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Resumo

O reconhecimento da ação humana é um campo de pesquisa em Visão Computacional que

estuda maneiras de descrever ações humanas usando conteúdo visual de v́ıdeos. Esta área

possui várias aplicações como em sistemas de vigilância, indexação de v́ıdeo e interface

humano-computador. Neste trabalho é apresentado um descritor global de movimento

baseado em distribuições Gaussianas multivariadas estimadas a partir de histogramas de

gradientes orientados tridimensionais extráıdos dos v́ıdeos. Como o espaço de distribuições

Gaussianas multivariadas não é linear, estratégias baseadas em Álgebra de Lie foram

utilizadas para incorporar o espaço de Gaussianas em tal espaço visando utilizar operações

Euclidianas. Por fim, avaliamos nosso descritor para as bases de dados KTH, MuHAVi e

SKIG utilizando um classificador de máquinas de vetores suporte.

Palavras-chave: Reconhecimento de ação humana, Álgebra de Lie, Distribuição

Gaussiana multivariada, Histograma de gradientes orientados



Abstract

Human action recognition is a research field in Computer Vision which studies ways to de-

scribe human actions using visual video content. This area has several applications, such

as surveillance systems, video indexing and human-computer interfaces. In this work we

present a global motion descriptor based on multivariate Gaussian distributions estimated

from three-dimensional histograms of oriented gradients extracted from videos. As the

multivariate Gaussian distributions space is not linear, strategies based on Lie Algebra

were used to embed the Gaussian space into a linear space aiming to use Euclidean op-

erations. Finally, we evaluated our descriptor for the KTH, MuHAVi and SKIG datasets

using a support vector machine classifier.

Keywords: Human action recognition, Lie algebra, Multivariate Gaussian dis-

tribution, Histogram of oriented gradients
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1 Introduction

1.1 Theme Presentation

Human Action (or Activity) Recognition (HAR) has been one of the main concerns of

the computer vision community. Its goal is to identify correctly which action is being

performed by a human in a video sequence. In other words, we are interested in classi-

fying human actions according to a set of predefined labeled actions. The human action

recognition field has several applications, such as human-computer interaction systems,

games, video retrieval, monitoring of the elderly in smart homes, and especially in secu-

rity systems, allowing the automatic surveillance of crowded places such as airports and

shopping centers.

According to Aggarwal and Ryoo (2011), activities can be categorized into differ-

ent levels: gestures, actions, interactions and group activities. Gestures are movements of

a person’s body part. “Raising a leg” and “stretching an arm” are examples of gestures.

Actions can be seen as the activities composed of multiple gestures, such as “running”,

“walking”. Interactions are human actions involving two persons or objects, for example,

“making tea” and “two persons fighting”. Group activities are the actions that involve

multiple persons or objects. “A group of persons marching together” and “two groups

fighting” are examples of group activities.

With the advance of deep learning methods, researchers recently turned their eyes

on how to train a deep neural network capable of recognizing human actions in videos.

Deep models (WANG; QIAO; TANG, 2015) have been achieving outstanding results and

outperforming handcrafted state-of-the-art methods. Although these architectures have

demonstrated impressive results, Nguyen, Yosinski and Clune (2015) proved that they can

be fooled, indicating that handcrafted methods are still interesting to explore. Focused

on feature engineering, the classical framework for human action recognition is basically

composed of three steps: feature extraction, descriptor creation, and action classification.

In the feature extraction step, we need extract the visual and temporal information from
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videos. For this, we can use feature descriptors like Histogram of Oriented Gradients

(HOG) (DALAL; TRIGGS, 2005), Histogram of Optical Flow (HOF) (DALAL; TRIGGS;

SCHMID, 2006), Motion Boundary Histograms (MBH) (DALAL; TRIGGS; SCHMID,

2006). The descriptor creation step is responsible to convert the feature descriptors into

motion descriptors able to describe human actions. In the action classification, a classifier

such as Support Vector Machine (SVM) (CORTES; VAPNIK, 1995) is used to classify

the descriptors resulted from the previous step.

In this work, given extracted features, in the descriptor creation step we combine

the proposals of Li et al. (2017) and Perez et al. (2012). Li et al. (2017) proposed an

image descriptor associating one pixel with a multivariate Gaussian distribution whose

covariance matrix and mean vector are estimated in its neighborhood. Perez et al. (2012)

proposed a video descriptor based on histograms of gradient computed over the spatio-

temporal domain and accumulated into orientation tensors. Works like Perez et al. (2012),

Mota et al. (2013), Mota et al. (2014) evidenced that orientation tensors are good mo-

tion descriptors by their power of aggregation and because they are compact forms of

representing a movement. They can also be viewed such as a covariance matrix from

a Gaussian with mean vector zero. This encourages us to explore how strategies based

on multivariate Gaussian distributions can be applied to the human action recognition

problem and what is the impact of the mean vector of Gaussians to the recognition.

In the action classification step, we evaluate our generated descriptors for the

actions contained in the datasets KTH, MuHAVi and SKIG through the SVM classifier,

widely used in human action recognition works.

1.2 Problem Definition

Consider an image I(x, y) as a two-dimensional matrix where each cell (x, y) of the matrix

contains the brightness intensity of the pixel with spatial coordinates (x, y). A video can

be seen as a concatenation of images (called frames) over the temporal domain, represented

as a three-dimensional matrix v(x, y, t), where t indicates a frame position.

The problem of describing a video can be defined as: given a space of videos S,

we are interested in creating a function f : S→ Rn, where Rn is a space of n-dimensional
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descriptors, so that descriptors of similar videos are also similar if compared using the

Euclidean norm.

1.3 Objectives

The main objective of this work is to create a video descriptor based on a multivariate

Gaussian distribution which is able to describe human actions. The secondary objectives

are:

1. Evaluate the impact of the mean vector to recognition, verifying if the Gaussians

with mean vector different of zero are capable of improving the recognition and if

yes, how much is possible;

2. Evaluate our method for MuHAVi, SKIG and KTH datasets.
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2 Related Works

Shape and silhouette were the first features used for human action recognition. Silhouettes

are robust to color, texture and contrast changes. However, they are sensitive to the

viewpoint and is still difficult to obtain a person segmentation. Bobick and Davis (2001)

introduced the Motion Energy Images (MEI) and the Motion History Images (MHI)

methods. The goal is a single image representing the motion information. MEI uses a

binary image to describe the presence of the motion and the MHI uses a greyscale image

to describe how the motion occurs. This method was the first to introduce the idea of

temporal templates for human action recognition. Blank et al. (2005) extended the MEI

template to the space-time, resulting in a volumetric extension of MEI, where a 3D surface

is mapped in a 2D image. This extension adds robustness to viewpoint variations.

The most popular feature descriptors for human action recognition are Histogram

of Oriented Gradients (HOG) and Histogram of Optical Flow (HOF). Gradient and optical

flow methods are sensitive to material properties, texture and illumination. The gradient

is robust to camera movements, whereas the optical flow is not. However, objects in the

background may be confused in the gradient methods. The main motivation to use optical

flow methods is the access to the temporal information, extracted through the temporal

gradient in other approaches. Polana and Nelson (1992) used for the first time the optical

flow as a motion descriptor, to recognize natural events, such as the motion of trees and

water. Later, Polana and Nelson (1994) applied the optical flow to recognize periodic

human actions. The optical flow magnitudes were accumulated in a spatio-temporal grid

of non-overlapping bins. Introduced by Dalal, Triggs and Schmid (2006), the Motion

Boundary Histogram (MBH) image descriptor is an extension of the optical flow. MBH

is computed through the spatial derivative of the optical flow. These descriptors are able

to capture the relative motion of different limbs while resisting background motions.

Laptev et al. (2008) detect interest points in a video and compute histogram de-

scriptors of space-time volumes in the neighborhood of detected points. These volumes

are subdivided into cuboids and for each cuboid are computed histograms of oriented gra-
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dients and optical flow. Similarly to the SIFT descriptor (LOWE, 1999), the histograms

are normalized and concatenated into HOG and HOF descriptor vectors. Introduced by

Klaser, Marsza lek and Schmid (2008), HOG3D is an extension of HOG to spatio-temporal

domain inspired by the SIFT3D descriptor (SCOVANNER; ALI; SHAH, 2007). To bin a

gradient in 3D, the HOG3D descriptor uses convex regular polyhedrons instead of spher-

ical coordinates used in SIFT3D.

Due to the possible different dimensions, scales, and the high dimensionality,

comparing local descriptors may be not suitable. In this context, the Bag-of-Visual-

Words (BoV) model is attractive. In the BoV, a codebook is generated using a clustering

algorithm and each cluster is then associated with a codeword. A histogram of codeword

frequencies represents the video descriptor. Laptev et al. (2008) build a spatio-temporal

bag-of-features using a set of spatio-temporal features. The BoV representation assigns

each feature to the closest codeword and computes the histogram of codeword frequencies

over a space-time volume.

Wang et al. (2011) proposed a descriptor based on dense trajectories, that cap-

tures the local motion information of the video. Dense points from each frame are sampled

and tracked based on displacement information from a dense optical flow field. A dense

representation guarantees a good coverage of the main movement and surroundings.

Perez et al. (2012) use a global video descriptor based on histograms of gradients

computed over the spatio-temporal domain. The histograms are calculated over a grid

and then they are accumulated into orientation tensors. They used an orientation tensor

as a descriptor by their power of aggregation and because it is a compact form of repre-

senting a movement. Similarly, Mota et al. (2013) compute three-dimensional histograms

of oriented gradients in equally sized blocks throughout the video sequence. These his-

tograms are encoded into orientation tensors, and then, they are concatenated to create

a video descriptor. Focusing on block matching algorithms, Maia et al. (2015) proposed

an approach that divides an image into blocks and encodes displacement vector provided

from the block matching for each block into orientation tensors aiming to generate the

final self-descriptor. The final descriptor is a sum of the frame tensors. Figueiredo et

al. (2016) proposed a video self-descriptor based on sparse trajectory clustering. The
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displacement vectors are obtained through the cross product between the block matching

vector and the gradient for each frame, resulting in block trajectories that contain the

temporal information. The block matching vectors are used to cluster the trajectories

according to their shape. This information is encoded into orientation tensors to generate

the final descriptor.

Recently, deep models have been achieving outstanding results and outperform-

ing handcrafted state-of-the-art methods. The convolutional neural network (CNN) is the

most used deep architecture in computer vision tasks. The CNN is a neural network where

the neurons are composed by convolutional and pooling layers. These layers provide ro-

bustness across spatial variations. Aiming to equip the CNN with temporal information,

Ji et al. (2013) introduced the 3D convolutional networks that use 3D kernels to extract

features from spatio-temporal dimensions. Simonyan and Zisserman (2014) introduced the

multiple-stream deep convolutional networks. These networks use two parallel networks

to separate appearance from motion information. An extension of the two-stream network

was proposed in Wang, Qiao and Tang (2015), that use dense trajectories traced over con-

volutional feature maps aggregated using the Fisher vector, that consists in characterizing

a sample by its deviation from the generative model. Although these architectures have

demonstrated impressive results, in a recent study, Nguyen, Yosinski and Clune (2015)

used images unrecognizable by humans in their tests and a deep neural network predicted

as recognizable objects with over 99% of confidence, indicating that deep approaches can

be fooled and the handcrafted methods are still interesting to explore.

Li et al. (2017) proposed an image descriptor associating one pixel with a multi-

variate Gaussian distribution estimated in the neighborhood. They proved that the space

of Gaussians can be provided with a Lie group structure by defining a multiplication

operation on this manifold. The space of Gaussians is isomorphic to a subgroup of the

upper triangular matrix. Then the authors proposed two methods to embed this space

into a linear space respecting the geometry of Gaussians thus enabling use the Euclidean

operations.
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3 Fundamentals

3.1 Histogram of Oriented Gradients 3D

The brightness gradient indicates a local intensity variation and is approximated by the

application of a derivative filter. According to Perez et al. (2012), the three-dimensional

gradient of the j-th video frame Ij at pixel p can be defined as:

~gt (p) = [dx dy dt] =

[
∂Ij(p)

∂x

∂Ij(p)

∂y

∂Ij(p)

∂t

]
, (3.1)

or equivalently, in spherical coordinates:

~st (p) = [ρp θp ϕp] , (3.2)

where θp ε [0, π], ϕp ε [0, 2π) and ρp = ‖~gt (p)‖.

The gradient for all n points of an image Ij are quantized in a three-dimensional

histogram of gradients (HOG3D) ~hj = {hk,q} and

hk,q =
∑
p

ρp · ωp. (3.3)

where k ε [1, nbθ ], q ε [1, nbϕ ], nbθ and nbϕ are the number of bins for θ and ϕ respectively,

{p ε Ij | k = 1 +
[
nbθ·θp
π

]
, q = 1 +

[
nbϕ·ϕp

2π

]
} are the points whose angles map to the k and

q bins and ωp is a per pixel weighting Gaussian factor.

3.2 Global Tensor Descriptor

Perez et al. (2012) proposed a method for human action recognition based on the com-

bination of Histograms of Oriented Gradients and orientation tensors. The proposal is

to make a simple global tensor descriptor using only the information extracted from the

HOG3D.
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The first step is to partition each frame Ij from a video v in x and y directions

by a uniform grid with nx and ny nonoverlapping blocks. Each block can be viewed as

a distinct video. The next step is to calculate the HOG3D to all video frames. For each

frame the histogram is calculated to each block, resulting in histograms ~ha,bj , a ∈ [1, nx] and

b ∈ [1, ny]. In a power normalization process, to empirically reduce interframe brightness

unbalance, all elements ak of the histogram ~ha,bj are adjusted to aαk . The frame tensor is

computed as the sum of all block tensors:

TIj =
∑
a,b

~ha,bj
~ha,b

T

j . (3.4)

Then, the global tensor descriptor is given by:

Tv =
∑

TIj . (3.5)

To enforces horizontal gradient symmetries that occur in the video, the video

frame is flipped horizontally and the same process is executed. The global tensor descrip-

tor adds also the flipped frame information. To be able to compare different videos, Tv is

normalized with a L2-norm.

3.3 Multivariate Gaussian Distribution

Given a random vector variable X = [X1, X2, ..., Xn]T , it has a multivariate Gaussian

distribution if its probability density function is given by

Nx(µ,Σ) = |2πΣ|−1/2 exp(−1

2
(x− µ)TΣ−1(x− µ)), (3.6)

where x ∈ X, µ = E[X] = [E[X1], E[X2], ..., E[Xn]]T is the mean vector, Σ = E[(X −

µ)(X − µ)T ] is the covariance matrix and | · | is the matrix determinant.



3.4 Lie Algebra 19

3.4 Lie Algebra

A Lie Algebra g over a field F is a vector space equipped with a product [·, ·]: g× g→ g

called Lie bracket that satisfies the following axioms:

1. bilinearity: [ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y]

2. skew symmetry: [x, y] = −[x, y]

3. Jacobi Identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ g and a, b ∈ F.

A Lie group G is a group provided with the structure of a differential manifold

such that the inverse and the multiplication are smooth functions. A Lie group homo-

morphism φ : G→ G′ is a smooth function that satisfies

φ(a · b) = φ(a) ◦ φ(b), (3.7)

where G,G′ are Lie groups, a, b ∈ G. If φ is a bijective function and φ−1 is smooth, G

is isomorphic to G′ and they are equivalent. Given a Lie Algebra of a Lie group, we can

transfer Lie Algebra properties to the Lie group. This process allows us to describe Lie

groups, that are typically non-linear, through the linear algebra embedded in Lie Algebra.

Matrices groups are attractive for the computer vision community. The group

PDUT (n) of n × n upper triangular matrices with positive diagonal entries have the

set of all n × n upper triangular matrices, Ut(n), as its Lie algebra. The Lie algebra

for the group Sym+(n) of the n × n symmetric and positive definite matrices is the set

Sym(n) of all n × n symmetric matrices. According to Li et al. (2017), the space N(n)

of n-dimensional Gaussians N(µ,Σ) is isomorphic to a subgroup of the upper triangular

matrices

A+(n+ 1) =

{
Aµ,Z ,

Z µ

0T 1

 |Z ∈ PDUT (n), µ ∈ Rn

}
. (3.8)

The group

A(n+ 1) =

{
At,X ,

X t

0T 0

 |X ∈ Ut(n), t ∈ Rn

}
(3.9)
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is the Lie Algebra of A+(n+ 1). This result is extremely important for this work because

is based on Lie group isomorphisms, which keeps safe algebraic and topological structure

of the spaces involved. It allows us to embed Gaussians into a linear space and to combine

them using Riemannian operations.

3.5 L2EMG Descriptor

Li et al. (2017) proposed an image descriptor, called Local Log-Euclidean Multivariate

Gaussian (L2EMG), that associates one-pixel point with a multivariate Gaussian distri-

bution to characterize the first- and second-order statistics in the local neighborhood.

Inspired by SIFT and HOG descriptors, the L2EMG descriptor is continuous and can

model high-order statistics whereas these histogram-based descriptors only estimate zero-

order statistics.

Aiming to estimate Gaussians, Li et al. (2017) considered Ij as an input image

and f(p) the n-dimensional vector of features computed over the image Ij. Each pixel p

of the image Ij is represented by a multivariate Gaussian N(µ(p),Σ(p)) with mean vector

µ(p) and covariance matrix Σ(p). Let P (p) be a r × r image patch centered at p. The

estimated Gaussian can be written as the Equation 3.6 with

µ(p) =
1

r2

∑
i

∑
j

f(Pi,j(p))

Σ(p) =
1

r2 − 1

∑
i

∑
j

(f(Pi,j(p))− µ(p))(f(Pi,j(p))− µ(p))T
. (3.10)

After estimating the multivariate Gaussian distributions, these Gaussians can be

embedded into a linear space through one of the following methods: Direct Embedding

Log-Euclidean (DE-LogE) and Indirect Embedding Log-euclidean (IE-LogE), this last one

based on the left and right coset. Let H be a closed subgroup of the group G. A left coset

of H in G is a subset aH = {a · h|h ∈ H and a ∈ G} and the right coset of H in G is a

subset Ha = {h · a|h ∈ H and a ∈ G}.

The first embedding method, called direct embedding Log-Euclidean (DE-LogE),
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maps A+(n + 1) via matrix logarithm to the linear space A(n + 1). For the DE-LogE

computation, Σ = L−TL−1, where L is the Cholesky factor of Σ−1. As the covariance

matrix Σ(p) may be rank-deficient, a small positive number ε is added to the diagonal

elements. The embedding matrix can be written as:

log(Aµ,L−T ) = log

L−T µ

0T 1

 . (3.11)

The second method, called indirect embedding Log-euclidean (IE-LogE) maps

A+(n + 1) via the coset and polar decomposition into Sym+(n + 1), and then into the

linear space Sym(n+ 1). For IE-LogE based on the left coset is computed:

Pµ,L−T =

Σ + µµT µ

µT 1

 = O diag (λi)O
T , (3.12)

where diag (λi) is the diagonal matrix consisting of eigenvalues λi = 1, ..., n+ 1 and O is

an orthogonal matrix consisting of eigenvectors corresponding to λi and the embedding

matrix is defined by:

log(Pµ,L−T ) = O diag

(
1

2
log(λi)

)
OT . (3.13)

Similarly, for IE-LogE based on the right coset is computed:

P ′µ,L−T =

L−1L−T L−1µ

µTL−T µTµ+ 1

 = O′ diag (λ′i)O
′T , (3.14)

where diag (λ′i) is the diagonal matrix consisting of eigenvalues λ′i = 1, ..., n+ 1 and O
′

is

an orthogonal matrix consisting of eigenvectors corresponding to λ′i and the embedding

matrix is defined by:

log(P ′µ,L−T ) = O′ diag

(
1

2
log(λ′i)

)
O′T . (3.15)
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4 Proposed Method

Our method combines the works of Perez et al. (2012) and Li et al. (2017) aiming to

create a video descriptor for the human action recognition problem. Instead of pixels, we

are interested in estimating multivariate Gaussian distribution for all frames using the

HOG3D information and combining the frame Gaussians to estimate a Gaussian for the

video.

Since that Gaussians are composed by a mean vector and a covariance matrix,

notice that Equations 3.4 and 3.5 are covariances provided from Gaussians with zero

mean vector. Although there exists Lie algebra for the space of orientation tensors, it is

inappropriate to compare Gaussians with mean vector different of zero. It occurs because

this space would contemplate only the covariance matrices, disregarding the mean vectors

and implying into compare covariance matrices instead of Gaussians. In this context, the

Lie algebra for the Gaussians space, presented by Li et al. (2017), allow us to adequately

compare them. Whereas Perez et al. (2012) was interested in orientation tensors as

descriptors, we are interested in Gaussians as video descriptors.

Figure 4.1 illustrates the flowchart of our descriptor. Given an input video, the

first step is to compute the HOG3D features for all frames. These histograms are used

to estimate the Gaussian for each frame, considering a triangular filter vector used to

weight the frames. With the Gaussians calculated, they are embedded into the linear

space A(n + 1) through the DE-LogE method. The Gaussian for the video is a sum of

Gaussians of all frames. Finally, the descriptor is a concatenation of the covariance matrix

and the mean vector from the estimated Gaussian of the video. The SVM classifier is

used to the classification task.

4.1 Computing HOG3D

Aiming extract more information from the videos, we compute the HOG3D for a frame

Ij. The Figure 4.2 illustrates the HOG3D computation. Firstly, the frame is subdivided
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Figure 4.1: Flowchart of our descriptor.

in nx × ny uniform blocks. Each block yields one HOG3D ~ha,bj , a ∈ [1, nx] and b ∈ [1, ny],

resulting in nx · ny histograms of size nbθ · nbϕ for each frame, where nbθ and nbϕ are the

number of bins of the histogram. Similarly to Perez et al. (2012), power normalization is

applied on each histogram.

Figure 4.2: HOG3D computation.
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4.2 Estimating the Gaussian for a Frame

To compute the Gaussian for the frame Ij the information provided from its temporal

neighborhood is considered. A triangular filter β = β0, β1, ...βl of size l is centered in Ij

so that the histograms of the considered interval [j − l
2
, j + l

2
] be weighted according to

its distance to the frame Ij. Hence, frames more distant are less influential than others

near to the frame Ij. Figure 4.3 illustrates this triangular weight vector of size l = 3 over

a frame sequence.

Figure 4.3: Triangular weight vector of size l = 3. It is used to filter the frame information.

The Gaussian NIj(µ(Ij),Σ(Ij)) for a frame Ij is given as in Equation 3.6, where

the mean vector µ(Ij) is given as:

µ(Ij) =
1

nxnyl‖β‖2

nx∑
a

ny∑
b

j+ l
2∑

i=j− l
2

βi~h
a,b
i , (4.1)

and the covariance matrix Σ(Ij) is given as:

Σ(Ij) =
1

(nxnyl − 1) · ‖β‖2

nx∑
a

ny∑
b

j+ l
2∑

i=j− l
2

(βi~h
a,b
i − µ(Ij))(βi~h

a,b
i − µ(Ij))

T , (4.2)

where ‖β‖2 indicates the L2-norm of the vector β. As the covariance matrix Σ(Ij) may

be rank-deficient, an ε value is added to the diagonal elements.
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4.3 Embedding Gaussian into a Linear Space

With the Gaussian NIj(µ(Ij),Σ(Ij)) computed for a frame Ij, it is embedded into the

space A(n + 1) through the DE-LogE embedding method. We choose this method for

simplicity and because it provides good results. So

EIj = log

L−TIj µ(Ij)

0T 1

 , (4.3)

where LIj is the Cholesky factor of Σ−1(Ij) and µ(Ij) is the mean vector of NIj .

4.4 Gaussian for a Video

The embedded Gaussian Ev for a video v is computed through the Gaussians of the m

frames Ij of v. Given a set of embedded Gaussians, E = [EI1 , EI2 , ..., EIm ], the embedded

Gaussian Ev is given by the sum of all elements of E:

Ev =
m∑
j

EIj. (4.4)

As well as in Perez et al. (2012), we can also add the horizontal flipped video

information. The same process is executed for the horizontal flipped video, resulting in

Gaussians E ′ = [EI′1 , EI′2 , ..., EI′m ]. Thus, if the flipped video is considered, the embedded

Gaussian E(v) is given by the sum of all elements of E and E ′:

Ev =
m∑
j

EIj + EI′j. (4.5)

To be able to compare different videos, Ev is normalized with a L2-norm.

4.5 Video Descriptor

To compute the video descriptor we bring back Ev to the space of Gaussians, resulting in

Nv(Σ(v), µ(v)).
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The video descriptor D is given by the concatenation of the linearized covariance

matrix and the mean vector of Nv:

D = [Σ(v)|µ(v)] . (4.6)

It is important to notice that if the histogram is a column vector of size nbθnbϕ ,

the covariance matrix is a symmetric matrix with size nbθnbϕ×nbθnbϕ . It means that only

its upper triangular coefficients are needed. So, we store only nbθnbϕ · (
nbθnbϕ+1

2
) + nbθnbϕ

elements in total.
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5 Results and Discussion

5.1 Datasets

5.1.1 KTH

The KTH (SCHULDT; LAPTEV; CAPUTO, 2004) dataset contains 2391 sequences ac-

quired over a homogeneous background with a static camera. It contains six types of

human actions (walking, jogging, running, boxing, hand waving, hand clapping) per-

formed by 25 people in four different ambients. The resolution is 160×120 pixels and the

framerate is 25fps.

Figure 5.1: KTH dataset.

5.1.2 MuHAVi

The MuHAVi (SINGH; VELASTIN; RAGHEB, 2010) dataset contains 17 action class

(walk turn back, run stop, punch, kick, shot gun collapse, pull heavy object, pickup

throw object, walk fall, look in car, crawl on knees, wave arms, draw graffiti, jump

over fence, drunk walk, climb ladder, smash object, jump over gap) performed by 7
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persons, totalling 119 videos. The actions are surrounding by 8 cameras and occur in

a closed scenario. Only the information from the camera 4 is considered. The video

resolution is 720×576 pixels and the framerate is 25fps.

Figure 5.2: MuHAVi dataset.

5.1.3 SKIG

The SKIG (LIU; SHAO, 2013) dataset contains 1080 gesture sequences captured with a

Kinect sensor from 6 subjects performing 10 hand gestures (circle, triangle, up− down,

right− left, wave, “Z”, cross, come here, turn around, pat) in three hand postures: fist,

index and flat. The sequences were performed under three different backgrounds (wooden

board, white plain paper and paper with characters) and 2 illumination conditions (strong

light and poor light).
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Figure 5.3: SKIG dataset.

5.2 Results

We evaluated our method using three datasets: KTH, MuHAVi and SKIG. To this, we

fixed the parameters for the HOG3D computation: nbφ = 16, nbθ = 8, nx = 8, ny = 8,

α = 0.72. These parameters were found by Perez et al. (2012), for KTH dataset. We

fixed it for KTH in order to compare our method with Perez et al. (2012) method. Since

Perez et al. (2012) not evaluated MuHAVi and SKIG datasets, we maintain the same

parameters found for KTH because to evaluate HOG3D parameters is not in our scope.

In order to find the best values for the parameters l, β and ε, we performed tests varying

some sizes l for the triangular weight vector β and for the parameter ε and, as well as

in Perez et al. (2012), we also performed experiments adding horizontal reflected dataset

information. Experiments comparing the impact of the mean vector and Lie Algebra to

recognition were performed for all datasets.

We used the Scikit-learn (PEDREGOSA et al., 2011) implementation of the SVM

classifier with a Radial Basis Function (RBF) kernel, with a one-vs.-rest strategy. Table

5.1 contains the grid-search parameters and Table 5.2, the training protocols for each

dataset.

Table 5.1: Grid-search parameters
Parameters Values

C 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104, 105

γ 10−5, 10−4, 10−3, 10−2, 10−1, 0.5, 0.7812,1, 1.3889, 3.125, 10, 12.5, 102, 103, 104, 105
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Table 5.2: Training Protocols
Dataset Protocol Split

KTH
Grid-search

and fixed train-validation-test split

train : 8 persons
validation: 8 persons

test: 9 persons

MuHAVi
Grid-search with 3-fold cross-validation

and leave-one-group-out for performance testing
7 persons split

SKIG
Grid-search with 3-fold cross-validation

and fixed training-testing sets for performance evaluation
train : 4 persons
test: 2 persons

5.2.1 KTH

In order to find the best combination of the triangular weight vector size l and the adjust

parameter ε, we evaluate eleven different sizes to l: 1, 3, 5, 7, 9, 11, 13, 15, 19 and 21

frames. These experiments were performed varying three values for ε: 1, 10 and 100.

Table 5.3 contains the accuracy that was found for each combination. We can notice

that the weighting yields some improvement, outperforming 90.00% of accuracy with

only 5 frames. The parameter ε varies according to the number of frames considered,

being smaller when the number of frames increases. The best combination found on the

evaluated interval was l = 13 and ε = 10, with 90.75% of average recognition rate.

Table 5.3: Accuracy for KTH dataset varying l and ε parameters. The triangular weight
vector β is adjusted according to its size l.

l β ε Accuracy

1 [1]
1 85.75%
10 83.43%
100 85.75%

3 [1, 2, 1]
1 86.33%
10 89.46%
100 89.57%

5 [1, 2, 3, 2, 1]
1 89.11%
10 90.38%
100 87.37%

7 [1, 2, 3, 4, 3, 2, 1]
1 89.34%
10 90.61%
100 88.76%

9 [1, 2, 3, 4, 5, 4, 3, 2, 1]
1 89.80%
10 90.50%
100 89.22%

11 [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]
1 89.57%
10 88.30%
100 89.57%
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13 [1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1]
1 89.46%
10 90.73%
100 89.11%

15 [1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1]
1 89.80%
10 90.38%
100 88.88%

17 [1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1 89.80%
10 90.38%
100 88.06%

19 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1 89.80%
10 90.38%
100 87.95%

21 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1 90.15%
10 90.50%
100 87.72%

Table 5.4 has the confusion matrix for the best result found to KTH. The vertical

direction has actual labels and the horizontal direction has the predicted labels. The

grayscale varies according to the percentage of samples labeled as being of a certain class

and the diagonal entries indicate the percentage of the samples correctly predicted. The

accuracy 90.50% is obtained through of the average of the values of its diagonal. The

actions jogging and running get mixed up because they are very similar, with persons

moving horizontally through the frame. The main difference between these actions is the

movement speed.

Table 5.4: Confusion matrix of the best result for KTH dataset. The recognition rate in
this case is 90.73%.

Boxing Clapping Waving Jogging Running Walking
Boxing 97.20 2.80 0.00 0.00 0.00 0.00

Clapping 5.60 94.44 0.00 0.00 0.00 0.00
Waving 3.47 0.70 95.83 0.00 0.00 0.00
Jogging 0.00 0.00 0.00 79.17 13.19 7.64
Running 0.00 0.00 0.00 20.14 79.86 0.00
Walking 0.00 0.00 0.00 2.08 0.00 97.92

Table 5.5 shows the recognition rates for our method using zero mean vector and

non-zero mean vector for with reflection and without reflection cases. We can notice that

for this dataset, adding reflection information, zero mean vector was better than the case

when the mean vector is different of zero. We believe that it occurs due to the movements

domain, being adequate to use Gaussians with zero mean vector when the dataset contains
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a considerable number of actions performed over all frame, such as KTH.

Table 5.5: Comparison between the zero mean-vector and non-zero mean vector for KTH
dataset. Experiments were performed using l = 13 and ε = 10.

Method Mean Vector Accuracy

Without reflection zero 90.73%
Without reflection non-zero 90.73%

With reflection zero 90.03%
With reflection non-zero 87.49%

We can see in Table 5.6 the results obtained to the performed experiments in

order to evaluate the Lie Algebra influence to combine Gaussians. Notice that combining

Gaussians through a linear space yield considerable improvement, more evident in the case

with reflection. It occurs because the Lie Algebra used is based on Lie group isomorphisms,

which keeps safe algebraic and topological structure of the spaces involved.

Table 5.6: Lie Algebra influence for KTH dataset. Experiments were performed using
l = 13 and ε = 10.

Method Lie Algebra Accuracy

Without reflection yes 90.73%
Without reflection no 90.03%

With reflection yes 87.49%
With reflection no 84.70%

Table 5.7 has a comparison between the best results obtained by Perez et al.

(2012) and by our method. As well as in Perez et al. (2012), we combine information

from the horizontally reflected dataset. We obtained 87.49% of accuracy, whereas Perez

et al. (2012) obtained 92.01%. For the dataset without reflection we not only reached but

also outperformed Perez et al. (2012) in 1.39%. It evidences that Gaussians are capable

of improving the recognition.

Table 5.7: Method Comparison
Method Without reflection With reflection

Perez et al. (2012) 89.34% 92.01%
Our Method 90.73% 87.49%

Table 5.8 shows some works from literature with their respective accuracy. Our

method achieved competitive recognition rates for this dataset, with a simple approach

and with a computational cost lower than methods based on deep learning.
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Table 5.8: KTH Comparison
Method Accuracy

Klaser, Marsza lek and Schmid (2008) 85.30%
Wang et al. (2011) 94.20%
Perez et al. (2012) 92.01%

Ravanbakhsh et al. (2015) 95.60%

Our method 90.73%

5.2.2 MuHAVi

For the MuHAVi dataset we performed the same experiments as in KTH, in order to find

the best values for the size l of the weight vector β and for the ε parameter. We evaluate

eleven values for l: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and 21, according to Table 5.9. Notice

that the best size for the weight vector β is l = 19, achieving 89.92%. We can also see

that the ε parameter have more variation, being ε = 100 the best value when l = 19.

Table 5.9: Accuracy for MuHAVi dataset varying l and ε parameters. The triangular
weight vector β is adjusted according to its size l.

l β ε Accuracy

1 [1]
1 81.51%
10 86.55%
100 84.03%

3 [1, 2, 1]
1 85.71%
10 85.71%
100 86.55%

5 [1, 2, 3, 2, 1]
1 86.55%
10 87.39%
100 82.35%

7 [1, 2, 3, 4, 3, 2, 1]
1 86.55%
10 88.24%
100 86.55%

9 [1, 2, 3, 4, 5, 4, 3, 2, 1]
1 87.39%
10 87.39%
100 87.39%

11 [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]
1 87.39%
10 85.71%
100 86.55%

13 [1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1]
1 85.71%
10 86.55%
100 89.08%

15 [1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1]
1 86.55%
10 85.71%
100 89.08%
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17 [1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1 85.71%
10 85.71%
100 89.08%

19 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1 87.39%
10 87.39%
100 89.92%

21 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1 88.24%
10 86.55%
100 86.55%

Figure 5.4 contains the confusion matrix for MuHAVi dataset. We can notice

that the majority of the actions has 100.00% of accuracy, with only actions with similar

movements mixed up, such as run stop and walk turn back.

Figure 5.4: Confusion matrix for the best result in MuHAVi dataset. The recognition
rate in this case is 89.92%.

In order to evaluate the mean vector for this dataset, we performed experiments

using the best parameters previously found and adding reflection information. Table 5.10

shows that for all tests we have no accuracy difference. We believe that it occurs due the
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number of samples of the MuHAVi dataset be small, causing insignificant impact in this

case.

Table 5.10: Comparison between the zero mean-vector and non-zero mean vector for
MuHAVi dataset. Experiments were performed using l = 19 and ε = 100.

Method Mean Vector Accuracy

Without reflection zero 89.92%
Without reflection non-zero 89.92%

With reflection zero 89.92%
With reflection non-zero 89.92%

Table 5.11 has the recognition rates obtained for MuHAVi dataset using the best

parameters found, l = 19 and ε = 100, and with Lie Algebra and without it. It is clear to

see that combining Gaussians through a linear space for this dataset is crucial to obtain

good results.

Table 5.11: Lie Algebra influence for MuHAVi dataset. Experiments were performed
using l = 19 and ε = 100.

Method Lie Algebra Accuracy

Without reflection yes 89.92%
Without reflection no 77.31%

With reflection yes 89.92%
With reflection no 77.31%

Table 5.12 shows some works from literature with their respective accuracy. Al-

though MuHAVi is a multicamera dataset, consisting of 8 cameras in total, we achieved

competitive recognition rates using only the information of the camera 4 in comparison

with other methods of the literature.

Table 5.12: MuHAVi Comparison
Method Accuracy

Moghaddam and Piccardi (2010) 80.40%
Karthikeyan et al. (2011) 88.23%

Moghaddam and Piccardi (2014) 92.00%
Alcântara, Moreira and Pedrini (2014) 89.08%

Alcantara et al. (2017) 92.40%

Our method 89.92%
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5.2.3 SKIG

Similarly to KTH and MuHAVi, we performed experiments in the SKIG varying the size

l of the triangular weight vector β and ε. For l, we also evaluate eleven values: 1, 3, 5,

7, 9, 11, 13, 15, 17, 19 and 21 frames and for the parameter ε, three values: 1, 10 and

100. Table 5.13 shows that the best size for β is l = 19. The ε parameter found for the

SKIG dataset differs from the KTH and MuHAVi, being 100 the best value found for all

variations of l. We can see that the weighting yields more improvement for this dataset

that for KTH and MuHAVi. It occurs due differences in the movements domain. The

hand gestures in the SKIG are smoother and somewhat alike.

Table 5.13: Accuracy for SKIG dataset varying l and ε parameters. The triangular weight
vector β is adjusted according to its size l.

l β ε Accuracy

1 [1]
1 67.22%
10 71.11%
100 75.56%

3 [1, 2, 1]
1 81.57%
10 80.83%
100 84.44%

5 [1, 2, 3, 2, 1]
1 81.39%
10 82.50%
100 84.72%

7 [1, 2, 3, 4, 3, 2, 1]
1 81.67%
10 82.78%
100 85.00%

9 [1, 2, 3, 4, 5, 4, 3, 2, 1]
1 83.06%
10 83.61%
100 84.72%

11 [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]
1 84.72%
10 85.00%
100 86.39%

13 [1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1]
1 85.28%
10 86.39%
100 86.94%

15 [1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1]
1 86.11%
10 86.94%
100 87.22%

17 [1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1 86.67%
10 87.22%
100 86.94%
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19 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1 86.67%
10 86.67%
100 87.50%

21 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1 86.94%
10 85.93%
100 86.94%

Table 5.14 has the confusion matrix for the best result for SKIG dataset. The

action up− down is the most confusing. It occurs because in the actions up− down and

pat are quite similar, with all movement occurring in small regions in the middle of the

frame.

Table 5.14: Confusion Matrix of the SKIG dataset without reflection. The recognition
rate is 87.50%.

Circle Triangle UpDown RightLeft Wave “Z” Cross Come Turn Pat
Circle 88.89 0.00 11.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Triangle 0.00 97.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.78
UpDown 0.00 0.00 50.00 0.00 0.00 0.00 0.00 2.78 0.00 47.22
RightLeft 0.00 0.00 0.00 97.22 0.00 0.00 0.00 0.00 2.78 0.00

Wave 2.78 0.00 0.00 0.00 97.22 0.00 0.00 0.00 0.00 0.00
“Z” 8.33 0.00 0.00 0.00 0.00 86.11 5.56 0.00 0.00 0.00

Cross 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
ComeHere 0.00 0.00 0.00 0.00 0.00 0.00 0.00 83.33 0.00 16.67

TurnAround 0.00 0.00 2.78 0.00 0.00 0.00 0.00 11.11 83.33 2.78
Pat 0.00 0.00 5.56 0.00 0.00 0.00 0.00 2.78 0.00 91.67

Table 5.15 shows the recognition rates obtained for the experiments performed in

order to evaluate the impact of the mean vector for recognition. We can see that, different

from KTH and MuHAVi, in this case, the non-zero mean vector yields some improvement

for the recognition. We believe that it occurs due to the movements domain, and, unlike

KTH, Gaussians with non-zero mean vector are more suitable when the dataset contains

more similar actions, with a considerable number of actions performed in small regions of

the frame.

Table 5.15: Comparison between the zero mean-vector and non-zero mean vector for SKIG
dataset. Experiments were performed using l = 19 and ε = 100.

Method Mean Vector Accuracy

Without reflection zero 86.94%
Without reflection non-zero 87.50%

With reflection zero 86.94%
With reflection non-zero 87.50%

We can see in Table 5.16 the results obtained to the performed experiments in
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order to evaluate the Lie Algebra influence to combine Gaussians. We can notice that

as well as in KTH and MuHAVi, combining Gaussians through a linear space yield some

improvement, as expected.

Table 5.16: Lie Algebra influence for SKIG dataset. Experiments were performed using
l = 19 and ε = 100.

Method Lie Algebra Accuracy

Without reflection yes 87.50%
Without reflection no 86.67%

With reflection yes 87.50%
With reflection no 86.67%

Table 5.17 shows some works from literature with their respective accuracy. We

can see that our method not outperforms methods based on deep neural networks, but

achieves good recognition rates with a simpler approach, with a computational cost inferior

to the cost of the deep methods.

Table 5.17: SKIG Comparison
Method Accuracy

Liu and Shao (2013) 84.60%
Nishida and Nakayama (2015) 91.60%

Li, Zhang and Jin (2017) 96.70%

Our method 87.50%
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6 Conclusion

In this work, we presented a new motion descriptor based on Gaussians for human action

recognition. The main objective of this work was to create a video descriptor based on a

multivariate Gaussian distribution that was capable of describing human actions. In order

to evaluate the impact of the mean vector of the Gaussian to recognition, we performed

experiments to verify if a mean vector different of zero would be capable of improving

the recognition and how much would be possible. To this purpose, we used Lie Algebra

aiming to combine Gaussians preserving the algebraic and topological structure of the

spaces involved. Analyzing our results, we notice that the non-zero mean vector can yield

some improvement in some cases and that combining Gaussians through a linear space is

more appropriate than combining Gaussians through the space of Gaussians.

We evaluate our method through three datasets: KTH, MuHAVi and SKIG, in

two scenarios: with and without horizontal reflection. We also evaluate some combi-

nations of the parameters ε and l, for each dataset. For KTH, we found ε = 10 and

l = 13, achieving 90.73% of accuracy using the dataset without reflection and 87.49%

adding reflection. Experiments evaluating the mean vector showed that for KTH is more

appropriate to use Gaussians with zero mean vector. Although we do not outperform

the best result obtained by Perez et al. (2012), we outperform when we consider only

without reflection case, indicating that Gaussians are capable of improving the recogni-

tion. For MuHAVi dataset, with ε = 100 and l = 19 we achieved 89.92% of accuracy.

For this dataset the mean vector and the reflection had no difference, we believe that

it occurred due to the number of samples. For SKIG we achieved 87.50% with ε = 100

and l = 19. The weighting, in this case, yielded more improvement that for KTH and

MuHAVi datasets. It occurred due differences in the movements domain since the hand

gestures in the SKIG are smoother and somewhat alike. For MuHAVi and SKIG datasets

the horizontal reflection information not added anything to the recognition, whereas for

KTH it was worse.

Although deep neural networks have demonstrate impressive results, they have a
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high computational cost, mainly in the training step. Our method achieved competitive

recognition rates for all evaluated datasets, with a simple approach and less costly that

deep methods.

As future works we intend to include the IE-logE embedding method in order to

compare how good it is performance, if it presents some sort of improvement comparing

with the DE-LogE method. We can also use this method for local approaches, for example,

estimating local Gaussians for a video.
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