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Abstract

Deep learning is a highly successful class of methods in the artificial intelligence (AI)
field that has a variety of applications. To perform well, deep learning models require
a large amount of high-quality annotated data. Data annotation is a time-consuming
and laborious task that requires a significant amount of human labor, which makes it
expensive. This work aims to reduce the time required to annotate image datasets by
building an easy-to-use software tool that has semi-automated annotation powered by an
artificial intelligence model. We developed a web-based tool and employed HQ-SAM, a
deep neural network for image segmentation based on Vision Transformers, to generate
polygon annotations based on the user’s prompts. Although HQ-SAM has a good zero-
shot generalizability, we fine-tuned it on the Bean Leaf Dataset to evaluate how well the
network adapts to specific tasks. We observed an increase in accuracy of the fine-tuned
model in comparison with the pre-trained one. We tested our tool with 20 participants,
all of whom are from the computer vision and graphics fields. We asked them to annotate
the same two images both manually and Al-aided, and we recorded the annotation times.
Lastly, we asked the participants to fill out a usability form about their user experience. In
our evaluation, we registered a median speedup of 1.5x regarding the Al-aided annotation
compared to manual annotation and overly positive answers regarding our tool’s ease of

use and usefulness.

Keywords: Deep learning, web application, semi-automated annotation, image datasets,

vision transformers.



Resumo

A aprendizagem profunda é uma classe de métodos muito bem-sucedida no campo da
inteligéncia artificial (IA), possuindo uma ampla gama de aplicagoes. Para ter um bom
desempenho, os modelos de aprendizagem profunda exigem uma grande quantidade de
dados anotados de alta qualidade. A anotacao de dados é uma tarefa demorada, trabal-
hosa e que requer uma quantidade significativa de esforco humano, o que a torna cara.
Este trabalho tem como objetivo reduzir o tempo necessario para anotar conjuntos de
dados de imagens através da criagao de uma ferramenta de software que seja facil de
usar e na qual se tenha um sistema de anotagao semi automatizado através do uso de
um modelo de inteligéncia artificial. Essa ferramenta foi desenvolvida como um sistema
Web e empregou-se a HQ-SAM, uma rede neural profunda para segmentacao de imagens
baseada no Vision Transformers, para gerar anotacoes de poligonos com base em entradas
do usuario. Embora o HQ-SAM tenha uma boa generalizagao sem especializacao, foi feito
um ajuste fino com o conjunto de dados Bean Leaf para avaliar a capacidade de adaptacao
da rede a tarefas especificas. Observou-se um aumento na precisao do modelo ajustado
em comparacao com o modelo pré-treinado. Testou-se a ferramenta com 20 participantes,
todos eles das areas de visao computacional e computagao grafica. Pediu-se aos partic-
ipantes que anotassem as mesmas duas imagens manualmente e com auxilio de IA, e
registrou-se os tempos de anotacao. Por fim, pediu-se aos participantes que preenchessem
um formulédrio de usabilidade com perguntas sobre sua experiéncia de usuario. Nesssa
avaliacao, registrou-se um speedup mediano de 1,5x em relacao a anotacao auxiliada por
IA em comparacao com a anotacao manual e as respostas as em relacao a facilidade de

uso e a utilidade da ferramenta proposta foram predominantemente positivas.

Palavras-chave: Aprendizagem profunda, aplicacao Web, anotacao semi automatizada,

conjuntos de dados de imagens, transformadores visuais.
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“‘I checked it very thoroughly,” said the
computer, ‘and that quite definitely is the
answer. I think the problem, to be quite
honest with you, is that you've never ac-
tually known what the question is.””
Douglas Adams (The Hitchhiker’s

Guide to the Galaxy)
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1 Introduction

Deep learning is a class of methods that can learn from raw data the representations
required to complete a certain task. They are made up of several simple modules called
neurons, each of which slightly transforms the input in a nonlinear way. Those neurons
are arranged into layers. By stacking up multiple layers and interconnecting them, it
is possible to learn a wide range of complicated functions that model the data fed in
(LECUN; BENGIO; HINTON, 2015).

Although deep learning has a lengthy history, only recently computer power and
data availability have increased to the point where this technique could stand out. The
year of 2012 can be considered a watershed moment because it was when the deep convo-
lutional neural network architecture known as AlexNet (KRIZHEVSKY; SUTSKEVER,;
HINTON, 2012) outperformed all traditional techniques in the ImageNet Large Scale Vi-
sual Recognition Challenge, which has been held annually since 2010 (RUSSAKOVSKY
et al., 2015).

For over a decade now, deep learning has been the state of the art of many
artificial intelligence applications, including speech recognition, scientific data processing
(such as those from particle accelerators), predicting the behavior of potential therapeutic
drug molecules, and many others (LECUN; BENGIO; HINTON, 2015).

According to LeCun, Bengio and Hinton (2015), the most common method for
fitting a deep learning model is via a technique known as supervised learning. It works
by first collecting a vast amount of data, annotating it, and then executing the so-called
training algorithm. For example, given a set of pictures of cats and dogs, each with a
label that correctly identifies the image class, a deep learning model can iteratively pass
through the dataset, attempt to guess which class of animal is present in each picture,
compare its predictions to the correct labels, and then self-correct itself from its mistakes.

Having high-quality annotations is essential for a supervised learning. Aside from
labels that indicate which class an image belongs to, there are different forms of annotation

for different purposes. As an instance, object detection in a computer vision context refers
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to locating objects in an image such as faces, cars, pedestrians, and so on (ZHAO et al.,
2019). Annotations for that type of problem, in addition to the object class, require the
object’s coordinates in the image, such as its bounding box.

Another classic problem is the image segmentation. There are different kinds of
segmentation, but overall, the main goal is to create multiple meaningful partitions of an
image (MINAEE et al., 2021). Segmentation annotations are frequently more complex
than the ones for other tasks since the problem requires pixel-wise class assignment.

Despite of its effectiveness, deep learning presents numerous challenges, including
it being intrinsically a blackbox — i.e., how the model makes decisions is hardly explain-
able in human language — and data-related issues, such as its scarcity for specific tasks
and overfitting (SMITH; SMITH; HANSEN, 2021). Overfitting occurs when a model
performs well on training data but not well on unseen data, implying that it does not
generalize its learning. Among other factors, overfitting is induced by using a dataset
with an insufficient amount of elements, so noise and outliers cause significant influence
on the training results (YING, 2019).

One of the primary causes of data scarcity is the cost of annotating a dataset.
Consider the case of MS COCO, one of the most popular datasets in computer vision for
object detection and segmentation. Over 70,000 hours of human labor were required to
provide approximately 160,000 annotated images, which represented roughly fifty percent
of the initial plan (LIN et al., 2014).

Annotating datasets is expensive mostly because it requires many hours of human
labor. Thus, introducing automation, such as an artificial intelligence agent, which can
carry out at least some part of the work for itself, could significantly reduce dataset
creation costs.

This work proposes to develop an annotation software tool that implements such
an artificial intelligence agent. As deep learning algorithms dominate the state of the art
in artificial intelligence, it is natural to employ them for the development. The tool should
make use of a model trained on previously existing data, so it is able to make reasonable
predictions about how new data should be annotated. The human annotator’s work is

then reduced to reviewing the agent’s forecast and correcting any errors that may arise.
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1.1 Objectives

The main objective of this project is to create a software application that uses an artificial
intelligence model to partially automate image annotation. As a result, we intend that the
tool can improve the efficiency in new datasets creation processes by reducing the number

of hours necessary of human work. Also, we have the following specific objectives:

To investigate which artificial intelligence models can be employed to aid annotation;

To develop user-friendly software with a low learning curve;

To be able to export annotation data in appropriate forms for use;

To evaluate the proposed tool with users.
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2 Theoretic Foundations

In this chapter, we will give a brief introduction to some concepts of artificial intelligence
(AI), focused on the techniques used by this work. In Section 2.1, we discuss the origins
of the AI field and the basic functioning of artificial neural networks. Following this, in
Section 2.2, we examine the vision transformer, which is the base architecture of the deep
learning model used by us. Lastly, we discuss in Section 2.3 the HQ-SAM (KE et al.,

2023a) and its ability to segment images based on human prompts.

2.1 Artificial Intelligence and Neural Networks

Artificial Intelligence is a term first used in 1955 in “A Proposal for the Dartmouth
Summer Research Project on Artificial Intelligence” (MCCARTHY et al., 2006). The
proposal aimed to raise funds for the realization of a conference with the goal to advance
the understanding of “(...) how to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and improve themselves.”
Although artificial neural networks (ANNs) were not initially considered the most
promising area, the Al community has been studying them at least since the Dartmouth
Conference. The ANNSs are based on a simplified model of biological neurons. An artificial
neuron consists of weights wy, ws, ..., w,, a scalar called bias b, an activation function f,
and inputs zi,xs,...,x,. Equation (2.1) gives the neuron’s output y, and Figure 2.1

provides a graphic representation (HAGAN; DEMUTH; BEALE, 2014).

y=1f <Z w;w; + b) (2.1)

Artificial neural networks are built in layers. There is always an input layer
consisting of the input vector fed into the network, as well as an output layer containing
the results. The intermediate layers are known as hidden layers, and they consist of one
or more artificial neurons. Traditionally, all neurons in a layer share the same input, and

the output of one layer serves as the input for the next. This type of architecture is known
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X
n

Figure 2.1: A graphical representation of an artificial neuron. Adapted from Hagan,
Demuth and Beale (2014).

as feed-forward neural networks and it is illustrated in the Figure 2.2.

layer

layer | |

hidden layers

Figure 2.2: A graphical representation of an artificial neural network (Adapted from
Hagan, Demuth and Beale (2014)).

A neural network requires good weights to function properly. The most frequent
method for finding them is to employ an algorithm known as backpropagation. Initially,
the weights are set randomly, and the model is given some data for making predictions.
The forecasts are then compared to the correct labels or annotations using an objective
function, which quantifies how far the forecast deviates from the desired output. Next,
the gradient of the objective function is calculated, because its opposite indicates the
direction where the prediction error decreases the most. Finally, the chain rule is employed
to update each node in the network along the negative gradient direction. This process

is repeated until the mean of the objective function stops decreasing (LECUN; BENGIO;
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HINTON, 2015).

2.2 Vision Transformers

From a theoretical standpoint, multi-layer feed-forward networks with non-linear acti-
vation functions are already universal approximators. They are capable of approximat-
ing any measurable function with any degree of precision (HORNIK; STINCHCOMBE;
WHITE, 1989). However, over time, several different ANN architectures have been pro-
posed with the goal of improving efficacy in certain domains.

For instance, Vaswani et al. (2017) proposed the Transformer architecture for
machine translation. The novelty was that this model only used the so-called attention
mechanism, whereas most previous state of the art approaches used techniques such as
recurrency and convolution. The Transformers launched a new era of high-quality models
in natural language processing. As a result, new efforts began to utilize them in other
fields as well.

Dosovitskiy et al. (2021) introduced the Vision Transformer (ViT) for image
classification. The authors demonstrated that the ViT outperformed the state of the art
at the time on large datasets. The ViT has since become part of a variety of computer
vision models, including the one employed in this study. Thus, we present ViT here with
further details.

As Figure 2.3 illustrates, how the Vision Transformer works can be split into six
main steps. First the image input is split in a sequence of fixed-size 2D patches, because
Transformers work with sequential data. Then, the patches are flattened and mapped
to D dimensions through a learnable linear projection. In addition, an extra learnable
embedding, which later is going to be used as a classification token, is prepend to the
sequence of patches embeddings. In order to retain positional information, a learnable
positional encoding is applied. Next, the Transformer encoder takes the embeddings as
input, computes the attention between them, updating each embedding based on all the
others. Finally, the classification is performed by a multi-layer perceptron (MLP) fed
with the final state of the extra embedding, which is expected to serve as the image

representation.
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Figure 2.3: Vision Transformer (Adapted from Dosovitskiy et al. (2021)).

Figure 2.4 depicts the Transformer encoder’s internal structure. Essentially, it
is made up of L blocks of normalization, multi-head attention, residual connection, a
second normalization, MLP, and a final residual connection. A residual connection is a

connection that bypasses one or more layers (HE et al., 2016).

Embedded

Patches

uonuUaNY
peaH-BINKW

Figure 2.4: Transformer encoder (Adapted from Dosovitskiy et al. (2021)).

The attention layer has three inputs, which are denoted as queries, keys, and
values — in ViT, all the three are distinct linear projections of the same data, but queries
source could be different than the values and keys sources in some other cases. The model
compares queries and keys for a given set of inputs to determine how much each value
should contribute to the final output. Let ), K, and V' be matrices containing, respec-
tively, queries, keys, and values. The matrices () and K share the same dimensionality
dj, while V' has dimensionality d,. The similarity of () and K is computed through the
dot product and, for numerical stability reasons, it is divided by v/dj. Then, a softmax

function is applied to obtain a probability distribution. Finally, the result is multiplied
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by V' to produce the attention. Equation (2.2) summarizes these processes.

Attention(Q, K, V) = soft (QKT) % (2.2)
ention(Q, K, V) = softmax .
Vi

Also, the queries, keys and values can be linearly projected onto h different heads.
According to Vaswani et al. (2017), “Multi-head attention allows the model to jointly
attend to information from different representation subspaces at different positions.” In
the end, the outputs from the heads are concatenated and linearly projected in order to

get the final values.

2.3 Segment Anything in High Quality (HQ-SAM)

The HQ-SAM (KE et al., 2023a) is a highly accurate segmentation model with zero-shot
generalizability, which is used in this present work to semi-automate annotation. It is
based on the Segment Anything Model (SAM) (KIRILLOV et al., 2023), a ViT-based
architecture trained on the largest segmentation dataset ever created at publishing time,
consisting of around 1.1 billion masks and 11 million images. As most of SAM’s training
dataset was generated automatically, it struggles with some fine-grained segmentation
tasks. Furthermore, due to the size of the model and dataset, direct fine-tuning is difficult
to accomplish without compromising generalization performance.

HQ-SAM tackles the issue by reusing the SAM’s weights wherever feasible, adding
a few new structures, and curating some existing datasets to create a new one with fine-
grained masks. HQ-SAM keeps the encoder, the heavier component of SAM, untouched.
The encoder is made of ViTs, and its main role is to take an image input, extract useful
features, and represent it in a lower dimension. The encoder output is called image
embedding.

The other component of the HQ-SAM is the decoder. It uses the image embedding
and a user prompt to generate the segmentation mask. The user prompt indicates the
region in the image to be segmented, which might be a set of points, a bounding box, or
a coarse segmentation mask. Those prompts are tokenized and a learnable output token

is prepended.
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Figure 2.5 shows the original SAM’s decoder. First, the attention is applied to
the tokens only (self-attention). Then, the tokens attend to the image embedding (i.e, the
queries come from the tokens while the keys and values come from the image embedding)
and they pass through a MLP. Next, the image embedding obtains tokens’ information
by attending to them. This process is repeated twice. Afterward, the resulting image
embedding is up-scaled through two convolution layers, and the tokens attend the image
embedding again. The updated output token is sent through an MLP to match the image
embedding dimensions, and the mask prediction is obtained using the dot product of the
image embedding and the output token. The diagram omits it, however at each attention
layer, positional encoding is applied to the image embedding, and the original prompt

tokens are added to the updated ones.

Mask
Prediction
Point-wise
Product T
Lt Attention Transposed

i N/
Embedding (Image to Token) Cong:(u)tuon > .“
A

Attention Attention
(Token to Image) (Token to Image)

Output Token
+ Self-Attention
Prompt Tokens

Figure 2.5: SAM decoder (Adapted from Kirillov et al. (2023)).

The structures added by HQ-SAM are shown in Figure 2.6. The proposed ap-
proach is to include one extra learnable token, which the authors call as the HQ-Output
token. Also, HQ-SAM sums the mask features, i.e. the image embedding in the original
decoder after the convolutions, with the output of the encoder’s first and last attention

blocks, a process referred to as Global-local Fusion. The premise is that the encoder’s
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Figure 2.6: HQ-SAM Decoder (Adapted from Ke et al. (2023a)).

early layers should contain lower-level local features, while the final layers should have
more global context information. The segmentation mask is then predicted by taking the
dot product of the Global-local Fusion output and the up-scaled HQ-Output token. At
training time, only the new structures are updated via back-propagation, and at infer-
ence time, the original SAM output and the HQ-SAM output can be combined for error

correction.
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3 Related Work

Over the years, various dataset annotation softwares have been developed. Some were
designed for specific cases, while others had a broader reach. For example, the MS Coco
project created its own annotation tool, where users painted over objects to create seg-
mentation masks (LIN et al., 2014). On the other hand, LabelMe, previously one of the
most influential annotation softwares, had a wider purpose. It was an open-source project
and an online platform where individuals collaborated to construct an open dataset using
polygon annotations (TORRALBA; RUSSELL; YUEN, 2010).

However, a limitation that both LabelMe and MS Coco share is that they rely
entirely on human labor. Subsequent works on dataset annotation employed a variety of
computer vision techniques to add automation into this task.

Boonsri and Limpiyakorn (2023) applied traditional computer vision techniques
to detect and annotate the coordinates of cannabis seeds in an image. The authors
intended to help Thai growers distinguish between female and male cannabis plants before
planting them because only female cannabis is commercially viable. The authors first
needed to build a dataset, so they proposed a software that takes as input an image
containing a handful of seeds distributed on a white background, converts it to gray-
scale, then smooths it with Gaussian blur. The image is then passed through a threshold,
and contours are calculated to find the bounding boxes for the seeds. Their tool writes
out the results in JSON files, and they still need to perform the male/female classification.

Classic algorithms can also be used in scenarios with less control over the image’s
background and noise than in the cannabis seeds case. Qin et al. (2018) used edge detec-
tion to create a general-purpose annotation software called ByLabel. Their tool uses an
algorithm called Edge Drawing (TOPAL; AKINLAR, 2012) to obtain edges segments all
across the image. These segments are partitioned into smaller fragments either manually
or automatically — automatic partition is based on turning angle heuristics. The user
then chooses the edge fragments which will compound the final annotation. The expec-

tation is that edge selection will be less costly than traditional annotation methods. The
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authors led an experiment with 10 volunteers with no experience in annotation. Accord-
ing to their evaluation, using ByLabel reduces the annotatiom time by a factor of 56%
compared to using the traditional LabelMe.

Entering in the realm of semi-automation powered by artificial intelligence, Yu et
al. (2023) proposed the use of unsupervised learning algorithms to simplify annotation.
The authors work with a specialized dataset containing images of rock thin sections uti-
lized in geological and mineralogical studies. Their tool uses a clustering algorithm to
split the image into several non-overlapping groups of similar pixels called superpixels.
The human annotation is then reduced to labeling the superpixels of interest. The authors
report a speedup of 5x to 8x when comparing experts using their tool versus generating
segmentation masks with QGis! or Photoshop.

Supervised learning also plays an important role in dataset annotation, and is
applied in various approaches. Ficiu et al. (2018) aimed to automate the annotation
process completely. The authors employed an architecture called Mask R-CNN (HE et
al., 2017) to predict bounding boxes and segmentation masks. The bounding box is
utilized as input, alongside the image, to help Polygon-RNN (CASTREJON et al., 2017)
predict an annotation polygon. The results are exported in JSON format. One limitation
of this method is that it cannot generalize to previously unseen classes. In fact, the
authors report results for only four categories: people, cars, trucks, and bicycles. The
addition of new classes would require retraining Mask R-CNN.

Most annotation tools allow human users to fix the neural network’s predictions.
For example, Philbrick et al. (2019) developed a software to annotate medical images.
Their system supports plugins that enable the deployment and use of different neural
networks to predict segmentation masks, as long as the neural network is implemented in
Keras? running on TensorFlow.? The user can change the predictions using drawing tools,
including painting, erasing, and filling. Also, annotated images can be used to fine-tune
models within the software. According to the authors, their software design is limited to

the annotation of images stored in the Neuroimaging Informatics Technology Initiative

Thttps://www.qgis.org/
https://keras.io/
3https://www.tensorflow.org/



3 Related Work 21

(NIfTT) file format.

Other strategies attempt to use annotators’ knowledge to improve the model’s
predictions. For example, in the case of object detection, Pugdeethosapol et al. (2020)
proposes asking users to click on an object and then use the click location to select among
bounding boxes generated by a pretrained backbone. Moreover, the user can correct the
predictions, and the corrected data is used to train a second network incrementally during
runtime. Over time, the second model is expected to make better predictions and require
fewer user adjustments during annotation.

There are interactive approaches for image segmentation as well. Sambaturu et
al. (2023) developed a framework for annotating urban city scenes in which a pretrained
network gives mask predictions, and the user can make adjustments by scribbling where
the network made mistakes. These corrections are utilized to determine local loss at
scribbling pixel coordinates and to backpropagate during inference. Backpropagation is
limited to only a few final layers for efficiency factors. Based on an evaluation performed
with two experts, the authors claim a time savings of up to 14.7x compared to complete
human annotation.

Differently from previously cited works, we propose using segmentation prompts
to reduce annotation time. Prompts are now widely used in Al text generators like Chat-
GPT.* However, unlike ChatGPT, our prompts are the ones supported by the SAM/HQ-
SAM model rather than text prompts. Given that HQ-SAM has zero-shot capabilities,
our tool can be generalized for a wide range of classes, while also being possible to fine-
tune the model to perform better in specific classes. In addition, we propose conducting
a more comprehensive quantitative and qualitative evaluation of the proposed tool in
comparison to other studies. We proposed evaluating our tool with both experienced
and inexperienced participants, aiming for a significant sample size based on existing

literature.

“https://chatgpt.com/
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4 System Development

This work’s proposed system is a single-page web application with a desktop-like workflow.
Our application is backed up by a server that serves the content, manages the data, and

handles the interaction AI model. Thus, we use a client-server architecture, as shown in

Figure 4.1.
File — Images
System
.' xm_l Annotations
Client Server
-~
—{=) empeaah
0101 -
l Al Embeddings
Model

Figure 4.1: Overall system Architecture.

In the following subsections we will discuss the software with further details. In
Section 4.1 we present the main languages, libraries and tools used in the application. In
Section 4.2 we describe the fine-tuning process we performed in the HQ-SAM network.
In Section 4.3 we discuss the server-side implementation. Lastly in Section 4.4 we present
the client-side and the main features available for the users through the user interface

(UD).

4.1 Languages, Libraries, and Tools

The web client was developed with HTML, SASS® (a CSS extension language), and plain
JavaScript. We also used Parcel,® a JavaScript build tool that enabled us to use NPM’

for dependency management, as well as supplying source-mapping and code minification

Shttps://sass-lang.com/
Shttps://parceljs.org/
"https://www.npmjs.com /
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out-of-the-box.

The server was implemented in Java 17, and it uses the Spring Boot framework to
create API endpoints, handle HTTP requests, and serve static files. We chose Gradle as
the build tool and dependency manager for the back-end. We used the OpenCV?® library
for image processing and to perform a few computer vision tasks.

The HQ-SAM was written in Python, and we used existing Python scripts to
fine-tune the network. To integrate HQ-SAM into the system, we exported the trained
weights to an ONNX? file, which can be run directly by the server powered by the ONNX

Runtime for Java.

4.2 Fine-tuning the HQ-SAM Network

Although our ultimate goal is to produce a general-purpose annotation tool, the software
development was initially focused on meeting the requirements for annotating the Bean
Leaf Dataset (SILVA, 2023). This set consists of images containing a prominent bean
leaf and an augmented reality marker. We fine-tuned the model to improve HQ-SAM
accuracy in that dataset and developed a feature in our system that supports multiple
HQ-SAM checkpoints. During the fine-tuning process, we froze the original SAM layers
and trained only the structures introduced by HQ-SAM.

There were three HQ-SAM pre-trained versions available to fine-tune: ViT-B,
ViT-L, and ViT-H. The difference between them is the size of their backbones. A smaller
backbone is lighter but less accurate, whereas a larger backbone is heavier but more
accurate. Due to hardware constraints, we chose the ViT-B, which is the lighter model.

Only leaves were used in the fine-tuning because the marker annotations were
already finished. The available dataset contained a total of 3756 images organized into
300 folders, each folder containing different pictures from the same leaf. We randomly
selected 20% of the folders (60 in total) to provide the images of our testing set, while
the remaining 80% provided the training set. The original images had a resolution of

3468x4624. They were cropped to 1024x1024, the HQ-SAM input resolution, keeping

8https://opencv.org/
9https://onnx.ai/
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the leaf in the center.

We kept almost the same parameters used by HQ-SAM :

Optimizer: Adam () = 0.9, By = 0.999, ¢ = 1078, A = 0);

Initial learning rate: 1073;

Learning rate decay factor: 107! every 10 epochs;

Number of epochs: 12;

Seed: 42.

The only difference is that we reduced the training batch size from 4 to 2 due to
VRAM limitations. We performed the fine-tuning on a Quadro M5000 GPU with 8GB
VRAM, which took a total of 11.7 hours to complete. The results will be presented in
Section 5.1.

The HQ-SAM repository (KE et al., 2023b) contains a script for exporting the
model’s decoder to ONNX but not one for exporting the encoder. So, in order to obtain
all of the fine-tuned weights in the same format, we adapted SAM Exporter (NGUYEN,
2023), a tool licensed under MIT that can export the complete original SAM to ONNX,
to export the HQ-SAM.

4.3 Server

The server code is self-contained; it compiles into a JAR that includes all required li-
braries, ONNX files, and WEB files. The application creates a directory for itself in the
user’s home folder, which is a common place to store application data. The application’s

directory contains three automatically created sub-directories:

1. datasets: the directory where the server will look for the images and annotations
data. The content in this directory is statically served, and its subdirectory structure

is exposed through an endpoint so the client can implement directory navigation;
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2. checkpoints: the directory where the server will look for user’s fine-tuned check-
points of the HQ-SAM decoder. They are recognized as alternatives to the default
checkpoint included in the JAR file.

3. embeddings: the directory where the server will look for image embeddings before
running HQ-encoder. Whereas the HQ-SAM decoder is lightweight, the encoder is
heavy. As the encoder’s output for an image does not change no matter the prompt,

we save it to the disk for speeding up later usages of the same image.

When handling prediction requests, the server responds with a list of coordinates,
which represents the segmentation polygon of an object. However, the output of HQ-SAM
is a binary segmentation mask. The conversion from a binary image to a sequence of points
is performed through OpenCV, first by using the Suzuki et al. (1985) algorithm to find
the mask contour and then by using the Douglas and Peucker (1973) algorithm to get the

corners of an approximated polygon. This process is illustrated in Figure 4.2.

Original image

Segmentation mask

Contour

Approximated polygon corners

Figure 4.2: Image to polygon steps.

The server only stores annotations on disk at the client’s request. In the save
request, the client can specify where will be the location of the annotation within the
datasets directory, as well as the file name and format, as long as it is in text format.
This allows support for multiple dataset structures and annotation formats as long as the
client knows to read them.

In addition, the server serves the default client on the user’s localhost port 8080.
As a result, a single JAR file can be provided as a complete software package, and it does

not require installation.
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4.4 Client

The UI displays the client’s main features, as shown in Figure 4.3. The interface is mostly
in Portuguese, as it is initially intended for Brazilian users. The screen is divided into
four sections: a bar with the main features at the top, a bar with secondary information
at the bottom, a file list on the right side, and a canvas that displays the content in the

center.

Arquivos ‘ [ marker v

Toggle dark
theme

0
File explorer 4 q v A §
»a N Export 20220513_093416
wat 19) P
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Add new A 2 s - 20220513_093426

annotation class TR [ ¢
i [ ; m 20220513_093430

Class selector
20220513_093432

20220513_093436

20220513_093441
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20220513_093446

20220513_093450

20220513_093532

20220513_093537

Current folder : 3 . Checkpoint

Points counter Elapsed time
selector

Default v Q010% [J004 BY05:12 ®

Figure 4.3: User interface main elements.

In the center of the top bar, we placed the buttons that should be used more
frequently, which are the tools to edit annotations manually and to use the AI model.
We assume that the file explorer, class selector, and class creation are the second most
commonly used buttons, thus we positioned them on the left. The right-side buttons
are likely to be used less frequently. Respectively, they toggle the dark theme, export
annotations, and open the settings modal.

We employed modals to keep the client as a single-page application while having
a few additional and straightforward interfaces, as shown in Figure 4.4. The file explorer
modal displays the browseable list of folders in the server’s datasets folder. The class

creation modal contains only some fields to choose the class name, set an optional limit
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of points, pick a color, and choose whether the points should be enumerated in the UI.
The settings modal only include three sliders for controlling the opacity of the polygons,

the maximum magnification allowed, and the scrolling speeding.
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Dat t | Enumerar. ®
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i 3 bean-leaf/571-580/573 (_A.IHTl[[Ul'dl. des

! [ bean-leaf/571-580/574 )
; Opacidade dos poligonos

| £ bean-leaf/571-580/575

) bean-leaf/571-580/576
| bean- leaf/571-588/577 - )
Zoom maximo

Selecionar

Taxa de incremento do zoom

Figure 4.4: User interface modals.

When a folder is selected, the client retrieves a list of image files and displays
their names in the right bar, in alphabetical order. The first image of the list and its
corresponding annotations (if they exist) are rendered on canvas. The user can switch to
the other images by clicking on their names on the list.

Once an image has been rendered on the canvas, the user can manually add
annotations by clicking on the screen with the left mouse button while using the editing
tool. Each click generates a point, resulting in a polygon. Users can also edit annotations
by clicking and dragging points to different locations, or delete them by clicking on them
and typing DELETE or BACKSPACE on the keyboard.

The AT tool provides users with two prompt alternatives, depicted in Figure 4.5.
The first option is to use point prompts, which can indicate foreground or background.
The foreground prompts can be added with a left click and are represented by green dots,

while the background prompts need CTRL + left click and are represented by red dots.
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The second option lets users draw a box around the object they want to segment. In either
case, users should press the ENTER key after completing the prompts. These prompts
serve as input alongside the image to the HQ-SAM, which then computes a segmentation

mask based on them.

{‘ °
. I =
5 ! . i \ - f _ V.
¢ - . { ] o

-~

(a) Point prompts to segment a leaf.  (b) Box prompt to segment a leaf.

Figure 4.5: A demonstration of the two different prompt modes available.

Regardless of the tool used, users can move the image on the canvas by clicking
and dragging with the mouse’s right button, and zoom in or out using the mouse scroll.
Furthermore, when the mouse cursor hovers over a selectable object (polygons or points),
the object is highlighted with an outline to provide visual feedback.

The bottom bar displays secondary but useful information such as the name of the
currently open directory, the number of points the selected annotation has, the amount
of zoom currently applied to the rendered image, and a timer that begins when the user
opens a folder. Additionally, users can see which checkpoint is currently being used by
HQ-SAM in the back-end, and they can click on it to select another one if there are other
options stored in the checkpoints folder in the server.

Lastly, users can save their work to the server using the conventional CTRL + S
shortcut. The annotations are normalized by the image’s height and saved in an XML

file, as in the Figure 4.6. Users can also export and save locally the annotation files by
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clicking the export option in the top bar. The download is a zip file including one folder

with the XMLs and one folder with the annotations in a JSON file following the MS

COCO format.

Arquivos @ | [ square v

(a) An augmented reality marker annotated
with four points and assigned to the class
“Square.”

0546722902415917
1696091037832462

417182693952
0881472437901711

(b) The resulting XML file containing the
marker’s annotations points normalized,
the image file name, and root directory.

Figure 4.6: A depiction of an annotation and the corresponding XML file.
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5 Experiments and Results

This chapter presents the methodology and findings of our research and is divided in
two sections. Section 5.1 discusses the process of fine-tuning the HQ-SAM model and
how it affects segmentation performance. Section 5.2 discusses the performance study to
determine how our Al-aided annotation compares to manual annotation, as well as the
usability study to assess the user-friendliness of the annotation tool developed as part of

this research.

5.1 Fine-tuning HQ-SAM Network

To evaluate the effect of the fine-tuning for the Bean Leaf Dataset, we used the intersection
over union (IoU) and the Boundary IoU (CHENG et al., 2021). These metrics are the
same as those used by the HQ-SAM authors. In fact, we calculated them using their
implementation.

The IoU is obtained using Equation (5.1). We divide the area of the intersection
between the ground truth mask (G) and the prediction mask (P) by the area of their
union. The Boundary IoU in Equation (5.2) is close to the IoU, but it focuses on the
edges. G4 and P, are the sets of all pixels within d pixels distance from the ground truth
and prediction contours respectively” (CHENG et al., 2021). The parameter d used by

HQ-SAM is 2% of the image diagonal and we kept it unchanged.

|G N P|
IoU = 1
oU |G U P| (5.1)
PN P
Boundary IoU = (GanG) O (Fan P)] (5.2)

(GaNG)U (P;N P)|
We evaluated both the predictions using box prompts and point prompts on the
test set, keeping the same patterns. For the box prompts, we used the leaves’ bounding

boxes. For the point prompts, we used only the center of the bounding box. We chose
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using a single point prompt both for simplicity and because it represents the minimal
effort annotation method in our tool.

The graphs in Figure 5.1 summarize the results for the box prompts, whereas
Figure 5.2 shows the results for the point prompts. In both figures, when comparing
pre-trained weights to fine-tuned ones, we can observe that the mean increased while the
spread decreased for both metrics. For the box prompts the mean IoU went up from
98.6% £ 0.7% to 99.1% +0.3% and the mean Boundary IoU went up from (90.9+3.7)% to
93.3% =+ 1.8%. Meanwhile, for the point prompts, the mean IoU increased from 86.6% =+
19.0% to 97.7% =+ 2.4% and the mean Boundary IoU increased from 66.3% =+ 25.5% to
80.3% =+ 15.4%.

Box Prompt
1000 loU Boundary loU 1000
—— o
0.975 A r0.975
0.950 A —— - 0.950
0.925 I }oozs
0.900 - - 1 }o.900
0.875 A - 0.875
0.850 A - 0.850
0.825 A r0.825
0.800 A - 0.800
0.775 T T T T 0.775
Pre-trained Fine-tuned Pre-trained Fine-tuned
HQ-SAM checkpoints HQ-SAM checkpoints

Figure 5.1: Comparison of IoU and Boundary IoU values for the pre-trained and the
fine-tuned checkpoints using box prompts.

Figure 5.3 shows a qualitative example of the fine-tuning effect. As shown in
Figure 5.3a and Figure 5.3c, the model without fine-tuning incorrectly assigns some
green background elements to the leaf. The Figure 5.3c contains a specially large back-
ground area that was mistakenly included in the segmentation, suggesting that single-
point prompts tend to be more ambiguous than box prompts. The fine-tuned model on
the same images for both prompt types predicts the segmentation masks more accurately,
following the actual leaf contour, as shown in Figure 5.3b and Figure 5.3d.

In summary, we conclude that the fine-tuning was successful. Box prompts carry

more information than single-point prompts, but the fine-tuning method considerably
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Figure 5.2: Comparison of IoU and Boundary IoU values for the pre-trained and the
fine-tuned checkpoints using point prompts.

reduced the difference between them, making both of them viable options. Furthermore,
the predictions became more consistent, making bad performance outliers less likely to

occur.

5.2 Software Evaluation

In order to assess whether our proposed software meets its objectives (ease-of-use and an-
notation time reduction), we conducted an evaluation with 20 undergraduate and gradu-
ate students working on computer graphics or computer vision projects. The sample size
is consistent with the recommendations of Alroobaea and Mayhew (2014) for usability
studies intended for statistical significance and performance metric analysis.

We instructed the participants on how to use the software and asked them to
annotate leaves in two distinct images. For the first image, we chose a leaf that is more
regular in shape and hence easier to annotate. For the second, we chose a leaf with a wavy
surface and a cut on the left side, making it more difficult to annotate. These images are
displayed on Figure 5.4. Later in this work, we reference the first image as leaf 1 and the
second as leaf 2.

The participants annotated the same two images from scratch twice: once com-

pletely manually and once only fixing the AI tool predictions. To diminish bias coming
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(a) Default HQ-SAM prediction with box (b) Fine-tuned HQ-SAM prediction with box
prompt. prompt.

(c) Default HQ-SAM prediction with point (d) Fine-tuned HQ-SAM prediction with point
prompt. prompt.

Figure 5.3: Qualitative demonstration of the fine-tuning effect.

from variations on the Al prompts, we asked participants to utilize a single point prompt
around the leaf’s center for the first image and a box prompt for the second. We mea-
sured completion times and saved the annotations to compare later to the dataset’s ground
truth.

After finishing the annotations, the participants responded to a questionnaire
about their user experience. Most of the questions used the 5-point Likert scale (LIKERT,

1932) to ask about how hard it was using the features in the application. Also, there was
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(a) First image (leaf 1). (b) Second image (leaf 2).

Figure 5.4: Images used in the software evaluation.

a question about whether the participant had already used other annotation tools, and
an optional open field to give feedback about the system. More specifically, the questions

were:
1. Have you ever used other annotation software? (yes or no);

2. How easy is to understand the user interface? (very easy, easy, neither easy nor

hard, hard, or very hard);

3. How easy is to use the polygon creation tool? (very easy, easy, neither easy nor

hard, hard, or very hard);

4. How easy is to add a class for the annotation polygon? (very easy, easy, neither

easy nor hard, hard, or very hard);

5. How easy is to use the artificial intelligence tool with point prompts? (very easy,

easy, neither easy nor hard, hard, or very hard);

6. How easy is to use the artificial intelligence tool with box prompts? (very easy, easy,

neither easy nor hard, hard, or very hard);

7. How easy is to fix the annotations generated by artificial intelligence? (very easy,

easy, neither easy nor hard, hard, or very hard);



5.2 Software Evaluation 35

8. How easy is to export the files to the desired format after finishing the annotations?

(very easy, easy, neither easy nor hard, hard, or very hard);

9. In general, how useful is the artificial intelligence tool for annotation? (very useful,

useful, neutral, useless, very useless)

10. Open field for you to leave your comments, critics, and suggestions for the applica-

tion.

It is worth noting that all evaluations were done online. We passed the instruc-
tions to each participant individually via Google Meet sessions and then sent them the
URL to the software program. To ensure consistency, we asked participants to use the
Google Chrome browser. For the questionnaire, we used the Google Forms. Also, we
only started our research after receiving the approval of the CEP (Comité de Etica em
Pesquisa com Seres Humanos — Ethics Committee On Human Research) under the CAAE
78839724.3.0000.5147 (Certificado de Apresentagdo para Apreciagdo Etica — Certificate of
Presentation for Ethical Consideration). The ethics committee’s opinion is available in
Portuguese on Annex A.

Regarding the questionnaire results, in the first question, only half of the par-
ticipants reported prior experience with other annotation tools. In the last question, all
participants said the Al tool was “very useful” for annotation. Figure 5.5 summarizes the
results from the second to the eighth question, which are all about the system’s ease of
use. We highlight that in those questions, we kept a range of 70-90% of the participants
answering “very easy”, with the remainder responding “easy.” The only exceptions were
questions 4 and 7, which had one “neither easy nor difficult” answer each.

Furthermore, we received 13 answers to the open question asking for feedback.
A few of them only contained compliments such as “I liked the interface, very intuitive,
easy to use and with a very good design” and “The precision of Al makes correction much

simpler.” There were also a handful of suggestions, which we list below:

e To change the default class color to increase contrast;

e To show files on the files explorer as currently it only shows folders;
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Answers to the Usability Form: Questions 2-8

194
184
174
164
154
) 144
o 131
2 121
S 111
%5 10
5 o
£ o
S 74
=2
6
54
4
34 Answers
2 N Very Easy
B Easy
14 B Neither Easy Nor Hard
0- .
2. How easy is 3. How easy is 4. How easy is 5. How easy is 6. How easy is 7. How easy is 8. How easy is
to understand to use the to add a class to use the to use the to fix the to export the
the user polygon for the artificial artificial annotations files to the
interface? creation tool? annotation intelligence intelligence generated by desired format
polygon? tool with point tool with box artificial after finishing
prompts? prompts? intelligence? the
annotations?
Questions

Figure 5.5: Answers to the questions 2-8.
e To add a loading spinner while changing from one image to other;

e To add an instructions pop-up, which may be opened by default when the user

accesses the tool for the first time;

e To change the icons of the export button and the add class button so they are more

intuitive.

Compared to the ground truth, the annotation accuracies using manual and Al
tools were similar to each other. Using the mean IoU, the manual annotation accuracy
was 98.8%+0.4%, whereas the Al-aided annotation accuracy was 98.8%+0.3%. Similarly,
the mean Boundary IoU was (96.1 £+ 1.2)% for manual annotation and 96.3% =+ 0.8% for
Al-aided annotation.

Investigating the annotation times, we observe in Figure 5.6 an overall reduction
to finish the task while using AI. The mean time for manual annotation was (755 % 399)
seconds, while it was (470 4 318) seconds for Al-aided annotation. However, we note that
our data contains outliers pushing the standard deviation up, and that the time reduction
was unequal for the leaf 1 and leaf 2.

To summarize the results, we calculated the speedup of Al annotation compared

to manual annotation. The mean speedup was 1.9x 4+ 1.01x, but due to outliers and a
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Figure 5.6:

Summed up annotation times for the two leaves.

high standard deviation, we believe the median is a less biased metric. The boxplots in

Figure 5.7 show us that while the overall median speedup was 1.5x, the median speedup

for the leaf 1 was 1.3x and for the leaf 2 it was 1.7x. One possible explanation for such a

difference may lie on the fact that the leaf 2 is harder to annotate, so the Al tool is more

helpful. Furthermore, the prompts may have had an impact on this difference, as the box

prompts used in leaf 2 carry more information and provide better mask predictions than

the point prompts used in leaf 1.
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Figure 5.7: Al-aided time speedup compared to manual annotation.

Given the high accuracy of HQ-SAM predictions and the model’s inference time



5.2 Software Evaluation 38

being significantly faster than human annotation, speedup values may appear to be lower
than expected. However, the possible reason for those results is how participants corrected
the Al’s annotations. Some participants passed over most of the points in the annotation
polygon, making minor changes that increased their overall annotation time.

Another interesting finding is that, on average, participants who reported not
having used other annotation software completed the task faster. Also, they maintained
comparable accuracy to those who had prior experience with other tools. Figure 5.8 shows
that the speedup for the non-experienced was 1.8, while for the experienced it was 1.4.
The mean IoU and and the mean Boundary IoU for both groups annotating the first leaf

are in Table 5.1 and the metrics for the second leaf are in Table 5.2.
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Figure 5.8: Comparing total speedup between participants with prior annotation experi-
ence with other tools and participants with no prior experience.

Table 5.1: Accuracy metrics obtained for leaf 1.

Experience with other tools
No prior experience | Prior experience
Mean ToU Manual 98.6% =+ 0.5% 99.0% =+ 0.2%
Al 98.4% + 0.4% 99.0% =+ 0.3%
Mean Manual 95.5% + 1.3% 96.7% =+ 0.6%
Boundary IoU Al 96.0% + 0.9% 96.4% + 0.8%

We interpret the participants’ similar accuracy regardless of prior expertise as an
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Table 5.2: Accuracy metrics obtained for leaf 2.

Prior experience with other tools

No prior experience | Prior experience
Mean ToU Manual 98.6% + 0.5% 98.9% + 0.2%
Al 98.8% + 0.4% 98.9% + 0.1%
Mean Manual 95.5% + 1.5% 96.5% + 0.6%
Boundary IoU Al 96.3% + 0.8% 96.5% + 0.3%

indication of the proposed software’s ease of use and learning, which is consistent with
the usability form’s results. Aside from that, we consider that we have met the time
reduction goal, as we achieved a median speedup of 1.5x in the general case. As a result,

we believe this current study to have completed its primary objectives satisfactorily.
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6 Conclusion

Deep learning models have contributed to significant advances in some artificial intelli-
gence tasks over the last decade. To perform supervised learning, these models are fitted
with large amounts of data that must be carefully selected and annotated by humans. As
a result, long hours of human labor are required to create a high-quality dataset, which
can be a bottleneck for further deep learning advancements.

In this context, this work looked into how to diminish annotation time when cre-
ating image datasets. Our proposal was to semi-automate the annotation task. We build
a software that makes use of a previously trained promptable segmentation model and
converts the binary mask predictions to editable polygons. By doing so, we reduced anno-
tation to prompting and correcting prediction errors, with the expectation that humans
would take less time to do it than they take in manual annotation.

We evaluated our software tool with 20 participants who belong to the computer
graphics or computer vision fields. We verified a mean speedup of 1.9x + 1.1x and a
median speedup of 1.5x using our proposed Al tools over manual annotation. Therefore
we conclude that this work was successful in its main objective of reducing the amount
of labor (measured in time) required for annotating images.

The other objectives for our tool included user-friendliness, a low learning curve,
and the inclusion of an exportation feature. Considering the experiences reported by
participants through our user experience questionnaire, we conclude that these objectives
were also met. Furthermore, we observed that participants with no experience in annota-
tion annotated faster than participants with experience in other tools, while maintaining
comparable accuracy. This observation provides additional evidence of our proposed tool’s
ease of use and low learning curve.

During the development phase, our proposed software assisted in the annotation
of a dataset consisting of images of bean leaves. However, the software can still be
improved and applied to other datasets. For further work, we have to attend the feedback

provided by the evaluation participants and keep improving the software. We intend to
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extend some currently available features, such as making available other deep learning
models beyond HQ-SAM, and adding support to other annotation formats. Besides that,
we judge it would be beneficial to add support to multiple simultaneous users annotating

the same image, i.e, make the software a collaborative tool.
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