequence.

4.2.3 Long-term tracker results

The last experiment is the combination of tracker and detector as presented in Subsec-

tion 3.2.3. Results are shown in 4.7 together with the best results of each component.
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Table 4.7: Detector results.
Name Frames Tracker Detector Long-term tracker

1. David 761 761 39 36
2. Jumping 313 218 60 55
3. Pedestrian 1 140 12 23 28
4. Pedestrian 2 338 33 113 100
5. Pedestrian 3 184 52 70 130
6. Car 945 510 593 600
7. Motocross 2665 16 622 455
8. Volkswagen 8576 275 592 653
9. Carchase 9928 164 705 758
10. Panda 3000 94 232 279

We can see that the final result is closer to the detector result. This can be

explained by the similarity function used to generate the final response. Since the model

is based on first object appearance and it is not updated, after some time the detector

tends to always win because the tracker accept new appearances.
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5 Conclusion

This work presents the study and implementation of a simplified long-term tracker from

TLD (Kalal et al., 2012). For this purpose, we present basic concepts in Chapter 2 which

allow us to classify trackers and evaluate their limitations. We present the median flow

tracker and cascaded detector individually in Chapter 3 and the integration method. Each

one has a set of parameters that is tested in Chapter 4.

It is important to highlight that this work has no intent to compare neither

compete with state-of-the-art trackers. Instead, our goal is to analyze components and

system limitations without retraining.

We show that tracker is faster than detector and the long-term tracker, besides

being less sensitive to changes in object appearance. However, it cannot handle full

occlusion by itself and tends to fail. Detector has a good performance for most of the

sequences, but it is slower and has a bad performance in objects with high variation in

appearance. This suggests that the combination of both improves the accuracy. However,

as we show, this task requires detector retraining to learn new appearances.

Future works: Every component presented here runs sequentially. Since the

detector has a high computational cost, an interesting improvement would be the par-

alelization of this component. Another improvement would be the generation of synthetic

patches with illumination changes for the detector training set.
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