
The Federal University of Juiz de Fora

Exact Sciences Institute

Bachelor Degree in Computer Science

SACM Editor: an OMG standard compliant
model-based tool for specification of

Assurance Cases for Safety-Critical Systems

Luis Felipe de Almeida Nascimento

JUIZ DE FORA

NOVEMBER, 2019

SACM Editor: an OMG standard compliant
model-based tool for specification of

Assurance Cases for Safety-Critical Systems

Luis Felipe de Almeida Nascimento

The Federal University of Juiz de Fora

Exact Sciences Institute

Department of Computer Science

Bachelor Degree in Computer Science

Orientador: André Luiz de Oliveira

JUIZ DE FORA

NOVEMBER, 2019

SACM Editor: an OMG standard compliant

model-based tool for specification of Assurance

Cases for Safety-Critical Systems

Luis Felipe de Almeida Nascimento

MONOGRAPHY SUBMITTED TO THE FACULTY OF THE EXACT SCIENCES IN-

STITUTE OF THE FEDERAL UNIVERSITY OF JUIZ DE FORA, AS AN INTEGRAL

PART OF THE REQUIREMENTS NECESSARY TO ATTAIN A BACHELOR’S DE-

GREE IN COMPUTER SCIENCE.

Approved by:

André Luiz de Oliveira
Ph.D in Computer Science

Gleiph Ghiotto Lima de Menezes
Ph.D in Computer Science

Ciro de Barros Barbosa
Ph.D in Computer Science

JUIZ DE FORA

14 DE NOVEMBER, 2019

Abstract

Critical systems are systems whose failures may result in death or serious damages to

finances, property or the system environment. Due to their critical nature, these systems

should be developed following guidelines prescribed safety standards. Standards demand

that safety properties should be analyzed and verified at different levels of abstraction. At

the requirements, potential threats to the system safety should be identified and mitigated.

At architectural design, engineers should analyze how system failure propagates through

subsystems, and later identify how components contribute to system failures. Standards

from the automotive and aerospace domains also recommend or require the specification

of an assurance case as a requirement for achieving certification. Assurance case or safety

case provides a way to argue why the system is acceptably safe to operate a system within

a determined context, supported by a body of evidence. Goal Structured notation (GSN)

and Structured Assurance Case Metamodel (SACM) are graphical notations that support

the specification of an assurance case. Model-driven development has been widely adopted

in the development and assurance of critical systems. Nowadays there is a lack of tools

that provide support for safety engineers to specify assurance cases according to OMG-

SACM standard and performing models transformation from GSN to SACM notations.

In order to fill this gap, this project proposes the development of a tool that supports

the specification of assurance case using SACM notation, and it provides GSN2SAMC

model-transformations to support compatibility between both assurance case modeling

notations. In this work, a graphical editor has been developed upon the Eclipse Modeling

Framework (EMF) and Graphical Modeling Framework (GMF) platforms. The tool has

been validated in two case studies, one in the automotive domain, and the other in the

aerospace domain. The developed SACM Editor contributed to support users in the

specification of SACM compliant assurance cases, reducing the time and costs of this

task.

Keywords: Assurance Case, Safety Case, Structured Assurance Case Metamodel.

Resumo

Sistemas cŕıticos são sistemas onde falhas podem resultar em mortes ou danos sérios como

econômicos, à propriedade ou ao ambiente do sistema. Devido a sua natureza cŕıtica, esses

sistemas devem ser desenvolvidos de acordo com as normas prescritas nos padrões de segu-

rança, tais padrões exigem que as propriedades de segurança seja mostradas em diferentes

ńıveis de abstração, como identificar ameaças potenciais à segurança e mitigar-las no ńıvel

de requisitos, e no arquitetural analisar a propagação de falhas através dos sub-sistemas

e identificar a contribuição de cada componente. Os padrões do domı́nio automotivo e

aeroespacial recomendam ou exigem a especificação de um caso de garantia para obter a

certificação. Um caso de garantia ou caso de segurança fornece um modo de argumentar

sobre os motivos do sistema ser seguro para operar em um contexto especifico, apoiado-

o por um corpo de evidências. Goal Structured notation (GSN) e Structured Assurance

Case Metamodel (SACM) são anotações gráficas que suportam a especificação de um caso

de garantia. O desenvolvimento orientado a modelos foi amplamente adotado no desen-

volvimento e garantia de sistemas cŕıticos. Atualmente, existe uma falta de ferramentas

que ofereçam suporte a especificação de caso de garantia de acordo com o padrão OMG-

SACM e transformação do modelo das notações GSN para SACM. Para preencher essa

lacuna, este projeto propõe o desenvolvimento de uma ferramenta que suporte a especi-

ficação de caso de garantia usando a notação SACM e fornece transformações de modelo

GSN2SAMC para suportar a compatibilidade entre as duas notações de modelagem de

caso de garantia. Neste trabalho, um editor gráfico foi desenvolvido nas plataformas

EclipseModeling Framework (EMF) e Graphical Modeling Framework (GMF). A ferra-

menta foi validada em dois estudos de caso, um no domı́nio automotivo e outro no domı́nio

aeroespacial. O editor SACM desenvolvido contribuiu para apoiar especificação casos de

garantia compat́ıveis com SACM e reduziu o custo para faze-la.

Keywords: Caso de Garantia, Caso de Segurança, SACM, SACM 2.1, Editor.

Contents

List of Figures 6

List of Tables 7

List of abbreviations 8

1 Introduction 9
1.1 Problem . 10
1.2 Objectives . 10
1.3 Results . 11
1.4 Organization . 11

2 Background 12
2.1 Model-Driven Engineering . 12
2.2 Modeling Tools . 14

2.2.1 Eclipse Modeling Framework . 15
2.2.2 Epsilon . 15
2.2.3 Graphical Modeling Framework and EuGENia 17

2.3 Safety Engineering . 20
2.3.1 Introduction . 20
2.3.2 Safety Life Cycle . 20

2.4 Assurance Case . 23
2.4.1 Assurance Case Pattern . 24

2.5 Goal Structured Notation (GSN) . 26
2.5.1 GSN Pattern Extension . 27

2.6 Structured Assurance Case Metamodel (SACM) 28
2.6.1 Assurance Case Base Classes . 29
2.6.2 Structured Assurance Case Packages 30
2.6.3 Structured Assurance Case Terminology Classes 31
2.6.4 Argumentation Metamodel . 32
2.6.5 Artifact Metamodel . 32
2.6.6 SACM Abstractions . 33

2.7 Automate Pattern Instantiation . 34
2.7.1 Instantiation Program . 34
2.7.2 A Potential Instantiation Program for SACM 2.1 35

3 SACM ACEditor Development Process 38
3.1 Overview . 38
3.2 Specify the DSL Elements and their Graphical Representations 39

3.2.1 Meta-model Specification . 40
3.2.2 Create Icons . 41
3.2.3 Create the Figure Plugin . 42
3.2.4 Sub-Diagrams Specification . 43
3.2.5 Creation of Fix Model Files . 44

3.3 EuGENia Automatic Generation . 47

3.3.1 Generate GMF Diagram Editor . 47
3.3.2 Fix Required Models . 48
3.3.3 Code Generation . 48

3.4 Create Complementary Plugins . 49
3.4.1 Create Validation Plugin . 49
3.4.2 Create Wizard Plugin . 49
3.4.3 Create a Transformation Plugin . 50
3.4.4 Create Edit.ui Plugin . 51

3.5 Fix the Plugins . 52
3.5.1 Fix Generated Code . 53
3.5.2 Fix Icons . 54
3.5.3 MANIFEST.MF and plugin.xml . 55

4 SACM ACEditor Architecture 56
4.1 Overview . 56
4.2 Components SACM ACEditor . 58

4.2.1 Figures Plugin . 58
4.2.2 Model Plugin . 58
4.2.3 GMF Editors Plugins . 58
4.2.4 EMF Editor Plugins . 59
4.2.5 Complementary Plugins . 60
4.2.6 Adapter Plugin . 61

4.3 Extensions of SACM ACEditor . 61
4.3.1 Overview . 61
4.3.2 Provider Extension . 62
4.3.3 Validation Extension . 65

5 Assurance Case Patterns 67
5.1 Hazard Avoidance Pattern . 67
5.2 Risk Argument Pattern . 68
5.3 HSFM Pattern . 69
5.4 Functional Hazard Assessment Pattern . 71

6 Case Study of Hybrid Breaking System 73
6.1 Architecture of HBS . 73
6.2 SACM Assurance Cases . 75

6.2.1 Overview . 75
6.2.2 Hazard Avoidance . 75
6.2.3 Risk Argument . 76
6.2.4 HSFM . 77
6.2.5 Functional Hazard Assessment . 78

7 Conclusion 80
7.1 Contributions . 80
7.2 Research Directions . 81

Bibliography 82

A Case Study of Tiriba Flight Control 84
A.1 Architecture of TFC . 84
A.2 Tiriba Assurance Cases . 86

4

A.2.1 Overview . 86
A.2.2 Hazard Avoidance . 86
A.2.3 Risk Argument . 87
A.2.4 HSFM . 88
A.2.5 Functional Hazard Assessment . 89

List of Figures

2.1 OMG MOF infrastructure, (ATKINSON; KUHNE, 2003) 14
2.2 Architecture of EMF . 15
2.3 Eugenia Workflow for generation of source for EMF and GMF model editors. 18
2.4 Critical System Life Cycle . 23
2.5 Elements of GSN notation . 26
2.6 An Example of GSN Goal Structure . 27
2.7 GSN Abstractions . 28
2.8 GSN Pattern Representation Example . 28
2.9 Components Of SACM 2.1 . 29
2.10 SACM 2.1 Assurance Case Base Classes 30
2.11 SACM 2.1 Structured Assurance Case Packages 31
2.12 SACM 2.1 Structured Assurance Case Terminology Classes 31
2.13 SACM 2.1 Argumentation Metamodel . 32
2.14 SACM 2.1 Artifact Metamodel . 33

3.1 Development Process Overview . 39
3.2 Icons of the SACM ACEditor . 42
3.3 Implemented Figures Different from SACM ACEditor Icons 43

4.1 Components Diagram of SACM ACEditor 57
4.2 Extensions of SACM ACEditor . 62
4.3 Extension for Provide Types of ImplementationConstraint 63
4.4 Extension for Validate ImplementationConstraint With a Type 65

5.1 Hazard Avoidance Pattern in GSN . 67
5.2 Hazard Avoidance Pattern in SACM . 68
5.3 Risk Argument Pattern in GSN . 69
5.4 Risk Argument pattern in SACM . 69
5.5 HSFM pattern in GSN . 70
5.6 HSFM Pattern in SACM . 71
5.7 Functional Hazard Assessment Pattern in SACM 72

6.1 Architecture of HBS . 74
6.2 Architecture of Wheel Break Unit of HBS 74
6.3 HBS Assurance Case Overview . 75
6.4 HBS Hazard Avoidance . 76
6.5 HBS Risk Argument . 77
6.6 HBS HSFM Assurance Case . 78
6.7 HBS Functional Hazard Assessment . 79

A.1 Architecture of TFC . 85
A.2 Tiriba Assurance Case Overview . 86
A.3 Tiriba Hazard Avoidance . 87
A.4 Tiriba Risk Argument . 88
A.5 Tiriba HSFM Assurance Case . 89
A.6 Triba Functional Hazard Assessment . 90

List of Tables

3.1 Custom Links of SACM ACEditor . 41

List of abbreviations

ARP Aerospace Recommended Practice

CAE Claim Argument Evidence

EMF Eclipse Modeling Framework

Epsilon Extensible Platform of Integrated Languages for mOdel maNagement

GEF Graphical Editing Framework

GMF Graphical Modeling Framework

GSN Goal Structured Notation

HBS Hybrid Braking System

ISO International Organization for Standardization

MDE Model-Driven Engineering

MDD Model-Driven Development

MOF Meta Object Facility

SACM Structured Assurance Case Metamodel

SAE Society of Automotive Engineers

UML Unified Modeling Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

9

1 Introduction

Critical systems can range from small devices to complex systems of industrial process

management. Sommerville (2003) considers critical systems as those whose failures can

result in economic loss, physical damage or threats to human life. The critical nature of

these systems demands that they must address availability, reliability, safety and security

requirements. The achievement of these requirements can be demonstrated by performing

safety engineering activities.

Safety engineering comprises a set of activities that must be performed in parallel

to development activities. Hazard identification, risk assessment, and allocation of safety

requirements are examples of safety engineering activities. In order to obtain certifica-

tion for a critical system, safety standards recommend or require the specification of an

assurance case in addition to safety engineering activities (SAE, 2010).

For the development of critical systems, it is necessary to follow guidelines estab-

lished in safety standards, e.g., ISO 26262 for automotive domain and SAE ARP 4754A

aircraft domain. Safety standards establish the safety properties of a critical system should

be analyzed and demonstrated at different levels of abstraction, from requirements to a

component implementation. When a critical system addresses all the requirements posed

by safety standards, it is qualified to receive the certification and release for operation.

Standards also require or recommend the development of an assurance case/safety case

as a requirement for safety certification.

An assurance case is a clear, comprehensive and defensible argument, supported

by a body of evidence, that a system is acceptably safe to operate in a particular context

(KELLY; WEAVER, 2004). There exists in the literature textual, tabular and graphical

notations for specifying an assurance case. Initially, an assurance case was specified in

a free text notation. The usage of natural language may ambiguity in the argument. In

order to improve representation of assurance cases, tabular and graphical notations have

been created (KELLY; MCDERMID, 1997). Goal Structured Notation (GSN), Claim

Argument Evidence (CAE), and Structured Assurance Case Metamodel (SACM) are ex-

1.1 Problem 10

amples of graphical notations that support the specification of assurance cases.

Model-Driven Engineering techniques provide the benefits of a clear expression

of requirements and architecture and automation. Model-based techniques have been

widely adopted in the development and assurance of critical systems. Eclipse Model-

ing Framework (EMF) (ECLIPSE, 2018a) and Graphical Modeling Framework (GMF)

(ECLIPSE, 2018c) are examples of model-based techniques and tools. The EMF is built

upon the Meta-Object Facility (MOF) standard. Model-based techniques can be used to

support for specification of assurance cases in GSN (GSN, 2018) and SACM (OMG, 2019)

metamodel.

1.1 Problem

The SACM is an OMG specification that defines the requirements for assurance case mod-

eling notations. The GSN is a SACM-compliant modeling notation. In addition to GSN,

SACM metamodel provides support for specifying the provenance of evidence items that

support assurance claims. Although SACM metamodel defines a standardization to be

followed by safety argumentation, i.e., assurance cases, there is a lack of tooling support

for specifying assurance cases in SACM notation. In order to fill this gap, in this final

project is proposed SACM Assurance Case Editor (SACM ACEditor), built upon EMF

platform and GMF, to support engineers on the specification of SACM-compliant assur-

ance cases for critical systems. SACM ACEditor provides a graphical user interface to aid

safety engineers specifying assurance cases and assurance case patterns. The proposed

editor intends to contribute to reducing the effort of engineers in the production of assur-

ance cases for critical systems, required by standards and authorities as a requirement for

certification and release for operation.

1.2 Objectives

The main goals of this work are: i) the development of an EMF-compliant graphical

editor to support the specification of assurance cases in compliance with OMG SACM

2.1 meta-model; ii) the definition of a process to support engineers in the development

1.3 Results 11

of modeling tools based on EMF and GMF platforms; iii) the provision of compatibility

support between GSN and SACM via GSN2SACM model transformations, which enables

the conversion of a GSN model to an equivalent representation in SACM; and iv) providing

the validation of the proposed SACM ACEditor through demonstrating its usage in two

realistic case studies, carried out in the automotive and aerospace domains.

1.3 Results

The results of this final project are the SACM ACEditor, an assurance case editor devel-

oped upon Eclipse platform that supports the specification of assurance cases according

to the SACM 2.1 meta-model, and the transformation of GSN models into SACM. Both

SACM ACEditor and the developed model transformation have been validated on the au-

tomotive Hybrid Braking System and Tiriba unmanned aircraft Flight Control System.

1.4 Organization

The next chapters are briefly described. Chapter 2 presents all the concepts and knowl-

edge needed for contextualization and a better understanding of this work. This chapter

explains the Model-Driven Engineering concept, the tools used to develop the editor, the

basic concepts of safety engineering and safety standards, the definition of assurance case

and assurance case pattern, the GSN notation and SACM 2.1 meta-model, and finally an

overview of automatic instantiation of assurance case patterns. Chapter 3 describes the

development process followed by the author to build the SACM ACEditor in a generic

way, for supporting engineers in the construction of EMF model editors for other domain-

specific modeling languages. Chapter 4 presents the architecture of the proposed SACM

Assurance Case Editor (SACM ACEditor). Chapter 5 describes the assurance case pat-

terns used in case studies. Chapter 6 describes the usage of SACM ACEditor in the

specification of assurance cases for an automotive braking system. Finally, Chapter 7

presents an analysis of the contributions and limitations of this work and future research

directions.

12

2 Background

This chapter presents the background concepts needed for the reading understanding

the context of the research contributions. Section 2.1 describes the concepts of Model-

Driven Development. Section 2.2 presents an overview of Eclipse Model Framework and

Graphical Modeling Framework platform used in the development of SACM ACEditor.

Section 2.3 describes the basic concepts of safety engineering and provides a brief overview

of safety standards. Section 2.4 contains Assurance Case and Assurance Case Pattern

definitions. Goal Structuring Notation (GSN) is detailed in Section 2.5. Section 2.6

provides an overview of OMG Structured Assurance Case Metamodel. Finally, in Section

2.7 is presented a discussion on automatic instantiation of assurance case patterns.

2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) or Model-Driven Development (MDD) aims to make

the artifacts useful to their particular propose, at their specific stage of the life cycle, e.g.,

to describe architecture for the underlying need to link related artifacts to it and to serve as

a means of communication for all those participating in the project, (HAILPERN; TARR,

2006). MDE focuses on models as the first-class entity of a software development process

rather than computer programs, because, models can guide the software development. A

model is an abstraction with an intended and defined purpose (SELIC, 2003). A MDE

approach includes Domain-Specific Modeling and Model Management.

The Domain-Specific Modeling allows domain experts capturing the modeling

concepts of their system in a meta-model, which aims to support the creation of system

models according to the syntax and semantics of the language defined in the meta-model.

A meta-model defines abstractions and rules to build specific models in a domain of

interest, which establishes: an abstract syntax i.e. “the concepts from which models are

created”; a concrete syntax i.e. “how rendering these concepts”; well-formed rules i.e.

“rules for the application of the defined modeling concepts”; and the description of the

2.1 Model-Driven Engineering 13

semantics of a specific model (SELIC, 2003).

The Model Management supports automated operations in the models. These

operations include model validation, comparison, generation, merging, comparison, and

transformation. In the development of critical systems, MDE allows unambiguous ex-

pression of requirements and architecture, and provision of automated support for system

development and safety assessment (JOHNSON et al., 1998).

Automation is the most effective technological means for improving productivity

and reliability, e.g., complete code generation, which modeling languages take the role of

implementation languages. The existing model-based techniques and tools have achieved

levels of maturity that enable the practical usage of MDE in large-scale industrial applica-

tions. Modern code generators and related technologies can produce code whose efficiency

is comparable to or even better than hand-crafted code (SELIC, 2003).

The Unified Modeling Language (UML) is an example of a model-based tech-

nique that provides a standard visual language for systems modeling. The UML supports

the specification of the system at different levels of abstraction, e.g., requirements and

detailed design. Thus, at high levels, it allows the abstraction of a large part of the

necessary technology and implementation needed for system development. The existing

UML supports automated change impact analysis, model transformation, and generation

of source code from an UML model (MELLOR; CLARK; FUTAGAMI, 2003).

The models are classified into structured or formal, which have a well-defined

meta-model, or non-structured, which have not been defined based on a meta-model.

The Meta-Object Facility (MOF) and Eclipse Modeling Framework (EMF) (ECLIPSE,

2018a) are development infrastructures for domain-specific language and modeling tools.

Figure 2.1 illustrates the OMG Meta-Object Facility (MOF) infrastructure, com-

prising four hierarchical levels. The M0 represents concrete entities, i.e., the instantiation

of a meta-model, i.e., a model. the M1 represents the concepts associated with a domain-

specific meta-model built upon abstractions defined in M2 and M3, e.g., the SACM 2.1

meta-model specification. M2 represents abstractions defined in UML and M3 is the

highest abstraction level used to define meta-models, e.g., MOF entities, their attributes

and relationships (ATKINSON; KUHNE, 2003).

2.2 Modeling Tools 14

Figure 2.1: OMG MOF infrastructure, (ATKINSON; KUHNE, 2003)

Structured meta-models based on the MOF infrastructure provide automated

support for model verification, validation, transformation, merging, and comparison (KOLOVOS

et al., 2013). In the Eclipse Modeling Framework (EMF), a MOF-compliant platform,

these tasks are supported by Ecore meta-modeling language. The Ecore is built upon

object-oriented concepts of classes and inheritance, used to specify modeling languages

within the EMF platform with the support of customized model editors.

2.2 Modeling Tools

This section presents the modeling techniques and tools that have been used in the devel-

opment of this project. It is presented an overview of Eclipse Modeling Framework (EMF),

Graphical Modeling Framework (GMF), the Epsilon model management languages and

EuGENia tools. This section describes how developing a graphical model editor for a

given domain-specific language using these tools.

2.2 Modeling Tools 15

2.2.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a MOF-compliant modeling platform. The

EMF platform supports the automated code generation from a meta-model specification.

EMF unifies java, XML and UML, allowing models to be defined in one of these formats.

The EMF also supports the generation models from other models. Modeling and program-

ming in the EMF platform can be considered the same thing, it is not necessary to choose

between one and another, (STEINBERG et al., 2008). Modeling supports engineers in

identifying what the system should do more easily than using only the source-code.

Figure 2.2, (ECLIPSE, 2018a) illustrates the structure of the EMF platform,

which comprises: the specification of a domain-specific model upon the Ecore meta-

model, EMF.edit, and EFM.editor source code automatically generated from an Ecore

domain-specific model. The EMF.edit provides generic classes to support the EMF.editor.

Both EMF.edit and EMF.editor source code are automatically generated via execution of

EMF.Codegen capability. The Ecore is an object-oriented meta-modeling language from

EMF for producing the concrete artifacts, e.g., code and configuration files from which a

model editor is built.

Figure 2.2: Architecture of EMF

2.2.2 Epsilon

The Extensible Platform of Integrated Languages for mOdel maNagement (Epsilon) is

a family of languages and tools for code generation, transformation, validation, compar-

ison, migration and refactoring of models. Epsilon can be used to manipulate EMF and

other types of models, (KOLOVOS et al., 2013). The current Epsilon version provides

2.2 Modeling Tools 16

the following languages: EOL, EVL, ETL, ECL, EML, EWL, EGL and EPL. A brief

description of each one of these languages is presented in the following:

• Epsilon Object Language (EOL): provides a reusable set of common model man-

agement facilities. EOL can be used for automating tasks that do not fall into

the patterns targeted by other Epsilon languages, e.g., automatic fixes in a model

generated using EuGENia tool before code generation.

• Epsilon Transformation Language (ETL): used to transform an arbitrary number

of input models into an arbitrary number of output models. ETL allows the speci-

fication of transformations from GSN models to SACM models.

• Epsilon Comparison Language (ECL): it supports the specification of comparison

algorithms in a rule-based manner to identify pairs of matching elements between

two models from potentially different meta-models and modeling technologies.

• Epsilon Merging Language (EML): it supports merging an arbitrary number of input

models from potentially diverse meta-models and modeling technologies.

• Epsilon Wizard Language (EWL): it supports the specification of small update

model transformations in a rule-based manner. This kind of transformation per-

forms in-place modifications in the source model itself. This capability is not pro-

vided by ETL and cannot be implemented using EOL.

• Epsilon Generation Language (EGL): is a template-based code generator. An EGL

program resembles the text that they generate, and it provides features that simplify

and support the generation of text-from-model transformations. EGL can be used

to transform models into various types of textual artifacts, e.g., Java code, and

HTML reports.

• Epsilon Pattern Language (EPL): is a pattern matching the language that allows

run-time interoperability and reuse of code with languages that support a range of

model management tasks. EPL provides support for specifying patterns that involve

model elements that conform to different modeling technologies.

2.2 Modeling Tools 17

2.2.3 Graphical Modeling Framework and EuGENia

The Graphical Modeling Framework (GMF) platform supports the automatic generation

of source code for graphical editors for domain-specific languages specified in Ecore mod-

els built upon the EMF platform (ECLIPSE, 2018b). In order to generate a graphical

editor based on both EMF and GMF platforms, it is necessary defining a meta-model of

the domain problem, which includes the domain elements and their relationships using

Ecore. The EMF platform provides embedded resources for editing a model. The Eu-

GENia is an Epsilon tool that allows the automatic generation of the EMF.model base

classes, EFM.edit, EMF.editor and GMF.diagram source code from a text-based Ecore

meta-model specification and the mappings between model elements and their graphical

representation using the Emfatic language (ECLIPSE, 2018b).

Epsilon Emfatic is a textual language for the specification of EMF meta-models

and mappings linking meta-model elements to their graphical representation. The Em-

fatic has its own syntax and notation that allows the definition of mappings between

org.eclipse.draw2d.Figure classes and Ecore model elements. The Emfatic language

provides annotations to support linking graphical representations to EMF domain model

elements. For example, Emfatic annotations can be used to highlight if a domain model

element is a node or a link, and its associated graphical representation, which can be a

Java class that implements IFigure interface from org.eclipse.draw2d API (ECLIPSE,

2018b). Figure 2.3 illustrates the workflow of automatic generation of GMF and EMF

editors using EuGENia, (KOLOVOS et al., 2010; EPSILON, a). However, Two steps have

been added ‘Emfatic Meta-model Specification’ and ‘EuGENia Enfatic2EcoreTransformation’.

2.2 Modeling Tools 18

Figure 2.3: Eugenia Workflow for generation of source for EMF and GMF model editors.

As shown in figure 2.3 the first step of the process is specifying a domain-specific

language using Emfatic. This specification contains the declaration of the required ele-

ments, e.g, classes, and also the definition of Emfatic annotations in each of these elements

or in their properties, e.g if the element should be a ‘node’ or a ‘relationship’. After it,

the EuGENia tool performs the automatic translation of an Emfatic file into an Anno-

tated Ecore Metamodel. Later, we use EuGENia to generate the generator model for the

annotated.Ecore model. Therefore, the model, edit, and editor source code for a basic

modeling editor is generated via execution of the EMF generator model associated with

the.Ecore file. Additionally, from an annotated. Ecore model, EuGENia automatically

generates the GMFTool, GMFGraph and the GMFMap models necessary for creating the

2.2 Modeling Tools 19

diagram editor for a given domain-specific language specified in an .Ecore model. It is

important to highlight that users can define their own Ecore2GMF transformation us-

ing Epsilon Object Language (EOL). From the GMFGraph, GMFTool, GMFMap, and

user-defined Ecore2GMF transformations, EuGENia supports the generation of the GMF

generator model. The execution of the GMF generator model yields the source code of

the GMF editor for a domain-specific modeling language.

The following files are needed to build a graphical model editor using EMF and

GMF platforms Kolovos et al. (2010):

• Annotated Ecore Metamodel: it specifies the abstract syntax of the domain-

specific language, the graphical syntax of the language and various implementation

options. An.Ecore metamodel is the input file for the EMF and GMF code genera-

tors;

• GMFGraph: is the graph model that specifies the graphical elements, e.g., shapes,

connections, labels, and decorations, which are part of a diagram editor for a given

domain-specific language;

• GMFTool: specifies the tools for creating model elements to be made available for

users in the editor’s palette;

• GMFMap: this is the mapping model, which provides mappings between graphical

elements defined in the graph models and the creation tools, defined in the tooling

model with the abstract elements from an Ecore metamodel, e.g., classes, attributes,

and references;

• GMF GenModel: provides the generator model file. It provides a more fine-

grained transformation of the mapping model (GMFMap), and all the low-level

information required by the GMF code generator, producing concrete artifacts. e.g.,

Java code and configuration files, that generates the graphical editor;

• EMF GenModel: an executable generator model that captures lower-level infor-

mation. It specifies how the meta-model should be implemented in Java, i.e., the

Java package under which the code will be generated.

2.3 Safety Engineering 20

EuGENnia also provides a way to automate fixes and transformations in the

Ecore and GMF models. This feature is optional and it can be implemented via execu-

tion of EOL programs, or automatically, if they are in the same directory of the models

when the EuGENia automatic generation starts. The Ecore2GenModel.eol model trans-

formations support modifications on the Annotated Ecore Metamodel (.Ecore) and EMF

GenModel. With the ECore2GMF.eol file it is possible to modify the Annotated Ecore

Metamodel, the GMFTool model named GmfTool, the GMFGraph model (GmfGraph)

and the GMFMap model (GmfMap). The FixGMFGen.eol transformations allow the

Annotated Ecore Metamodel and the GMF GenModel (GmfGen), to be modified, (EP-

SILON, a).

2.3 Safety Engineering

This section explains the concepts of Safety Engineering and Safety Life-Cycle. This

section also describes the relationship between the assurance case with both safety and

development life-cycles.

2.3.1 Introduction

Safety Engineering is a discipline that ensures that engineered systems provide acceptable

levels of safety. Safety Engineering intends to support the identification and reduction of

safety risks to a certain acceptable level, (KANCHANA; FANEY, 2015). Safety engineer-

ing comprises a set of activities, e.g., hazard identification, risk assessment and allocation

of safety requirements, that must be performed in parallel to development. Safety Engi-

neering should also be executed from the beginning until the end of development.

2.3.2 Safety Life Cycle

The safety life cycle was incorporated into System Engineering to optimize the design

and increase system safety. The safety life-cycle comprises three major phases: analysis;

realization; and operation. The activities of each phase may vary, depending on the

adopted safety standard, (UP-TIME, 2007).

2.3 Safety Engineering 21

• Analysis: in this phase, the hazards are identified and their risks estimated e.g.,

using probabilistic attributes such as the likelihood of hazardous events and severity.

In this phase, engineers evaluate whether the risks posed by hazards are tolerable

to the industry, authorities or regulatory standards.

• Realization: it develops the conceptual design for technology, architecture, peri-

odic test interval, reliability and safety evaluation, as well as the detailed design

for installation planning, commissioning, start-up acceptance testing, and design

verification.

• Operation: it creates the validation plan, starts the review of operation and mainte-

nance planning. It starts the operation, maintenance, and periodic functional test.

This is a phase where modifications and decommissioning can be made.

Safety Engineering activities start from the initial stages of development, where

there is the possibility of taking corrective actions to eliminate or minimizing the risks

before the final decisions concerning the project being taken (LEVESON, 2003). The

hazard analysis and risk assessment, allocation of safety requirements and the provision

of safety evidence are the basic activities present in safety engineering. Safety standards

cover these basic activities in their safety life-cycle. At the system, during hazard analysis,

engineers identify hazardous failure conditions; determine the risk factor associated with

each hazardous failure; and allocate safety requirements to eliminate or minimize the

failure effects on the overall safety. Safety requirements can be specified in terms of

safety integrity levels according to risk tolerability criteria defined in the targeted safety

standard.

Safety standards provide guidance on applying methods and techniques to sup-

port safety engineering activities, aimed to improve the reliability of the system. They

may be advisory or compulsory and are normally laid down by an advisory or regulatory

body that may be either voluntary or statutory. However, safety standards can vary

according to the targeted domain, industry or even region. For example, there exists

safety standards for aerospace, automotive, nuclear and other domains, e.g., ISO 26262

for automotive domain and SAE ARP 4754A for the aerospace domain.

2.3 Safety Engineering 22

SAE ARP 4754A provides guidelines for the development of aircraft systems

taking into account the overall aircraft operating environment, functions, validation of

requirements, verification of the design implementation for certification and product as-

surance. The SAE ARP 4754a also provides best practices for demonstrating compliance

with regulations and assisting companies in developing and meeting their own internal

standards, (SAE, 2010).

The concept of assurance case has already been considered in different domains

such as defense, aerospace, nuclear and railway (KELLY; WEAVER, 2004). Therefore,

safety standards from different domains have been recommended or required the spec-

ification of an assurance case as a requirement to a system obtain certification credits

(OLIVEIRA, 2016).

Safety standards establish that the safety properties of a critical system must

be analyzed and demonstrated at different levels of abstraction, i.e., from requirements

to components. Thus, safety information can be at different levels of development life-

cycle. At the system-level, engineers identify hazards, classify their risks assign safety

requirements to minimize hazard effects. At the design, it is needed to analyze how

system failures propagate through the system architecture. Finally, at the component

level, it is needed to analyze how components can fail and contribute to the occurrence of

hazards. Therefore, it is possible to connect the safety life-cycle to the development life-

cycle, Figure 2.4 illustrates the relationship between development and safety life-cycles and

assurance case. An Assurance case is built upon the evidence provided by development

and safety life-cycles.

2.4 Assurance Case 23

Figure 2.4: Critical System Life Cycle

Nowadays, the development of an assurance case for a critical system is important

for supporting and substantiating claims about the safety of a system, or about whether

a system has achieved an acceptable level of safety.

2.4 Assurance Case

An Assurance Case or Safety Case is a clear, comprehensive and defensible argument

that a system is acceptably safe to operate in a particular context. An assurance

is clear because communicates with a third party, it is an argument because must

demonstrate how a reader can reach a reasonable conclusion about whether a system

that is not limited to the conventional engineering “design” is acceptably safe to operate

in a particular context, because, a system be absolutely safe is considered an unobtainable

goal. Thus, an assurance case has to be convincing about the system being safe enough

to operate within a particular context. An assurance case should define this context,

because, no system can be considered safe if it is used in an inappropriate or unexpected

manner, (KELLY; WEAVER, 2004).

2.4 Assurance Case 24

Several notations have been proposed in the literature to document Assurance

Cases. Initially, a free text notation has been created. However, the ambiguity inher-

ent to the natural language makes difficult to accurately expressing complex arguments.

Tabular notations have been created to overcome the limitations of natural language in

expressing an assurance case. However, tabular notations have limitations in representing

an argument whose assumptions and evidence are supported by another argument simul-

taneously (KELLY; WEAVER, 2004). The example in the following shows the limitations

of natural language on clearly expressing complex arguments.

“For hazards associated with warnings, the assumptions of [7] Section 3.4

associated with the requirement to present a warning when no equipment

failure has occurred are carried forward. In particular, with respect to hazard

17 in section 5.7 [4] that for test operation, operating limits will need to be

introduced to protect against the hazard, whilst further data is gathered to

determine the extent of the problem.” (KELLY; WEAVER, 2004).

In order to overcome the lack of expressiveness from textual and tabular nota-

tions in representing complex argument structures, graphical notations have been created

applying the Model-Driven Engineering concepts. Although graphical notations are not

perfect, due to the fact that each notation has its own limitations, they are the best way

to represent an Assurance Case. Goal Structured Notation (GSN) and the Structured

Assurance Case Metamodel (SACM) are examples of graphical notations that support

the specification of assurance cases.

2.4.1 Assurance Case Pattern

Reuse is a software engineering strategy where the process of development is directed to

reuse existing software artifacts, e.g., models, requirements, functions (SOMMERVILLE,

2011). Since assurance case is a way to argue the safety of a system, the definition of a

pattern must be broadened to reusing existing artifacts of a system.

The informal reuse of an assurance case is already commonplace especially within

stable and well-understood domains, e.g., aerospace engine controllers. However, informal

2.4 Assurance Case 25

reuse can fail, and in some cases be potentially dangerous. A number of potential problems

can arise where people are the main operators of cross-project reuse of assurance case

artifacts and some of them are: artifacts being reused inappropriately; Reuse occurring

in an ad-hoc fashion; Loss of knowledge; Lack of Consistency and Process Maturity;

and Lack of traceability. In order to solve or minimize these problems, the reuse of an

Assurance Case must be explicitly recognized and documented. This involves identifying

and abstracting the reusable elements. Reuse of a specific assurance case, e.g., a particular

fragment of evidence, can be highly unsuccessful because the structure of an assurance

case may change from a system to another. However, reuse of the general principles of

a safety case is more successful than specific ones. General argumentation principles are

present in different assurance cases. Therefore, an assurance case pattern describes a

partial solution for arguing the system safety (KELLY; MCDERMID, 1997).

The usage of patterns as a way to document and reuse successful assurance ar-

gument structures was developed by Kelly and McDermid (1997). The main objective of

an Assurance Case pattern is to provide the reuse of artifacts for the construction of a

safety argument. Assurance patterns capture the required form of an assurance argument

in a manner that is abstract from the details of a particular argument. It is possible to

use these patterns to create specific arguments by instantiating them in a specific sys-

tem. The information required by instantiating an assurance case pattern can be provided

manually from design or documentation analysis, directly from an engineer, or automated

(HAWKINS et al., 2015).

An Assurance Case pattern is a partial solution that references reusable elements

and information, e.g., evidence, solutions or artifacts required for the construction of

system safety arguments. The abstraction of details of a safety argument into a pattern

is named abstract term, i.e., a reference to the required information. The information

that will be used to instantiate a term, transforming it from abstract to non-abstract

representation should be documented in the Assurance Case pattern specification. All

abstract terms must be replaced to create/instantiate a concrete assurance case. For

example, consider the abstract argument expression “{System X} is acceptably safe”. The

“System X” is an abstract term that must be replaced by the name of a specific system.

2.5 Goal Structured Notation (GSN) 26

Assurance case pattern can be specified in graphical notations such as GSN and SACM

2.1. An Assurance Case pattern represents abstractions from a partial argumentation

solution.

2.5 Goal Structured Notation (GSN)

Goal Structured Notation is a graphical notation to support the specification of Assurance

Cases. Assurance cases have been adopted in a growing number of industries in Europe in

domains such as defense, aerospace, nuclear and railway, e.g., Eurofighter Aircraft Avionics

Safety Justification, U.K. Dorset Coast Railway Re-signalling Safety Justification and

Submarine Propulsion Safety Justifications, Kelly and Weaver (2004).

The GSN base elements are Goal, Solution, Strategy, Context and Undeveloped

Goal. Figure 2.5 illustrates the graphical representation of each one of these elements.

GSN provides a hierarchical goal structure that decomposes goals into sub-goals. GSN

allows engineers demonstrating how the goals are successively broken down into sub-

goals until reaching a point where they are supported directly by the available evidence

(solutions), i.e., whatever artifact supports the arguments/assumptions that the system

is acceptably safe, e.g., test cases and Fault Tree Analysis (FTA).

Figure 2.5: Elements of GSN notation

Figure 2.6 shows a example of goal structure in GSN. It argues that the system is

considered safe based on the safety of system functions that have been implemented. The

main goal (G1) arguing that ‘MySystem is safe’ is addressed by arguing that ‘All system

functions are safe’ (S1). The context C1 gives the information that the strategy S1 can

only be executed in the context of the system functions that have been implemented. In

this example, function1 and function2 have been implemented. Thus, the sub-goals G2

2.5 Goal Structured Notation (GSN) 27

and G3 have been constructed arguing that these functions are safe and supporting this

affirmation with solutions, which are test cases (TC1, TC2).

Figure 2.6: An Example of GSN Goal Structure

2.5.1 GSN Pattern Extension

GSN Pattern Extension provides support for specifying assurance case patterns. In this

extension, the abstract terms should be represented between brackets, i.e., {Term}, as

earlier described in the example. The GSN Pattern extension supports two types of ab-

stractions: structural abstraction, which supports generalization of relationships such

as one-to-one and one to many, and element abstraction that allows the generalization

or postponing details of an element in the argument structure. GSN pattern exten-

sion also comprises constraints to represent these abstractions: multiplicity, which adds

multiplicity to a relationship between goal and sub-goals; Optional that means that a re-

lationship between a GSN Goal and sub-goal can be optionally instantiated; and choice,

which specifies a choice that has to be made when the source element is instantiated,

i.e., what target elements will be instantiated after the instantiation of a source element

(ACWG, 2018). GSN multiplicity, optional and choice constraints provide informa-

2.6 Structured Assurance Case Metamodel (SACM) 28

tion about how to instantiate the elements associated with abstract terms. Figure 2.7

shows these constraints representation and the abstract property representation. Figure

2.8 is a simple and descriptive example of a GSN pattern representation, which has been

adapted from Kelly and McDermid (1997).

Figure 2.7: GSN Abstractions

Figure 2.8: GSN Pattern Representation Example

2.6 Structured Assurance Case Metamodel (SACM)

SACM is a standard for assurance case modeling languages developed by specifiers of

existing system assurance approaches, built upon the collective knowledge and experiences

from safety and/or security practitioners over the last two decades (WEI et al., 2019).

2.6 Structured Assurance Case Metamodel (SACM) 29

SACM provides the following features: modularity; multiple language support; controlled

vocabulary; describing the level of trust in arguments; counter-arguments; traceability

from evidence to the artifact; automated assurance case instantiation.

The Structured Assurance Case Metamodel version 1.0 was finalized in 2012, and

it consists of a top-level object container, merging the Structured Assurance Evidence

Metamodel (SAEM), and the Argumentation Metamodel (ARG) without significantly

altering the two original meta-models. The current version of SACM is the 2.1, (OMG,

2019).

Based on OMG (2019), the SACM meta-model is divided into different sets of

elements. Each set has more specific purposes, and when these sets are grouped to-

gether, they compose the SACM 2.1 meta-model illustrated in figure 2.9. The groups are

structured into assurance case base classes, assurance case packages, terminology classes,

argumentation metamodel, and artifact metamodel.

Figure 2.9: Components Of SACM 2.1

2.6.1 Assurance Case Base Classes

Assurance case base classes express the foundation concepts and relationships of base

elements of the SACM meta-model and are utilized, through inheritance, by the bulk of

the rest of the meta-model. ImplementationConstraint and Description are very

important for the next sections. ImplementationConstraint contains the conditions

2.6 Structured Assurance Case Metamodel (SACM) 30

that must be fulfilled in order to allow an abstract ModelElement become an non-

abstract. Description is used to provide the ‘content’ of a ModelElement, e.g., it

would be used to provide the text of a Claim, (OMG, 2019).

The content property of ImplementationConstraint and Description is the

MultilangString type. This type provides support for multi-languages, i.e., the inter-

nationalization of its content. Thus, it is possible to indicate the ImplementationCon-

straint conditions and the ‘content’ of a ModelElement in different languages.

Figure 2.10: SACM 2.1 Assurance Case Base Classes

2.6.2 Structured Assurance Case Packages

Structured assurance case packages allow creating ‘modules’ that may contain other assur-

ance case packages, including citations to other packages not contained within the same

package hierarchy.

2.6 Structured Assurance Case Metamodel (SACM) 31

Figure 2.11: SACM 2.1 Structured Assurance Case Packages

2.6.3 Structured Assurance Case Terminology Classes

Structured assurance case terminology classes define the concepts of term and expression,

and it provides the formalism to create them. Term can be abstract if the isAbstract

property is set true, or concrete if isAbstract is false. Abstract Terms can be consid-

ered placeholders for concrete terms, i.e., in the assurance case pattern instantiation this

abstract Term will become a concrete Term. The Expression is used to construct

expressions composed by others ExpressionElements, i.e., Terms or Expressions.

Figure 2.12: SACM 2.1 Structured Assurance Case Terminology Classes

2.6 Structured Assurance Case Metamodel (SACM) 32

2.6.4 Argumentation Metamodel

Argumentation meta-model defines the necessary concepts to model structured argu-

ments, e.g., elements, relationships among them and their properties.

Figure 2.13: SACM 2.1 Argumentation Metamodel

2.6.5 Artifact Metamodel

Artifact metamodel is used to manage corresponding objects that are available, e.g., an

artifact which is a test case linked to the requirement that validates the test case once it

has already been created. Any elements in the meta-model that extends to ModelEle-

ment can be considered an ArtifactElement, bacause the ModelElement extends the

ArtifactElment, so any ModelElement of an assurance case can be in an Artifact-

Package. Thus, the definition of ArtifactPackage is the broadest within SACM.

2.6 Structured Assurance Case Metamodel (SACM) 33

Figure 2.14: SACM 2.1 Artifact Metamodel

2.6.6 SACM Abstractions

The assurance case pattern specification is supported in SACM by properties defined in the

base classes. All SACMElement has an isAbstract property, which means if the elements

are abstract or non-abstract, and if the SACMElement is non-abstract it is possible to

set its abstractForm property which is a reference to the abstract SACMElement from

which it has been instantiated.

The ModelElement may have zero or more ImplementationConstraints in-

dicate the conditions that must be fulfilled in order for instantiating a given ModelEle-

ment, (OMG, 2019). However the ImplementationConstraint is still too generic, i.e.,

there is no specific types as in the GSN. Thus, the SACM IimplementationConstraint

can be defined as an element that gives multi-language textual information about how to

instantiate a model element.

The Terms and Expressions allow an assurance case pattern to be created

through the ModelElement description property. A Description has a content prop-

erty, which is the type of MultiLangString, with it is possible adding multi-language

description for the ModelElement. A Description element may contain Expression-

LangStrings, i.e., an element that references to ExpressionElement. An Expres-

sionElement provides the necessary placeholders to instantiate an assurance case pattern.

The name property of a ModelElement can also be an ExpressionLangString, i.e.,

the name can also contain placeholders.

2.7 Automate Pattern Instantiation 34

2.7 Automate Pattern Instantiation

This section describes the behaviour of a generic instantiation program. This section

also discusses the representation and validation of ImplementationConstraints and

the problem in building a generic instantiation program for the SACM version 2.1.

2.7.1 Instantiation Program

Model-based techniques can be used to automate assurance case pattern instantiation,

i.e., enabling the automatic generation of an assurance case via instantiation of a pat-

tern specification using information from system models. This approach has been earlier

implemented in a tool that supports the instantiation of GSN assurance case patterns.

Such approach is built upon a weaving model that provides mappings linking abstract

elements of a GSN pattern, named Role, to elements from other XMI meta-models, e.g.,

system design. In such approach, the weaving model, the GSN pattern specification, and

the required system models are inputs to an instantiation program, built using EOL.

The instantiation program replaces the Roles, i.e., abstract Terms, of the pattern. This

program replaces the abstract terms of the pattern with the information contained in

the system models which have been mapped in the weaving model, (HAWKINS et al.,

2015). However, constructing a model-based approach to automate the SACM pattern

instantiation will be different from the GSN approach, because according to Wei et al.

(2019), a abstract Term in the SACM, i.e., an abstract term of the pattern, should has an

ImpementationConstraint that stores a ‘query’ in its content property. This ‘query’

gives the information to search in the system model defined in Term externalReference

property for obtaining values for instantiating this abstract term. Therefore, there is no

need for a weaving model to specify the mapping links between abstract terms and model

elements since the queries stored into ImplementationConstraints can be used to au-

tomatically obtain the information from the system models. System models can be built

upon different technologies, e.g., text and XMI files.

Therefore, the model-based approach allows the instantiation program to be cre-

ated, and this program will be responsible for replacing all the abstract terms with the

required information in order to instantiate the pattern. Due to the nature of the model-

2.7 Automate Pattern Instantiation 35

based approach, the information for instantiating the abstract term can be obtained from

any system model, and these system models can be developed in different technologies,

e.g., a text requirement document and a XMI components diagram.

The construction of an instantiation program that is able to get the information

no matter what technology the model has bee developed is hypothetical because nowadays

there are many different technologies and with the advancing of the industry new tech-

nologies will arise. Therefore, to simplify the construction of an instantiation program, it

is useful to reduce the set of model technologies, in favor of the ones in which the system

models are developed. For example, if the required system models are stored into XMI

files, an instantiation program should be created to search for information in XMI files.

The instantiation program of Hawkins et al. (2015) is an example of this.

It is possible to imagine a generic instantiation program. This program should

have extension points/hot spots that must be implemented to get required information in

the required model, e.g., if the model is an XMI model, an extension is implemented to

get the information in this type of model, so there is no need to create or understand the

whole instantiation program, one need only understand how to get the model information

and how to send it to the program. Thus, this generic instantiation program comes close

to the ideal, hypothetical instantiation program, making it easier to get information in

diverse system models specified in different technologies.

2.7.2 A Potential Instantiation Program for SACM 2.1

A potential program for instantiating SACM patterns should manage the instantiation of

implementation constraints stated in the patterns. In the GSN, optional, multiplicity

and choice constraints stated in a pattern have their own instantiation form and restric-

tions. For example, the GSN choice constraint can only be added to GSN supportedBy

relationships. The GSN clearly establishes a distinction between multiplicity, optional

and choice constraints 2.7. In GSN, each one of these constraints has a meaning and a

graphical representation, e.g., a filled circle denotes multiplicity and a non-filled circle

denotes optional, while a choice is represented by a filled diamond.

From the analysis of the SACM meta-model, it was not found a way of repre-

2.7 Automate Pattern Instantiation 36

senting and establishing distinction among ImplementationConstraints in SACM as

provided by GSN. The lack of distinction among constraints was a design decision of

the OMG committee that could be a problem for the meta-model implementation in a

domain-specific language and modeling tool. Therefore, for a safety engineer who needs

to specify an assurance case pattern for automatic instantiation, it would be needed to

find other ways to specify and representing different types of constraints in SACM. The

suggestion of Wei et al. (2019) is that it is possible to use the content of an Implementa-

tionConstraint, attaching in it a LangString element. This LangString can be used

to store a string with the specification of an OCL constraint that describes how to get

the required information from system models to automatic instantiation of an abstract

term stated in an assurance case pattern. This constraint substitutes the necessity of

a weaving model. However, the usage of OCL expressions for specifying constraints in

SACM patterns impose issues that should be considered in the implementation of the in-

stantiation program. The Epsilon Object Language can be used to interpret the content

property of ImplementationConstraint elements specified in OCL, EOL, Structured

Query Language (SQL) and other languages.

In the SACM 2.1 meta-model, the type of the content property of a Implementa-

tionConstraint element is MultilangString type. A MultilangString provides multi-

language support, i.e., the internationalization of a content. The value attribute of Mul-

tilangString type allows the addition of various LangString elements. LangString is

an element with a defined language and a string content. Therefore, for the construction

of a generic instantiation program for SACM 2.1 assurance case patterns, one additional

step is needed. This step is to know how to get the required information specified in

different languages. However, it is not possible to construct a generic instantiation pro-

gram that enables interpreting the required information stored into a MultilangString

element in any existing language.

It is important to highlight that a specific ImplementationConstraint ele-

ment, used to instantiate abstract terms, may also have constraints. For example, a

given ImplementationConstraint element, equivalent to the GSN choice constraint,

would be restricted to relations that involve a SACM Claim. However, the SACM 2.1

2.7 Automate Pattern Instantiation 37

meta-model does not provide an explicit way to specify restrictions over Implementa-

tionConstraint elements. An ImplementationConstraint element is too generic, and

its unique restriction is that it can only be added to a ModelElement, but there is

no limit in the number of ImplementationConstraint that can be added to a given

ModelElement. Such flexibility offered by the SACM meta-model imposes challenges

on automating the instantiation of SACM assurance case patterns.

The main challenges in the construction of a generic program for automating the

instantiation of SACM assurance case patterns are: i) finding a standard way to embed the

pattern instantiation information into an ImplementationConstraint content property

for allowing the instantiation program get such information, whatever this information

and its language are; ii) establishing a way to manage potential validation rules over

the types of constraints and their possible instantiation information; iii) and how to

represent different types of constraints simplifying the construction and understanding of

an assurance case pattern.

38

3 SACM ACEditor Development Process

This chapter describes the process enacted by the author in the development of the SACM

ACEditor tool. Section 3.1 provides an overview of the whole process and a description

of each phase. Section 3.2 describes the activities related to the first phase. In Section

3.3 is presented the activities defined in phase 2. In Section 3.4 is detailed the activities

related to phase 3. Finally, Section 3.5 explores the phase 4.

3.1 Overview

The SACM ACEditor has been developed integrated with EMF and GMF platforms

using the Epsilon tools. The SACM ACEditor is built upon the Ecore meta-modeling

language. The EMF meta-model editor can be used to create other tools for handling

SACM 2.1 assurance cases. Therefore, it is possible to create newer plug-ins for validation,

transformation, wizards, and other tools. Figure 3.1 shows an overview of the process

followed by the author in the development of SACM ACEditor. The process comprises four

phases: i) Specify the DSL Elements and their Graphical Representations; ii) EuGENia

Automatic Generation; iii) Creating Complementary Plugins; iv) Fixing the Plugins.

They are detailed in the following.

3.2 Specify the DSL Elements and their Graphical Representations 39

Figure 3.1: Development Process Overview

3.2 Specify the DSL Elements and their Graphical

Representations

In this phase, the Emfatic file, which defines the meta-model elements and their mappings

to graphical representations, is created. It is important to highlight that it is necessary to

provide custom implementations for figures related to graphical representations of meta-

model elements that are not present in the standard figures from GMF platform. After

specified these figures using Emfatic annotations, i.e., the map linking meta-model el-

ements to these figures, they should be implemented. For complex meta-models that

contain multiples packages, such as the case of SACM meta-model version 2.1, it is rec-

ommended partitioning the specification of the meta-model into multiple Emfatic files.

Each Emfatic contains the specification of model elements and their mappings to figure

elements related to a package/portion of the meta-model, resulting in a set of Emfatic

3.2 Specify the DSL Elements and their Graphical Representations 40

files. Each Emfatic file contains the specification of a sub-model GMF editor plugin. En-

gineers can also create scripts in EOL to enable the EuGENia tool to fix automatically

the meta-model before code generation.

3.2.1 Meta-model Specification

Input: the domain knowledge and the meta-model. Purpose: The main objective of

this activity is creating an Emfatic file with a meta-model specification. This specification

contains the declaration of classes and other types of elements of the meta-model, their

attributes and relationships. Therefore, the meta-model specification is described in an

.emf file using the Emfatic language. In order to build a GMF Diagram Editor, annota-

tions are used for associating the meta-model elements to their graphical representations

and icons. Output: the specification of a domain-specific language in a .efm file.

Performing this activity for developing the SACM Assurance Case Editor, yields

the SACM meta-model specification in an Emfatic file and mappings linking SACM ele-

ments, e.g., Claim and ImplementationConstraint, to their respective graphical rep-

resentations using the gmf annotations as illustrated in Listing 3.1. the GMF has been

used to define which SACM elements are nodes and links. Due to limitations in repre-

senting SACM relationships as links within the GMF platform related to representing

a link with multiple sources and targets, SACM ArtifactAssetRelationship and Assert-

edRelationship were defined stated as nodes instead links. Such strategy enables both

specification and visualization of multi-source and multi-target SACM relationships.

In order to solve the problems discussed in Section 2.7.2, related to how differ-

entiate ImplementationConstraints, to allow different representations and their own

validation, the author have added a type property into the implementation constraint

model element specification on the Emfatic file (line 3 from listing 3.1).

1 @gmf . node (. . .)

2 c l a s s Implementat ionConstra int extends Ut i l i tyE lement {

3 a t t r S t r ing [0 . . 1] type ;

4 }

Listing 3.1: ImplementationConstriant specification on Emfatic

3.2 Specify the DSL Elements and their Graphical Representations 41

Table 3.1 shows the SACM elements properties that on the meta-model specifi-

cation have been mapped to default link styles of GMF. Thus, when these properties are

defined, the respective links are shown in the editor’s canvas.

Element Property Mapping

SACMElement abstractForm

SACMElement citedElement

AssuranceCasePackageInterface

implements
ArgumentPackageInterface

ArtifactPackageInterface

TerminologyPackageInterface

AssuranceCasePackageBinding

participantPackage
ArgumentCasePackageBinding

ArtifactCasePackageBinding

TerminologyCasePackageBinding

ArtifactReference referencedArtifactElement

Term origin

ArgumentReasoning structure

AssertedRelationship reasoning

Assertion metaClaim

Table 3.1: Custom Links of SACM ACEditor

3.2.2 Create Icons

Input: the meta-model specification in Emfatic file, focusing on the required declared

icons. Purpose: In this activity, the engineer creates the icons for the GMF Diagram

Editor. For each required icon that is stated in the Emfatic file, an image should be

created. Output: all images required for the pallet of a GFM Diagram Editor of the

targeted language are created. Figure 3.2 illustrates the icons that have been defined for

the SACM ACEditor.

3.2 Specify the DSL Elements and their Graphical Representations 42

Figure 3.2: Icons of the SACM ACEditor

3.2.3 Create the Figure Plugin

Input: the meta-model specification in an Emfatic file, focusing on the required custom

figures that need to be implemented. Purpose: In this activity, the engineer creates a

new Eclipse plugin project containing the implementation of figures that will be drawn on

the canvas of a GMF Diagram Editor. Each figure must be implemented as a Java class

3.2 Specify the DSL Elements and their Graphical Representations 43

that inherits directly or indirectly from “org.eclipse.draw2d.Figure”. The plugin project

where the Emfatic file is stored has a dependence relationship with this Figure Plugin.

Later, the created figure classes are referenced in the path of gmf annotations associated

with each model element in the Emfatic file. Output: a new Plugin project with the

implementation of all required custom figures. The figure classes are further used by the

GMF Diagram Editor to show the elements in the tooling pallet and drawing the graphical

elements in the canvas.

In order to simplify the view configuration on the SACM ACEditor, the hierar-

chical structure of the meta-model has been used in declarations of figure elements. Since

most elements of SACM have support multi-language , in order to adapt this support the

visualization of it has been limited to one language in the element figures. The SACM

ACEditor allows the user to change the language, updating automatically all the figures.

Figure 3.3 shows the figure implementations that are different from their icons. The other

figures are the same as their icons.

Figure 3.3: Implemented Figures Different from SACM ACEditor Icons

3.2.4 Sub-Diagrams Specification

Input: the Emfatic file of meta-model specification. Purpose: In this activity the

engineer must decompose the input Emfatic file into other Emfatic files contained sub-

diagrams specifications. Therefore, if there is no sub-diagram, this activity is not per-

formed. This activity must be executed if it is needed navigating among different GMF

Diagram Editors, i.e., via double click on an element that represents a sub-diagram, a

3.2 Specify the DSL Elements and their Graphical Representations 44

new canvas is opened showing its content.

An Emfatic file can be used to generate the GMF Diagram Editor for the meta-

model. The first class stated under @gmf.diagram annotation in an Emfatic file must

be a non-abstract class. This class defines the possible elements that can be displayed

in the canvas of a GMF Diagram Editor and it is the root class of this diagram. It is

simply creating a sub-diagram from an Emfatic input file. Basically, the sub-diagrams

are copies from this input Emfatic file, switching only the class under the @gmf.diagram

annotation. These sub-diagrams have all the elements specified on the original Emfatic

file. However, in order to reduce the number of elements of the SACM GMF Editor pallet,

the annotations of the elements that do need to be displayed in sub-diagrams should be

removed.

The properties uri and package of all sub-diagram specifications are the same

as the original Emfatic file. Therefore, the EMF Editor, Edit and Test plugins, and the

model code are the same for each sub-model editor. Only the GMF Diagram Editor is

different. Output: a set of Emfatic files. In the development of GMF Diagram Editor

for the SACM meta-model, it was created Emfatic files for: AssuranceCasePackage,

ArtifactPackage, ArgumentPackage, TerminologyPackage and ModelElement.

3.2.5 Creation of Fix Model Files

Input: zero or more Emfatic files. Purpose: In this activity, the engineer creates

the files, i.e., Ecore2GMF.eol, FixGMFGen.eol and Ecore2GenModel.eol, for fixing the

generated models, required for code generation. This is obligatory if the models required

to generate the editors need some fixes/customization. This activity may change according

to the input models. If there are no sub-diagrams in the editor, i.e., there is only one

Emfatic file with a single model specification, this activity is optional. On the other

hand, if there are sub-diagrams in the editor, this activity should be performed for linking

the sub-diagrams. These links are needed to redirect to a given sub-diagram when the

user gives a double click in a container element in the editor’s canvas. Part of this

activity is an adaptation of tutorial purposed by Wright (2005). This activity is focused

on partitioning a GMF Diagram Editor. Output: Ecore2GMF.eol, FixGMFGen.eol

3.2 Specify the DSL Elements and their Graphical Representations 45

and Ecore2GenModel.eol files. These files are further used by EuGENia to automate

fixes and changes in the required models during the code generation for the editor. The

available models for changing are the Ecore, GMFGraph, GMFTool, GMFMap, GMF

GenMode, EMF GenModel. Section 2.2.3 explains the EuGENia code generation process,

the aforementioned models and the required files to change these models.

Output: the EOL files that automates fixes in models files, i.e., Ecore2GMF.eol,

FixGMFGen.eol and Ecore2GenModel.eol. The output can be one or more of them, it

depends which models need fixes/changes for editor generation. For example, to automate

the addition of Figures Plugin dependence into GMF Diagram Editor, the FixGMFGen.eol

shuld be created with the pseudo-code bellow:

GmfGen!GenPlugin.all.first().requiredPlugins.add(<Figures Plugin ID>);

If there are sub-diagrams, the minimum fixes should be specified in FixGMF-

Gen.eol and in ECore2GMF.eol files. The ECore2GMF.eol file changes the GMFMap

model in order to allow the redirection via double-clicking on a container element. The

FixGMFGen.eol changes the GMF GenModel model linking the respective GMF Diagram

Editor that must be opened when a redirecting action is triggered by the user. The code

fixes on the ECore2GMF.eol defines the container elements that need redirection. There-

fore, if an element needs redirection, its Node Mapping on the GMFMap model needs

a related diagram on RelatedDiagrams property. This related diagram must be a Canvas

Mapping type as illustrated in Listing 3.2. The property DiagramNode.name of a Node

Mapping (line 2) has been used to verify if there is a need for redirection.

1 var nodesMapping = GmfMap! NodeMapping . a l l ;

2 i f (nodesMapping needs r e d i r e c t i o n) {

3 var canvas GmfMap! CanvasMapping . a l l . f i r s t () ;

4 nodesMapping [i] . RelatedDiagrams . add (canvas) ;

5 }

Listing 3.2: Minimum Fixes on GMFMap

The fixes on the FixGMFGen.eol depend on the minimum fixes written in the

file ECore2GMF.eol. Therefore, it is not possible to configure a redirection if the element

3.2 Specify the DSL Elements and their Graphical Representations 46

does not allows it. Therefore, the fixes on the FixGMFGen.eol file complements the fixes

written in ECore2GMF.eol, allowing the correct redirection to sub-diagrams.

• Fist step, it is necessary to ensure that each GMF Diagram Editor is unique, thus:

Make the Domain File Extension property of Gen Editor Generator unique;

Make the ModelID property of Gen Editor Generator unique;

Make the Package Name Prefix property of Gen Editor Generator unique;

Make the ID property of Gen Plugin unique;

Make the Name property of Gen Plugin unique;

• Second step, using the values provided by the step above, it is necessary to link

the sub-diagrams in order to open the respective GMF Diagram Editor. For each

Open Diagram Behaviour that needs redirection, change their properties as

bellow, otherwise, i.e., if it do not redirect, delete it:

Change Diagram Kind property to respective ModelID ;

Change Editor ID property to respective ID ;

Make Edit Policy Class Name property unique for each sub diagram redirection.

The Listing 3.3 shows a generic example of how to make the fixes above in a

FixGMFGen.eol file. In the development of the SACM ACEditor, it has been used the

property Context of Gen Context Menu for obtaining the diagram class name. The

Subject.editPartClassName property from Open Diagram Behaviour has also been

used to filter the classes that needs redirection.

1 var genEditorGenerator = GmfGen ! GenEditorGenerator . a l l . f i r s t () ;

2 var genPlugin = GmfGen ! GenPlugin . a l l . f i r s t () ;

3 genEditorGenerator . DomainFileExtension=<Respect ive Domain F i l e Extension >;

4 genEditorGenerator . ModelID=<Respect ive Model ID>;

5 genEditorGenerator . PackageNamePrefix=<Respect ive Package Name Pre f ix >;

6 genPlugin . ID=<Respect ive GMF Editor Plugin ID>;

7 genPlugin .Name=<Respect ive GMF Editor Plugin Name>;

8 f o r (odb in GmfGen ! OpenDiagramBehaviour . a l l) {

9 i f (odb needs r e d i r e c t i o n) {

3.3 EuGENia Automatic Generation 47

10 odb . DiagramKind= <Respect ive Kind>;

11 odb . EditorID= <Respect ive GMF Editor Plugin ID>;

12 odb . EditPolicyClassName= <Respect ive Edit Po l i cy Class Name>;

13 }

14 }

Listing 3.3: Minimum Fixes on GMF GenModel

It is important to highlight that if there is an annotation @gmf.compartment on

the Emfiatic specification in all elements that need redirection, the fixes written in the

ECore2GMF.eol are not needed. By default, in the EuGENia, a compartment element

allows the redirection to another diagram. Therefore, for the fixes in FixGMFGen.eol

file, if the element which has the compartment annotation should not redirect to another

diagram, its Open Diagram Behaviour must be deleted.

3.3 EuGENia Automatic Generation

In this phase, for each Emfatic file, the EuGENia will automatically generate the imple-

mentation code. The way to start this phase is by right click on the diagram/sub-diagram

file, i.e., its Emfatic specification, and selecting, in the context menu, the option ‘EuGE-

Nia > Generate GMF editor’. The activities of this phase are automatically executed.

However, It is necessary to start this phase on each diagram/sub-diagram. Thus, the

generation of GMF editor should be executed multiples times if there is more than one

Emfatic file. Section 2.2.3 describes the workflow of automatic editors generation done

by EuGENia. The result of this phase, for each Emfatic specification, yields: the GMF

Diagram Editor(s) Plugin(s), EMF Editor Plugin, EMF Edit Plugin, EMF Test Plugin,

and Model Code. At this point, the Editor should have been functional, i.e., it is possi-

ble to create and edit models. However, some fixes are necessary in order to link model

changes with possible view changes and other general properties.

3.3.1 Generate GMF Diagram Editor

Input: a diagram/sub-diagram file. Purpose: the purpose of this activity is to create

the Annotated Ecore Metamodel, EMF GenModel, GMF GenModel, GMFTool, GMF-

3.3 EuGENia Automatic Generation 48

Graph and GMFMap models required to generate both EMF and GMF editor’s code.

This activity is automated by EuGENia, EMF and GMF platforms. Output: the an-

notated Ecore Metamodel, EMF GenModel, GMF GenModel, GMFTool, GMFGraph

and GMFMap. On SACM ACEditor, each execution of this activity by the execution

of this phase has generated these outputs models for one sub-diagram. This phase have

been started firstly with AssuranceCasePackage sub-diagram, secondly with Artifact-

Package sub-diagram, thirdly with TerminologyPackage sub-diagram, fourthly with

ArgumentPackage sub-diagram, and lastly with ModelElement sub-diagram.

3.3.2 Fix Required Models

Inputs: the Annotated Ecore Metamodel, EMF GenModel, GMF GenModel, GMFTool,

GMFGraph, GMFMap, Ecore2GMF.eol, FixGMFGen.eol and Ecore2GenModel.eol. Pur-

pose: the purpose of this activity is execute the EOL code specified in the Ecore2GMF.eol,

FixGMFGen.eol and Ecore2GenModel.eol in order to polish/fix/change the The An-

notated Ecore Metamodel, EMF GenModel, GMF GenModel, GMFTool, GMFGraph,

GMFMap models. This activity is automated by EuGENia via execution of the code

specified in the Ecore2GMF.eol, FixGMFGen.eol and Ecore2GenModel.eol files. There-

fore, the input models are fixed/polished in this process. Outputs: the Polished Anno-

tated Ecore Metamodel, EMF GenModel, GMF GenModel, GMFTool, GMFGraph and

GMFMap.

The repeated execution of this phase have been the polished the models for each

sub-diagrams, i.e., the models for AssuranceCasePackage, ArtifactPackage, Termi-

nologyPackage, ArgumentPackage, ModelElement.

3.3.3 Code Generation

Input: the Polished Annotated Ecore Metamodel, EMF GenModel, GMF GenModel,

GMFTool, GMFGraph, and GMFMap. Purpose: the main purpose is generating the

GMF Diagram Editor Plugin. However, due to its dependence on the EMF Editor, if the

EMF Editor, Edit and Test plugins and the model code have not been generated, they are

generated before the generation of the GMF Diagram Editor Plugin. This activity is also

3.4 Create Complementary Plugins 49

automated by EuGENia, which generates the GMF Diagram Editor Plugin. Output: the

GMF Diagram Editor Plugin, EMF Editor Plugin, EMF Edit Plugin, EMF Test Plugin,

and Model Code.

As the final result of the execution of this phase on the development of the SACM

ACEditor, the EMF Editor Plugin, EMF Edit Plugin, EMF Test Plugin, Model Code and

a set of GMF Diagram Editor Plugins have been generated. The set of GMF Diagram Ed-

itor Plugins consist in GMF Editors for the following sub-diagrams: AssuranceCaseP-

ackage; ArtifactPackage; TerminologyPackage; ArgumentPackage; Model Ele-

ment.

3.4 Create Complementary Plugins

3.4.1 Create Validation Plugin

Input: the meta-model specification. Purpose: creating a new Eclipse Plugin project

responsible for all validations required by the meta-model not provided by the EMF core.

In this phase, the complementary plugins are developed. All the activities of this phase

are optional and there is not order to execute them.

The core of the EMF model already does a few validations. However, if there

exist constraints in the meta-model indicating that the model is not valid, a validation

plugin is required. This plugin will be responsible for the model validation, i.e., it verifies

if a model conforms to all meta-model constraints. Output: a validation Plugin.

The developed validation Plugin for the SACM ACEditor comprises an EVL

file with the validation rules defined in the meta-model. This plugin implements the

org.eclipse.epsilon.evl.emf.validation extension point, with a new constraint-

Binding, its namespaceURI field with the value of the model nsUri defined in the Emfatic

file, and the constraints field with the path of the EVL file (EPSILON, c).

3.4.2 Create Wizard Plugin

Input: the meta-model specification. Purpose: creating a Plugin to provide customized

capabilities for the users that can or not modify the actual model. A wizard plugin allows

3.4 Create Complementary Plugins 50

users creating capabilities available to the users in a context menu. The users can access

these capabilities via right-click in the canvas or in an element and selecting the wizard

option. A wizard plugin can perform in-place modifications in a model. Output: a

Wizard Plugin.

In the development of the SACM ACEditor, a wizard plugin has been developed

as an implementation of an Epsilon extension point. The extension point for the wizard

plugin was specified in an EWL file that contains the capability/options to be available

to the users. Thus, the org.epsilon.ewl.eclipse.gmf.wizards extension point has

been implemented to integrate the developed wizard to the SACM GMF Diagram Editor

(KOLOVOS et al., 2007). From this extension must, it was created a new wizard, with

namespaceURI field, which is the value for the model nsUri defined in the Emfatic file,

and the file field with the path of the EWL file.

3.4.3 Create a Transformation Plugin

Input: the meta-model specification. Purpose: creating a transformation plugin re-

sponsible for executing model to model transformations. A transformation plugin is cre-

ated when it is needed to convert a source EMF model into an equivalent target model.

However, the model transformation plugin is not integrated within GMF as the wizard

and validation plugins. The transformation can be specified as a program using Epsilon

Transformation Language (ETL). The user can perform a model transformation via the

execution of an EOL program specified in ETL. The model to model transformation

should be developed as an independent plugin not related to the GMF Diagram Editor

Epsilon (b). A model transformation plugin receives an input source model and trans-

forms it into an equivalent output model in the target language. Output: a model to

model transformation plugin.

In the development of the SACM ACEditor, a stand-alone approach has been

adopted to create a transformation plugin. The developed plugin has a class that imple-

ments the org.eclipse.popupMenu extension point, responsible for initiating the stan-

dalone model transformation. When the user gives a right-click in a source model on the

Eclipse Navigation bar, a popup menu appears with a menu item to transform the model.

3.4 Create Complementary Plugins 51

When this option is selected GSN model is transformed into an equivalent SACM 2.1

model. The SACM ACEditor only supports the transformation from GSN to SACM 2.1

assurance case models. The extension of the GSN model supported by the transformation

plugin is ‘.gsmetamodel’.

3.4.4 Create Edit.ui Plugin

Input: the meta-model implementation. Purpose: creating a new Plugin project in

order to group all the views that interact with the user, and providing custom views

to change the element properties in the EMF “Property View”. An Edit.ui plugin is

responsible for the editor’s PropertySource, i.e., what will be displayed to edit the

value of a property of a selected element on the Eclipse “Property View”. For example,

if a property “name” from an element “E” needs to open a custom dialog to change its

value. Output: a Edit.ui Plugin.

The CustomPropertySource is the editor’s custom PropertySource , used

by both EMF and GMF Diagram editors. In order to do this, the following steps should

be performed:

• Step 1: create the CustomPropertySource by:

Extending org.eclipse.emf.edit.ui.provider.PropertySource; and

Overriding the createPropertyDescriptor(IItemPropertyDescriptor ipd).

• Step 2: create custom dialogues or non-default dialogues to change properties value.

The method createPropertyDescriptor(...) of a CustomPropertySource

should return the respective PropertyDescriptor of the selected property. There-

fore, for each property that needs a custom edit value view, a class that extends

PropertyDescriptor should be created. This class should override the method

createPropertyEditor(...) that returns what will be displayed to edit a prop-

erty value.

• Step 3: linking the EMF Editor with the CustomPropertySource:

In the MANIFEST.MF file, the developer should add the Edit.ui plugin on the

EMF Editor dependencies.

3.5 Fix the Plugins 52

In editor’s presentation package, the getPropertySheetPage() method, which

creates a new PropertySheetPage, should set its PropertySourceProvider to

a new instance of AdapterFactoryContentProvider, and overriding the method

createPropertySource(...). This is needed to return a new instance of the class

CustomPropertySource.

• Step 4: linking the GMF Diagram Editor to the CustomPropertySource:

In the MANIFEST.MF file, the developer should add the Edit.ui plugin on EMF

Editor dependencies.

All PropertySection into the ‘sheet’ package of GMF Diagram Editors should

return a new instance of CustomPropertySource on getPropertySource() method,

which also needs to be overriden.

The ‘EPackage.eINSTANCE’ of the current model interface should be used

to compare the createPropertyDescriptor IItemPropertyDescriptor parameter and

the properties of the classes, i.e., to compare which property have been selected with the

existing properties of all model classes. On the SACM ACEditor, this has been used to

create custom views to edit the values of externalReference of a Term, the properties

of type Date, e.g., Activity startTime and endTime, the property element of an Ex-

pression, the lang of LangString, the lang of ExpressionLangString, the categories

of ExpressionElement, the AbstractForm of SACMElement, and the type of Im-

plementationConstraint. On the type of ImplementationConstraint property, this

approach has been adopted to block the user changing the values.

3.5 Fix the Plugins

In this phase the generated code, icons and few meta-data of the Plugins should be fixed,

thus, polishing the plugins generated by EMF and GMF platforms.

3.5 Fix the Plugins 53

3.5.1 Fix Generated Code

Input: the GMF Diagram Editor and the EMF Editor plugins. Purpose: fixing the

generated code to solve errors or link the changes in properties values with view changes.

In this activity, the engineer fixes the generated code. This activity is optional depending

on what the editor requires. On the other hand, in case of changes in element properties

implying in changes in the element view and errors in the code, this activity is mandatory.

Output: the GMF Diagram Editor and EMF Editor plugins without errors in their codes

and the view elements linked with changes in their properties.

Since the SACM ACEditor have different sub-diagrams, e.g., AssuranceCaseP-

ackage and ArtifactPackage, some class of elements that one sub-diagram contain other

can do it. For example, the ArgumentPackage sub-diagram editor contains Claims and

the ArtifactPackage sub-diagram also contain Claims. Thus for some class of elements,

the code will be repeated in multiple GMF Diagram Editors plugins. However, the link

between changes in elements properties values and view changes will be the same for each

element class. Therefore, the code that configures the element view, based on its class

properties, can be the same for each class.

The abstract classes responsible for configuring the element view have been cre-

ated for the most element classes. These classes extend the GMF ShapeNodeEditPart

for nodes and ConnectionNodeEditPart for links. These classes should override the

method handleNotificationEvent(Notification notification) that receives the el-

ement modifications via notification. Thus, when notified, the method getPrimaryShape()

should be used to obtain the figure element and change it. Therefore, the classes in the

GMF Diagram Editor edit.parts package should extend from these generic classes respon-

sible to link the element properties changes with view changes. Also, the view should

be configured when the view figure is created, allowing the saved changes on the model

to be displayed as soon as the element is created. The methods createNodeShape() for

nodes and createConnectionFigure() for links in the classes into the edit.parts package

were also modified. These methods call the method responsible for viewing the changes

in these generic classes. For example, configureView(IFigure figure) for links and

configureView() for nodes.

3.5 Fix the Plugins 54

There is a common error when the diagram domain is bigger. The Eclipse throws

the exception “exceeding the 65535 bytes limit InternalDSLLexer.java”. It occurs in the

NavigatorContentProvider class into the GMF Diagram Editor navigator package.

This class implements the ICommonContentProvider interface and has too many

lines of code in the method getViewChildren(View view, Object parentElement).

Due the nature of this function, it contain a switch with a large number of cases. A

simple way to fix this error is to create a new function for each case of this switch. In

order to make the execution of these code fixes simpler and faster, a python code has been

created. This code reads all archives of the workspace making the classes in the GMF

Diagram Editor edit.parts package extending generic EditPart classes, and modifying

the creation method from this class. The python code also fixes the possible error in the

NavigatorContentProvider, breaking the switch into various methods.

3.5.2 Fix Icons

Input: the GMF Diagram Editor, EMF Editor, and EMF Edit plugins. Purpose:

replacing the default icons that have been automatically generated into the icons folder

from the editors by custom icons, i.e., the editor’s icons. In this activity, the engineer

fixes the icons from EMF and GMF editors. Output: the GMF Diagram Editor, EMF

Editor and Edit plugins with custom icons.

In the development of the SACM ACEditor, the icons that require replacement

are kept into the icons folders from the plugins. Therefore, after the generation process,

an external folder has been created containing all editor’s custom icons. For the creation

of these custom icons folder, the icons into each icons folder has been copied and modified.

This approach allowed the automation of this activity after its first execution, i.e., the

creation of a custom icons folder. It has been created a python program that replaces

the icons stored into the icons folder of each input plugin to their respective icons in

the custom folder. This approach is interesting because if it is needed to recreate all the

plugins due to few modifications on the Emfatic files, there will be no need to change all

these icons manually. However, if the modifications into the Emfatic file change the icons,

the custom icons folder needs to be revised.

3.5 Fix the Plugins 55

3.5.3 MANIFEST.MF and plugin.xml

Input: the GMF Diagram Editor Plugins. Purpose: fixing the meta-data of the input

plugins by defining which diagram(s) will be the root(s) in the Editor. A GMF Diagram

Editor Plugin can represent a diagram or sub-diagram, thus it is necessary to define

which will be the root(s) diagram(s). Output: the GMF Diagram Editor Plugins with

the correct meta-data configuration.

In the SACM ACEditor, the root class of the diagram is the Assurance Case

Package. In order to limit it, the org.eclipse.ui.newWizards extension point have

been removed from the GMF Diagram Editors plugins that represent the Artifact Pack-

age, Terminology Package, Argument Package and Model Element. Therefore,

the user can not create a diagram file with these elements as root. This extension point

has been removed from the EMF Editor plugin.

The model creation name and description of the Assurance Case Package

GMF Diagram Editor Plugin have been changed via modification on the ‘newWizard-

Name’ and ‘newWizardDesc’ in the “plugin.properties” file. The name for the diagram

file creation has been defined as ‘Assurance Case Diagram (SACM 2.1)’, and its descrip-

tion to create a new Assurance Case diagram according to Structured Assurance Case

Metamodel version 2.1 (SACM 2.1).

56

4 SACM ACEditor Architecture

This chapter provides an overview of the components from the SACM ACEditor and a

brief exploration of each one. Section 4.1 provides an overview of the SACM ACEditor

architecture. In Section 4.2 is provided a brief explanation of SACM editor components.

Finally, Section 4.3 provides the motivation and explanation about the SACM editor

extension points.

4.1 Overview

This diagram shows the relationships between the developed components. The ‘Use’ rela-

tionship occurs when a component has a dependence on others, i.e., it requires the other

component to execute. The ‘Extension’ relationships are when a component has its exten-

sion point implemented by another component. Figure 4.1 describes the architecture of

the SACM ACEditor, which has been developed on Eclipse platform, thus it consists of a

set of Eclipse Plugins. The plugins with similar characteristics have been grouped in pack-

ages in the figure to make easier the understand and to show their common relationships

with other plugins.

4.1 Overview 57

Figure 4.1: Components Diagram of SACM ACEditor

The plugins into the GFM Editors package consist of the set of GMF Diagrams

Editors for each sub-diagram of the domain model, i.e., SACM 2.1 metamodel. Into the

EMF Editor package, there are the plugins generated by the build of the EMF Editor.

The Complementary Plugins package contains the plugins which are not a mandatory

requirement to built the Editor, they have been created in order to add functionalities to

the Editor such as validation and transformation or to improve the interaction with the

user, i.e. wizards and the edit.ui plugin.

Due the addition of a property type into ImplementationConstraint 2(two)

extension points have been developed and implemented by a component. These extensions

are explored with more details than the other components.

4.2 Components SACM ACEditor 58

4.2 Components SACM ACEditor

This section briefly explains each component of the SACM ACEditor, and their relation-

ships.

4.2.1 Figures Plugin

The org.ufjf.sacm.aceditor.sacm2.figures contains the java implementation of all

figures used on canvas of GMF Diagram editors. It not require none of the other developed

plugins.

4.2.2 Model Plugin

The org.ufjf.sacm.aceditor.sacm2 contains the model implementation and also the

Emfatics specifications of the domain models, i.e., the sub-diagrams models. This plugin

requires the figures plugin because it has an extension point that uses the figures plugin’s

classes. This plugin contains also the generic edit parts class, i.e., the classes which the

edit part classes in the diagrams plugins inherit, they responsible to link the view with

the model and reduce the code repetition.

The ‘Provider Extension’ relationship with the adapter plugin is due an imple-

mentation of these extension by the adapter. Due the property type added in Imple-

mentationConstraint, an implementation of this extension can provide its types of

ImplementationConstraint.

4.2.3 GMF Editors Plugins

This package contains the GFM diagram editors for each SACM sub-model. They have

been developed from the sub-diagrams of ModelElement, ArtifactPackage, Assur-

anceCasePackage, TerminologyPackage and ArgumentPackage.

• org.ufjf.sacm.aceditor.sacm2.diagram.modelelement: the GMF Diagram Ed-

itor for Model Element sub-diagram, with the addition of Property of Artifac-

tAsset by fixes. Thus, for any element which is not a ArtifactPackage, Assur-

anceCasePackage, TerminologyPackage and ArgumentPackage this diagram

4.2 Components SACM ACEditor 59

editor is used to access their sub-diagrams;

• org.ufjf.sacm.aceditor.sacm2.diagram.artifactpackage: the GMF Diagram

Editor for ArtifactPackage sub-diagram;

• org.ufjf.sacm.aceditor.sacm2.diagram.assurancecasepackage: the GMF Di-

agram Editor for AssuranceCasePackage sub-diagram, it is also the root diagram

editor;

• org.ufjf.sacm.aceditor.sacm2.diagram.terminologypackage: the GMF Dia-

gram Editor for TerminologyPackage sub-diagram;

• org.ufjf.sacm.aceditor.sacm2.diagram.argumentpackage: the GMF Diagram

Editor for ArgumentPackage sub-diagram.

The GMF Editors Plugins require the respective edit plugin because it contains

providers to display the model elements in a user interface. The relationship between these

plugins and the model plugin is due to their edit parts classes extend from the generic

edit parts classes. The relationship with the figures plugin is because the developed java

figures are used in their edit parts classes, which are responsible to display the elements’

figures on the GMF Diagram Editor canvas. Finally, the relationship with edit.ui plugin

because for some elements custom dialogues have been developed to edit the value of a

selected element property on ‘Property View’ of Eclipse, more details of it can be found

in Section 3.4.4.

4.2.4 EMF Editor Plugins

The plugins into this package are related to the creation of the EMF Editor. They have

been generated automatically, the tests and the edit plugin have not been modified.

• org.ufjf.sacm.aceditor.sacm2.tests: contains templates to write tests for the

model implementation. It requires the model implementation code;

• org.ufjf.sacm.aceditor.sacm2.edit: the edit plugin contains Providers to dis-

play the model elements in a user interface, e.g., it offers labels for the model ele-

4.2 Components SACM ACEditor 60

ments which can be used to display a model element showing an icon and a name.

It requires the model implementation code;

• org.ufjf.sacm.aceditor.sacm2.editor: the editor plugin is used to create and

modify instances of a model. It depends to edit plugin because it contains Providers

to display the model elements in a user interface. The relationship with edit.ui plugin

is necessary because for some elements custom dialogues have been developed to edit

the value of a selected element property on ‘Property View’ of Eclipse, more details

of it can be found in Section 3.4.4.

4.2.5 Complementary Plugins

In this package are the plugins which are not a mandatory requirement in order to built

the Editor. However, they have been created in order to add functionalities to the Ed-

itor. These functionalities are a custom validation of the model with the constraints of

SACM 2.1 metamodel, and a transformation of GSN models to SACM 2.1 models. And

also to improve the interaction with the user. Although section 3.4 contains a detailed

explanation of them, bellow there is a brief explanation of each of them.

• org.ufjf.sacm.aceditor.sacm2.validation: the ‘Validation Extension’ relation-

ship is due the property type added in ImplementationConstraint. Therefore,

an implementation of this extension can provide a validation of a Implementa-

tionConstraint with defined type. It requires the model implementation code in

order to send the elements to validate in ‘Validation Extension’;

• org.ufjf.sacm.aceditor.sacm2.transformation: this plugin does the transfor-

mation of GSN models to SACM 2.1 models. It require the root GMF Diagram Ed-

itor, i.e., org.ufjf.sacm.aceditor.sacm2.diagram.assurancecasepackage, in

order to create the diagram file after execute the transformation;

• org.ufjf.sacm.aceditor.sacm2.wizards: it provides functionalities/options that

can be accessed by right click in a element selecting ‘Wizard’ on context menu,

improving the communication with users. It requires some dialogs of edit.ui plugin;

4.3 Extensions of SACM ACEditor 61

• org.ufjf.sacm.aceditor.sacm2.edit.ui: it contains a set of dialogues and the

SACM ACEditor custom ‘PropertySource’.

All of these plugins require the model plugin. However, the transformation plugin

requires the model plugins to get the available languages to transform the model, different

from others which requires the model implementation code.

4.2.6 Adapter Plugin

The org.ufjf.sacm.aceditor.sacm2.implementation.constraints.adapter is the adapter

plugin. It implements the ‘Provider Extension’ and ‘Validation Extension’. Thus, it provides

types of ImplementationConstraints and also their own validation rules. The types provided

by this plugin are some of the GSN abstractions (multiplicity, optional and choice), in Section

2.5.1 there is a detailed explanation about them.

The ‘Provider Extension’ and ‘Validation Extension’ can have various implementations,

following the structure of this adapter. Thus, it is possible provider various types of Imple-

mentationConstraints an also different validations. In the next Section, there is a detailed

explanation about this adapter and these extension points.

4.3 Extensions of SACM ACEditor

This section aims to describe the 2(two) extensions of the SACM ACEditor, i.e., ‘Provider Ex-

tension’ and ‘Validation Extension’ showed in the overview of the editor architecture in section

4.1. The ‘Provider Extension’ is an extension for providing types of ImplementationCon-

straints and the ‘Validation Extension’ provides a way to validate these types. It contains an

overview of how the adapter plugin implements these extensions. Although they can be imple-

mented separately, i.e., one plugin implements the types provider and another implements the

validation for these types, they are not independent because a type is required for the validation.

4.3.1 Overview

Figure 4.2 shows the implementation of the extension points by the adapter plugin, it may exist

different implementations of the validation and the types provider extensions. However, they

can not have an intersection of types, i.e., they must not provide the same type(s) and they

4.3 Extensions of SACM ACEditor 62

must not valid the same type(s).

Figure 4.2: Extensions of SACM ACEditor

It is important to highlight the fact that with the addition of a property type on

ImplementationConstraints, and the usage of the Eclipse extension points for providing the

types and their validation rules gave more flexibility to ImplementationConstraints.

4.3.2 Provider Extension

The org.ufjf.sacm.aceditor.sacm2.ImplementationConstraintTypesProvider is the id of

this extension point which an implantation of this extension point needs to use. From this

extension must be create a new Provider whose the Provider field is the class which implements

the ImplementationConstraintTypesProvider interface.

4.3 Extensions of SACM ACEditor 63

The implementations of this extension point can provide different types to be added

in the model elements. These ImplementationConstraints with types can be added in the

elements by the wizard plugin, it can be accessed by right-clicking in an element selecting option

‘ADD ImplementationConstraint with a type’ on the option ‘Wizard’ on the context menu, then

a window is opened showing the available types for the selected element. Some problems showed

in Section 2.7.2 which discuss an instantiation program for the SACM have been solved by this

extension point. Figure 4.3 shows all relevant relationships, classes and plugins related with this

extension.

Figure 4.3: Extension for Provide Types of ImplementationConstraint

The problem how to represent ImplementationConstraints in a model element fig-

ure have been solved by some methods and the relationships with the following figure classes:

the NodeRelationship is a figure class which represents all SACM relationships which ex-

4.3 Extensions of SACM ACEditor 64

tends from ModelElement and are nodos on diagram; the SACMModelElementNode is

the figure super class which represents all the SACM elements which extend from ModelEle-

ment except for the relationships; and finally the SACMModelElementRelationship is the

figure super class which represents the relationships between a NodeRelationship figure and

a SACMModelElementNode figure. Thus with the method getICustomPainter of Im-

plementationConstraintTypesProvider gets the IModelElementImplementationCon-

straintPainter which is the custom drawn which will be drawn a on a ModelElement figure

to represent that it has an ImplementationConstraint of a type. However this method dos

not handle collisions, thus it is necessary know the drawn of all types ImplementationCon-

straint which can be added in that element, in order to implement a drawn which wont overlap

the others. If the return of this method is null nothing will be drawn on the model element

figure.

The problem how to represent ImplementationConstraints on the editor canvas,

have been solved by the relationship between SACMImplementationConstraint figure class

with the interface IImplCostraitPainter. The getIConstPainter method of Implementa-

tionConstraintTypesProvider gets the IImplCostraitPainter to draw a custom figure for

a ImplementationConstraint on the editor canvas. If the return of this method is null the

ImplementationConstraint default figure will be drawn.

Finally, how to save the information required for a type of ImplementationCon-

straint in the model, e.g., a ‘query’ which finds in other model the value of an abstract Term,

in order to allow the creation of a program able to get it. It have been solved by the methods

of needsInformation and getInformation of ImplementationConstraintTypesProvider.

the needsInformation method returns if in order to add a specific type of Implementation-

Constraint in a element it is necessary more information, if it is necessary the getInformation

is called. The getInformation return a TypeInformation which contains a complement and

the information both strings. This information is saved in the MultiLangString content of

ImplementationConstraint as an instance of LangString, the value of its lang property fol-

lows the template ‘< Type >:< TypeComplement >’, e.g., ‘type1:complement’, and its content

property contains the information required. Therefore, a standard way to embedd the pattern

instantiation information into an ImplementationConstraint is suggested. This allows the

instantiation program get such information, whatever this information and its language are.

The hasType method is used for selecting the ImplementationConstraintType-

4.3 Extensions of SACM ACEditor 65

sProvider implementation. Thus, the reason why two or more implementations of this exten-

sion point must not provide the same type(s) is that only one of them will be selected.

4.3.3 Validation Extension

The org.ufjf.sacm.aceditor.sacm2.validation.ImplementationConstraintValidator is

the id of this extension point which an implantation of this extension point needs to use. From

this extension must be create a new Validator whose the Validator field is the class which

implements the ImplementationConstraintValidator interface.

The implementations of this extension point can provide validation rules for Imple-

mentationConstraint with types. This validation works integrated with the validation plu-

gin. Thus, when a ImplementationConstraint has a type the validation plugin search for its

rules/restrictions among all existing implementations of this extension. The problem of estab-

lishing a way to manage potential validation rules over the types of constraints and their possible

instantiation information has been solved by this extension point, this problem is presented in

Section 2.7.2 which discuss an instantiation program for the SACM. Figure 4.4 shows all relevant

relationships, classes and plugins related with this extension.

Figure 4.4: Extension for Validate ImplementationConstraint With a Type

The method validate of ImplementationConstraintValidator validate a Mod-

elElement with a ImplementationConstraint with a type. If the return of validate method

is false for a ModelElement, then the method getErrorMessage is called in order to get a

4.3 Extensions of SACM ACEditor 66

message to show the users why the validation failed.

The validation plugin extension point may have various implementations. However,

as ‘Provider Extension’ the hasType method is used for selecting the ImplementationCon-

straintValidator implementation. Thus, the reason why two or more implementations of this

extension point must not validate the same type(s) is that only one of them will be selected to

validate the types(s).

67

5 Assurance Case Patterns

This chapter presents the patterns that have been used to specify the case studies. Section 5.1

explores the Hazard Avoidance pattern, Section 5.2 the Risk Argument pattern, Section 5.3 the

Absence of Hazardous Software Failure Mode pattern and Section 5.4 the Artifact Argument

pattern.

5.1 Hazard Avoidance Pattern

Figure 5.1 shows the GSN representation of this pattern and Figure 5.2 shows the equivalent

representation of it in the SACM ACEditor. The hazard avoidance pattern (KELLY; MCDER-

MID, 1997) decomposes the augment that the system is acceptable safe (SysSafe) into sub-claims

arguing over the risk posed by each system hazards (RiskHzdX) is acceptable. This argumenta-

tion strategy (ArgOverRiskHzds) is in the context of the identified system hazards(IdentHzds).

This whole argumentation is in the context the system properties as definition (SystemDefn)

and environment (Environment). This argumentation has also a target safety standard, which

it depends on to be acceptable or not acceptable as safe.

Figure 5.1: Hazard Avoidance Pattern in GSN

5.2 Risk Argument Pattern 68

Figure 5.2: Hazard Avoidance Pattern in SACM

5.2 Risk Argument Pattern

This pattern argues the absence of component failures that can cause a given hazard. This

argument is in the context of the ASIL allocated to each system hazard stated in SafetyStandard

of the hazard avoidance.

Figure 5.3 shows the GSN representation of this pattern and Figure 5.4 shows the

equivalent representation of it in the SACM ACEditor. The RiskHazardX top-level claim is

stated in the context of the risk classification allocated to the system hazard in Acceptable,

and the top-level failure condition leading to this hazard in claim TLFailureCondition. The

top-level claim is decomposed into sub-claims arguing the mitigation of component failures that

directly contribute to the occurrence of this hazard. Such decomposition strategy is defined

in the context of the causal chain defined in the hazard fault tree. The elements of this chain

are decomposed by AbsHSFM, which is supported by sub-claims arguing the absence of each

contributing hazardous software failure mode.

5.3 HSFM Pattern 69

Figure 5.3: Risk Argument Pattern in GSN

Figure 5.4: Risk Argument pattern in SACM

5.3 HSFM Pattern

An Absence Hazardous Software Failure Mode (HSFM) fault mitigation pattern argues that

the occurrence of primary, secondary, and control failure modes of a given fault tree gate, e.g.,

AND/OR gates, do not lead the system to an unsafe state.

Figure 5.5 shows the GSN representation of this pattern and Figure 5.6 shows the

equivalent representation of it in the SACM ACEditor. This pattern decomposes the claim

ABSHSFMType into tree sub-claims: i) AbValPrimary arguing that the current failure mode

is acceptable; ii) AbValSecondary arguing that the failure modes of other components that

5.3 HSFM Pattern 70

contribute to the current failure mode are acceptable; iii) AbTypeControl arguing that the

contributory software functionality component is scheduled and allowed to run once. The

AbValSecondary is further decomposed into fault mitigation sub-claims (HSFMAccept) arguing

that all causes of each failure event specified in fault tree leaf nodes are acceptable, i.e., they do

not lead the system to an unsafe state. For each fault tree non-leaf node, the AbsHSFMType is

decomposed into other “Absence Hazardous Software Failure Mode” (HSFM) fault mitigation

argument.

Figure 5.5: HSFM pattern in GSN

5.4 Functional Hazard Assessment Pattern 71

Figure 5.6: HSFM Pattern in SACM

5.4 Functional Hazard Assessment Pattern

The OMG-SACM provides support for the specification of artifact provenience, e.g., where an

artifact came from and who is involved with an artifact, which GSN does not provide. Thus,

artifact patterns related to product requirements, architecture, functional hazard assessment,

fault trees, and FMEA results, can be created with the support of the SACM 2.1 model editor.

Figure 5.7 shows the Functional Hazard Assessment artifact pattern specification in the

SACM ACEditor. This pattern defines that a Hazard Analysis artifact is resultant from perform-

ing the Hazard Identification activity with the support of a given Hazard Analysis Technique.

A Hazard Analysis artifact can be owned by one or more participants involved in the exe-

cution of Hazard Analysis activities. Finally, a Hazard Analysis artifact is associated with a

Hazard Analysis File resource generated at the end of the hazard analysis process, (OLIVEIRA,

2016).

5.4 Functional Hazard Assessment Pattern 72

Figure 5.7: Functional Hazard Assessment Pattern in SACM

It is necessary to be able to cite artifacts that provide supporting evidence, context,

or additional description within an argument structure. Thus, ArtifactReference element

of SACM allows there to be an objectified citation of this information within the structured

argument, thereby allowing the relationship between this artifact and the argument to also be

explicitly declared, (OMG, 2019).

73

6 Case Study of Hybrid Breaking System

This chapter contains the case study of the Hybrid Breaking System (HBS). Section 6.1 contains

a brief architecture of HBS explanation. The assurance cases patterns instantiated for this case

study are described in Section 6.2

6.1 Architecture of HBS

The objective of this system is the integration in electrical vehicles, particularly for propulsion

architectures that comprise one electrical motor per wheel, (FREITAS; CASTRO; ARAUJO,

2011). This system is called hybrid because the braking is achieved by the combined action

of electrical In-Wheel Motors (IWMs), and frictional Electromechanical Brakes (EMBs). The

IWMs work as generators and transform the vehicle kinetic energy into electrical energy which

charges the Powertrain Battery, thus it increases the vehicle’s range. Omission or incorrect

braking torque failures in the wheels while braking may lead to catastrophic consequences for

the driver, thus the HBS configurations should not cause them.

Figure 6.1 shows the general architecture of HBS. MechElecPedal is the hardware that

processes the actions from the mechanical pedal and captures the driver presses. The Com-

municationBus components represent a duplex bus communication software that sends braking

torque to the wheel-braking units. AUXBattery is hardware that provides power to the brake

units while braking. PWTBattery is also hardware that stores the electrical energy produced

by the in-wheel motors (IWMs).

6.1 Architecture of HBS 74

Figure 6.1: Architecture of HBS

Figure 6.2: Architecture of Wheel Break Unit of HBS

Figure 6.2 shows the internal components of a Wheel Break Unit. Each wheel brake

unit contains a Wheel Node Controller (WNC) which calculates the amount of braking torque

to be produced by each wheel braking actuator, and it sends commands to Electromechanical

Braking (EMB) and In-Wheel Motors (IWM) power converters, they are responsible to control

the EMB and the IWM braking actuators. While braking, the electric power flows from the

AUXBattery to EMB via EMB Power Converter, and IWM acts as a power generator providing

energy for the Powertrain Battery via IWM Power Converter.

6.2 SACM Assurance Cases 75

6.2 SACM Assurance Cases

In this section, the assurance case patterns which have been presented in Chapter 5 are instan-

tiated for the HBS system. Although these instances do not cover all the HBS, the application

of all patters are presented.

6.2.1 Overview

Figure 6.3 shows an overview of the instantiated assurance case patterns. This overview describes

how these patterns are related. It contains only the parts of the assurance case which will be

explored separately in the next sections.

Figure 6.3: HBS Assurance Case Overview

The VB cites the RiskValueBraking and AbsBU3AB cites the AbsBU3AddBrakV. The

IdentHzds has the Hazard Analysis as one of its referenced artifact elements.

6.2.2 Hazard Avoidance

The Hazard Avoidance Module decomposes the claim arguing that the HBS system is acceptably

safe to operate in the four-wheel brake units environment, into two sub-claims VB and NB4W

arguing that the risk posed by each hazard is acceptable. Each of these sub-claims cites claims

6.2 SACM Assurance Cases 76

which are encapsulated in a separated risk argument module. Figure 6.4 shows the internal

vision of Hazard Avoidance Module.

Figure 6.4: HBS Hazard Avoidance

6.2.3 Risk Argument

The RiskValueBraking top-level claim is stated in the context of ASIL “D” allocated to “Value

Braking” system hazard in Acceptable, and the top-level failure condition leading to this haz-

ard in claim TLFailureCondition. The top-level claim is decomposed into sub-claims arguing

the mitigation of component failures that directly contribute to the occurrence of “Value Brak-

ing” hazard (ArgOverMitgContrFailures), in this case, incorrect values in “Brake Unit1.Add”

(AbsBU1AB) and “Brake Unit3.Add” (AbsBU3AB) component outputs, which can cause an

incorrect braking torque while braking. Such decomposition strategy is defined in the context

of the causal chain defined in the “Value Braking” fault tree. AbsBU1AB and AbsBU3AB

cites claims in AbsBU1AddBrakV Module and AbsBU3AddBrakV Module respectively, which

are supported by sub-claims arguing the absence of each contributing hazardous software failure

mode. Figure 6.5 shows the internal vision of RiskValBrak Module.

6.2 SACM Assurance Cases 77

Figure 6.5: HBS Risk Argument

6.2.4 HSFM

The AbsBU3AddBrakV Module decomposes the claim AbsBU3AddBrakV into sub-claims: The

AbValPrimary argues that an internal failure in “Brake Unit3.Add” component is acceptable;

AbValSecondary argues that the failure modes of other components that contribute to incor-

rect value of “Brake Unit3.Add.Braking” output port are acceptable ; and AbTypeControl ar-

guing that the “Brake Unit3.Add” component is scheduled and allowed to run once”. The

AbValSecondary is further decomposed into fault mitigation sub-claims arguing that incorrect

values in “Brake Unit3.EMB Power Converter” and “Brake Unit3EMB” components are ac-

ceptable.

BU3EMBPowerConvVFailure1Accept and BU3EMBVFailure1Accept claims argue that

all causes of each failure event specified in fault tree leaf nodes do not lead the system to an

unsafe state. The claim AbValSecondary is also decomposed into other “Absence Hazardous

Software Failure Mode” fault mitigation argument modules, e.g., the AbsBU3NCO1 argument

module. Figure 6.6 shows the internal vision of AbsBU3AddBrakV Module.

6.2 SACM Assurance Cases 78

Figure 6.6: HBS HSFM Assurance Case

6.2.5 Functional Hazard Assessment

The Hazard Analysis Module artifact package, illustrated in Figure 6.7, provides the provenance

for the hazard log artifact referenced by IdentHzd within Hazard Avoidance Module. This

artifact is owned by two safety analysts who developed it with the support of “HaZard and

OPerability Study analysis” technique and “HiP-HOPs” compositional safety analysis tool. The

hazard log artifact was created during the Hazard Identification activity initiated by the owners

in “10 Set of 2015” and finished in “14 Set 2015”. The hazard log artifact is available in the

form of hyperlinked web pages. Figure 6.7 shows the internal vision of Hazard Analysis Module.

6.2 SACM Assurance Cases 79

Figure 6.7: HBS Functional Hazard Assessment

80

7 Conclusion

This chapter contains the contributions of this work. It also discusses some research directions.

7.1 Contributions

The most important contribution of this work is the development of an assurance case editor

in compliance with the OMG SACM standard, the SACM ACEditor is available at GitHub1.

The graphical representation of some elements has been developed in SACM ACEditor, because

SACM 2.1 meta-model does not provide any graphical representation for the elements beyond

those within argumentation metamodel. Thus, this graphical representation can contribute to

the development of the SACM graphical notation.

The type of property added to ImplementationConstraint elements provide a way

to mark the code/query that should be used for automatic instantiation into their multi-language

content, which is another contribution of this work. GSN pattern extensions have their semantics,

syntax, and representations for constraints. With the 2 extension points of the developed editor,

some of the GSN constraints have been incorporated into the SACM ACEditor. The tool

supports the visualisation of multiplicity, optional and choices as GSN notation. Therefore,

the representation of GSN constraints in SACM ACEditor is also a contribution of this work.

The other contribution of this work is the development of a model transformation

plugin to support GSN to SACM model transformations. The transformation reduces the cost

of creating SACM models from GSN models. Although it only does the transformation of models

developed in a specific GSN editor, the transformation from other GSN models developed in

other editors can be done indirectly. The description of the process followed by the author for

creating the EMF-based editors is also a contribution of this work. Tool developers can follow

this process to build modeling tools for their domain-specific languages.

Some of the contributions can contribute to the development of an automatic instan-

tiation program. However, the SACM Aceditor does not provide support for the automatic

assurance case pattern instantiation. Another limitation is the lack of experimental studies to

validate the developed editor in an industrial context.

1https://github.com/LuisFelipeAN/SACM-ACEditor

7.2 Research Directions 81

7.2 Research Directions

The Creation of a generic instantiation program for the SACM is one of the research directions.

This program can get the instantiation query/information of ImplementationConstrains and

creating the model from an assurance case pattern. However, this depends on Implementation-

Constrains and where they must be to make possible the automatic instantiation. Therefore,

the definition of the types of ImplementationConstrains that could lead this instantiation is

the other research direction.

BIBLIOGRAPHY 82

Bibliography

ACWG. Goal Structuring Notation Community Standard (Version 2). [S.l.]: SCSC, 2018. Avail-
able at: <https://scsc.uk/scsc-141B>. Access on: May 15th, 2019.

ATKINSON, C.; KUHNE, T. Model-driven development: a metamodeling foundation. IEEE
software, IEEE, v. 20, n. 5, p. 36–41, 2003.

BRANCO, K. R. et al. Tiriba-a new approach of uav based on model driven development and
multiprocessors. In: IEEE. 2011 IEEE International Conference on Robotics and Automation.
[S.l.], 2011. p. 1–4.

ECLIPSE. Eclipse Modeling Framework (EMF). 2018. Available at:
<http://www.eclipse.org/modeling/emf/>. Access on: May 4th, 2018.

ECLIPSE. Epsilon. 2018. Available at: <https://www.eclipse.org/epsilon/>. Access on: May
22th, 2018.

ECLIPSE. Graphical Modeling Project (GMP). 2018. Available at:
<http://www.eclipse.org/modeling/gmp/>. Access on: May 4th, 2018.

EPSILON. Customizing a GMF editor generated by EuGENia. Available at:
<https://www.eclipse.org/epsilon/doc/articles/eugenia-polishing/>. Access on: Jun 7th,
2019.

EPSILON. Example: Use Epsilon in standalone Java applications. Available at:
<https://www.eclipse.org/epsilon/examples/index.php>. Access on: Jun 11th, 2019.

EPSILON. Live validation and quick-fixes in GMF-based editors with EVL. Available at:
<https://www.eclipse.org/epsilon/doc/articles/evl-gmf-integration/>. Access on: Jun 11th,
2019.

FREITAS, D.; CASTRO, R. de; ARAUJO, R. E. Hybrid abs with electric motor and friction
brakes. 2011.

GSN. Goal Structuring Notation. 2018. Available at: <http://www.goalstructuringnotation.info/
>. Access on: November 14th, 2018.

HAILPERN, B.; TARR, P. Model-driven developmen: The good, the bad, and the ugly. IBM
systems journal, v. 45, n. 3, p. 541–561, 2006.

HAWKINS, R. et al. Weaving an assurance case from design: a model-based approach. In: IEEE.
High Assurance Systems Engineering (HASE), 2015 IEEE 16th International Symposium on.
[S.l.], 2015. p. 110–117.

JOHNSON, L. A. et al. Do-178b, software considerations in airborne systems and equipment
certification. Crosstalk, October, v. 199, 1998.

KANCHANA, S.; FANEY, J. Study of safety management by using gis in coimbatore. Interna-
tional Journal of Scientific & Technology Research, v. 4, n. 8, p. 367–370, 2015.

KELLY, T.; WEAVER, R. The goal structuring notation–a safety argument notation. In: CITE-
SEER. Proceedings of the dependable systems and networks 2004 workshop on assurance cases.
[S.l.], 2004. p. 6.

BIBLIOGRAPHY 83

KELLY, T. P.; MCDERMID, J. A. Safety case construction and reuse using patterns. In: Safe
Comp 97. [S.l.]: Springer, 1997. p. 55–69.

KOLOVOS, D. et al. The Epsilon Book. 2013. Available at:
<https://www.eclipse.org/epsilon/doc/book/>. Access on: May 20th, 2018.

KOLOVOS, D. S. et al. Bridging the epsilon wizard language and the eclipse graphical modeling
framework. In: Modeling Symposium, Eclipse Summit Europe, Ludwigsburg, Germany. [S.l.:
s.n.], 2007.

KOLOVOS, D. S. et al. Taming emf and gmf using model transformation. In: SPRINGER.
International Conference on Model Driven Engineering Languages and Systems. [S.l.], 2010. p.
211–225.

LEVESON, N. White paper on approaches to safety engineering. Disponible en ligne sur le site
de l’auteur (sunnyday. mit. edu/caib/concepts. pdf), 2003.

MELLOR, S. J.; CLARK, T.; FUTAGAMI, T. Model-driven developmen: guest editors’ intro-
duction. IEE software, v. 20, n. 5, p. 14–18, 2003.

OLIVEIRA, A. L. d. A model-based approach to support the systematic reuse and generation of
safety artefacts in safety-critical software product line engineering. Thesis (Phd) — Universidade
de São Paulo, 2016.

OLIVEIRA, A. L. D. et al. Variability management in safety-critical systems design and de-
pendability analysis. Journal of Software: Evolution and Process, Wiley Online Library, v. 31,
n. 8, p. e2202, 2019.

OMG, O. M. G. Structured Assurance Case Metamodel (SACM). 2019. Available at:
<https://www.omg.org/spec/SACM/2.1/Beta1/PDF>. Access on: May 20th, 2019.

SAE. Guidelines for Development of Civil Aircraft and Systems ARP4754A. 2010. Available at:
<https://www.sae.org/standards/content/arp4754a/>. Access on: May 22th, 2018.

SELIC, B. The pragmatics of model-driven development. IEEE software, IEEE, v. 20, n. 5, p.
19–25, 2003.

SOMMERVILLE, I. Engenharia de Software. 6. ed. [S.l.]: Peterson Education, 2003.

SOMMERVILLE, I. Engenharia de Software. 9. ed. [S.l.]: Peterson Education, 2011.

STEINBERG, D. et al. EMF: eclipse modeling framework. 2. ed. [S.l.]: Peterson Education,
2008.

UP-TIME, I. P. Safety life-cycle. Citeseer, 2007.

WEI, R. et al. Model based system assurance using the structured assurance case metamodel.
Journal of Systems and Software, Elsevier, 2019.

WRIGHT, J. GMF Diagram Partitioning. 2005. Available at:
<https://jevon.org/wiki/GMF Diagram Partitioning>. Access on: Jun 11th, 2019.

84

A Case Study of Tiriba Flight Control

This chapter contains the case study of Tiriba. Section A.1 contains a brief architecture of

Titriba explanation. The assurance cases patterns instantiated for this case study are described

in Section A.2.

A.1 Architecture of TFC

The Tiriba is a small autonomous electrical airplane used into pre-defined missions and appli-

cations, e.g, agricultural and environmental monitoring, (BRANCO et al., 2011). However, this

case study focus on part of this system, the Tiriba Flight Control (TFC) which was presented

by (OLIVEIRA, 2016) and (OLIVEIRA et al., 2019). The TFC consists of a control subsystem

that aims to start the flight mode, process, and setup of flight commands, keep flight conditions

and execute commands sent by the navigation subsystem, (OLIVEIRA et al., 2019). It has

four types of pilots autonomous, auto, assisted and manual, the components of these types are

highlighted in Figure A.1.

A.1 Architecture of TFC 85

Figure A.1: Architecture of TFC

A.2 Tiriba Assurance Cases 86

A.2 Tiriba Assurance Cases

A.2.1 Overview

Figure A.2 shows an overview of the instantiated assurance case patterns. This overview de-

scribes how these patterns are related. It contains only the parts of the assurance case which

will be explored separately in the next sections.

Figure A.2: Tiriba Assurance Case Overview

The NPC claim cites the RiskNoPilotCom and AbsPWMDecFlCO claim cites the

AbsOmPWMDecFlcon. The IdentHzds has the Hazard Analysis as one of its referenced ar-

tifact elements.

A.2.2 Hazard Avoidance

The Hazard Avoidance Module decomposes the claim arguing that Tiriba system is acceptably

safe to operate in the all pilots’ environment, into two sub-claims NPC and VPC arguing that

the risk posed by each hazard is acceptable. Each of these sub-claims cites claims which are

encapsulated in a separated risk argument module. Figure A.3 shows the internal vision of

Hazard Avoidance Module.

A.2 Tiriba Assurance Cases 87

Figure A.3: Tiriba Hazard Avoidance

A.2.3 Risk Argument

The RiskNoPilotCom top-level claim is stated in the context of DAL “A(4)” allocated to

“No Pilot Commands” system hazard in Acceptable, and the top-level failure condition lead-

ing to this hazard in claim TLFailureCondition. The top-level claim is decomposed into sub-

claims arguing the mitigation of component failures that directly contribute to the occurrence

of “No Pilot Commands” hazard (ArgOverMitgContrFailures), in this case, omission failures

in “PWMDecoder” (AbsPWMDecFLCO) and “FailSafeController” (AbsFCO) component out-

puts, which contribute to the occurrence of the omission of UAV flight control commands.

Such decomposition strategy is defined in the context of the hazard causal chain defined in the

“No Pilot Commands” fault tree. AbsFCO and AbsPWMDecFLCO cites claims in other mod-

ules, AbsFSCFilComOmission Module and AbsOmPWMDecFlCom Module respectively, which

are supported by sub-claims arguing the absence of each contributing hazardous software failure

mode. Figure A.4 shows the internal vision of RiskNoPilotCom Module.

A.2 Tiriba Assurance Cases 88

Figure A.4: Tiriba Risk Argument

A.2.4 HSFM

The AbsOmPWMDecFlCom Module decomposes the claim AbsOmPWMDecFlCom into sub-

claims: AbValPrimary arguing that an internal failure in “PWMDecoder component is accept-

able”; AbValSecondary arguing that the failure modes of other components that contribute to

omission of “PWMDecoder.FlightControls” output port are acceptable ; and AbTypeControl

arguing that the “PWMDecoder” component is scheduled and allowed to run once. The

AbValSecondary is further decomposed into fault mitigation sub-claims arguing that omission

failures in “BusCreator1” and “PilotJoystick” components are acceptable. BusCreator1Accept

and PilotJoystickAccept claims argue that all causes of each failure event specified in fault tree

leaf nodes do not lead the system to an unsafe state. Figure A.5 shows the internal vision of

AbsPWMDecFlCon Module.

A.2 Tiriba Assurance Cases 89

Figure A.5: Tiriba HSFM Assurance Case

A.2.5 Functional Hazard Assessment

The Hazard Analysis Module artifact package, illustrated in Figure A.6, provides the provenance

for the hazard log artifact referenced by IdentHzd within Hazard Avoidance Module. This

artifact is owned by two safety analysts who developed it with the support of “HaZard and

OPerability Study analysis” technique and “Osate-AADL” tool. The hazard log artifact was

created during the Hazard Identification activity initiated by the owners in “15 Set of 2015” and

finished in “26 Set 2015”. The hazard log artifact is available in the form of hyperlinked web

pages. Figure A.6 shows the internal vision of Hazard Analysis Module.

A.2 Tiriba Assurance Cases 90

Figure A.6: Triba Functional Hazard Assessment

	List of Figures
	List of Tables
	List of abbreviations
	Introduction
	Problem
	Objectives
	Results
	Organization

	Background
	Model-Driven Engineering
	Modeling Tools
	Eclipse Modeling Framework
	Epsilon
	Graphical Modeling Framework and EuGENia

	Safety Engineering
	Introduction
	Safety Life Cycle

	Assurance Case
	Assurance Case Pattern

	Goal Structured Notation (GSN)
	GSN Pattern Extension

	Structured Assurance Case Metamodel (SACM)
	Assurance Case Base Classes
	Structured Assurance Case Packages
	Structured Assurance Case Terminology Classes
	Argumentation Metamodel
	Artifact Metamodel
	SACM Abstractions

	Automate Pattern Instantiation
	Instantiation Program
	A Potential Instantiation Program for SACM 2.1

	SACM ACEditor Development Process
	Overview
	Specify the DSL Elements and their Graphical Representations
	Meta-model Specification
	Create Icons
	Create the Figure Plugin
	Sub-Diagrams Specification
	Creation of Fix Model Files

	EuGENia Automatic Generation
	Generate GMF Diagram Editor
	Fix Required Models
	Code Generation

	Create Complementary Plugins
	Create Validation Plugin
	Create Wizard Plugin
	Create a Transformation Plugin
	Create Edit.ui Plugin

	Fix the Plugins
	Fix Generated Code
	Fix Icons
	MANIFEST.MF and plugin.xml

	SACM ACEditor Architecture
	Overview
	Components SACM ACEditor
	Figures Plugin
	Model Plugin
	GMF Editors Plugins
	EMF Editor Plugins
	Complementary Plugins
	Adapter Plugin

	Extensions of SACM ACEditor
	Overview
	Provider Extension
	Validation Extension

	Assurance Case Patterns
	Hazard Avoidance Pattern
	Risk Argument Pattern
	HSFM Pattern
	Functional Hazard Assessment Pattern

	Case Study of Hybrid Breaking System
	Architecture of HBS
	SACM Assurance Cases
	Overview
	Hazard Avoidance
	Risk Argument
	HSFM
	Functional Hazard Assessment

	Conclusion
	Contributions
	Research Directions

	Bibliography
	Case Study of Tiriba Flight Control
	Architecture of TFC
	Tiriba Assurance Cases
	Overview
	Hazard Avoidance
	Risk Argument
	HSFM
	Functional Hazard Assessment

